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ABSTRACT  
This project aims at improve the methods currently used for the development of high-resolution 

(individual building level) urban models for the evaluation of energy related to space heating and 

cooling. This is achieved by using a dynamic simulation as calculation engine and models primarily 

based on publicly available satellite/aerial images. Buildings are modelled using ESP-r and represented 

by a single zone for a typical floor; results are multiplied by the number of floors to estimate the total 

energy consumption. Building geometry, fenestration and external absorptivity are derived from aerial 

images (no automation of this task is addressed in the paper). Results are validated using smart meter 

data covering 3 years of gas consumption in 8 buildings in Glasgow, Scotland, with a normalized root 

mean square error (NRMSE) of 28% for heating energy consumption. Future work focus on means to 

obtain envelope properties that can be more easily scaled up to urban level, as the current state of the 

art in the field relies on data from individual building surveys, which is rarely available. 

INTRODUCTION 
Proper understanding on the characteristics and performance of buildings within a city or country (i.e. 

the building stock of that region) is essential for planning purposes (Kohler et al. 2009; Coffey et al. 

2009; Mata et al. 2013). This sort of work is usually conducted separately for residential (Dascalaki et 

al. 2016; Loga et al. 2016) and commercial buildings (Gaglia et al. 2007; Coffey et al. 2009), as they 

have significant differences in their properties, as well as different performance requirements (Kohler 

et al. 2009). The knowledge connecting relevant building properties (e.g. geometry, building materials, 

and systems) and performance (e.g. energy consumption, water usage) is usually referred as a building 

stock model. The development of building stock models poses major challenges, as they are usually 

required to describe thousands of buildings which have unique features and performance (Kavgic et al. 

2010; Mata et al. 2014). 

Building stock models are an important tool for energy policy (Csoknyai et al. 2016; Tommerup & 

Svendsen 2006; Loga et al. 2016). This sort of stock models have been developed for a number of 

regions (Uihlein & Eder 2010; European Parliament 2012; Coffey et al. 2009), using different 

approaches. The main approaches used are top-down and bottom-up (Dai et al. 2016; Kavgic et al. 

2010). In both cases, the accuracy of a given stock model is related to the level and nature of 

simplifications adopted in its development. The top-down modelling approach works at an aggregated 

level, typically aimed at fitting the results of an arbitrary mathematical model (e.g. linear regression, 

principal component analysis, artificial neural networks) to historical time-series of national energy 

consumption or CO2 emissions data. Such models tend to be used to investigate the inter-relationships 

between the energy sector and the economy at large, and could be broadly categorised as econometric 

top-down models (Johnston 2003). Bottom-up methods are built up from data on a hierarchy of 

disaggregated components that are then combined according to some estimate for their individual 

impact on energy usage. Often these models are seen as a way to identify the most cost-effective 

options to achieve given carbon reduction targets based on the best available technologies and 

processes. The possibility of assessing performance in alternative scenarios makes bottom-up models 

attractive for energy policy development, and therefore these models have been widely used in the 
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past. However, as bottom-up models work at a disaggregated level, they require extensive databases 

of empirical data to support the description of each component (Shorrock & Dunster 1997).  

Historically, bottom-up models for building energy policy support are based on archetype buildings. The 

performance of the entire building stock is obtained by extrapolating the results of archetype buildings, 

based on the share of each archetype in the stock. Figure 1 exemplifies results obtained with this sort 

of approach, in this case the archetypes were used to estimate energy saving potential for a given policy 

in the entire USA housing stock. This approach is straightforward, as the whole stock can be 

represented by few buildings (Exner et al., 2015). Validation regarding aggregated energy consumption 

show good agreement between modelled and measured data (Wilson et al., 2017). In spite of these 

advantages, archetypes has severe limitations. Firstly, the definition of archetypes involves large 

simplifications, as each building in the stock has unique surroundings and often has unique geometry, 

building components, systems and operation. Secondly, the estimation of the share represented by 

archetype in the entire stock is cumbersome, as it requires matching each individual building to a given 

archetype. Thirdly, validation is only possible using aggregated data, which may mask discrepancies 

that mutually cancel each other. Such mutually cancelling effect may happen: a) on stock level (e.g. an 

archetype shows results below measured data while another shows results above, providing good fit 

when the overall results are compared to aggregated metered data) or b) on archetype level (e.g. 

overestimation in the air infiltration rate cancelling an underestimation of building fabric thermal 

transmittance given an overall good agreement between results calculated and measured data). As an 

alternative to the use of archetypes, there is a growing body of research focused on the development 

of high-resolution bottom-up models, which explicitly model each building in a given area of interest. 

