H3P PROJECT - Modular Peak Power Plant
  • Home
  • Context
  • Project
    • Project Introduction >
      • Background
      • Concept & Definition
      • Individual components
    • Theory >
      • Electrochemistry
      • System Losses
      • Assumptions & Symbols
    • Fuel Cell Measurements
  • Model
    • Approach
    • Parameters Definition
    • MATLAB Model
  • Results & Conclusions
    • H3P - Results
    • Discussion
    • Conclusions
  • Additional Information
    • Further Developments
    • Other Considerations
    • Alternative Applications
    • Acknowledgments
    • Bibliography
  • Team
  • Home
  • Context
  • Project
    • Project Introduction >
      • Background
      • Concept & Definition
      • Individual components
    • Theory >
      • Electrochemistry
      • System Losses
      • Assumptions & Symbols
    • Fuel Cell Measurements
  • Model
    • Approach
    • Parameters Definition
    • MATLAB Model
  • Results & Conclusions
    • H3P - Results
    • Discussion
    • Conclusions
  • Additional Information
    • Further Developments
    • Other Considerations
    • Alternative Applications
    • Acknowledgments
    • Bibliography
  • Team

PROJECT - Theory

System losses

Picture

Definitions of efficiencies

Picture
Picture
Picture

Mechanisms of electrolyser & fuel cells

Picture
Picture
Picture
Picture
Picture
          To download the full Excel document, please click here:   H_round_trip.xlxs
Picture

Power electronics components

Picture

AC/DC converter efficiency

Picture

DC/AC inverter efficiency

Picture
Picture
Source: Typical per unit efficiency curves for grid-connected Solar Inverters (Faranda et al, 2015)[14]
Picture
Picture

Hydrogen compression

Picture
Picture
Picture
Picture
Picture

Comparison of compression work with stored chemical energy
Picture
Picture
Picture

Losses in storage

Picture

[1]            G. Hoogers, Fuel cell technology handbook. Boca Raton, Fla.: CRC Press, 2003.
[2]           C. Spiegel, Designing and building fuel cells. New York: McGraw-Hill, 2007.
[3]           P. Millet, Fundamentals of water electrolysis in "Hydrogen production by electrolysis" ed. Godula-Jopek, A.: Weinheim, Germany : Wiley-VCH, 2015.
[4]           CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data, 95th ed. Boca Raton, FL.: CRC Press, 2014-2015.
[5]            J. J. Moore, Chemical metallurgy. London ; Boston: London ; Boston : Butterworths, 1990.
[6]           B. Mahan, H. and R. J. Myers, University chemistry. Reading, Mass.: Addison-Wesley Pub. Co., 1987.
[7]            P. Millet, PEM water electrolysis. In: "Hydrogen production by electrolysis" ed. Godula-Jopek, A. Weinheim, Germany: Wiley, VCH, 2015.
[8]           T. Tsoutsos, Hybrid wind-energy systems. In: Stand-alone and hybrid wind energy systems : technology, energy storage and applications, ed. J.K. Kaldellis. Cambridge, UK : Boca Raton, Fla.: Woodhead Publishing Limited: CRC Press, 2010.
[9]           O. Ulleberg, T. Nakken, and A. Ete, "The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools," International Journal of Hydrogen Energy, vol. 35, pp. 1841-1852, 2010.
[10]         H. Miland and O. Ulleberg, "Testing of a small-scale stand-alone power system based on solar energy and hydrogen," Solar Energy, vol. 86, pp. 666-680, 2012.
[11]          N. Guillet and P. Millet, Alkaline water electrolysis, in "Hydrogen production by electrolysis" ed. Godula-Jopek, A. Weinheim, Germany: Wiley VCH, 2015.
[12]         S. Ćuk. (2011) 98% efficient single-stage AC/DC converter topologies. Power Electronics Europe. 16-23.
Available: http://www.power-mag.com/pdf/feature_pdf/1310569074_Teslaco_Feature_Layout_1.pdf
[13]         V. K. Dubey, A. Singhal, and H. M. Suryawanshi, "High efficient AC/DC Converter For micro-hydro-power plant for DC grid," in Recent Advances and Innovations in Engineering (ICRAIE), 2014, 2014, pp. 1-5.
[14]         R. S. Faranda, H. Hafezi, S. Leva, M. Mussetta, and E. Ogliari, "The optimum PV plant for a given solar DC/AC converter," Energies, vol. 8, pp. 4853-4870, 2015.
[15]          D. Vinnikov, A. Andrijanovit, I. Roasto, and T. Jalakas, "Experimental study of new integrated DC/DC converter for hydrogen-based energy storage," in Environment and Electrical Engineering (EEEIC), 2011 10th International Conference on, 2011, pp. 1-4.
[16]         BOC [supplier of industrial gases]. (2014). Factsheet - hydrogen Hydrogen Genie Gas Cylinder.
Available: http://www.boconline.co.uk/internet.lg.lg.gbr/en/images/Hydrogen-factsheet410_116758.pdf?_ga=1.223083737.333764091.1462635754
[17]          A. Eté, "Hydrogen systems modelling, analysis and optimisation," MPhil, Engineering, University of Strathclyde, 2009.
[18]         Y. A. Çengel and M. A. Boles, Thermodynamics : an engineering approach. Boston: Boston : McGraw-Hill Higher Education, 2008.
[19]         A. Godula-Jopek, Introduction.  In: "Hydrogen production by electrolysis" ed. A. Godula-Jopek. Weinheim, Germany: Wiley-VCH, 2014.
[20]        A. Godula-Jopek, Hydrogen storage options including constraints and challenges.  In: "Hydrogen production by electrolysis", ed. A. Godula-Jopek. Weinheim, Germany: Wiley - VCH, 2014.

Create a free web site with Weebly