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suitable for residential applications.

The aim of this paper is to provide an up-to-date review of the various modeling techniques used for
modeling residential sector energy consumption. Two distinct approaches are identified: top-down and
bottom-up. The top-down approach treats the residential sector as an energy sink and is not concerned
with individual end-uses. It utilizes historic aggregate energy values and regresses the energy
consumption of the housing stock as a function of top-level variables such as macroeconomic indicators
(e.g. gross domestic product, unemployment, and inflation), energy price, and general climate. The
bottom-up approach extrapolates the estimated energy consumption of a representative set of
individual houses to regional and national levels, and consists of two distinct methodologies: the
statistical method and the engineering method.

Each technique relies on different levels of input information, different calculation or simulation
techniques, and provides results with different applicability. A critical review of each technique, focusing
on the strengths, shortcomings and purposes, is provided along with a review of models reported in the

literature.
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Nomenclature 1. Introduction

Acronyms Nationally, energy consumption of the residential sector

AEEI autonomous energy efficiency index accounts for 16-50% of that consumed by all sectors, and averages

AL appliances and lighting approximately 30% worldwide as shown in Fig. 1. This significant

ALC appliances, lighting and cooling

ASHRAE American Society of Heating, Refrigeration and Air-
conditioning Engineers

BEAM  Built Environment Analysis Model

CBECS Commercial Buildings Energy Consumption Survey

CDA conditional demand analysis
DHW  domestic hot water

EM engineering method

EPI energy performance index

GA genetic algorithm

GDP gross domestic product

GIS geographical information systems

HAP Hourly Analysis Program
HDD heating degree days
NEMS National Energy Modeling System

NN neural network

SC space cooling

SH space heating

SM statistical method

UEC unit energy consumption
Symbols

b constant

B billing data

c coefficient

C appliance ownership (presence or count)

E energy consumption

HDD heating degree days

I income

Pc price

R appliance rating

R? multiple correlation coefficient

S housing stock

T temperature

U use factor

%4 array of interaction variables
Subscripts

an annual

app appliance

dis disposable

e end-use group

f fuel type

i array element location

mo monthly

ref reference

t time or period of time

consumption level warrants a detailed understanding of the
residential sector’s consumption characteristics to prepare for and
help guide the sector’s energy consumption in an increasingly
energy conscience world; conscience from standpoints of supply,
efficient use, and effects of consumption. In response to climate
change, high energy prices, and energy supply/demand, there is
interest in understanding the detailed consumption characteristics
of the residential sector in an effort to promote conservation,
efficiency, technology implementation and energy source switch-
ing, such as to on-site renewable energy.

Energy consumption of other major sectors such as commercial,
industrial, agriculture and transportation are better understood
than the residential sector due to their more centralized ownership,
self-interest and expertise in reducing energy consumption, and
high levels of regulation and documentation. The residential sector
is largely an undefined energy sink due to the following reasons:

e The sector encompasses a wide variety of structure sizes,
geometries and thermal envelope materials.

e Occupant behaviour varies widely and can impact energy
consumption by as much as 100% for a given dwelling [2].

e Privacy issues limit the successful collection or distribution of
energy data related to individual households.

e Detailed sub-metering of household end-uses has prohibitive
cost.

The residential sector consumes secondary energy. Secondary
energy is that received in suitable form for use by the consuming
systems to support the living standards of occupants. The major
end-use groups of secondary energy are:

Japan, 26%
Malaysia, 19%

World, 31%

UK, 31%

Saudi Arabia,

50% Canada, 24%

USA, 25%
Jordan, 29%
Mexico, 23%
Turkey, 31%
Brazil, 26%

Italy, 17%./ ‘
Norway, 21% Sweden, 19%

Finland, 16%

Fig. 1. Residential energy consumption shown as a percentage of national energy
consumption and in relative international form [1].
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e Space heating (SH) and space cooling (SC)—energy required to
support thermal losses incurred across the building envelope due
to conduction and radiation, as well as air infiltration/ventilation
in an effort to maintain the living space at a comfortable
temperature and air quality.

e Domestic hot water (DHW)—energy required to heat water to a
comfortable or appropriate temperature for occupant and
appliance uses.

e Appliances and lighting (AL)—energy consumed to operate
common appliances (e.g. refrigerator and coffee maker) and
for the provision of adequate lighting.

The degree to which these groups affect the overall energy
consumption is highly dependent on climate, physical dwelling
characteristics, appliance and system characteristics, ownership,
and occupant behaviour.

The total energy consumption of a dwelling is that required to
support all energy consuming end-uses, inclusive of the losses due to
appliance and system efficiencies. The end-uses may have complex
inter-related effects with regards to energy consumption. For
example, the energy consumption of most common appliances
results in heating of the conditioned living area. The energy
consumption can be supplied by one or more secondary energy
sources and includes on-site generation and passive solar gains. The
sum of each dwelling’s energy consumption for a given area (e.g. city
and country) results in a regional or national residential sector
energy consumption, the modeling of which is the topic of interest
for this review.

Energy consumption modeling of buildings seeks to quantify
energy requirements as a function of input parameters. Models may
be used for a variety of reasons, the most common being the
determination of regional or national energy supply requirements
(macro-scale) and the change in energy consumption of a particular
dwelling due to an upgrade or addition of technology (micro-scale).
Modeling of this nature is useful as it can guide decisions of policy
regarding the residential stock, both old and new. By quantifying the
consumption and predicting the impact or savings due to retrofits
and new materials and technology, decisions can be made to support
energy supply, retrofit and technology incentives, new building
code, or even demolition and re-construction.

Residential energy models may focus on a thermal zone,
building, neighbourhood, city, state or province, region, or nation.
The level of detail of input parameters is a function of data
availability, model focus and purpose, and assumptions. Increased
detail allows for a more comprehensive investigation of parti-
culars, although accurate assumptions may significantly ease the
modeling process and provide suitable results.

Emphasis of this review is placed on models that are or could be
used to model the residential sector energy consumption. Energy
consumption models of this scope involve an approximation of the
residential stock and a methodology for estimating the energy
consumption of the stock. Such models are useful to formulate
policy decisions regarding the residential stock, both old and new.
By quantifying the consumption and predicting the impact or
savings due to construction/demolition, retrofits and new materi-
als and technology, decisions can be made to support energy
supply, retrofit and technology incentives, new building codes, or
even demolition and re-construction. This review of residential
sector energy consumption models introduces the modeling
techniques, reviews the published literature and concludes with
an analysis of the strengths and weaknesses of the techniques.

2. Objective

The objective of this paper is to provide an up-to-date review of
the various modeling techniques used for modeling residential

sector energy consumption. Two distinct approaches are identi-
fied: top-down and bottom-up. Each technique relies on different
levels of input information, different calculation or simulation
techniques, and provides results with different applicability. A
critical review of each technique, focusing on the strengths,
shortcomings and purposes, is provided along with a review of
models reported in the literature.

3. Modeling methodologies

Residential energy models rely on input data from which to
calculate or simulate energy consumption. The level of detail of the
available input data can vary dramatically, resulting in the use of
different modeling techniques which seek to take advantage of the
available information. These different modeling techniques have
different strengths, weaknesses, capability, and applicability.

3.1. Types and sources of information

Depending on the modeling methodology to be used, the input
data required to develop residential energy models includes
information on the physical characteristics of the dwellings,
occupants and their appliances, historical energy consumption,
climatic conditions, and macroeconomic indicators. The informa-
tion can be collected independently or concurrently, can be
national aggregate or individual dwelling values, and vary greatly
in level of detail. The basic information collection method is by
survey, the results of which are published in raw or analyzed form.

The preliminary estimate of the total residential sector energy
consumption is usually published by governments which compile
gross energy values submitted by energy providers (examples are
Canada [3], USA [4], UK[5], and China [6]). These estimates provide
indicators as to sector energy consumption but may be inaccurate
as they do not account for unreported energy or on-site generation.
A more detailed source of energy consumption data, typically on a
monthly basis and for each dwelling, is the billing records of energy
suppliers (e.g. monthly dwelling electricity bill). However, with no
additional housing information these energy consumption values
are difficult to correlate due to the wide variety of dwellings and
occupants.

To provide more detailed information than the above aggregate
values, housing surveys are conducted. These surveys target a
sample of the population to determine building and occupant
characteristics and appliance penetration levels (examples are
Canada [7], USA [8], and UK [9]). The Tyndall Centre conducted a
worldwide review of such surveys [10]. Surveys typically attempt
to define the house geometry and thermal envelope, ownership of
appliances, occupants and their use of appliances and preferred
settings, and demographic characteristics. In addition, surveys may
attempt to obtain the energy suppliers’ billing data (described
above) and alternative energy source information (e.g. unreported
wood usage) to correlate the energy consumption of the house
with its characteristics identified during the survey. This allows for
calibration through reconciliation of a model’s predicted energy
consumption with actual energy billing data. This level of
information is superior to the previously mentioned energy
supplier values; however, it is limited due to collection difficulties
and cost, and therefore it is imperative that the selected sample be
highly representative of the population. Also, occupant descrip-
tions of their appliance use are highly subjective and can be
influenced by the season during which the survey takes place [7].
Examples of surveys which have been condensed for the purpose of
energy simulation are [11,12].

