

4th Generation District Energy Network Development Kinlochleven Case Study

Fausto Longo Electrical Engineer

Antonios Lemonias Mechanical Engineer

Ramon Prieto Chemical Engineer

Alexandros Giannakis Mechanical Engineer

Ndomupei Bizabani Electrical Engineer

Motivation

"We do not inherit the Earth from our Ancestors, we borrow it from our Children" - Ancient proverb

Layout

Heat Demand

Our Aim

To investigate the potential to deliver sustainable heat to communities through a 4^{th} generation district energy network based on water source heat pumps powered by local renewable sources.

Integration of

Renewables

Thanks to Smart Heating Europe

3

Heat Demand

Why Kinlochleven?

Heat Demand

Potential for District Heating Network

Replicable solution

Air Pollution

Network

Selection of heat source

Thanks to GEA, Shutterstock

Heat Demand Assessment

Domestic validation:

- ✓ HEM
- ✓ Carbon Trust Sizing Tool

Non-domestic validation:

✓ TM46 Energy Benchmarks - CIBSE

Total annual energy demand:

✓ 7.7 GWh

Network

Layout

Heat Demand

Heat Demand Modelling

Data input:

- **Heat demand**
- Climate
- **Building characteristics**

Heat Demand

- Occupancy
- Ventilation

Peak load on system:

✓ 2,900 kW

Network

Sizing and optimisation

Size of heating system:

- √ 1,200 kW heat pump
- √ 1,700 kW auxiliary boiler
- ✓ 125,000 l thermal store

8

Renewable Energy Resources

Annual heat pump output: 7.2 GWhth

Average COP: 3

Annual electricity consumption: 2.4 GWhe

Heat Demand

Network

Layout

9

10

Renewable Energy Resources: Wind

Introduction

- ✓ High wind resource
- ✓ Appropriate terrain
- ✓ Access by road

Outstanding Potential

Renewable Energy Resources: Solar

- Low solar irradiation
- Mountain shading

Limited potential

Network

Renewable Energy Resources: Hydro

New Small Hydro

- High capital cost
- Limited power availability

Existing Hydro

Possibility of price support for local electricity?

Financial

Analysis

Thanks to Scottish Hills

Conclusions

12

Renewable Energy Resources: Comparison

Network

Renewable Energy Integration

Network

Layout

Network Layout

Integration of

Renewables

Environmental **Analysis**

Financial Analysis

15

Network Layout

Integration of Renewables

Modelling

Environmental Analysis

• Scenario 1: Current Situation

Network

Layout

- Scenario 2: District Energy Scheme
- Scenario 3: District Energy Scheme after the implementation of Renewables

Total Capital Cost Estimation £3,350,000

Network

Layout

*http://www.nottenergy.com/energy_cost_comparison/

Conclusions

- Renewable Heat Incentive will be paid over 20 years
- Capital Cost repayments for 15 years at an interest of 3 %
- Profits will be used to retrofit homes and rejuvenate the community

Netwo<u>rk</u>

- 20 years Loan Repayment
- 15 years Loan Repayment

Network

University of Strathclyde Glasgow

Financial Analysis

Modelling

 Renewable Heat Incentive for Domestic properties is paid for 7 years

Potential Government Incentives: Grants and Loans

HEAT NETWORKS INVESTMENT PROJECT

SALIX

£320m funding being provided to cover capital costs of developing **Heat Network**

Climate Challenge Funding (CCF)

Network

Layout

Annual grant of £150k available for community-led projects. Currently combined expenditure £9.97million for 113 projects

District Heating Loan

£500k, 3.14% interest rate 15 year payback

Conclusions

4th Generation District Energy Networks can deliver sustainable, low-carbon heat to communities.

They are a viable option for addressing fuel poverty and meeting Scotland energy targets.

They can be adapted to future energy systems supply

The developed methodology can be replicable to other communities in the UK.

Require a minimum demand density to be viable - may not be suitable for disperse communities

24

Heat Demand

Further recommendations

- Government support needed to finance the capital costs, regulate and safeguard the emerging market.
- Local authorities to produce strategic plans for district heating.
- Increasing awareness of the technology's potential benefits.

25

Heat Demand

Acknowledgements:

