
ESP-r Selftest
Jon Hand

4 February 2025

Summary

One aspect of the evolution of simulation tools is the need to periodically test for unintended changes
in predictions. Code submissions rely on such tests. Ideally tests should be relatively simple to carry
out and:

• test a mix of simulation facilities and assessment domains
• test a matrix of project models focused on different assessment goals
• test simulation models under different boundary conditions and control regimes
• test a range of reporting types and performance topics
• clarify differences between a reference and test version of the simulation tool

Developers have adopted many approaches to this challenge. ESP-r has, for decades, included a tester
facility originally developed by Canmet Energy in Ottawa. This was implemented as a ~4500 line Perl
script which took command line directives (there are two dozen) as seen in Figue 1. It acted on a
matrix of 155 simulation models held within a test_suite set of folders and generated an overall
pass-fail report with various options to drill down into the statistics of any differences found. See
Appendix 1 for a summary of the tester.pl facility.

Unfortunately, the Perl script is ancient and there are no longer the skills set in the ESP-r community
to maintain it or evolve it to match the evolution of ESP-r.

Figure 1: tester.pl command line examples

Figure 2: tester scripts and test_suite folder

As an alternative to creating yet another complex edifice in a scripting language, facilities have been
implemented within the ESP-r Project Manager (prj) source code. Logic supporting validation
projects such as BESTEST already existed as well as facilities to encode data mining directives and
invoke external software agents. These have been adapted and expanded to provide a similar testing
regime to that provided by the Perl script.

The approach taken differs from tester.pl as follows:

• directives driving the tests are held in a text file rather than rely on command line options,
• the directives file is in tag-data format (see Appendix 3) and user editable so that new models

and tests can be added as needed,
• data mining is carried out via directives in ‘PIF’ files which set the what/when/form of

reporting (see Appendix 2),
• tester.pl required separate model cfg files for each assessment and edited the cfg files to

impose different save levels. The selftest facility leverages simulation parameter sets (SPS)
within model cfg files to support multiple timesteps, assessment periods and save levels (this
reduces the test matrix from 155 to 118 model cfg files),

• the usr can interactively choose to test the full list, a specific group or individual models,
• rather than exist only in the source distribution, selftest directives and models are included in

the ESP-r distribution in the models/validation/selftest folder

Approximately 1600 lines of Fortran implement a user interface (to select the tests), a parser for
directives, invocation of the simulation engine, data mining, and reporting, and file management, as
well as the capture of specific differences in performance. The directives file (see below and
Appendix 3) includes:

• path to the reference and test versions of ESP-r,
• tolerance for determining whether performance differences should be reported.
• the list of models which may be assessed,
• the simulation parameter set (SPS) the simulation engine should use,
• the PIF file driving the data mining,
• names of the report files to be generated

Figure 3: A tester.pl session traversing the matrix of tests

*SELFTEST
*help The models contained in the following sections demonstrate
*help performance differences between two ESP-r versions.
*help
*help It is possible to run individual tests or multiple selections.
*help Please ensure relevant model and report folders exist!
*help Edit entries to match ESP-r distribution locations.
*bin_path_std /home/jon/esp-r_std/bin/
*bin_path_tst /opt/esp-r/bin/
*model_path /opt/esp-r/validation/selftest/
*report_path_std /opt/esp-r/validation/selftest/std_reports/
*report_path_tst /opt/esp-r/validation/selftest/tst_reports/
*tollerance 1.0
*verbose YES
*output FILE /opt/esp-r/validation/selftest/all_self.txt
*label -- standard tester models --
*item
*group basic and detailed AIM
*help A set of models demonstrating ESP-r's functionality.
*item
*name basic_AIM_MAX
*cfg basic_AIM_MAX.cfg
*root alberta_infil/cfg/
*SPS test_s4
*PIF basic_AIM.pif
*res results.bres
*rep basic_AIM_MAX_test_s4.dat
*sum basic_AIM_MAX_test_s4.summary
*item
*name basic_AIM_MAX_S5
*cfg basic_AIM_MAX.cfg
*root alberta_infil/cfg/
*SPS test_s5
*PIF SL5
*res results.bres
*sum basic_AIM_MAX_test_s5.summary
*h3k basic_AIM_MAX_test_s5.h3k
*item
*name basic_AIM_MIN
*cfg basic_AIM_MIN.cfg
. . .