 

Figure 1: Example of aggregate and average primary energy savings based on stock model results bottom-up stock model 
using archetypes (Wilson et al., 2017) 

An example of high-resolution bottom-up model is the SUNSHINE project which demonstrated the 

development of stock models from GIS data on building level as shown in Figure 2 (Bloem et al. 2015). 

This project was one of the pioneers in this field, and used simplified energy models to calculate energy 

performance certificates for the building stock (asset rating, not actual energy consumption). Another 

example of high-res bottom-up model is City Building Energy Saver (CityBES) which focuses on energy 

modelling and analysis of a city’s building stock to support district or city-scale efficiency programs as 

shown in Figure 3 (Hong et al. 2016). CityBES relies on satellite images to derive building perimeter 

and adopts several assumptions to create energy simulation models for every building in the stock (in 

particular, floors are modelled as in a core and shell approach, with one thermal zone per facade). 

Several other initiatives in the same direction have been reported in the literature. The development of 

high-res bottom-up stock models has not been validated against metered data neither for CityBES nor 

SUNSHINE (Chen et al. 2017; Chen & Hong 2018; Bloem et al. 2015). Moreover, information on 

building facade (fenestration and absorptivity) were assumed based on typical data rather than 

modelled considering the particularities of each building. 
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This paper describes a bottom-up method for high-resolution stock modelling based on aerial/satellite 

images and building energy simulation. The main innovative aspects of this work are: a) the use of 

aerial imaging to obtain information regarding building fenestration and solar absorptivity of facades, 

removing assumptions in this area adopted in previous works (Chen et al. 2017), b) the use of a single 

zone to model the entire floor which largely simplifies the modelling workflow, and c) the validation of 

results for 8 commercial buildings, based on 3 years of gas consumption data. The work described in 

this paper is not focused on the automation of the modelling process (heavily addressed by CityBES), 

on satellite/aerial image processing (also a field with extensive research already published e.g. 

Colomina et al., 2014 and Jin et al., 2005) and on frameworks for integration of simulation in the urban 

si (e.g. Remmen et al., 2018). 

METHODOLOGY 
The dynamic building simulation software ESP-r is used to model intermediate floors of a selection of 

University of Strathclyde buildings to evaluate whether dynamic modelling can achieve accurate results 

when compared to measured data. The simplest means of modelling a building is to approximate it as 

a single thermal zone. It is important to bear in mind that the purpose of building simulation is not to 

exactly represent the building physically but rather to provide a mathematical description of the factors 

that will affect final energy consumption. Buildings with two floors and less have been excluded from 

the study as they would be inaccurately simulated due to ground floor and roof properties.  

The research addressed 8 buildings of the campus of the University of Strathclyde, Glasgow, Scotland. 

Buildings comprise a mix of office space, research and teaching areas. These buildings were built at 

several points of the last century, using a variety of technologies and were subject to different degrees 

of renovations and maintenance over the years. Detailed information about them can be found at Byres 

(2016). 

Aerial images of each building (e.g. Google, 2016) were used to estimate the shape of the building and 

glazed area in each façade. Figure 4 shows this process for the building B, where the richness of images 

currently available can be observed. In particular, it is possible to see each individual façade of any 

building in areas with this sort of image resolution. The data was used to develop energy simulation 

models using ESP-r, where each building was represented by a single thermal zone for a typical floor. 

The energy consumption of the whole building was calculated by multiplying results by the number of 

floors (also obtained from the aerial images). Figure 5 shows the geometry of the 8 models used to 

represent the building addressed in this research, demonstrating the range of complexity that can be 

tackled using the proposed approach. Aerial images were also used to identify the type of finishing 

material of each façade. The absorptivity and emissivity data was imposed in the model based on the 

material identified.  

The focus of this work is on the relation between data on images and the accuracy achieved in the 

energy calculations, not on image processing per se. Therefore, there was no attempt in this paper to 

automate such image processing and all data extraction was made by the direct analysis of images by 

the researchers. This allows the evaluation of the accuracy of the proposed approach, before expending 

considerable resources in the automation of the process. 