Elimination of subjective appliance usage estimation is
achieved by “sub-metering”. This method places energy metering
devices on the large energy consuming appliances within the
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household to determine both their component of the house energy
consumption and their usage profile as a function of time (e.g.
[13]). This level of information is rare due to its prohibitive cost.

Estimated total sector energy, individual billing data, surveys,
and sub-metering have been used to varying degrees in the
development of residential energy consumption models. The
determination of which information is used depends on avail-
ability and model’s purpose. The purpose of models ranges widely
and may be directed towards determining supply requirements,
price and income elasticity, and the energy consumption impacts
of upgrades, technologies, or changes to behavioural patterns.

3.2. Techniques to model energy consumption

Techniques used to model residential energy consumption can
broadly be grouped into two categories, “top-down” and “bottom-
up”. The terminology is with reference to the hierarchal position of
data inputs as compared to the housing sector as a whole. Top-
down models utilize the estimate of total residential sector energy
consumption and other pertinent variables to attribute the energy
consumption to characteristics of the entire housing sector. In
contrast, bottom-up models calculate the energy consumption of
individual or groups of houses and then extrapolate these results to
represent the region or nation.

Groupings of top-down and bottom-up techniques for model-
ing residential energy consumption are shown in Fig. 2 and are
discussed in the following sections.

3.2.1. Overview of the top-down approach

The top-down approach treats the residential sector as an
energy sink and does not distinguish energy consumption due to
individual end-uses. Top-down models determine the effect on
energy consumption due to ongoing long-term changes or
transitions within the residential sector, primarily for the purpose
of determining supply requirements. Variables which are com-
monly used by top-down models include macroeconomic indica-
tors (gross domestic product (GDP), employment rates, and price
indices), climatic conditions, housing construction/demolition
rates, and estimates of appliance ownership and number of units
in the residential sector.

Fig. 2 shows two groups of top-down models: econometric and
technological. Econometric models are based primarily on price (of,
for example, energy and appliances) and income. Technological
models attribute the energy consumption to broad characteristics
of the entire housing stock such as appliance ownership trends. In
addition there are models which utilize techniques from both
groups.

Top-down models operate on an equilibrium framework which
balances the historical energy consumption with that estimated

based on input variables. The strengths of top-down modeling are
the need for only aggregate data which are widely available,
simplicity, and reliance on historic residential sector energy values
which provide “inertia” to the model. As the housing sector rarely
undergoes paradigm shifts (e.g. electrification and energy shocks),
a weighted model provides good prediction capability for small
deviations from the status quo. For example, if housing construc-
tion increased the number of units by 2%, an increase in total
residential energy consumption of 1.5% might be estimated by the
top-down model, as new houses are likely more energy efficient. If
this construction was increased to 10% of the units the top-down
model could have difficulty in producing an appropriate estimate
as the vintage distribution of the housing stock would have
changed significantly.

The reliance on historical data is also a drawback as top-down
models have no inherent capability to model discontinuous
advances in technology. Furthermore, the lack of detail regarding
the energy consumption of individual end-uses eliminates the
capability of identifying key areas for improvements for the
reduction of energy consumption.

3.2.2. Overview of the bottom-up approach

The bottom-up approach encompasses all models which use
input data from a hierarchal level less than that of the sector as a
whole. Models can account for the energy consumption of
individual end-uses, individual houses, or groups of houses and
are then extrapolated to represent the region or nation based on
the representative weight of the modeled sample. The variety of
data inputs results in the groups and sub-groups of the bottom-up
approach as shown in Fig. 2.

Statistical methods (SM) rely on historical information and
types of regression analysis which are used to attribute dwelling
energy consumption to particular end-uses. Once the relationships
between end-uses and energy consumption have been established,
the model can be used to estimate the energy consumption of
dwellings representative of the residential stock. Engineering
methods (EM) explicitly account for the energy consumption of
end-uses based on power ratings and use of equipment and
systems and/or heat transfer and thermodynamic relationships.

Common input data to bottom-up models include dwelling
properties such as geometry, envelope fabric, equipment and
appliances, climate properties, as well as indoor temperatures,
occupancy schedules and equipment use. This high level of detail is
a strength of bottom-up modeling and gives it the ability to model
technological options. Bottom-up models have the capability of
determining the energy consumption of each end-use and in doing
so can identify areas for improvement. As energy consumption is
calculated, the bottom-up approach has the capability of
determining the total energy consumption of the residential

Residential
Energy
Consumption
Top-down Bottom-up
el |
Econometric Technological Statistical Engineering
! !
Conditional .
i Population
Regression :i:';j:i{; Neural network Distribution Archetype Sample

Fig. 2. Top-down and bottom-up modeling techniques for estimating the regional or national residential energy consumption.
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sector without relying on historical data. The primary drawback
caused by this level of detail is that the input data requirement is
greater than that of top-down models and the calculation or
simulation techniques of the bottom-up models can be complex.

In all cases the bottom-up models must be extrapolated to
represent the housing sector. This is accomplished using a
weighting for each modeled house or group of houses based on
its representation of the sector.

A notable capability of the bottom-up approach is its ability to
explicitly address the effect of occupant behaviour and “free
energy” gains such as passive solar gains. Although free energy
gains have historically been neglected during residential analysis,
they are now a common design point as focus is placed on
alternative energy technologies. Statistical methods attribute all of
the measured energy consumption to end-uses and in doing so
incorporate the occupant’s behaviour with regards to use and
settings of appliances. However, if all energy sources are not
accounted for, the end-use energy consumption estimates are de-
rated by this consumption difference. Based in its physical
principle roots, the EM has the ability to capture the additional
energy consumption level based on requirements, inclusive of free
energy. However, occupant behaviour must be estimated which is
difficult as behaviour has been shown to vary widely and in
unpredictable ways.

The following sections examine the modeling techniques by
reviewing published models. The applicability, basic methodology
and major conclusions found by the researchers are listed. There is
a tendency towards chronological order to facilitate understanding
of the modeling technique development stream and contributions
by the authors. Certain techniques were found to follow a clear
development stream (e.g. conditional demand analysis) while
others contain a wide variety of techniques and are discontinuous.
Emphasis is placed on modeling technique development and less
on the simple application to a new region.

4. Top-down models

The use and development of the top-down modeling approach
proliferated with the energy crisis of the late 1970s. In an effort to
understand consumer behaviour with changing supply and
pricing, broad econometric models were developed for national
energy planning. These models require little detail of the actual
consumption processes. The models treat the residential sector as
an energy sink and regress or apply factors that affect consumption
to determine trends. Most top-down models rely on similar
statistical data and economic theory.

As the housing stock in most regions is continuously under-
going improvement and increase, simply modeling the energy
consumption solely as a function of economic variables is short-
termed. Hirst et al. [14] initiated an annual housing energy model
of the USA. Their model relied on econometric variables and
included a component for growth/contraction of the housing stock.
Their work was expanded and improved over the following years
resulting in an econometric model which had both housing and
technology components [15,16]. The housing component evalu-
ates the number of houses based on census data, housing attrition
and new construction. The technology component increases or
decreases the energy intensiveness of the appliances as a function
of capital cost. The economic component evaluates changes in
consumption based on expected behavioural changes and effi-
ciency upgrades made to the technology component. Finally,
market penetration is considered a function of income and
demand/supply. The simulation model combines the changes in
outputs of the components and estimates the energy consump-
tion given historic energy consumption values. The authors felt
their model was sensitive to major demographic, economic and

technological factors, but recognized the need to continually
update all assumed information to improve quality.

Saha and Stephenson [17] developed a similar model for New
Zealand although it had a technological focus. Their economic and
housing components drive separate analysis of SH, DHW, and
cooking, and are added to obtain total consumption. Their basic
energy balance, as shown in Eq. (1), determines the annual energy
consumption of each fuel used to support each end-use group as a
function of stock, ownership, appliance ratings and use. Using
historical data, their prediction capability was excellent through-
out the 1960s and 1970s although there is significant divergence
toward the latter half of the 1970s. This may be due to the model
not accounting for shifts in home insulation levels

Ean‘e‘f:S‘Ce.f'Re‘f‘Ue.f (1)

where E is the annual energy consumption of end-use group e,
corresponding to fuel type, f, S is the level of applicable housing
stock, C is the appliance ownership level, R is the rating of all
appliances within an end-use group, and U is a use factor.