Listing 1: The directives file format.

Users will typically replicate the ‘models/validation/selftest’ folder to a convenient location. The user
would then edit the directives file (named selftest_list in the standard distribution) to point to
the two ESP-r versions to be tested and adjust a few of the other attributes. The Project Manager is
then invoked in -mode text so that the feedback as assessments, data mining and comparisons all
happen in the same window. It is not critical which folder prj is invoked from but it might be
convenient to do it within the replicated selftest folder. The user chooses ‘self testing’ from the menu
and is then asked for the directives file and then selects the scope of the tests to be run.

The ‘self testing’ option scans the directives file name (supplied by the user) and presents a
list of models that can be tested – these are in groups approximating those used by tester.pl.

Figure 4: Invocation of prj, choose self testing and supply directives file name.

Figure 5: Named groups of tests

Figure 6: Models within a group (*) signals they have been selected

One can choose *all available, one of the named groups or specific tests within a group. In the
Figure above the user selected all of a specific group to test. Prj then uses the directives for these
specific models when invoking the assessments and doing the data mining. Figure 7 shows a typical
session. In Figure 8 is a session running in ‘verbose’ model (useful to check that simulation facilities
are being correctly invoked).

After running the assessment with the standard and test versions of the simulation engine the reports
are scanned and if identical or within tolerance this is reported. In this case there are 5 lines different
in the *.h3k file and 15 specific performance values outside tolerance in a .summary file.

At the end of the assessments and data mining the total number of ASCII line differences in *.dat
files and *.summary lines outwith tolerance are reported.

Figure 7: Feedback during the tests (in non-verbose mode)

Figure 8: Selftest facility running in verbose mode.

Figure 9: Selftest initial portion of summary report.

Figure 10: Specific differences found during tests.

The differences often are at the 3rd decimal place or a timing difference. As simulation is a numerical
process such differences are often expected and accepted. The *tollerance directive can help with
this.

At the end of the selftest process two folders are populated – one with reports generated by the
standard simulation suite and the other with the test version. Users might use a visual difference tool
such as meld on the two folders if a different kind of review is needed.

The format of the *.dat *.summary *.h3k reports follows the same syntax as that generated by the Perl
script. The primary difference is that data mining has not used a shell script to drive the extraction
process.

All of the models found in the legacy tester test_suite have been converted to the current ESP-r file
format, simulation parameter sets for the required assessment periods and save levels added and PIF
files created to match these periods in order to drive subsequent data mining. The process allowed for
some glitches in the original test_suite models to be corrected.

All models run – with the exception that if a legacy version of ESP-r is chosen it may not recognise
the current ESP-r model file syntax. Also bugs that caused havoc in multi-year assessments have
been corrected that it is now possible to run such models.

Adding further tests within the current matrix is straightforward once you figure out the patterns. For
example to add an annual assessment to one of the models open it up in the Project Manager, add an
additional simulation parameter set, ensure that the results files follow the results.bres results.pres etc.
convention. Note the simulation parameter set name. Invoke the simulator and test that it will run that
new assessment:
bps -mode text -file the_cfg_file -p the_sps_name silent

If that works, a PIF file is needed (to reflect the longer simulation period). There is a script named
create_selftest_pif.key which will invoke res and traverse the various reports needed and
generate a matching test.pif file. The first line of which needs to be edited to alter the file name
to results.dat . What that done, replicate one of the directive *item sets for the model and edit it

Figure 11: All reports generated by the standard ESP-r distribution.

to reflect the name of the simulation parameter set as well as the labels so the user selection makes
sense. An example is shown below:

*item
*name basic_ctl_summer
*cfg basic_ctl.cfg
*root ccht_benchmark/cfg/
*SPS sum_sl4_ts1
*PIF basic_sum_sl4_ts1.pif
*res results.bres
*rep basic_ctl_sum_sl4.dat
*sum basic_ctl_sum_sl4.summary
*item
*name basic_ctl_annual
*cfg basic_ctl.cfg
*root ccht_benchmark/cfg/
*SPS ann_sl4_ts1
*PIF basic_ann_sl4_ts1.pif
*res results.bres
*rep basic_ctl_ann_sl4.dat
*sum basic_ctl_ann_sl4.summary

For more information on setting up new models for inclusion in the selftest facilities the following
Appendices may help. Note, if an old version of ESP-r is to be tested then the syntax of the model
files will need to be consistent with that older version.