Figure 2: Example of heating demand per building in the 
SUNSHINE project (Bloem et al. 2015) 

Figure 3: Screenshot of CityBES, showing colour-coded 
simulated site energy use intensity (Chen et al. 2017) 
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Figure 5: Wireframe view of each floor of University of Strathclyde buildings a) to h) as modelled as a single zone 

 

Simulations were carried out using a typical weather file for Glasgow complied by CIBSE using historical 

data. Data from survey for the production of Energy Performance Certificates (EPC) was available for 

all buildings and it was used in the development of the simulation models. These data was combined, 

whenever necessary, by defaults and recommended values adopted in the calculation of EPC using 

the software SBEM which is the official calculation method for legal compliance in the UK (BRE / 

AECOM 2011). Error! Reference source not found. shows data available regarding U-values of walls 

for Building B. The thicknesses and properties for the external wall, ceiling/floor and window glazing 

was estimated based on this values and can be found in Error! Reference source not found..  

Table 1: Fabric information on building “B” 

Fabric Element U-value (W.m-2.K-1) Description 

External Walls 1 Cavity brick to 1966, ’75, ’82 building regulations 
Internal Walls 1.69 Plaster – block – plaster 

Window Glazing 2 Double glazed metal frame to 2002 building regulations 
External Doors 2.2 Entrance and personnel doors 

Internal Ceiling/Floor 2.28 Ceiling and floor are equivalent. Ceiling tiles – slab - carpet 

 

a) b) d) 

e) f) g) h) 

c) 

a) b) 

c) d) 

~21m  

~100m  

Figure 4: Aerial images of James Weir Building a) eastern façade b) south façade c) western façade d) north façade 
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Table 2: Thermophysical properties for single zone construction of building “B” 

Layer Material 
Thickness 

(cm) 

Thermal 
Conductivity 
(W.m-2.K-1) 

Density 
(kg.m-3) 

Specific 
Heat 

Capacity 
(J.kg-1.K-1) 

Absorptivity Emissivity 

External Wall, U-value = 0.95 W.m-2.K-1, Thickness = 46cm 

1 Brick  20 0.77 1700 1000 0.7 0.9 
2 Air 2 0 0 0 N/A N/A 
3 Mineral fibre 2 0.04 105 1800 N/A N/A 

4 
Medium weight 
concrete block 

20 0.86 1970 840 N/A N/A 

5 Light plaster 2 0.16 600 1000 0.5 0.91 

Ceiling/Floor, U-value = 2.29 W.m-2.K-1, Thickness = 20cm 

1 
Ceiling tile (white 

gypboard) 
2 0.19 950 840 0.85 0.9 

2 
Medium weight 
concrete slab  

17 0.86 1970 840 N/A N/A 

3 
Cellular rub 

underlay  
0.5 0.1 400 1360 N/A N/A 

4 Carpet (synthetic) 0.5 0.06 186 1360 0.22 0.91 

Window Glazing, U-value = 2.81 W.m-2.K-1, Thickness = 2.4cm 

1 Glass plate  0.6 0.76 2710 8373 0.05 0.83 
2 Air 1.2 0 0 0 N/A N/A 
3 Glass plate  0.6 0.76 2710 8373 0.05 0.83 

 

Casual gains are a significant source of heat in office and teaching spaces (Randall McMullan 2007). 

Radiation and convection from people, lighting and small power and IT equipment can act to 

significantly reduce the heating load and/or increase cooling requirements (Clarke 2001). The lighting 

and IT equipment exist to serve the needs of the occupants and so it was further assumed that their 

respective heat gains would be in keeping with the occupancy schedule which was set from 09:00 to 

17:00 only on weekdays (Herrando et al. 2016; Menezes et al. 2012). According to the ASHRAE 

(American Society for Heating, Refrigerating and Air-conditioning Engineers) Fundamentals Handbook 

2001, the average sensible heat gain for an adult working in an office is 70W and the latent is 60W 

(Ashrae Standard 2001). Lighting can take up a significant portion of a building’s overall energy use, 

rising as high as 40% of the total in some office buildings (Jenkins & Newborough 2007). The casual 

gains from lighting was defined as in the information provided from EPC surveys. For the purpose of 

this project, it is assumed that every person has their own desktop computer with monitor and also that 

there are two laser printers present in each floor. Table 3 displays the values for computers, monitors 

and laser printers which is the average value when in operation and in energy saving mode. Some 

information on the systems was also provided from the survey which is displayed in Table 4 for Building 

B, as an example, based on data from EPC survey and EPC calculation assumptions. Temperature 

set-point is assumed to be 19oC, as advised in the EPC calculation documentation. 