Haas and Schipper [18] recognized that energy consumption of
the housing stock is poorly modeled by only a few econometric
indicators. They identified “irreversible improvements in technical
efficiency” which are a result of consumer response that not only
reduces energy consumption due to rising price, but responds by
making upgrades to their dwelling. Consequently a subsequent
reduction in price would not cause a perfectly elastic rebound. To
quantify this asymmetrical elasticity, they developed econometric
models for the USA, Japan, Sweden, West Germany and the UK
based on the time periods of: 1970-1993, 1970-1982, and 1982-
1983. They found very flat (nearly zero) rebound of energy
consumption after periods of increased price, suggesting the
typical price elasticity is a diluted average. They also state
saturation of appliances can lead to reduced income elasticity
and they found limited correlation between increasing technolo-
gical efficiency leading to increased energy use. When the authors
included technological energy intensity in their model (using a
bottom up approach based on individual appliance ratings) they
found reduced error and that the irreversible share of price
elasticity became hidden in the coefficient of intensity.

Two tier econometric models that evaluate choice of system
(discrete) and utilization (continuous) are common. Nesbakken
[19] developed such a model for Norway, testing sensitivity and
stability across a range of income and pricing. The author
considered three years of expenditure surveys and energy
consumption to determine differences along the time dimension.
Their findings were consistent with negative price elasticity and
maximization of utility. Different income groups resulted in
similar findings although the responses were slightly higher for
higher income groups.

Bentzen and Engsted [20] revived simple economic modeling of
residential energy consumption. They tested the following three
annual energy consumption regression models for Denmark:

Eanx =b +C EanAt—1 + CZIdisp.t + C3PCt (2)
Eant = b+ ¢1Eane—1 + C2lgispc + €3PC + c4HDD; (3)
Eant = b+ c1Eane 1 + Calgispr + €3Pct + c4HDDy + ¢csPc; 4 (4)

where E is the annual energy consumption for year, t, I is the
disposable household income, Pc is the price of energy, HDD is the
heating degree days, b is a constant, and c are coefficients.

From 36 years of data they found that, in all three cases, long-
term energy consumption was strongly affected by income and
lagged energy consumption, and lagged pricing trumped current
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Fig. 3. Comparison of National UEC values [21].

pricing. Their findings indicate that future energy price must
increase with income to maintain the current consumption level.

Using aggregate national residential energy values, Zhang [21]
compared international values of unit energy consumption (UEC)
to determine to potential changes in the sector’s energy
consumption. The author calculated the UEC for various regions
of China based on energy consumption and the number of
residences, and compared the Chinese UEC with those of other
countries. The results indicate that when normalized for heating
requirements based on climate (i.e. heating degree days (HDD)),
Japan uses approximately half the UEC of the USA and Canada, as
shown in Fig. 3. This may be attributed in part to the high ratio of
apartment buildings in Japan (40%). China is closer to one quarter
of the North American UEC, owing to limited adoption of space
heating devices. The paper also discusses the potential of the
Chinese residential sector following the North American or
Japanese energy consumption characteristics. Interestingly, the
model identified that although China is growing, the secondary
energy consumption of the residential sector has remained
constant due to switching away from coal as a fuel.

Ozturk et al. [22] and Canyurt et al. [23] proposed the use of
genetic algorithms (GA) to determine the relationships between
Turkish residential-commercial energy consumption and the
following: GDP, population, import/export, house production,
cement production and appliance sales. GA models utilize concepts
of biology and Darwin’s theory of survival of the fittest. Initiated
chromosomes (potential solutions) are assessed on the basis of fit
(sum of squared errors) to determine their level of participation.
Chromosomes are crossed to exchange potential solution char-
acteristics (coefficients of input variables) with the potential of
mutations to account for solutions which were not part of the
initial population. The authors’ GA model estimates the coeffi-
cients of the linear model based on the aforementioned variables
and their combinations. The resultant model had excellent fit with
the calibration information and their projections through the year
2020 were similar to other models. They note the benefits of the GA
as requiring limited information and easy development.

The national energy modeling system (NEMS) incorporates a
current econometric energy model of the USA housing stock [24].
The model is used for mid-term forecasting and policy analysis. It
includes five components: housing stock forecast, technology,
appliance stock forecast, building shell integrity, and distributed
generation equipment. The appliance stock component places
emphasis on appliance lifetime and saturation levels, functions
which have been studied in depth for Canada by Young [25]. The
distributed generation component indicates that emphasis is being
placed on the integration of non-traditional energy sources; it
looks at system cost, efficiency, penetration parameters, and solar
insolation levels. The calculated energy consumption is then fed

back into the NEMS for use with other models and overall energy
supply prediction.

Using the entire building register of Goteborg (68,200 build-
ings) and energy data from the largest energy supplier, Tornber and
Thuvander [26] developed an energy model of the building stock.
The energy data was measured at metering stations, and was
distributed among connected buildings on the basis of building use
and age. The model utilizes geographical information systems
(GIS) to visually assist the assessment of the consumption rates of
different energy sources throughout Goteborg. Although they were
unable to directly link the energy consumption to individual
buildings, their spatial model clearly identifies energy use within
groups of buildings and may be used for identification of high
consumption areas.

Labandeira et al. [27] extended a regression model by
developing a six equation demand model of Spanish residential
energy consumption. Separate equations were developed for
energy consumption associated with: electricity, natural gas,
propane, automotive fuel, public transport, and food. They found
that these products are price inelastic. They regressed the energy
consumption of over 27,000 houses as a function of demographic,
macroeconomic, and climate variables. They experienced reduced
multicollinearity problems as their dataset covered an extended
period of time (changing appliances ownership) and this also
provided longer-term elasticity assessment.

Siller et al. [28] created a model of the Swiss residential sector to
test the impacts of renovations and new construction in an attempt
to achieve energy consumption and greenhouse gas emissions
targets. Their model is based on the effective reference area which
is a measure of the effective heated area and is calculated based on
census data. They developed modeling matrices which account for
the renovation of buildings and if demand is met, new construction
of buildings. In calculating energy consumption they use building
type, energy standards, efficiency, and heat demand per area. The
update of the housing stock is through new construction and
renovation, of which the latter is only occasionally realized. They
point out that these estimates have a strong affect on model
uncertainty.

Balaras et al. [29] constructed a renovation model of the
Hellenic housing stock. Using an assessment of the housing stock
and current energy consumption figures, they estimated the
impact of fourteen different energy conservation measures that
were applied to houses in need of refurbishment. They found the
housing stock lacking in insulation and predicted that adding
insulation to the stock would save 49% of current space heating
energy consumption.

5. Bottom-up models

The bottom-up approach was developed to identify the
contribution of each end-use towards the aggregate energy
consumption value of the residential stock. This refines the
understanding of the details associated with the energy consump-
tion.

There are two distinct categories used in the bottom-up
approach to evaluate the energy consumption of particular end-
uses. The SM utilizes dwelling energy consumption values from a
sample of houses and one of a variety of techniques to regress the
relationships between the end-uses and the energy consumption.
SM models can utilize macroeconomic, energy price and income,
and other regional or national indicators, thereby gaining the
strengths of the top-down approach. The EM relies on information
of the dwelling characteristics and end-uses themselves to
calculate the energy consumption based on power ratings and
use characteristics and/or heat transfer and thermodynamic
principles. Consequently, the engineering technique has strengths



L.G. Swan, V.I. Ugursal / Renewable and Sustainable Energy Reviews 13 (2009) 1819-1835 1825

such as the ability to model new technologies based solely on their
traits. Once developed, the bottom-up models may be used to
estimate the energy consumption of houses representative of the
residential stock and then these results can be extrapolated to be
representative of the regional or national residential sector.

5.1. Statistical techniques

The vast quantity of customer energy billing information stored
at the major energy suppliers worldwide is an unprecedented data
source for energy modeling. Researchers have applied a variety of
SM techniques to utilize this and other information to regress the
energy consumption as a function of house characteristics. A
capability of the SM techniques is their ability to discern the effect
of occupant behaviour. This is of benefit to residential modeling as
occupant behaviour has been found to range widely and is poorly
represented by simplified estimates [2,30,31].

The three well-documented techniques, all of which use a
sample of houses, are:

e Regression—The regression technique uses regression analysis to
determine the coefficients of the model corresponding to the
input parameters. These models regress the aggregate dwelling
energy consumption onto parameters or combinations of
parameters which are expected to affect energy consumption.
The model is evaluated based on goodness of fit. Input variables
which are determined to have a negligible effect are removed for
simplicity. Based on the combinations of inputs, the model’s
coefficients may or may not have physical significance.

o Conditional demand analysis (CDA)—The CDA method performs
regression based on the presence of end-use appliances. By
regressing total dwelling energy consumption onto the list of
owned appliances which are indicated as a binary or count
variable, the determined coefficients represent the use level and
rating. The primary strength of this technique is the ease of
obtaining the required input information: a simple appliance
survey from the occupant and energy billing data from the
energy supplier. However, it does require a dataset with a variety
of appliance ownership throughout the sample. This technique
exploits the differences in ownership to determine each
appliance’s component of the total dwelling energy consump-
tion. In order for the CDA technique to produce reliable results,
and depending on the number of variables used, data from
hundreds or even thousands of dwellings are required.

e Neural network (NN)—The NN technique utilizes a simplified
mathematical model based on the densely interconnected
parallel structure of biological neural networks. The technique
allows all end-uses to affect one another through a series of
parallel “neurons”. Each neuron has a bias term and array of
coefficients that are multiplied by the value of the preceding
layer’s neurons. Similar to regression models it seeks to minimize
error and may apply scaling and activation functions to account
for non-linearity. As it is a parallel model, the coefficients have no
physical significance.