Appendix 1: tester.pl

The Perl script tester.pl is in many respects over engineered to support large scale validation studies in
which thousands of models are tested on a daily cycle. Within it’s 164kB it includes scores of internal
functions and although documented it was clearly written by someone who had extensive knowledge
of large scale Perl deployments. Debugging of Perl is a niche skill.

The Perl script acts on a test_suite of ESP-r models which complied with a rule set e.g. what it
expected to find within models and specific naming conventions. Although may of the models share
attributes each has been adapted to focus assessments on a specific simulation feature e.g. an
environmental control regime, layout of system or electrical components, or specific heat transfer
path. For example to test facilities related to ground reflectance there are variant models looking at
different computational approaches in Figure 7.

To ensure that computations were consistent across a range of boundary conditions some tests were
carried out over different seasons. In Figure 8 there are winter and summer versions of each model, in
other model folders there might be annual versions.

Figure 12: Layout of the tester folders in the source distribution of ESP-r.

The script collected a master list of all of the ESP-r cfg files and then replicated each model, made a
temporary copy of the model cfg file and edited it’s attributes to support multiple assessments at
different ‘save levels’.

Figure 14: Perl script requirement of multiple model cfg files.

Figure 13: Models focused on different ground reflectance approaches.

As each assessment is run a suite of reports were generated. One (listing 2 below) is derived from
invoking the ESP-r res module via a data mining script. Other reports (listings 3 & 4) were generate
by the simulation engine based on the directives in an input.xml file: a so-called .summary file and a
.h3k file which corresponded with the needs of a Canadian simulation-based incentive scheme.

Results library: results.bres; (Results cellular_miso)
Output period: 00:02 on 06/06/67 to 23:57 on 14/06/67 (STS=05m, OTS=05m)
Sensible heating load (kW)
Description Max_value Max_occur Min_value Min_occur Ave_value Std_dev
manager_a 0.000 06-Jun@00h02 0.000 06-Jun@00h02 0.000 0.000
manager_b 0.000 06-Jun@00h02 0.000 06-Jun@00h02 0.000 0.000
coridor 0.000 06-Jun@00h02 0.000 06-Jun@00h02 0.000 0.000
All 0.000 06-Jun@00h00 0.000 06-Jun@00h00 -- --

Sensible cooling load (kW)
Description Max_value Max_occur Min_value Min_occur Ave_value Std_dev
manager_a 0.000 06-Jun@00h02 -0.300 06-Jun@09h42 -0.108 0.133
manager_b 0.000 06-Jun@00h02 -0.300 06-Jun@09h47 -0.106 0.132
coridor 0.000 06-Jun@01h27 -0.300 06-Jun@11h02 -0.128 0.126
All 0.000 06-Jun@00h00 -0.900 06-Jun@11h02 -- --

Zone db temperature (C)
Description Max_value Max_occur Min_value Min_occur Ave_value Std_dev
manager_a 30.8 12-Jun@14h17 20.1 09-Jun@04h42 25.02 2.417
manager_b 30.8 12-Jun@14h17 20.6 09-Jun@04h37 25.06 2.326
coridor 30.0 11-Jun@10h52 23.0 08-Jun@05h02 25.24 1.580
All 30.8 -- 20.1 -- 25.11 --
. . .

 Zone energy requirements summary
 Zone Sensible heating Sensible cooling Humidification Dehumidification
 id name Energy Hours Energy Hours Energy Hours Energy Hours
 kWhrs kWhrs/m2 required kWhrs kWhrs/m2 required kWhrs required kWhrs required
 1 manager_a 0.00 0.00 0.0 -23.42 -1.74 104.1 0.00 0.0 0.00 0.0
 2 manager_b 0.00 0.00 0.0 -22.84 -1.69 104.0 0.00 0.0 0.00 0.0
 3 coridor 0.00 0.00 0.0 -27.69 -3.29 149.6 0.00 0.0 0.00 0.0

 All 0.0 0.0 0. -74.0 -2.1 358. 0.0 0.0 0.0 0.0

 0.0 hours when heating required in at least one zone.
 149.5 hours when cooling required in at least one zone.