Table 3: Casual heat gain from office equipment in building “B” 

Equipment 
Continuous Use Heat 

Gain (W) 
Continuous Use Heat 
Gain Density (W.m-2) 

Idle Use Heat Gain 
(W) 

Idle Use Heat Gain 
Density (W.m-2) 

Computer  65  0.031  25 0.012 

Monitor 70  0.033  0 0 

Printer 550 0.262 125 0.05 

 
Table 4: Mechanical Systems information in building “B” 

System Function 
System Area 

(m2) 
Weekday Start Weekday End 

Weekend/ 
Holiday Start 

Weekend/ 
Holiday End 

2 Heating 3384 06:00 18:00 Off Off 

15 Heating 1563 06:00 18:00 Off Off 

19 
Local Ventilation 

and Heating 
876 06:00 18:00 Off Off 

 

ESP-r allows for ventilation and infiltration of air to either be modelled as a mechanical system with 

periodic operation or an air mass flow can be imposed upon the building and/or zone. The average 
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value of 4AC.hr-1 was chosen for the Building B model, which is equivalent 10L.s-1 per person and 

includes both mechanical and natural ventilation. Mechanical ventilation is only required when people 

are present and so the value of 4AC.hr-1 was only imposed for the hours between 09:00 - 17:00 on 

weekdays. The remaining times were all subject to natural infiltration which was set at 1AC.hr-1, which 

is quoted as a typical air infiltration allowance by (CIBSE Guide 1999). The overall efficiency of the 

heating system was estimated in 85%. 

Smart meter data regarding gas consumption for each building was adopted. Original data comprised 

both space heating and hot water, and the fraction of each component was estimated based on water 

energy consumption of the building. Measured data for 3 years was used to calculate the average 

energy consumption for each building, which was then compared to simulation results. Discrepancies 

between measured and simulation results were used to calculate the mean bias error (MBE), root-mean 

squared error (RMSE), and normalized root mean squared error (NRMSE). Simulation result for space 

heating were analysed in terms of kWh.m-2.year-1, where the area of the building was estimated based 

on the shape and number of floors.  

RESULTS ANALYSIS AND DISCUSSION 
Figure 6 shows a comparison between dynamic simulation results against measured data.  

 
 

Figure 6: Comparison between dynamic simulation and 
actual energy consumption for University of Strathclyde 

buildings 

Figure 7: Error in energy consumption using  dynamic 
simulation for University of Strathclyde buildings 

 

In five buildings in Figure 6 (B, D, E, F, G), results show a remarkable agreement considering the level 

of simplification adopted in the modelling. Results for buildings A, C and H show larger discrepancies. 

Further investigation in these buildings revels that discrepancies in the results are consistent with 

particularities of these buildings that could not be captured by method adopted in the development of 

the models. These particularities can be classified in two groups: geometry and usage. In one of the 

cases, a large inner atrium is present in the building, however this atrium is not visible from the outside 

and was not modelled. These particularity regarding the geometry of the building led to the modelling 

of large office areas (with their corresponding energy consumption) when in fact there is a large void in 

the building interior. In the other two cases, particularities related to the level of internal gains and 

heating set-points/schedules was the cause for the lack of agreement between measurements and 

simulations. This shows the limitation of the proposed method regarding the modelling of buildings with: 
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a) a particularly intensive energy use (high internal gains and reduced energy for heating), b) high use 

of gas for processes (cooking, experiments), c) unusual heating schedules (e.g. 24-hours operation) 

and d) unusual heating set-points (higher set-points to offset low mean radiant temperature in buildings 

with high thermal mass or low insulation levels). 

Considering the 8 buildings as the stock, the dynamic simulation gives a MBE of 3 kWh/m-2y, i.e. 

simulations do not consistently under or overestimate the consumption, with deviation between 

measurements and simulations in both directions. The RMSE is 19 kWh.m-2y (NRMSE of 28%.), which 

gives, assuming a normal distribution, a confidence interval of ± 38 kWh.m-2y for the simulated results 

(confidence level of 95%,). This is a high value considering that the measured performance goes from 

50 to 270 kWh.m-2y, however it is clear from Figure 7 that in most cases the error is lower, and the size 

of the confidence interval is stretched due to the outliers discussed in the paragraph above.  

CONCLUSIONS 
The main objective of this study is to improve current practice for energy in building stock modelling by 

using dynamic simulation and compare it with actual meter readings. Based on the results presented in 

this paper the following conclusions can be drawn: 

 Results indicate that a single-zone approach, and geometry derived from images/satellite images 

can provide reasonably accurate values for space heating energy consumption. 

 These results support the adoption of bottom-up high-resolution modelling, by validating this 

approach with long-term monitored data for 8 commercial buildings. Predictions have a 

confidence interval of ± 38 kWh.m-2y for space heating energy consumption.  
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