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ABSTRACT 

Urban building energy models (UBEMs) are expected to play a key role in the integrated assessment of 
sustainability measures on both district and city level. However, due to limited availability of data 
sources, those models are often created through an archetype approach, which is a deterministic 
method to allocate building envelope characteristics to building groups. Unfortunately, this deterministic 
approach may underestimate the variability of the existing building stock, which is important when 
designing district energy systems to optimise the location of production and storage units within the 
system. In contrast to the deterministic approach, this work presents a new probabilistic approach to 
allocate building envelope characteristics within UBEMs that in combination with stochastic occupants 
enables to include the variability of existing districts. A thorough comparison of the deterministic and the 
probabilistic method is established for 820 buildings of the Boxbergheide district in Genk by performing 
dynamic energy simulations in the IDEAS Modelica library. For the studied district, a probabilistic 
building envelope characterisation with standard occupants increases the coefficient of variation (CV) 
on the energy demand for space heating, compared to a deterministic approach with standard 
occupants, from 17.8% to 46.4%. Including a probabilistic building envelope characterisation increases 
the variability on the energy demand for space heating to a larger extent than including stochastic 
occupants, which increases the CV to only 29.6%. 

INTRODUCTION 

To reduce the climate impact of the existing building stock, strategies include both increasing the energy 
efficiency and integrating renewable energy sources. However, these measures should be studied on a 
district or city level to include the synergy effects that result from the heterogeneity of the existing building 
stock. To do so, urban building energy models (UBEMs) are emerging, as they can be used to quantify 
the operational building energy use on district or city level through building-by-building simulation 
(Reinhart & Cerezo Davila, 2016). UBEMs are typically bottom-up building physics models (Kavgic et 
al., 2010), which enable to analyse the current status of the building stock and to assess possible future 
scenarios that combine energy efficiency measures with renewable energy integration. An additional 
strength of UBEMs is that they allow for studies on multiple levels: from street to district to city level.  

In order to quantify the energy use of all buildings within a UBEM, a considerable number of input 
parameters is required for each building. These include geometry and location, occupant behaviour, 
building envelope characteristics, heating, ventilation and air conditioning (HVAC) systems, renewable 
energy systems, and building appliances. Building geometry and location can often be acquired from 
geographic information systems (GIS), since GIS are becoming more commonly available. Significant 
research efforts have been contributed to the influence of occupant behaviour, resulting in a number of 
tools to allocate occupant behaviour in a stochastic way (e.g. Baetens & Saelens, 2015). Nevertheless, 
the characteristics of the building envelope, the present HVAC and renewable energy systems, as well 
as the present building appliances still remain unavailable. Although these characteristics could be 
acquired per building, the data acquisition effort becomes infeasible on district or city level.  

Due to the lack of building envelope and system characteristics on building level, UBEMs often make 
use of archetypes, which are either average buildings that represent a group of similar buildings or 
sample buildings (i.e. an actual building that is closest to the average of a group of similar buildings). 
The whole building stock is thus represented by a limited number of representative buildings or 
archetypes, e.g. using the resulting typologies of the TABULA project (Cuypers et al., 2014) or other 
studies (Swan & Ugursal, 2009). As an example, the TABULA typology for Belgium characterises the 
whole Belgian building stock by 30 archetypical dwellings, considering five different building types and 



six different construction periods (Cuypers et al. , 2014). These approaches decrease not only the 
data collection effort but also the required simulation time, which is particularly important when using 
dynamic simulation models in district simulations. Although UBEM simulations have been reported to 
correspond reasonably well to measured energy use data on higher aggregation levels, with errors of 
the considered studies ranging from 4 to 21% (Reinhart & Cerezo Davila, 2016), the errors increase 
significantly when focusing on the scale of individual buildings. In other words, the archetype 
approaches fail to include the non-negligible variability that is characteristic for the existing building 
stock (De Jaeger et al. , 2017), which is important for the optimal design of district energy systems. 
Particularly on a smaller scale (~100 dwellings) the use of archetypes may no longer be justifiable. 

To model the actual variability in building energy use and to assess the feasibility as well as the optimal 
design of district energy systems, all buildings should be fully characterised; thus, additional data, i.e. 
both measured building energy use and building envelope and system characteristics, are desired. 
Measurement data can be obtained from distribution system operators and can be used both to calibrate 
the model (Sokol et al., 2017) and to estimate the simulation error. Data on the building envelope and 
system characteristics can be obtained from governmental databases such as the Energy Performance 
Certificates databases in Europe (Österbring et al., 2016). Energy Performance Certificates are labels 
that inform consumers of the energy efficiency of buildings they plan to purchase or rent. The Flemish 
Energy Performance Certificates database is therefore a valuable resource for energy performance-
related data of buildings (i.e. building type, construction year, building geometry, thermal performance 
of the building envelope, information on the HVAC systems, …). However, privacy issues are often the 
key argument for not sharing the data.  