 Causal energy breakdown (kWh) at air point for zone 1: manager_a

 Gain Loss
 Infiltration air load 0.000 -13.157
 Ventilation air load 0.114 -0.010
 Casual Occupt 5.670 0.000
 Casual Lights 0.000 0.000
 Casual Equipt 0.000 0.000
 Casual -- 0.000 0.000
 Controlled casual gain 0.000 0.000
 Thermal bridge (linear) 0.000 0.000
 Heat storage @ air point 0.951 -0.953
 Convection @ opaque surf: ext 2.926 -0.382
 Convection @ opaque surf: ptn 26.713 -1.185
 Convection @ transp surf: ext 2.797 -5.822
 Convection @ transp surf: ptn 2.006 -0.055
 Convection portion of plant 0.000 -23.423
 Totals 41.177 -44.987
 . . .

Listing 2: fragments of a *.dat report via scripted invocation of ESP-r res module.

building/all_zones/energy_balance/net::Total_Average 602.755216 (W)
building/all_zones/energy_balance/net::Active_Average 602.755216 (W)
building/all_zones/energy_balance/net::Maximum 2756.129639 (W)
building/all_zones/energy_balance/net::Minimum -0.000244 (W)
building/all_zones/energy_balance/net::AnnualTotal 0.468702 (GJ)
building/all_zones/envelope/all_components/heat_loss::Total_Average 762.446896 (W)
building/all_zones/envelope/all_components/heat_loss::Active_Average 762.446896 (W)
building/all_zones/envelope/all_components/heat_loss::Maximum 4243.211914 (W)
building/all_zones/envelope/all_components/heat_loss::Minimum 0.000000 (W)
building/all_zones/envelope/all_components/heat_loss::AnnualTotal 0.592879 (GJ)
building/all_zones/envelope/all_components/net_flux::Total_Average 0.000000 (W)
building/all_zones/envelope/all_components/net_flux::Active_Average 0.000000 (W)
building/all_zones/envelope/all_components/net_flux::Maximum 0.000000 (W)
building/all_zones/envelope/all_components/net_flux::Minimum 0.000000 (W)
building/all_zones/envelope/all_components/net_flux::AnnualTotal 0.000000 (GJ)
building/all_zones/envelope/ceilings/heat_gain::Total_Average 0.080329 (W)
building/all_zones/envelope/ceilings/heat_gain::Active_Average 0.080329 (W)
building/all_zones/envelope/ceilings/heat_gain::Maximum 2.844705 (W)
building/all_zones/envelope/ceilings/heat_gain::Minimum 0.000000 (W)

building/all_zones/envelope/ceilings/heat_gain::AnnualTotal 0.000062 (GJ)
building/all_zones/envelope/ceilings/heat_loss::Total_Average 35.615911 (W)
building/all_zones/envelope/ceilings/heat_loss::Active_Average 35.615911 (W)
building/all_zones/envelope/ceilings/heat_loss::Maximum 96.418106 (W)
building/all_zones/envelope/ceilings/heat_loss::Minimum 0.000000 (W)
building/all_zones/envelope/ceilings/heat_loss::AnnualTotal 0.027695 (GJ)
building/all_zones/envelope/ceilings/net_flux::Total_Average 35.535582 (W)
building/all_zones/envelope/ceilings/net_flux::Active_Average 35.535582 (W)

Listing 3: fragment of a *.summary file via input.xml directives

Performance assessment report
Results library ./results.bres
Climate file clm67
Configuration file cellular_miso.cfg
Configuration descr MISO control model see log file for more details
Period Tue-06-Jun to Wed-14-Jun Year 1967

 Zone max air T (occurance) min air T (occurance)
manager_a 30.82 Mon-12-Jun@14.29 20.14 Fri-09-Jun@ 4.71
manager_b 30.81 Mon-12-Jun@14.29 20.62 Fri-09-Jun@ 4.62
coridor 30.00 Sun-11-Jun@10.88 23.02 Thu-08-Jun@ 5.04

 Zone max heat (occurance) max cool (occurance) heating cooling
 (kW) (kW) (MJ) (MJ)
manager_a 0.00 Tue-06-Jun@ 0.04 -0.30 Tue-06-Jun@ 9.71 0.0 -96.2
manager_b 0.00 Tue-06-Jun@ 0.04 -0.30 Tue-06-Jun@ 9.79 0.0 -92.2
coridor -0.01 Tue-06-Jun@ 0.04 -0.30 Tue-06-Jun@11.04 -0.0 -111.9

All zones:
 Max_Temp 30.8 in manager_a on Mon-12-Jun@14.29
 Min_Temp 20.1 in manager_a on Fri-09-Jun@ 4.71
 Max_Heat 0.0 in manager_a on Tue-06-Jun@ 0.04
 Max_Cool -0.3 in manager_a on Tue-06-Jun@ 9.71

Total heating requirements -0.0 (MJ)
Total cooling requirements -300.24 (MJ)

Monthly metrics:
Month Heating Cooling
Month (MJ) (MJ)
Jun -0.0 -300.2

********SYSTEMS INFORMATION*********

FAN, HRV, AND PUMP ELECTRIC ENERGY
 MONTH FAN_ENERGY MJ HRV ENERGY MJ GSHP_PUMP MJ GCEP_PUMP MJ
 JUN 0.0000 0.0000 0.0000 0.0000
 TOTAL ELEC ENERGY 0.0000 0.0000 0.0000 0.0000

**********ZONE INFORMATION*********

 Zone(1) manager_a
 Month Aver.Temp (oC) Solar Extern(MJ) Solar Intern(MJ) Sol Abs Trans(MJ) Sol Abs
Opq.(MJ) Casual Rad. (MJ) Casual Conv. (MJ) Fndtn Losses(MJ)
 Jun 30.9668 267.6857 2.4810 19.2505
216.9950 20.4120 20.4120 0.0000

 Zone(2) manager_b
 Month Aver.Temp (oC) Solar Extern(MJ) Solar Intern(MJ) Sol Abs Trans(MJ) Sol Abs
Opq.(MJ) Casual Rad. (MJ) Casual Conv. (MJ) Fndtn Losses(MJ)
 Jun 30.9360 267.6855 2.4810 19.2505
216.9949 20.4120 20.4120 0.0000

 Zone(3) coridor
 Month Aver.Temp (oC) Solar Extern(MJ) Solar Intern(MJ) Sol Abs Trans(MJ) Sol Abs
Opq.(MJ) Casual Rad. (MJ) Casual Conv. (MJ) Fndtn Losses(MJ)
 Jun 31.2372 0.0000 38.2746 2.8161
30.4963 43.7667 43.7667 0.0000

SDHW Data
 Month Tank Elec (kWh) Tank Fuel (kWh) Solar Gain (kWh) Pump Elec (kWh)
 JUN 0.0000 0.0000 0.0000 0.0000
 Total 0.0000 0.0000 0.0000 0.0000

Listing 4: fragments of a *.h3k report file.

At the end of a tester.pl session a summary would be generated to show which tests were competed
and which failed because of differences in the predictions.

This combination of reports allowed users a variety of views into building and system performance. It
also ensured that any logic changes that impacted the production of performance reports were also
evident. In general these report types should be produced in any replacement software testing regime.

The legacy state of the Perl script and depths of it’s interaction with the simulation models is typified
by it’s method of adapting the model files so that specific assessments could be run. The Perl scrip
assumed a model cfg file format which existed in ~2005 on which to modify the file attributes. For
example it expected that simulation parameters were held in the following syntax:

*sps 1 1 4 1 5 0 # parameter sets, default startup, zone & plant ts, save level & frequency
 1 2 7 2 test # startup, zone & plant ts, save level, @ ts, period start DM & end DM
*sblr results.bres
*splr results.pres
*selr results.eres
*end_set
*end_sps

More current versions of ESP-r assume the following syntax:

*sps 2 1 4 1 5 0 # parameter sets, default startup, zone & plant ts, save level & frequency
*set 1 4 1 4 0 1 2 7 2 test_s4 # startup, zone & plant ts, save level, @ ts, period start & end
*sblr ./results.bres
*splr ./results.pres
*selr ./results.eres
*set 1 4 1 5 0 1 2 7 2 test_s5
*sblr ./results.bres
*splr ./results.pres
*selr ./results.eres

Figure 15: Summary report generated by tester.pl

The newer syntax allows each simulation parameter set to have a different save level and building and
plant timesteps (obviating the need for editing of the cfg files). Newer models would have to be edited
to conform to that 2005 syntax and the current file I/O code had to recognise and respect the archaic
syntax.

As the models in the tester test_suite used a legacy format, the conversion to selftest required the
following steps:
a) replicate the test_suite model folders (so as not to mess up the original models),
b) taking each test_suite model folders in turn, investigate the simulation periods implied,
c) if there were winter, summer and annual versions copy one cfg file into a new name e.g.
basic_control_summer.cfg, basic_control_winter.cfg becomes basic_control.cfg with the following
pattern:

*sps 5 3 1 10 5 0 # parameter sets, default startup, zone & plant ts, save level & frequency
*set 3 1 10 5 0 1 7 7 7 sum_sl5_ts1 # startup, zone & plant ts, SL, @ ts, period
*sblr ./results.bres
*set 3 1 10 5 0 15 1 21 1 win_sl5_ts1
*sblr ./results.bres
*set 3 1 10 4 0 1 7 7 7 sum_sl4_ts1
*sblr ./results.bres
*set 3 1 10 4 0 15 1 21 1 win_sl4_ts1
*sblr ./results.bres
*set 3 1 10 4 0 1 1 31 12 ann_sl4_ts1
*sblr ./results.bres

The names for parameter sets are then referenced in the selftest directives file. Also note that the
names of the performance files created take the form ./results.bres (the ./ ensures that the
simulation engine writes the file in the same folder as the *.cfg file.

To save time later, invoke the simulator manually to see if the assessment can be run without faulting
e.g. bps -mode text -file basic_control.cfg -p win_sl5_ts1 silent

If there were multiple *.cfg files in a folder determine if they were substantially the same model. If so
the selftest facility needs only a PIF file for the winter, summer and/or annual assessments (see
Appendix 2).

Appendix 2: the PIF file

Validation studies, such as BESTEST often stipulate specific performance attributes to be tracked and
compared. One effort to limit user ‘finger slips’ or tool interface changes from breaking automation
scripts and introducing errors into validation tasks and aid routine validation runs is to embed
directives into the test models.

In ESP-r, this took the form of a so-called performance information file (PIF). Here is a brief
summary of how it works. The ESP-r results analysis application interface reacts to user requests for
reports on specific topics by instantiating a number of attributes held in memory about the
what/where/when/form of reports to be generated. These attributes are then used by the data mining
facilities when producing reports.

Of course, an automation script could be the source of ‘user requests’ but these are somewhat fragile
so long ago the PIF concept, data structures and logic were evolved to support the specific data
recovery tasks needed for validation. During an initial interactive data mining session the
what/where/when/form attributes are written to a file. When invoked with a ‘-recovery’ directive the
data mining functions take their directives from the file rather than a users or automation script
keystrokes.

The original PIF concept was focused on a specific sub-set of performance data. During 2023 and
2024 the code was extended to almost all reporting types and topics with the aim that any data
recovery task that could normally be carried out by a user or an automation script could be handled by
the ‘-recovery’ facility. The selftest facility leverages this capability.

Below are fragments of a PIF file. They are somewhat human readable.