5.1.1. Regression

In an effort to identify unusual metering occurrences (e.g.
broken meter) and evaluate the level of households with more than
one energy source for space heating, Hirst et al. [32] used the
Princeton scorekeeping model with monthly or bimonthly energy
supplier billing data. They examined the weather and non-weather
sensitive elements of the household energy consumption of
dwellings by regressing the energy billing data onto a non-
weather dependent constant and a weather dependent coefficient
based on HDD, as shown in Eq. (5). They left the reference
temperature for determination of the HDD as a variable, to be

adjusted between 4 °C and 24 °C in an effort to reduce error and
increase the multiple correlation coefficient (R?). The adjustment
of T.er was shown to be effective by Jones and Harp [33] who
reduced it from the accepted value of 18.0-16.9 °C and achieved
more representative results for the space heating requirements of
Oklahoma

Eant = b+ ¢ HDD¢(Tref) (5)

where E is the annual energy billing data from period, t, HDD is the
heating degree days with reference temperature, Tyef, b is constant,
and c is a coefficient.

The coefficients in the above model were termed “fingerprints”
and directed towards determining unusual metering occurrences
and identifying the use of alternative space heating fuels when
comparing the monthly measured house energy consumption to
that predicted by the model. Recently, a similar analysis was
conducted by Raffio et al. [34] with the goal of identifying energy
conservation potential within a regional area. A similar model with
“energy signature” coefficients was developed. These coefficients
were compared regionally and also evaluated over the course of
the seasons for the identification of patterns which can be used to
assess potential energy conserving changes. The authors give
examples such as the application of DHW conserving devices to
dwellings with high non-weather dependent energy consumption
and the application of programmable thermostats to high balance
point Tif buildings. While the model cannot determine the impact
of these changes, it may identify the potential for application. The
primary advantages of this model are simplicity, only requiring
billing data, and the capability of normalized comparison across
many different residences using a sliding scale which is
continuously updated from new billing data. Utilizing larger sets
of billing data, the models can become descriptive of a nation.

Tonn and White [35] developed a regression model with four
simultaneous equations: separate equations of electricity use
associated with SH and AL, wood use, and indoor temperature.
Data was sourced from 100 sub-metered homes that utilized wood
heat. In an attempt to encompass occupant behaviour they
conducted an extensive survey (300 questions) which asked
questions related to goals and motivations, and occupants self-
defined socioeconomic response. Their desire was to determine the
motivation or ethical considerations in energy use. They developed
30 different regression models, consecutively eliminating variables
with insignificant impact. Their four regression equations achieved
R? values ranging from 0.80 to 0.91. While housing characteristics
played a distinct role in the models, they found ethical motivations
outweigh economic motivations. They found education level and
age of the head of household not to affect any of the four
equations.Douthitt [36] constructed a model of residential space
heating fuel use in Canada by regressing consumption as a function
of present and historic fuel price, substitute fuel price, total fuel
consumption, and a vector of building structure, climatic, and
occupant characteristics. Using 370 records, they achieved R?
values equal to 0.52 (natural gas), 0.76 (heating oil), 0.37
(electricity with natural gas available), and 0.79 (electricity with
no natural gas available). The author found that the sample with
energy source alternatives achieve near unity price elasticity, the
implication being towards fuel subsidies being ineffective at
reducing annual fuel cost per house. Income elasticity was also
very unitary, indicating that providing subsidies (in effect income)
to low-income families would result in increased usage.

Fung et al. [37] adopted the regression techniques of [36] and
others to determine the impact on Canadian residential energy
consumption due to energy price, demographics, and weather and
equipment characteristics. They found both short and long term
fuel price elasticity to be negative, although the long term was
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larger in magnitude. Income elasticity was found to be insignif-
icant. These results were similar for each end-use group (i.e. SH/SC,
DHW, and AL).

5.1.2. Conditional demand analysis

Parti and Parti [38] developed the CDA method given the
availability of a detailed survey of appliance and occupants of over
5000 households and their corresponding monthly electrical
billing data from the electricity utility in San Diego. They
recognized the limitations inherent to an engineering model that
approximates occupant behaviour based on theoretical considera-
tions and therefore they attempted to determine the use level of
individual appliance based on regression methods. They proposed
a conditional demand regression equation based on the indication of
appliance ownership and expected relations with other house
characteristics such as floor area or demographic factors gathered
from a survey.

Their regression equation, one for each month of a year of
billing data, take the form

Emo = chapp,i(vicapp) (6)

i app

where E is the monthly electrical energy consumption, C is a
variable indicating appliance presence or count for appliances, app,
V is a set of interaction variables with elements, i, such as the
number of occupants, income, and floor area, and c is a coefficient.

The appliance at app = 0 is unspecified to account for appliances
whose presence were not explicitly surveyed and the interaction
variable when i=0 accounts for appliance energy consumption
unrelated to interactions with other surveyed information.

The authors specified conditions to limit use of the significant
appliances to help in regression coefficient determination. These
included disallowing air conditioning from November through
March and space heating from July through August. They
considered the dominant electrical end-uses: air conditioning,
space heating, water heating, and common appliances which
include dishwasher, cooking range, dryer, and refrigerators and
freezers. The interaction variables corresponding to end-use
groups are shown in Table 1.

The final model coefficients were indicative of appliance use and
resulted in R? values ranging from 0.58 to 0.65. As the regression
model included demographic variables, the authors were able to
determine econometric effects such as income and energy price
elasticity. In comparison with engineering estimates, their CDA
model under predicts energy consumption of space heating and over
predicts energy consumption of water heating and common
appliances. The authors believe they could incorporate solar
technologies, but recognize the need for sufficient samples and
associated annual dwelling energy consumption data. They see the
benefits of the CDA method including the disaggregation of energy
consumption by end-use without sub-metering and the inclusion of
behavioural aspects within the coefficients.

Using 15 min interval load data from 100 Los Angeles electricity
customers, Aigner et al. [39] utilized the CDA method to determine
hourly regression equations. Based on constant appliance dummy

Table 1

variables, they found the regression resulted in inadequate
coefficients. For example, the magnitude of coefficients (indicating
use level) changed throughout the day with load level, but the
relationship between different appliances did not, indicating that
the coefficients represent an average use level and are not
indicative of the daily use profile. To promote differences in the
coefficients, the authors imposed restrictive windows of appliance
use; specifically, laundry and cooking devices were excluded over
the period of 2-5AM. Their results compared to actual occupant
load profiles better than conventional CDA.

Caves et al. [40] developed a CDA model of the residential
electricity energy consumption of Los Angeles customers by
incorporating prior information through the use of Bayesian
inference in an effort to reduce unreasonable or negative
coefficients estimated by the conventional CDA method. The prior
information was developed by using the EM to model appliances
and systems and estimate load profiles. These profiles were used to
calculate coefficients of use, similar to the CDA coefficients. A
typical CDA model, based on a sample of 129 houses with daily
energy consumption information (excluding weekends) for the
summertime in Los Angeles was constructed using a method
similar to [38]. Given the confidence levels of the EM coefficients
and the CDA method coefficients, these weighted values are
combined using Bayesian techniques to estimate final coefficients
of the CDA regression model. This combination approach reduces
the multicollinearity effects which can result in negative or
unreasonable coefficients; however, it relies on engineering
estimates of occupant behaviour.

Bartels and Fiebig propose an alternative method that
incorporates sub-metered end-use energy consumption of a
subset of the sample into the CDA model [41,42]. This was
accomplished by removing the energy consumption and indepen-
dent variables of the measured appliances within the sub-metered
subset of houses. In doing this, they reduced the regression
requirements of the subset and weighted the regression of the
coefficients of the remaining sample. One advantage of this
method is that the elimination of certain end-use consumption of
the sub-metered subset increases the resolution and therefore the
confidence level of the estimates of non-metered appliances. This
is an improvement over using the EM to determine estimates of
certain end-uses based on occupant behaviour.

LaFrance and Perron [43] furthered the CDA method by
incorporating energy consumption data from three different years
over a decade for Quebec. This allowed for the determination of
changes in annual energy consumption as a function of changing
appliance stock (specifically the addition of electric space heat),
and long term pricing response. The database they used was
significantly larger than previous efforts, approximately 100,000
samples in total, and contained additional information such as
weather relations (heating and cooling degree days), cords of wood
(an important energy source for space heating in Quebec), water
heater characteristics and certain demographics. These qualities
increased the R? coefficient to a range of 0.55-0.70.