Within this context, this work presents a new probabilistic method to allocate the building energy related 
data to individual building models. The Flemish Energy Performance Certificate (EPC) database is 
employed to set up probability density functions for the building energy related data and to relate these 
to parameters that are known on individual building level through GIS and cadastral data – i.e. building 
geometry and construction year. Although this approach can be extended to the building energy 
systems, a first assessment of the usability of the EPC database focuses solely on the building envelope 
characteristics of Flemish single-family dwellings. To illustrate its added value, the presented 
probabilistic method is applied to the Boxbergheide district in the city of Genk. Then, it is compared to a 
deterministic approach that makes use of the Belgian TABULA typologies through an analysis of the 
building UA-value and the building energy demand for space heating, by including both standard 
occupants and stochastic occupants. 

In the next Section, the probabilistic methodology to allocate building energy related data in UBEMs in 
is introduced. Also, the Boxbergheide district that was used to compare the probabilistic method to the 
deterministic method is presented. Subsequently, the results of this comparison are described. Then, 
the presented method as well as the comparison results are discussed. Finally, the conclusions are 
drawn. 

METHODOLOGY 

In this Section, the new method to allocate building energy related data to individual building models is 
presented. The method consists of three main parts, which are all implemented in Python and are 
illustrated in Figure 1. Firstly, the building envelope properties of Flemish single-family dwellings are 
characterised in a probabilistic manner based on the EPC database. To this end, quantile regression 
models are set up. Secondly, as a detailed building energy simulation model is used for this study, all 
construction element layers and materials should be deduced from the U-values that are generated by 
the quantile regression model. Thirdly, this information is automatically translated into detailed 
Integrated District Energy Assessment Simulations (IDEAS) building models (Jorissen et al., 2018). The 
IDEAS library is implemented in the Modelica language and allows simultaneous transient simulation of 
thermal, control, and electric systems at both building and district level. Finally, to show the differences 
between a deterministic and a probabilistic approach, the Boxbergheide district, on which both methods 
are applied, is introduced. 

Figure 1: Graphical overview of the proposed probabilistic method to characterise districts.  

 



From the Energy Performance Certificates database to a probabilistic building characterisation 

The building envelope properties (i.e. U-values of the roof, outer walls, windows and ground floor) are 
characterised in a probabilistic way per building, based on available data. For Flanders, the available 
data for all buildings consists of building geometry and construction year. Building geometry data can 
be obtained from the Flemish GIS, but is for this study obtained from a CityGML model of the city of 
Genk with level of detail (LOD) 2 (Biljecki et al., 2016). The available building geometry and location 
data includes postal code, building type (terraced, semi-detached or detached dwelling), building 
volume, building height, ground floor area, façade area and roof area. In this work, the heated floor area 
is deduced from an assumed number of storeys based on the building height, which is described in (De 
Jaeger et al., 2017). The construction year can be obtained from the Flemish cadastral database, which 
is a property register that contains, among others, information on the ownership, land use, building 
dimensions, and building construction year for taxation purposes. 

To obtain a probability distribution function for all U-values of the buildings, quantile regression models 
were built based on the Energy Performance Certificates database. Quantile regression (QR), 
introduced by Koenker and Bassett (1978), expresses all quantiles of the conditional distribution of the 
response variable as functions of observed covariates. This can be compared with Ordinary Least 
Squares (OLS), where only the conditional mean is estimated by minimizing the squared residuals. In 
particular, instead of estimating the mean, QR models estimate the complete conditional distribution of 
the response variable. In more detail, in OLS the sample mean μ of a variable y, which is an estimate 

of the unconditional population mean E(Y), is found by solving the following problem: 

min
𝜇 ∈ℜ

∑(𝑦𝑖 − 𝜇)2

𝑛

𝑖=1

 

Likewise, an estimate of the conditional expectation function E(Y|x) can be equally found by OLS by 

replacing μ by a parametric function μ(x, β): 

  

min
𝛽 ∈ℜ𝑝

∑(𝑦𝑖 − 𝜇(𝑥𝑖 , 𝛽))2

𝑛

𝑖=1

 

Similarly, in QR, the unconditional τth quantile of y, i.e. qτ, can be found by solving the following problem: 

min
𝑞τ ∈ℜ

∑ 𝜌𝜏(𝑦𝑖 − 𝑞τ)

𝑛

𝑖=1

 

where ρτ (u) = τ*u for u > 0 and ρτ (u) = (τ–1)*u for u < 0. Similarly, an estimate of the conditional τth quantile 

of y can be found by replacing 𝑞τ by a parametric function 𝑞τ(xi, β): 

min
𝛽 ∈ℜ𝑝

∑ 𝜌𝜏(𝑦𝑖 − 𝑞τ(𝑥𝑖 , 𝛽))