*Performance information file
1 results.dat # Output file
Group name and description.
name_here description_here
 5 # statistics
Start day month hour finish day month hour output-ts averaging
*period 15 6 1 22 6 24 1 0
directives: occupancy rate-of-change anchors delimeter ctl-patterns units hours day-demarcation labels
*filters 0 0 0 - UNKNOWN 0 0 0 0
*metlist
metric zone surf/type node/layer res-set line-type symbol axis label-width
*data 8 1 0 1 1 -3 6 2 12
*slab Sensible heating load (kW)
*glab Default
*end

Group name and description.
name_here description_here
 5 # statistics
Start day month hour finish day month hour output-ts averaging
*period 15 6 1 22 6 24 1 0
directives: occupancy rate-of-change anchors delimeter ctl-patterns units hours day-demarcation labels
*filters 0 0 0 - UNKNOWN 0 0 0 0
*metlist
metric zone surf/type node/layer res-set line-type symbol axis label-width
*data 9 1 0 1 1 -3 6 2 12
*slab Sensible cooling load (kW)
*glab Default
*end

 . . .
Group name and description.
name_here description_here
 9 # zone energy balance
Start day month hour finish day month hour output-ts averaging
*period 15 6 1 22 6 24 1 0
directives: occupancy rate-of-change anchors delimeter ctl-patterns units hours day-demarcation labels
*filters 0 0 0 - UNKNOWN 0 0 0 0
*metlist
metric zone surf/type node/layer res-set line-type symbol axis
*data 61 1 0 0 1 -3 6 4
*slab Zone energy balance (kWh)
*glab Default
*end

Group name and description.
name_here description_here
 13 # monthly reporting
Start day month hour finish day month hour output-ts averaging
*period 15 6 1 22 6 24 1 0
directives: occupancy rate-of-change anchors delimeter ctl-patterns units hours day-demarcation labels
*filters 0 0 0 - UNKNOWN 0 0 0 0
*metlist
metric zone surf/type node/layer res-set line-type symbol axis monthly-column-choices
*data 64 1 0 1 1 -3 6 4 1 1 1 1 1 1
*slab Monthly zonal gains/losses
*glab Default
*end

Group name and description.
name_here description_here
 2 # histogram
Start day month hour finish day month hour output-ts averaging
*period 15 6 1 22 6 24 1 0
directives: occupancy rate-of-change anchors delimeter ctl-patterns units hours day-demarcation labels
*filters 0 0 0 - UNKNOWN 0 0 0 0
*metlist
metric zone surf/type node/layer res-set line-type symbol axis
*data 1 1 0 0 1 1 6 1
*slab Zone db temperature (C)
*glab Default
*end

For example, the *period attributes set the start and end of the data recovery for the current topic.
The *filters attributes define if data is filtered by occupied-unoccupied periods, the kind of
delimeter to use in reports, etc. The *metlist attributes define which of the performance topic to
recover, which portion of the simulation model to focus on and what symbols apply. There is also a
label for this portion of the report.

Where separate winter, summer or annual assessments are required, separate PIF definitions are
needed so that the *period attributes are correct. Where selftest is testing a performance issue with
alternative approaches which imply different underlying zone and surface definitions there might need
to be separate PIF files so that the *data attributes match.

For the selftest facility where the same report format was desired across the matrix of models it made
sense to ease the creation of PIF files.

Assuming the model cfg files were updated (as mentioned in the prior Appendix1) a PIF file is
generated by running a simulation and then invoking an option in the res module to dump the PIF
attributes to a file.

Given that the same order and form of reporting was desired for the more than 100 models it made
sense to capture the keystokes needed to generate a PIF file while using res. This sequence
(distributed as create_selftest.key) creates a test.pif file.

a) choose a model cfg file and run one of simulation parameter sets for example:
bps -mode text -file basic_control.cfg -p win_sl5_ts1 silent

This will create a results.bres file which the create_selftest.key script will look for. Run it
via ./create_selftest.key which will create a test.pif file. The first line of the file needs to
be edited to change the ??.dat to results.dat. If there were winter, summer and annual simulation
parameter sets then for each, re-run bps and then the .key script and edit it’s first line and change the
pif file name i.e. winter.pif. These pif file names will be referenced in the selftest directives file.

Appendix 3: The selftest directives file

To support the selftest facility directives about which models, what periods, what data mining to
undertake and what to name the performance report files generated as the matrix of tests progress are
held in a text file. The file is user generated. It follows a tag data format and fragments of the file are
included below to illustrate the tags and attributes.

