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ABSTRACT 

The upscaling of energy models of buildings has entered mainstream discussion within the subject of 
energy system modelling (ESM), the primary role of such models being to generate policy; however, 
policy holds the potential to stimulate significant changes in energy demand, especially within the 
residential building sector. This cyclic system is not modelled fully at administrative levels in the UK. The 
mechanisms to infer useful insight into future demand caused by millions of new heat-pumps and electric 
vehicles, for example, must be implemented as an integrated part of the modelling process.  

The move away from data-derived demand curves is exemplified in the present work. This focuses on 
a small community and explores methodologies to provide scalable solutions to characterise residential 
thermal demand. Despite being inherently deterministic, the tools employed have been configured here 
to run sequences of probabilistic inputs to deliver aggregate loads for a diverse building stock. The 
dwellings in this study have been classified into their respective archetypes based on building form and 
construction. Smart meter data have then been used to generate behavioural patterns which describe 
how the dwellings are used. Finally, probability distributions have been applied to the behavioural 
patterns to consider variability across the sub-groups within the stock.  

INTRODUCTION 

Scalable physics-integrated demand models of building stock is widely recognised as a key ambition 
within the ‘whole-system’ approach to ESM. Moreover, temporally precise dynamic loads are of critical 
importance when attempting to address questions around variability in supply from renewable 
generators, as well as utilisation of energy storage and demand response. The potential for 
unpredictable scenarios involving variation in supply on the electricity network, along with new demand 
patterns emerging from widespread use of Electric Vehicles (EVs) and electric heat pumps, has raised 
serious questions around energy security. Maintaining a balance with environmental and socio-
economic factors requires careful planning, along with new approaches to modelling energy demand. 

These scenarios are of concern at different scales. National-scale systems are typically assessed using 
Energy System Optimisation Models (ESOMs). These are designed to ensure that peak demands are 
met under various scenarios driven by environmental and costs factors (i.e. security is unconditional). 
Their ability to do this, however, is undermined when demand is characterised using over-simplified 
temporal schemes. Even when intra-day variation in demand is considered, this is derived from historical 
data, and cannot provide any insight into ongoing energy security for uncertain demand scenarios. 

Community-scale systems can take advantage of more refined Energy System Simulation Models 
(ESSMs), due to their reduced size and complexity. Because the domain of such systems is significantly 
smaller, operational behaviour can be modelled with greater detail, implying that events which could 
cause system failures can be planned for and avoided. However, the success of this predictive method 
is once again closely linked to the applicability of the input demand timeseries.  

The present work examines community-scale thermal demand modelling, using a framework intended 
for upscaling to much larger regions. Two variants of the procedure were tested and compared against 



each other, one of which was orientated towards accuracy, the other towards computational efficiency. 
An archetype system was adopted to model the Findhorn Ecovillage community system, which 
incorporates both large and small-scale renewable generators, a private-wire electricity network and 
community-owned utility provider. Due to the established nature of this community system, parallels can 
be drawn with Government interests in energy planning, economics, security and sustainability. Details 
of the site are discussed in the Methodology section below, along with descriptions of the Dynamic 
Building Model (DBM) and simulation routines. Diversified, aggregate outputs from the models are 
provided in the Results section. Finally, the Discussions and Conclusions section follows. 

This study involving thermal demands from residential buildings at Findhorn Ecovillage is part of wider 
work being undertaken for the National Centre for Energy Systems Integration project (CESI, grant 
EP/P001173/1).  

BACKGROUND AND LITERATURE 

The issues introduced above have been discussed by a number of authors. These problems concern 
space heating, hot water loads and non-thermal loads (which are generally classed as electrical 
demands). Furthermore, they also span across domestic and non-domestic building stock. The existing 
literature generally approaches the same set of challenges, which is to characterise demands in a 
temporally precise manner and to aggregate these demands whilst incorporating diversity. 

