Biomass Estimations

<u>Unit conversions</u>

 $ha := 0.01 \ km^2$ $t := 1000 \ kg$ $kJ := 1000 \ J$ $MJ := 1000 \ kJ$ $GJ := 1000 \ MJ$

MWh := 3600 *MJ kWh* := 0.001 *MWh*

GWh := 1000 *MWh*

Energy Calculations

RotYrs := 60Rotation period for Spruce[2]A := 130 haEstimated Area [3] $ForDens := 4 \cdot RotYrs \cdot m^3$ ha⁻¹Vol production/yr on peaty soil[2] $VolEiggForest := ForDens \cdot A$ $VolEiggForest = (3.12 \cdot 10^4)$ m³This is the total volume of wood in Eigg's forest after 60 years (full unmanaged growth)

Method 1 - BMEC by weight & Calorific Value [1]

 $C1 \coloneqq 1.3 \ \textbf{MWh} \cdot \textbf{m}^{-3} \quad [4]$ $Energy1 \coloneqq C1 \cdot VolEiggForest$ $Energy1 = 40.56 \ \textbf{GWh}$

 $C2 := 4.6 \ \textbf{GJ} \cdot \textbf{m}^{-3} \qquad [4]$ Energy2 := C2 · VolEiggForest Energy2 = 39.867 \ \textbf{GWh}

Method 2 - From SFA guide (from green and dry weight)

 $EnergyDens \coloneqq 1705 \ \textbf{kWh} \cdot \textbf{t}^{-1}$ $GreenDens \coloneqq 920 \ \textbf{kg} \cdot \textbf{m}^{-3}$ $W1 \coloneqq GreenDens \cdot VolEiggForest$ $MC1 \coloneqq 0.60 \quad [4]$ $MC2 \coloneqq 0.2 \quad [4]$ $W2 \coloneqq \frac{W1 \cdot (1 - MC1)}{1 - MC2} \quad [4]$

 $Energy3 \coloneqq W1 \bullet EnergyDens$ $Energy3 = 48.94 \ GWh$

Energy Densty per green tonne [6] Density for Sitka Spruce [5] Wet weight $W1 = (2.87 \cdot 10^7) kg$

Dried Weight $W2 = (1.435 \cdot 10^7) \ kg$

 $ED := 12 \cdot MJ \cdot kg^{-1}$ $Energy4 := ED \cdot W2$ Energy4 = 47.84 GWh

How much is this?

<i>yrDem</i> ≔ 466 <i>MWh</i>	Yearly Energy insulated hous	Demand = 466 MWh on Eigg with ses (630MWh without, 23.7%)
$pessimistic := 0.225 \ Energy 2$	20-25% efficie rest goes up f fireplace, 25 fe homes have s	ent stoves usually for space heating, the lume/chimney as discussed - (20% for or wood stove. Assume at least half the toves.) [7,8]
pessimistic=8.97 GWh	8.97 GWh by over 40 years!	burning whole forest, must stretch this !
$EnergyPerYr \coloneqq \frac{pessimistic}{RotYrs} = 14$	9.5 MWh	The amount of evergy available per year.
$YrsFromWhole \coloneqq \frac{pessimistic}{yrDem} = $	19.249	How many years can whole forest supply?
$\frac{EnergyPerYr}{yrDem} = 0.321$		

30% of space heating demand can be supplied each year.

References

1. Biomass Energy Centre, 2011. *Fuel from Woodland.* [Online] Available at: <u>http://</u> www.biomassenergycentre.org.uk/portal/page?_pageid=75,645238& dad=portal&_schema=PORTAL

2. Lars Rytter, Karin Johansson, Bo Karlsson and Lars-Goran Stener, 2013. Chapter 2: Tree Species, Genetics and Regeneration for Bioenergy Feedstock in Northern Europe. In: *Forest BioEnergy Production: Management, Carbon sequestration and Adaptation.* s.l.:s.n., pp. 7-15.

3. Forestry Commission - Gov.uk, 2016. *maps.forestry.gov.uk, Scotland Mapping Tool,* s.l.: Crown; Getmaping plc; Ordinance Survey.

4. BMEC, 2011. *Fuel from Woodland - Calorific Value as a function of Moisture Content.* [Online] Available at: <u>as before</u>

5. BMEC, 2011. Fuel from Woodland - Wood Density Spreadsheet. [Online] Available at: as before

6. Wood as Fuel - Technical Supplement, BMEC (2011)

7. Stoves Online, n.d. *Wood burning stoves with boilers and back boiler stoves for central heating.* [Online] Available at: <u>http://www.stovesonline.co.uk/stoves with backboilers.html</u> [Accessed Jan-April 2016].

8. D. Palmer, I. Tubby, G. Hogan and W. Rolls, 2011. Biomass Heating: a guide to small log and wood pellet systems. Biomass Energy Centre, Crown.

Author: Team: Amy Crum

Jack Byres, Paulo Ban, Helleik Syse, Amy Crum & Fraser Stevenson - *The Thermal Energy Challenge: Sustainable Heating on the Isle of Eigg*