The pattern of tests in the selftest models reflects those in the original tester test_suite:

a) For building only or building + plant models both save level 4 and save level 5 runs are made. Save
level 4 data mining is based on the directives in PIF files and generate *.dat files. Save level 5 data
mining is based on directives within an input.xml file found in each model cfg folder and generate
*.summary and usually *.h3k report files.

b) For plant only models there is no save level 4 data mining and so directives in the selftest directives
file specify only save level 5 runs. Also, the *.h3k reports cannot be generated for plant only models
so those tokens are not included in the directives file.

c) The assessment periods e.g. winter, summer, annual or other periods are replicated.

Thus for winter and summer assessments at both save levels one might expect to find a sequence of
four *items entries for the same model.

Although the key words are fixed the names and labels are up to the user. For the currently defined
selftest models a number of naming conventions have been used although most of these are not set in
stone with the exception that the simulator is expected to create results.bres / results.pres / results.eres
depending on the domains included in the assessment.

What is important is that references within the directives file are consistent with the attributes within
the ESP-r simulation models. For example, simulation parameter set names need to have an exact
match or the simulation will fail. When introducing a new model or assessment, it generally saves
time to add items to the directives file one at a time and then invoke the selftest facility to see if it runs
complete correctly and the relevant report files have been generated.

The user edits needed to be applied to the distributed version of the directives file would be to adjust:
*bin_path_std,*bin_path_tst *model_path to reflect locations on the current computer. Most
users will want to replicate the whole of the selftest folder in the ESP-r distribution to a convenient
location e.g.
rsync -av /home/ralph/src/esp-r_v13/models/validation/selftest/ /home/ralph/selftest/

Other common edits would identify where the reports generated should be placed. After review these
might be archived or removed as required.
*report_path_std, *report_path_tst

Checks on *.dat files are for literal differences. Checks for .summary files can have a tolerance filter
greater than 1.0 if lots of tiny differences are obscuring reports. And if the sefltest process is faulting
it is useful to alter the *verbose from NO to YES.
*tollerance 1.0
*verbose YES

In the listing below comments are noted in red.

*SELFTEST header tag
*help The models contained in the following sections demonstrate
*help performance differences between two ESP-r versions.
*help highlevel documentation

*help It is possible to run individual tests or multiple selections.
*help Please ensure relevant model and report folders exist!
*help Edit entries to match ESP-r distribution locations.
*bin_path_std /home/jon/esp-r_std/bin/ path to a standard set of executables
*bin_path_tst /opt/esp-r/bin/ path to the test set of executables
*model_path /opt/esp-r/validation/selftest/ where the test models are located
where the *.dat, *.summary *.h3k files for the standard version are placed
*report_path_std /opt/esp-r/validation/selftest/std_reports/
where report files for the test version are placed
*report_path_tst /opt/esp-r/validation/selftest/tst_reports/
*tollerance 1.0 threshold for reporting differences e.g. 1 = 1W, 0.1GJ, 0.1 deg C
*verbose YES see underlying chatter as agents are invoked and run
*output FILE /opt/esp-r/validation/selftest/all_self.txt summary report
*label -- standard tester models -- used by interface
*item start of a group or a test
*group basic and detailed AIM short description for interface
*help A set of models demonstrating ESP-r's functionality.
*item marks start of a test (in this case save level 4)
*name basic_AIM_MAX identifier for logic as well as user
*cfg basic_AIM_MAX.cfg model cfg file
*root alberta_infil/cfg/ local path (to append to *model_path above
*SPS test_s4 simulation parameter set name
*PIF basic_AIM.pif data mining directives (for save level 4 runs)
*res results.bres zone results file for data mining to act on
*rep basic_AIM_MAX_test_s4.dat report generate by res
*sum basic_AIM_MAX_test_s4.summary simulator report based on input.xml directives
*item marks start of a test (in this case save level 5)
*name basic_AIM_MAX_S5
*cfg basic_AIM_MAX.cfg
*root alberta_infil/cfg/
*SPS test_s5
*PIF SL5 tag to signal only simulator reports expected
*res results.bres dummy file created by res (ignored)
*sum basic_AIM_MAX_test_s5.summary simulator report based on input.xml directives
*h3k basic_AIM_MAX_test_s5.h3k a report used for Canadian projects
*item marks start of next model and test
*name basic_AIM_MIN
*cfg basic_AIM_MIN.cfg
. . .

Listing 2: Annotated directives file format.