Their CDA model for each year of available data allowed them
to identify changing ownership which evolved to larger, more

Interaction variables which have an effect on the energy consumption of particular appliances or equipment [38].

Appliances and equipment Interaction variables

Number of occupants Electricity price Household income Floor area Heating/cooling per unit area
Common appliances 174 v v
Refrigerator 17
Hot water 17 [ .
Space heating and cooling v v %4 P
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consuming appliances throughout the period. Strong relationships
were identified between incentive activities and appliance penetra-
tion. They found the CDA method could estimate the space heating
energy consumption associated with wood as an energy source
better than engineering estimates. This is due to direct occupant
control over wood burning devices (e.g. damper control) and also the
wide range of efficiency during operation. The authors identify a
multicollinearity issue, the inability to determine which of two or
more near linear related independent variables are having an impact
on the dependent variable (energy consumption). They found that
the nearly ubiquitous presence of the refrigerator and small
unspecified appliances made it difficult to determine their impacts.
They suggest improving the estimation by further distinguishing
certain appliances by their characteristics (e.g. age, size, and number
of doors of a refrigerator). Furthermore, they identify that the net
energy consumption of the households, as determined by billing
data, is not inclusive of passive energy gains and therefore is not
representative of the actual consumption of the house, only the net
measured consumption. However, this does not impede the relative
comparison of two appliances as the passive gains remain identical.

Hsiao et al. [44] combined the work of [40] and [41] by utilizing
sub-metered end-use energy consumption as the Bayesian
inference prior information. The approach used a small set (49
households) of direct metered end-use data and a larger set which
included billing and survey information from Ontario Hydro
customers (347 households). The prior information is formed from
the mean and variance of the end-use data, thereby providing
values which incorporate behavioural aspects better than simple
EM estimation.

Bartels and Fiebig [45] further improved upon this modeling
technique development stream by increasing “efficiency” of sub-
metering by conducting a review of the house appliance survey
prior to the sub-metering measurement. They identified houses
which would contribute the most to the model by being sub-
metered. Based on a preliminary review of 1901 house appliance
surveys the authors chose 250 appropriate houses and certain
appliances to sub-meter. Sub-metering was also focused on
freezers and lighting, areas which posed significant difficulty
due to multicollinearity in all previous CDA efforts. Given excellent
sub-metered data they attempted to extend their annual model to
a half-hour model (48 CDA equations per day); however this
resulted in a drop in the R? values from 0.66 to 0.34.

Lins et al. [46] developed a national CDA model for Brazil
featuring 10,818 dwellings based on monthly energy consumption.
As the model covered a wide north-south geographical area with
varying climatic conditions, they found it difficult to obtain R?
greater than 0.5.

Aydinalp-Koksal and Ugursal [47] constructed a national
residential CDA model based on over 8000 records from a 1993
Canadian national residential energy consumption survey [48]. To
be applicable to the entire energy consumption of the Canadian
residential sector, the authors developed three CDA models
corresponding to the dominant energy sources in Canada:
electricity, natural gas, and oil. As the survey data was highly
detailed, new descriptive variables were added to the CDA
equations including: programmable thermostats, heat recovery
ventilation, heating equipment efficiency, windows and doors,
aerators and laundry loads. They mention that the number of
independent variables should be limited to facilitate regression
and reduce poor approximations of smaller appliances which may
be indistinguishable.

The three CDA models achieved R? values ranging from 0.79 to
0.89 which may be a result of their annual model that averages the
daily and seasonal effects. Certain end-uses were under or
overestimated similar to [38]. The authors examined socio-
economic effects using the model. The effects were linear, which

caused concern as the model was driven to extremity values such
as one occupant. Interestingly, the presence of children and adults
equivalently affected the electricity consumption of common
appliances, lighting, and space cooling. The CDA models were
compared to detailed NN and EM models conducted on the same
database. The CDA method always under predicted the NN model,
and under predicted the EM in the AL, cooling, and SH categories,
but not the DHW category. The authors note that the CDA model
coefficients are more transparent and their implications better
understood in comparison with the NN method.

5.1.3. Neural network

The use of NN methods in modeling residential energy
consumption has historically been limited, possibly due to the
computational and data requirements or the lack of physical
significance of the coefficients relating dwelling characteristics to
total energy consumption. Because of their ability to capture non-
linear characteristics, NN models have been used to forecast the
varying electrical loads seen by utilities. Aydinalp et al. [49]
provides a review of the literature and discusses the development
of NN models for electrical load forecasting purposes, stating that
hundreds of models have been developed. They further report that
modeling of energy consumption of individual buildings using NN
originated and evolved throughout the 1990s beginning with
commercial buildings and progressing in complexity. Specifically
noted is an hourly building energy simulation contest reported by
Kreider and Haberl [50] in which the top contenders used
“connectionist” methods (e.g. NN).

A simplified NN is shown in Fig. 4. Interconnectivity between
each characteristic is found at hidden neurons. Coefficients for each
input to a hidden or output neuron are included in respective vectors
“V. The neurons are also biased by the term “b”. For a particular NN
arrangement (3:2:1 shownin the figure) and appropriate scaling and
activation functions, the coefficient vector and bias are adjusted
using a variety of techniques to minimize error of the model. Once
the values are determined, the model can be used calculate the
energy consumption as a function of different inputs.

Issa et al. [51] introduced the application of NN modeling to the
residential energy consumption of a region. They described the
development of a NN model that uses energy performance index
(EPI) and conditioned floor areas of a group of dwellings with
billing data. The EPI is an assigned energy efficiency rating based
on housing components. Their NN model bridged the gap between
actual energy consumption and the EPI rating. No results were
declared.

Mihalakakou et al. [52] created an energy model of a house in
Greece using the NN methodology based on atmospheric condi-
tions. Inputs included air temperature and solar radiation and the
NN was trained using five years of hourly energy consumption

Input;
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Fig. 4. Simplified NN with three inputs, two hidden neurons with coefficient arrays
“V” and bias “b”, and one output.
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data. Results of predicted energy consumption for the dwelling
were excellent on an hourly basis. This can be attributed to the
unprecedented amount of hourly “training” data used to calibrate
the model. Sadly, while multiyear data was available, dates were
not indicated as an input to the NN and therefore annual changes
were not accounted for. This method may be extrapolated on a
monthly basis using energy supplier billing data to a region of
houses. It would therefore become a tool to estimate the variation
in energy consumption between cold or warm years.

Aydinalp et al. [49,53] introduced a comprehensive national
residential energy consumption model using the NN methodology.
They divided it into three separate models: appliances, lighting and
cooling (ALC); DHW; and SH. To differentiate the electrical energy
consumption for ALC from DHW and SH, only houses which used
natural gas or oil for heating loads were used to train the ALC
model. The NN models used the 1993 Canadian national residential
energy consumption survey [48].

The ALC NN model utilized appliance and heating system
information, as well as demographic information for a total of 55
inputs. They trained the model using the annual ALC electricity
consumption billing data and inputs from a 741 household
“training dataset”. The network was optimized by varying
properties such as learning algorithm, scaling interval, and hidden
layers, which were evaluated by maximizing the R? values. Once
the network properties were determined it took 182 training
cycles to achieve the final nodal coefficients and bias values.

A “testing set” of 247 houses was used to compare the ALC NN
model with the EM. Prediction capabilities of the NN surpassed
that of the EM, with R? values of 0.91 and 0.78, respectively when
compared to the metered energy consumption. The authors
commented on the ability of the NN to determine an individual
appliance’s component of the aggregate energy consumption by
simply removing its presence from the modeled house. Appliance
values compared well with other studies, but were not compared
to sub-metered data. Specifically, the refrigerator consumption
was not found to be rational, indicating an appliance saturation
issue similar to that of the CDA method. As demographic factors
were included as inputs, socioeconomic response was analyzed. It
was found that ALC energy consumption increased as a second
order polynomial as a function of household income.

Aydinalp et al.[54] extended the NN methodology from ALC loads
of the Canadian residential sector to loads due to SH and DHW. This
was accomplished using similar methods to those described above,
using the remaining dataset that contained alternative energy
sources. The ALC NN was also used to remove the ALC component
when solving for SH and DHW provided by electricity sources.
Values of R? were again higher than corresponding EM models based
on the same data; however, Fig. 5 shows the SH energy consumption
predicted by the NN has a biased error. A socioeconomic analysis was
conducted and both SH and DHW energy consumption were found
to vary linearly with income.

Yang et al. [55] presented a technique for an “adaptive” NN
which functions by accumulating additional energy data or using a
sliding window of recent energy data. This extends upon the
static predictions made by conventional NN, and allows for the
coefficients and bias to be updated as new information becomes
available. They found that given a previously trained network, the
updating of the coefficient and bias values to represent new data
takes less time as the initial values are close to the final state. This
technique could be applied for continuous update, similar to that of
the top-down technique used by the USA EIA [24].

5.2. Engineering method

The EM accounts for energy consumption of the end-uses based
on their ratings or characteristics. The EM is the only method that
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Fig. 5. Comparison of SH energy consumption using the NN technique to actual SH
energy consumption [54].

can fully develop the energy consumption of the sector without
any historical energy consumption information. Models can be as
simple as an estimate of SH based on the climate through the use of
HDD or as detailed as a complete thermodynamic and heat transfer
analysis on all end-uses within the dwelling. As it functions based
on the physics of the end-uses, the EM has the highest degree of
flexibility and capability with regard to modeling new technol-
ogies which have no historical consumption data. However,
occupant behaviour must be assumed. As occupant behaviour
varies widely, this is difficult to estimate. Three EM techniques are
identified in this review:

e Distributions—This technique utilizes distributions of appliance
ownership and use with common appliance ratings to calculate
the energy consumption of each end-use. As end-uses are
typically calculated separately, this technique does not account
for interactions amongst end-uses. The product of appliance
ownership, appliance use, appliance rating and the inverse of
appliance efficiency results in the energy consumption. By
aggregating the appliance consumptions on a regional or
national scale the residential energy consumption is estimated.
Archetypes—This technique is used to broadly classify the
housing stock according to vintage, size, house type, etcetera.
It is possible to develop archetype definitions for each major class
of house and utilize these descriptions as the input data for
energy modeling. The energy consumption estimates of modeled
archetypes are scaled up to be representative of the regional or
national housing stock by multiplying the results by the number
of houses which fit the description of each archetype.
Sample—This technique refers to the use of actual sample house
data as the input information to the model. This allows for the
capture of the wide variety of houses within the stock and can be
used to identify regions with high-energy consumption. If the
sample is representative of the regional or national housing
stock, the stock energy consumption can be estimated by
applying appropriate weightings to the results. As the variety of
houses varies widely, this technique requires a large database of
representative dwellings.

5.2.1. Distributions

EM models can be constructed by using regional or national
distributions of appliance ownership and use, and determining the
end-use energy consumption. While they rely on national
assessments of appliance penetration and can incorporate historic
energy consumption, their level of disaggregation (by end-use)
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allows them to be considered bottom-up. As the number of houses
and appliance penetration distributions are known, the resultant
energy consumption is considered to be representative of the
region or nation.Capaso et al. [56] developed an appliance use
profile of the Italian residential sector based on distributions
determined from housing surveys. Demographic and lifestyle data
combined with engineering data of a wide range of appliances was
used to calculate total house energy consumption. Their model was
applied to the region and compared well with load recordings.

Jaccard and Baille [57] developed a model of Canadian
provinces using the INSTRUM-R simulation tool. The inputs to
the model include historic energy consumption, price, behavioural
parameters, distribution levels of technologies, and quantification
of appliance unit energy consumption, cost, and availability. The
simulation tool then explicitly models the energy consumption of
each appliance, the sum of which is considered to be the residential
energy consumption. Functions are included to retire old housing
stock and also to test the housing stock for retrofit potential. Based
on the potential it simulates the purchase of new appliances. The
authors detail the advanced life cycle cost assessment features of
the model which do not assume perfect knowledge across space
and time, thereby limiting a single technology capturing 100% of
the market. They consider this to be a strong asset of the model as it
more appropriately simulates the regional technology choices.

Using a combination of distributions and micro-level data
sources, Kadian et al. [58] developed an energy consumption
model of the residential sector of Delhi. They used a simplified end-
use consumption equation to incorporate the penetration and use
factors of all households, similar to Eq. (1) although extended to
individual end-uses. They included end-uses such as lighting,
water heating, air conditioning, refrigeration, cooking, washing,
and certain subjective loads. The sum of the end-use energy
consumption was input into the long range energy alternatives
planning (LEAP) system to incorporate variables such as popula-
tion, income, and increasing number of houses.

Saidur et al. [1] created a non-space heat residential energy
model of Malaysia based on different researchers’ distribution
estimates of appliance ownership, appliance power rating and
efficiency, and appliance use (there is no SH requirement in
Malaysia). Their estimate of national annual energy consumption
is the summation of the product of each appliance’s variables and
reciprocal of efficiency. Furthermore, they conducted an exergy
analysis to complement their efficiency analysis. The exergy
analysis allowed for a comparative tool by which to gauge different
energy sources and conversion devices based on a reference state.
They found an overall energy efficiency of 69% and exergy
efficiency of 30% for Malaysia, as shown in Table 2. They state
the gap in efficiencies is due to a mismatch of input and output
quality levels (i.e. high temperature energy resources were
used for low temperature applications). This is dominated by
the refrigerator and air conditioner.

Table 2
Overall energy and exergy efficiency of the residential sector [1].

Country Year Overall energy eff. Overall exergy eff.
China 2005 - 10
Canada 1986 50 15
USA 1970 50 14
Brazil 2001 35 23
Italy 1990 - 2
Japan 1985 - 3
Sweden 1994 - 13
Turkey 2004-2005 81 22
Norway 2000 - 12
Saudi Arabia 2004 76 9
Malaysia 2004 70 29

5.2.2. Archetypes

The EM can be applied to a limited set of dwellings that
represent classes of houses found in the residential sector,
commonly referred to as “archetypes”. Depending on the level
of detail, modeling of archetypes can capture the interconnectivity
of appliances and end-uses within the house which is not possible
using models based on distributions. Parekh [59] describes the
process of developing archetypes for energy simulation. The author
outlines three basic criteria in generating archetypes: geometric
characteristics, thermal characteristics, and operating parameters.
Using housing surveys and available housing data, geometric and
thermal characteristics are correlated to arrive at various group-
ings found within the housing stock. Data from these archetype
groups was examined for minimum, average, and maximum
values for use in determining representative characteristics of each
archetype for use with building simulation programs.

As the archetype modeling method typically involves a highly
detailed integrated simulation of a house, its development pro-
gressed with computer and software capabilities. As the number of
archetypes is limited, they are the input of choice for EM models as
they reduce simulation time as compared with the sample
technique which models each house within a database.

MacGregor et al. [60] developed the Nova Scotia residential
energy model using three insulation/infiltration levels and nine
dwelling types, resulting in 27 archetypes. They used typical values
of occupancy, appliances and lights, and evaluated the energy
consumption of each archetype using the hourly analysis program
(HAP) developed by Carrier Corporation [61]. Energy consumption
values were extrapolated to provincial levels based on the
estimated number of dwellings represented by each archetype.
The results were found to be in agreement with regional top down
estimates. The model was used to evaluate the potential for energy
savings and economic benefits of introducing small-scale flui-
dized-bed furnaces for residential space and DHW heating.

Kohler et al. [62] developed a mass, energy, and monetary flow
model of the German building sector. They recognized the building
stock as the largest economic, physical, and cultural capital of
industrialized countries, although the stock is not yet well
quantified. To overcome this lack of data, they decomposed survey
data into basic elements and classed them. While they state they
are “reference” buildings and not “typical”, they are associated
with “age-use” classifications characteristic of archetypes. Each
group was broken down into detailed elements such as window
type. Using these elements they developed building specifications
which comprise the materials and operations with respect to the
building. Included in their model was retirement and replacement
of both buildings and appliances. The authors found their bottom-
up model was in agreement with other studies and energy surveys.

Huang and Broderick [63] developed an EM model of space
heating and cooling loads of the American building stock using 16
multifamily and 45 single-family “prototypical” residential build-
ings. These archetypes were simulated in 16 different regions;
some archetypes were simulated in as many as six regions. The
authors utilized DOE-2.1, a building energy simulation program
supported by the USA Department of Energy [64]. Building heating
and cooling loads were disaggregated to show the contributions
from the walls, roof, windows, infiltration, and internal gains by
setting the thermal conductivity of each component to zero. They
also included plant efficiencies, accounting for part-load efficiency
and air-conditioner efficiency; however, only furnace/air-condi-
tioner plants were modeled owing to the source of the archetypes
from the Gas Research Institute. The authors utilized building
population estimates provided by [8] to scale their results up to a
national value. This was accomplished by normalizing the
archetypes’ energy consumption by heated floor area and multi-
plying by the national floor area value.
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Jones et al. [65] developed an energy and environmental
prediction model which utilized GIS techniques. They used a
unique technique that augments archetypes with additional
information based on a “drive-pass” survey. The model employs
the UK Standard Assessment Procedure to simulate a dwelling
based on building fabric, glazing, ventilation, water heating, space
heating, and fuel costs. To reduce information collection time and
effort, residences with similar characteristics were grouped and
modeled by an archetype. The augmentation process was
accomplished by using GIS to estimate building area, historical
sources to estimate age, and the drive-pass (the process of
assessing building characteristics from the sidewalk) to determine
storeys, chimneys, and the ratio of window to wall area.