Simulation and validation of temporally refined aggregate electrical demand has received significant 
attention over a number of years. Examples of previous studies include application of statistical methods 
to generate synthetic profiles (Jenkins et al., 2014, Patidar et al., 2016). Other earlier work has also 
examined the usage of specific household appliances (Richardson et al., 2010, Widén and Wäckelgård, 
2010). A further area of study which is closely related is the research surrounding occupant behaviour, 
which again features work examining rational behaviour in terms of interaction with devices, as well as 
statistical processes (Richardson et al., 2008, McKenna et al., 2015, Flett and Kelly, 2016, Liang et al., 
2016, Flett and Kelly, 2017, Ramírez-Mendiola et al., 2017, Zhou et al., 2017).  

Other work directly addresses aggregate and diversified thermal demand, either in isolation, or as part 
of a multi-vector model. Cipriano et al. (2015) carried out a study using validation data from an 
unoccupied office building, by performing batch simulations using a DBM, and applying probability 
distributions on unknown parameters. Good et al. (2015) examined the operational behaviour of 
systems, including that of heat pumps for residential use. Miller et al. (2015) demonstrated a method for 
clustering measured data to infer thermal requirements for a school campus and office. McKenna and 
Thomson (2016) present a thermal-electrical model, with comparisons against gas smart meter data 
representative of UK building stock. Other interesting developments include a reduced-order method by 
Heidarinejad et al. (2017), which was applied to a number of university campuses in the US.  

METHODOLOGY 

Site topology of community 

Site data was available for Findhorn Ecovillage, located in Moray in north east Scotland (57.65°N, 
3.59°W). The data included electrical mains power for around 30% of the dwellings on site, along with 
smaller subgroups incorporating sub-metered power for heating/hot water use, measurements 
associated with distributed PV and solar hot water generation, demands on a number of small district 
heating systems, outputs from a community owned wind turbine array, loads from 
community/commercial buildings, on-site weather and aggregate substation data for the entire 
community. Monitoring began in mid-2014; a number of sensors are still active, although in general, the 
dataset is partially complete.  

Figure 1 provides details of the site in terms of building use (residential and non-residential) and 
classification of the thermal envelope. The present work applies only to the residential portion of the 
building stock, with the principle aim being to establish and test methodologies to simulate aggregate 
heat demand, which are also scalable for future application to larger geographical regions. An archetype 
system was adopted to represent the physical form of each dwelling, which respected the construction 
type and approximate floor area. The archetype groups were also generated in a way that ensured that 
at least one of the dwellings had corresponding field measurements. 



(a) 

 

(b) 

 
Figure 1: Findhorn Ecovillage, site map showing (a) building use in terms of residential and community / commercial 
and (b) thermal envelope construction type. 

Simulation model 

The dynamic thermal simulations were carried out using the commercial software IES-VE (2018). This 
work was built specifically around the Python VEScript Application Programming Interface (API). A 
single model file was constructed in the usual manner (incorporating all geometric features, construction 
properties and infiltration rates, weather / location settings and simulation options), with this processed 
using the API through a large number of control profiles. Reference profiles were constructed and stored 
outside IES-VE and were adapted automatically within Python during the batch runs. 

A simplified model topology was adopted to represent the community; simplified volumes were 
generated for each archetype. One building was constructed to represent each archetype, using one 
room per level to respect floor area. This overlooked the real topology of the site and placed the modelled 
volumes on a widely-spaced uniform grid, designed to prevent self-shading. Glazing areas were 
estimated based on typical percentages. No roof voids were included.  

Simulation routine 

The make-up of the aggregate thermal demand timeseries was built around a sequence of stages: 

1. A series of archetypes were constructed to represent the diversity in the building, similar to that 
which might be used in other stock models (based on construction information, heating 
technology etc). Each archetype was assigned a weighting. 

2. Diversity in behaviour was accounted for using a set of input profiles, which characterised the 
control routines dictated by the households of each dwelling. This took the form of thermostat 
set-point schedules, which automatically control the heating systems (if temperatures dictated 
that heating was necessary). It should be borne in mind that the intention is to produce an 
aggregated demand profile of many dwellings. This allows for some flexibility in the choice of 
behavioural profiles; where, for example, the use of more time-averaged (and therefore 
smoother) profiles can still be justified – see also note on validation in Discussions/Conclusions.  

3. Each archetype-profile pairing was simulated repeatedly using the specifically configured batch 
routine, each applying a modified succession of input control profiles (i.e. offset in time, in 10-
minute increments). Aggregate, synthesised thermal demands were generated through 
compound weightings, applied to the large set of simulation results. The weightings incorporated 
the stock weighting, profile weighting and probability weighting associated with the temporal 
diversity in the collective behaviour of the community.  
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Model calibration 

The relevant transient building simulation inputs comprise the various weather timeseries (a single case 
has been set to suit the current location, AberdeenEWY) and the heating set-point control profiles 
associated with each dwelling. Appropriate calibration of the latter is essential for delivering meaningful 
thermal demand timeseries. For the present work, information regarding such cycles has been extracted 
from smart meter data to calibrate the model inputs. This includes identification of typical heating set-
point control patterns, along with a corresponding likelihood of use. The procedure adopted generated 
a very large number of input profiles, before carrying out iterations of the simulation using those profiles. 

Figure 2 provides a description of the procedure used to extract calibrated simulation inputs from the 
available smart meter data. Both heat and electricity meter data were used. On the left of Figure 2, heat 
meter data was studied to extract typical control profile shapes (stage 1), which were then used to 
generate the large set of input profiles (stage 5). Intervening procedures were carried out on the 
electricity meter data, which first generated logs of activity information from the data (stage 2), then 
extracted statistical information regarding the day-to-day activity variation within each dwelling (stage 3) 
and the corresponding dwelling-to-dwelling variation across the community (stage 4).  

 

Figure 2: Process for the extraction of probabilistic thermal control profiles from smart meter data. 

It should be noted that in the present usage, no attempt was made to model or synthesise electrical 
household demands, even though electrical smart meter data was utilised. This was purely to infer 
building occupant behaviour, by proxy, to establish diversity across the community in the temporal tense. 

Weekday heat meter records from the Findhorn site are provided in Figure 3, each covering continuous 
periods of 1-3 months. The six profiles represent the dominant thermal control cycles observed in the 
available data. These clearly follow automatic control schemes, with very few manual override 
exceptions. Profiles very similar to those shown in Figure 3 were found across multiple dwellings; profile 
weightings for the building stock were derived from the frequency of occurrence (the collective number 
of days) for each profile. This process corresponds to stage 1 in Figure 2. 

Six weekday/weekend heating control profiles pairs were generated using the meter data in Figure 3 
(consistent data was also available for weekend/holiday behaviour; in some cases, the same control 
patterns emerged for both weekdays and weekends). The resulting control schemes are provided in 
Figure 4. Each profile has been realigned to 𝑡0 – the timing of the first heating set-point change (i.e. the 
start of the morning heating cycle), as obtained from the reference smart meter data. 

Behavioural diversity 

In addition to the use of heat meter data (see Figure 3), electricity meter data was analysed to determine: 
(a) how building occupant activity varied day-to-day for a given dwelling, and (b) how the corresponding 
variation between different dwellings could be characterised and accounted for in the model inputs. 
Before carrying out this two-stage statistical assessment (represented by calibration stages 3 and 4 in 
Figure 2), a search procedure was applied to each electricity meter dataset to identify the first daily 
event signifying the onset of activity, or wake-up time (𝑡𝑤𝑎𝑘𝑒𝑢𝑝), within that household (calibration stage 

2). An example of this feature identification scan is provided in Figure 5(a). 



Timestamp logs were gathered for each metered dwelling, with these used to generate a set of 
distributions describing day-to-day activity variation. A closest-fit distribution (Cauchy) was identified, 
returning location (𝑥0) and scale (𝛾) parameters for every dwelling. Figure 5(b) provides the distribution 
of 𝑡𝑤𝑎𝑘𝑒𝑢𝑝 for one of the dwellings studied. Despite this continuous variation in 𝑡𝑤𝑎𝑘𝑒𝑢𝑝, the corresponding 

automatic heating control profiles were regimental and unchanged over many months. 

  

  

  

Figure 3: Weekday heat meter data from selected properties, continuous data covering 1 to 3 months. 

 

 

 
Figure 4: Input profiles accounting for building occupant behaviour. Six overall behavioural schemes were adopted 
(A to F), each using two different profiles for weekdays and weekends/public holidays. Set points were selected at 

random for each profile, within the range 18-24°C. 

 

Figure 5: (a) Sample electricity meter reading for one day (calibration stage 2); (b) distribution of 𝑡𝑤𝑎𝑘𝑒𝑢𝑝 over 

captured over a 28-month period, for one of the assessed buildings (calibration stage 3). 

                     
 

 

 

 

                                               

                

 
  

  
 
  

  
 
  
 
 

 

                     
 

 

 

                                               

                

 
  

  
 
  

  
 
  
 
 

 
                     
 

 

 

 

 

                                               

                

 
  

  
 
  

  
 
  
 
 

 

                     
 

 

 

 

                                               

                
 

  
  
 
  

  
 
  
 
 

 

                     
 

 

 

                                               

                

 
  

  
 
  

  
 
  
 
 

 

                     
 

 

 

                                               

                

 
  

  
 
  

  
 
  
 
 

 

                     
 

  
  
  
  

                     
 

  
  
  
  

       

       

       

                                       

 
 
  
 
 
  

  
  

 
                   

                     
 

  
  
  
  

                     
 

  
  
  
  

       

       

       

                                       

 
 
  
 
 
  

  
  

 
                   

                     
 

  
  
  
  

                     
 

  
  
  
  

       

       

       

                                       

 
 
  
 
 
  

  
  

 
                   

                     
 

 

 

 
           

      

         

                                                      

                

 
  

  
  

 
 

 
 
 
  
 
 

 

         
 

    

    

             

           

                                      

                

 



The above set of 𝑥0 parameters were adopted as characteristic descriptors for typical activity in the 
corresponding dwellings – effectively a mean wake-up time, per dwelling. It was observed that for 
dwellings where both the heating and electricity meter data was available, an approximate measure of 
the difference between 𝑥0 and 𝑡0  across the dwellings was 60 minutes. It follows that the distribution of 
𝑥0 across all dwellings can also be used to provide an approximate description of the variation in 𝑡0, 
once adjusted according to this relationship. The resulting analysis of 𝑥0 for households across the 
community is summarised in Figure 6, showing the closest-fit (normal) distribution, along with 
histograms based on 5-minute and 30-minute bins. An equivalent normal distribution (with an adjusted 
mean parameter, 𝜇) has been used to diversify the input heating control profiles for the batch simulation. 

 

Figure 6: The distribution of wake-up times across the metered dwellings (from features identified in electricity data). 

RESULTS 

The output from the overall aggregation procedure provides synthesised thermal demands for the whole 
community (10-minute resolution timeseries for one year). All of the underlying simulation results, when 
considered individually, represented standard application of DBM, and were both deterministic and 
regimental in their behaviour on all days characterised by the same control profile. To highlight this, 
Figure 7(a) and 7(b) shows a single simulation result for one archetype, using Profiles A1 and A2 (7(a) 
provides weekdays and 7(b) the corresponding weekend, for a selected week during winter). 
Characteristic features include precise times for heating set-point changes, restricted heating system 
output to ensure realistic heat input rates, and variable heat output at other times, resulting from transient 
heat fluxes across the building fabric.  

Figure 7(c) and (d) illustrates the probabilistic result following the diversity procedure described in the 

above methodology. Descriptively, this represents a medium to large set of houses corresponding to a 

single archetype, occupied by households which all follow an identical routine whereby the dwelling is 

empty during normal working hours. Very small proportions of these households are expected to wake 

extremely early or extremely late; the highest probability of occurrence is around the mean wake-up 

time (𝑥0). The procedure used to generate this diversity is repeated for all other archetypes and all other 

behavioural profiles. All the results in Figure 7 are scaled in order to correspond to a single dwelling 

within the aggregated building stock; however, the results in Figure 7(c, d) cannot be used to represent 

a single, stand-alone dwelling. 

  
 

 

 

 

Figure 7: Result sample for a typical winter week: (a, b) Raw simulation results without temporal diversification. (c, 

d) Diversified results from arrays temporally offset variants of the input Profiles A1 and A2. 

       
 

   

   

   
          

         

         

                                           

                

 

                     
 

 

 

 
   

   

   

   

   

                                        

                

 
  

  
 
  

  
 
  
 
 

 

                     
 

 

 

 
   

   

                                        

                

 
  

  
 
  

  
 
  
 
 

 

                     
 

 

 

 
   

   

   

   

   

                                                

                

 
  

  
 
  

  
 
  
 
 

 

                     
 

 

 

 
   

   

                                                

                

 
  

  
 
  

  
 
  
 
 

 



Figure 8(a) provides aggregated thermal demand results for the entire case-study (i.e. across all 
archetypes and behavioural profiles), with the corresponding external dry-bulb given in Figure 8(b) for 
reference. The typical UK two-peak demand shape is the most dominant pattern visible in the timeseries. 
During Saturday and Sunday (the two days on the farthest right), the middle part of the day shows quite 
different characteristics when the weather is particularly cold, which again reflects the input profiles. In 
general throughout the week, the severity of the trough during midday (and to a lesser degree the trough 
overnight) is a result of the narrow and specific focus on residential stock. Typical daily cycles of 
aggregated gas demand across a region, for example, will tend to include other types of non-domestic 
loads, such as from offices, commercial buildings, catering/service needs, and in the education sector, 
as well as 24-hour facilities such as healthcare and other critical services, and potential industrial loads. 

 

 

Figure 8: Sample of weather data (external dry-bulb) and corresponding aggregate heat demand for all residential 

building stock representing the Findhorn community (a six-week period during the winter: 5th Jan to 15th Feb). 

DISCUSSIONS AND CONCLUSION 

The study presented in this paper has demonstrated application of a framework and automated routine 
for diversification of thermal loads using dynamic building simulations. Synthesised thermal demand 
timeseries were generated using arrays of deterministic simulations, each characterised by a compound 
weighting which was linked to building stock size, behavioural profile group and a synthesised probability 
weighting to account for temporal diversity. 

A major difficulty in carrying out such work is the validation of both input functions and the resulting 
aggregate output from the overall simulation routine (both are the subject of ongoing work). Regarding 
inputs, there is a reliance on treating the behaviour of people using repetitive, predictable and exact 
control functions, which defy true human nature. Stochastic or probabilistic behaviour can also be 
applied to DBM (the latter being the subject of this study), however, these are still constructed from large 
numbers of deterministic simulations which suffer from the aforementioned flaws. Furthermore, limited 
statistical data is available to substantiate the necessary assumptions. For widespread application of 
the presented framework, key data sources would include house condition surveys, census data and 
smart meter data; however, at present, it is extremely difficult to generate useful input functions for 
stochastic or probabilistic simulations.  

Regarding validation of output data, challenges associated with the present work included lack of gas 
data, limited data describing thermal demand and widespread use of unmonitored secondary heating 
systems (fires and wood-burning stoves). General challenges that are non-specific to the current study 
include scarcity of high resolution data for space heating (not including hot water or cooking purposes). 
Furthermore, to provide a full validated study, validation of the output results and input behavioural 
functions discussed above, must occur simultaneously. There is also the well-known-issue of 
Performance Gap in building modelling, where purely theoretical building models rarely have a good 
match to empirical energy data for the same building. Such a validation exercise must therefore be taken 
with care, where the comparison between modelled and measured results is about returning similar 

        

 

   

   

   
            

            

           

           

            

            

                                                 

               
 
 
  

 
 
  

  
 
 
  
 
 
 

 
 
 
  
 
 

 

        
   

  

  

 

 

 

             

            

            

            

           

           

                                               

           

 
 
  

  
 
   

  
  

 
  

  
  

 



overall characteristics of energy demand, rather than identical hourly demand values throughout the 
year. The authors intend to achieve this comparison through the use of regional gas demand data, which 
will have to be appropriately processed to be suitable as a proxy for thermal demand.  
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