Using the developed archetypes (five age groups and twenty
built forms) augmented with individual characteristics, the
authors simulated the energy consumption of each dwelling in
Neath Port Talbot, UK. Using GIS they illustrate the high
consumption areas and those dwellings which have high potential
for upgrades, as shown in Fig. 6.

Shipley et al. [66] developed archetypes of different Canadian
government building types to represent over 3500 buildings. The
archetypes were based on categories such as type, floor area,
and age. They developed the commercial energy and emissions
analysis model which utilizes ASHRAE’s modified bin method,
which is described by [67]. Archetypes reduced their simulation
efforts as the average building accounted for the large group of
diverse buildings. They calibrated the model using supplied
energy consumption information from a subset of the buildings
and used the model to determine the impacts of building envelope
improvements.

Carlo et al. [68] took a different approach to the development of
archetypes to represent Brazilian commercial buildings. Using
previous simulation results of 512 buildings, the authors
determined the primary variables of a building energy regression
equation to be roof area ratio, facade area ratio, and internal load
density. Combinations of these variables were used to develop 12
archetypes which were augmented with additional variables for
parametric simulation. This resulted in 695 prototype buildings
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which were simulated in DOE-2.1 to determine their energy
consumption. The results were used in the assessment of potential
building code changes.

Shimoda et al. [69] developed a residential end-use energy
consumption model on the city scale for Osaka, Japan. They
developed 20 dwelling types and 23 household (occupant) types to
represent the variety of houses within the city. Each dwelling type
(not detailed in the paper) was modeled using conductive heat
transfer analysis; however, each dwelling was considered to have
identical insulation levels based on 1997 commercial offerings.
This identical insulation level is a major drawback. Households
were developed based on the number of family members,
appliance ownership levels, and appliance ratings. Each archetype
was simulated and multiplied by the number of dwellings it
represents. The authors found two interesting results from their
technique: the total estimated residential energy use is less than
historical values because “unreasonable” energy use (e.g. leaving
lights on) was not accounted for, and estimated unit energy
consumption is larger than statistical values which they attribute
to surveys focusing on larger families.

Wan and Yik [70] took an alternate approach to archetypes and
focused on solar gains. After conducting a survey of typical housing
characteristics in Hong Kong including floor plan, they developed a
single archetype of 40 m? floor area with a rectangular living and
dining room, two bedrooms, kitchen, and a bathroom. They applied
typical characteristics including wall thickness, window to wall
ratio, glass thickness and wall absorptivity. To introduce variety,
they rearranged the floor plan layout and orientation while
maintaining the size and room geometries; this resulted in
different window areas facing the sun. In addition they specified
different family types and use profiles. They utilized HTB2 (heat-
transfer) and BECRES (air-conditioning) simulation engines
described by [71,72]. They found their estimates of air conditioner
energy consumption to be large when compared to historical
statistics and they decreased this difference by reducing appliance
usage and ownership level within the dwellings. After the
modification the predicted energy consumption compared well
with statistics.

Fig. 6. Domestic energy intensity of individual residences in Neath Port Talbot [65].
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Yao and Steemers [73] developed a model based on four typical
UK housing topologies: flat, semi-detached, detached, and mid-
terraced. Using national appliance ownership distributions,
average appliance use, and average appliance rating, the authors
generated random daily aggregate appliance energy consumption
profiles. They used the thermal resistance method developed by
the Martin Centre to calculate heating losses. They generated a
regional profile based on 100 generated households and found it to
be in agreement with national statistical data.

Palmer et al. [74] developed a model of the UK housing stock
using 431 archetypes. They used the BREDEM-8 Building Research
Establishment tool which is a monthly heat flux simulation program
to model the required SH and DHW heating energy consumption
[75]. Occupant and appliance heat gains are calculated based on
distributions and DHW consumption is based on typical values.
Their model encompasses trends of construction/demolition and
demographic changes to estimate the energy consumption of the
residential sector through 2050.

Petersdorff et al. [76] modeled the EU-15 building stock by
examining five standard buildings with eight insulation standards.
They used Ecofys’s built environment analysis model (BEAM) to
calculate the heating demand for three climatic regions. The three
house types included in the model were terrace, small apartment,
and large apartment. The eight insulation standards applied to the
buildings were determined based on typical values for the climatic
conditions and building vintage found in EU countries. The authors
modeled different scenarios of retrofit and construction/demoli-
tion, and attempted to extend the model to smaller housing types.
They found their models corresponded well with statistical data.

To extend the archetype methodology beyond its typical
position of limited variety, Nishio and Asano [77] developed an
archetype generation tool based on the Monte-Carlo technique.
The authors utilized numerous statistics, surveys, and conven-
tional datasets from Japan to define both the distribution and
range of housing variables. Their house generator uses the Monte-
Carlo technique to define attributes for each archetype based on
probability assumptions. It then develops hourly patterns of
energy consumption for common activities, and aggregates and
applies these on a monthly basis as a function of the proposed
family composition. While the number of generated houses is
variable, the generator relies on 34 different family types and 47
different climatic regions. In an example, they generate and
analyze 10,000 houses.

Clarke et al. [78] focused on the main determinants of energy
demand within the Scottish building stock to create represen-
tative thermodynamic classes. Using the following determinants
and their value or level, they developed 3240 classes: insulation
level (6), capacity level (2), capacity position (3), air perme-
ability (3), window size (3), exposure (5), and wall to floor area
ratio (2). Each class was modeled using the building perfor-
mance simulation software ESP-r to determine the thermal
energy requirements of the dwelling [79]. System information
such as heating/cooling, ventilation, DHW, and lighting was
then applied to calculate the total energy consumption of the
dwelling. The results were incorporated into a tool for com-
parative analysis and assessment of the impact of improvement
measures upon the stock.

5.2.3. Samples

While archetypes provide a limited representation of the
regional or national housing stock due to the limited variety of
archetypes that can reasonably be defined, the use of actual house
samples with the EM can realistically reflect the high degree of
variety found in the actual housing stock, provided that the sample
size is sufficiently large. As this form of EM modeling is data
intensive, its application has been limited.

Farahbakhsh et al. [80] developed a model of the Canadian
housing stock based on 16 archetypes augmented with data from
8767 actual houses. As the house data came from a national
housing survey database that is statistically representative of the
Canadian housing stock, weights of house representation were
provided for the purpose of scaling the consumption up to
provincial and national values. An individual house input file was
generated for each of the 8767 houses and simulated using Natural
Resources Canada’s HOT2000 monthly bin type building simula-
tion software [81]. As energy billing data was available for 2524
houses, these were used in the calibration procedure to correct
data conversion errors in the input files. The national consumption
estimate was found to be in agreement with other studies. Using
this national residential energy model, Guler et al. [82,83] studied
the impact and economic analysis of energy efficiency upgrades on
energy consumption and greenhouse gas emissions. They found
energy savings and greenhouse gas reduction potential for
upgrades of heating systems to be 8%, basement insulation to be
4%, and programmable thermostats to be 2% (approximate values
reported here). Using the energy costs at that time, the major
upgrades were not found to be economically feasible. Aydinalp
et al. [84] updated the model of [80] by using housing data from
1997 and found that the UEC had increased by 1.8%.

Larsen and Nesbakken [85] developed a model of Norway’s
housing stock using household information from 2013 dwellings.
They describe the simulation engine, ERAD, and identify its
fundamental weakness as the high number of numerical inputs.
Significant efforts were required to calibrate the model which is
not desirable as the engineering technique should calculate
appropriate initial values. They note that while it is possible to
account for every end-use in an engineering model, unspecified
end-uses must be estimated. Instead, this was accounted for by
calibrating the known end-uses, resulting in a slight overestimate
of each end-use contribution. The authors found SH and DHW to be
approximately 42% and 24% of total consumption, respectively.

Two other sample EM models deal with commercial buildings.
Ramirez et al. [86] modeled 2800 commercial premises of
California using a modified version of eQuest building simulation
software [87]. Combining survey information from all 2800
buildings, their energy billing data, sub-metered data from 500
buildings, and current year weather data from 20 stations, the
authors modified predefined footprint templates to represent each
building. The model numerically and visually displayed the hourly
results of each building simulation. Calibration was conducted on
each building model by a simulation specialist and consisted
mainly of verifying significant end-uses and their ranges. Final
alterations were made by adjusting schedules and operating hours.
During the calibration process it was found that occupation, or lack
thereof, of the building has unexpected impacts. Specifically, the
assumption that AL is turned off at the end of the business day was
found to be false.

Griffith and Crawley [88] developed a similar model. They
modeled 5430 buildings that comprise the Commercial Buildings
Energy Consumption Survey Database (CBECS) and included
weighting factors for extrapolation to national results for the
USA. However, their focus was the “technical potential” of the
sector (i.e. the lowest feasible energy consumption) and thus the
2005 building code requirements were applied to each building.
Additional information not included in the CBECS was developed
using ASHRAE standards and pseudo-random application of
average parameter distributions, such as infiltration. They devel-
oped a rule based pre-processor to translate the parameters into
“shoebox” building input files for simulation by the USA
Department of Energy’s EnergyPlus software [89]. Simulations
were conducted on a computer cluster. They determined that the
high number of building records was a disadvantage as it required
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significant computing capability. They recommend this technique
only when results must reflect national implications on a limited
number of scenarios. They recommend a smaller database size for
high numbers of parametric simulations.

Swan et al. [90] is developing a national residential energy
model of Canada using a detailed database of nearly 17,000 houses.
The housing database, described by [12], is a selected subset from a
national home energy audit program database that characterised
the thermal envelope of each dwelling, including an air tightness
test. The database of houses descriptions is presently being
converted to detailed house models for building energy simulation
using the software ESP-r [79]. The detailed house descriptions and
high-resolution simulation (one hour time-step) allow for an
assessment of the impact on energy consumption due to the
application of new technologies to appropriate houses.

6. Critical analysis of top-down and bottom-up approaches

The top-down and bottom-up approaches each have distinct
similarities and differences, as well as advantages and disadvan-
tages. Two of the most critical issues that characterize these
approaches are the required input information and the desired
range of modeled scenarios.

6.1. Strengths and weaknesses of the top-down approach

Top-down approaches are relatively easy to develop based on
the limited information provided by macroeconomic indicators
such as price and income, technology development pace, and
climate. Top-down models heavily weigh the historical energy
consumption which is indicative of the expected pace of change
with regards to energy consumption. This weighting may be seen
in Eq. (4). Models that evaluate from a regional or national scope
are useful for estimating the required energy supply and the
implications of a changing economy. They falter when disconti-
nuity is encountered. Examples of such situations include
technological breakthroughs or severe supply shocks, the latter
being most pronounced due to the slow turnover rate of the
housing stock. Contrary to other studies and with respect to a
practical sense given today’s energy environment, Haas and
Schipper [18] clearly identified non-elastic response due to
“irreversible improvements in technical efficiency”. This exem-
plifies the importance of including a representative technological
component in top-down models. Jaccard and Bailie [57] discussed
the notable dichotomy that top-down models estimate high
abatement costs for reducing carbon dioxide emissions whereas
bottom-up models’ estimates are notably lower. They attribute
this to economists’ over-reliance on the autonomous energy
efficiency index (AEEI) and the elasticity of substitution (ESUB).
The NEMS has included both a technology and distributed-
generation component [24]. This indicates that top-down modeling
systems are now attempting to account for the uptake of new
technologies. While these techniques may account for future
technology penetration based on historic rates of change, they do
not provide an indication of the potential impacts of such
technologies and are therefore not helpful in the development
of policy or incentive to encourage them.

6.2. Strengths and weaknesses of the bottom-up approach

Bottom-up statistical techniques bridge the gap between
detailed bottom-up end-use energy consumption models and
regional or national econometric indicators. These techniques are
capable of encompassing the affects of regional or national economic
changes while indicating the energy intensity of particular end-uses.
The primary information source of the bottom-up SM is energy

supplier billing data. While this is private information, the sheer
quantity and quality of this information warrants further compila-
tion and use. By disaggregating measured energy consumption
among end-uses, occupant behaviour can be accounted for. This is a
distinct advantage of the SM over the EM. Of the three bottom-up
SM techniques, common regression is the least favoured as the
utilized inputs vary widely among models, limiting their compar-
ison. In contrast, CDA is focused on simplifications of end-
uses and is therefore easily ported to other locations and its
predictions are comparable among different studies. As appliances
currently on the market vary widely in size and less in technology,
the addition of such information could be beneficial for future CDA
studies. Although the NN technique allows for the most variation
and integration between end-uses, resulting in the highest
prediction capabilities (Aydinalp et al. [91]), its coefficients have
no physical significance. This is a severe drawback. Estimation of
individual end-uses was demonstrated by removing their presence
in the NN model. However, due to the interconnectivity between
each end-use, the removal of many end-uses, individually or
simultaneously, reduces the level of confidence in the resulting
predictions. Furthermore, bias of the energy estimation error was
found when using the NN technique. Aydinalp-Koksal and Ugursal
[47] provide a detailed review and comparison of specific CDA, NN,
and EM models.

Bottom-up EM techniques rely on more detailed housing
information. These models explicitly calculate or simulate the
energy consumption and do not rely on historical values, although
historical data can be used for calibration. Larsen and Nesbakken
[85] developed both engineering (samples) and statistical (CDA)
models to compare their results. They noted that the engineering
technique requires many more inputs and has difficulty estimating
the unspecified loads, but while the statistical technique reduces
both of these issues it is hampered by multicollinearity resulting in
poor prediction of certain end-uses.

If the objective is to evaluate the impact of new technologies,
the only option is to use bottom-up EM techniques. This is a point
of emphasis because compared to taxation and pricing policies,
technological solutions are more likely to gain public acceptance to
reduce energy consumption and the associated greenhouse gas
emissions. The EM is capable of modeling on-site energy collection
or generation such as active or passive solar and co-generation
technologies.

The most apparent drawback of the EM is the assumption of
occupant behaviour. Because the effect of occupant behaviour can
significantly impact energy consumption, the assumption of
occupants’ activities is not trivial. Statistical techniques based
on monthly data are capable of incorporating the effects of
occupant behaviour, although they may be inappropriately applied
to end-uses. Also, the high level of expertise required in the
development and use of the EM may be considered a drawback.
The computational limitations discussed by Griffith and Crawley
[88] regarding large numbers of simulations are no longer critical
as the data processing capability of computers is continuing to
increase rapidly.

To address the shortcomings of both the EM and the statistical
based models, research is currently being conducted by Swan et al.
[90] to develop a “hybrid” EM and NN model for the Canadian
housing sector that will incorporate a NN model to predict the
highly occupant sensitive DHW and AL energy consumption, while
using the EM to predict the SH and SC energy consumption.

6.3. Attributes and applicability of the modeling approaches
The important attributes of the three major residential energy

modeling approaches, namely the top-down, bottom-up statistical
and bottom-up engineering, are shown in Table 3. Each approach
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Table 3

Positive and negative attributes of the three major residential energy modeling approaches.

Top-down

Bottom-up statistical

Bottom-up engineering

Positive attributes e Long term forecasting in the absence
of any discontinuity

e Inclusion of macroeconomic and
socioeconomic effects

o Simple input information

o Encompasses trends

Negative attributes o Reliance on historical consumption
information

o No explicit representation of end-uses

e Encompasses occupant behaviour

e Determination of typical end-use
energy contribution

e Inclusion of macroeconomic
and socioeconomic effects

e Uses billing data and simple
survey information

e Multicollinearity

e Reliance on historical

e Model new technologies
e “Ground-up” energy estimation

e Determination of each end-use
energy consumption by type, rating, etc.
e Determination of end-use qualities
based on simulation

e Assumption of occupant behaviour
and unspecified end-uses
e Detailed input information

consumption information

o Coarse analysis

e Large survey sample to exploit variety

e Computationally intensive
e No economic factors

meets a specific need for energy modeling which corresponds to its
strongest attribute:

e Top-down approaches are used for supply analysis based on
long-term projections of energy demand by accounting for
historic response.

e Bottom-up statistical techniques are used to determine the
energy demand contribution of end-uses inclusive of behavioural
aspects based on data obtained from energy bills and simple
surveys.

e Bottom-up engineering techniques are used to explicitly
calculate energy consumption of end-uses based on detailed des-
criptions of a representative set of houses, and these tech-
niques have the capability of determining the impact of new
technologies.

Given today’s energy considerations that encompass supply,
efficient use, and effects of energy consumption leading to the
promotion of conservation, efficiency, and technology imple-
mentation, all three modeling approaches are useful. Top-down
models are the clear winner in supply considerations as they
are heavily weighted by historical energy consumption which
places their estimates of supply within reason. Bottom-up sta-
tistical models can account for occupant behaviour and use of
major appliances, which leads to the identification of behaviours
and end-uses which cause consumption of unwarranted quan-
tities of energy. Lastly, bottom-up engineering models may
identify the impact of new technologies based on their charac-
teristics and account for the wide degree of variety within the
housing stock.

As the effects and limitations of conventional energy sources
(i.e. fossil fuels) are widely acknowledged, alternative energy
sources and technologies are continuously being investigated and
developed. To determine the impacts of such new developments
requires a bottom-up model. This is further exemplified by the
focus being placed on efficiency and on-site energy collection and
generation at individual houses. During this period of rapid
technological development and implementation, the bottom-up
techniques will likely provide much utility as policy and strategy
development tools.
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