𝑛

𝑖=1

 

A very interesting property of quantiles is that they are in fact a representation of the Cumulative 
Distribution Functions (CDF) of any variable. Particularly, given the CDF F(y) of a random variable y, 

𝑞τ, i.e. the τth quantile, relates to F(y) as follows: F(𝑞τ) = τ. Therefore, QR models are able to characterize 

a complete range of quantiles and thus approximate the full CDF of y. The optimisation problem to 
estimate the quantiles is solved through linear programming (Koenker & Bassett, 1978). For this study, 
postal code, building type, construction year, total floor area, protected volume, ground floor area, 
façade area (opaque plus transparent), and roof area were considered as explanatory variables, since 
they are available for all buildings and a preliminary analysis showed their relevance. Subsequently, the 

CDFs for the various output variables are created by aggregating the QR models for each τth quantile, 

with τ ranging from 0.01 to 0.99. As an example, the resulting distributions are shown for one building 

in Figure 2. 

The QR models were built based on a training set of 330000 EPC dwellings, leaving 82000 dwellings 
as a test set. For this study, an anonymised version of the EPC database – excluding address-related 
information –, the StatsModels, and the scikit-learn Python packages were used.  

 

 

 

 



Figure 2: Probability distributions predicted by the QR model for all the U-values for one specific dwelling of the test 
set. To enhance readability, histograms are created based on 100000 random samples from the CDF. 

 

To check the accuracy of the QR models, the empirical coverage of the predictions at different prediction 
intervals is evaluated. The 50%, 80%, 90% and 98% prediction intervals are considered and the 
empirical coverage on these intervals is computed (Table 1). As an example, the 90% prediction interval 
is discussed. For the 90% prediction interval, the empirical coverage is equal to the percentage of all 
buildings in the test set of which the real value falls within the predicted 5th and 95th quantiles and should 
ideally be close to the theoretical range of 90%. Table 1 shows that the empirical coverage is close to 
the theoretical range for all output variables and all considered prediction intervals. 

Table 1: Empirical coverages on the 50%, 80%, 90% and 98% prediction interval for all output variables 

Prediction interval → 
Output variable ↓ 

50% 80% 90% 98% 

Roof U-value  0.4981 0.8009 0.9012 0.9807 

Outer wall U-value 0.5019 0.7997 0.8982 0.9790 

Ground floor U-value  0.4992 0.7992 0.8994 0.9806 

Window U-value 0.4963 0.7980 0.8997 0.9793 

From sampled U-values to construction layers and materials 

Through the QR models, all U-values of all dwellings are characterised by CDFs. After sampling 
particular U-values for the roof, walls, ground floor and windows from these CDFs, the U-values are 
translated to a corresponding set of construction layers and materials, which is described now. 

Table 2: Initial construction layers of the roofs, outer wall and ground floors, along with the predefined order of 
upgrade and the maximal thicknesses of the layers.  

Construction 
element 

Initial U-value of 
construction 
element [W/m²K] 

Initial materials (from inside to 
outside) 

Initial 
thickness [m] 

Order of 
upgrade 

Maximal 
thickness [m] 

Roof 3.37 Gypsum plaster 0.01 / / 

Timber  0.01 / / 

Mineral wool (415 mm) between 
wooden rafters (35 mm) 

0.00 1 Unlimited 

Outer wall 2.52 Gypsum plaster 0.02 / / 

Heavy masonry 0.10 1 0.14 

Mineral wool 0.00 3 Unlimited 

Non-ventilated air cavity 0.00 2 0.025 

Heavy masonry 0.09 / / 

Ground floor 

 

 

2.75 Ceramic tile for finishing 0.02 / / 

Screed 0.06 / / 

Expanded polystyrene  0.00 1 Unlimited 

Dense cast concrete 0.14 / / 

As the majority of the Flemish buildings are heavyweight constructions, lightweight constructions are 
not considered and all buildings initially share the same constructions. If the initial U-value is lower than 
the sampled U-value, then initial construction remains unchanged. If the initial U-value is higher than 
the sampled U-value, the initial constructions are adjusted with respect to a predefined order of upgrades 
(Table 2). As an example, the method is described for the outer wall, but a similar approach is followed 
for the ground floor and roof. In order to reach the sampled U-value of the outer wall, three possible 
upgrades are predefined, each concerning a particular layer and material. The first upgrade concerns 
the inner heavy masonry layer. The required thickness of this layer to reach the sampled U-value is 
calculated and compared to the predefined maximal thickness of this layer, determining the final 
thickness. If the new U-value does not yet satisfy the sampled U-value, a non-ventilated air cavity with 
a maximal thickness of 2.5 cm is added. The resistance is calculated following EN ISO 6946. If the new 



U-value still does not satisfy the sampled U-value, mineral wool is added until the sampled U-value is 
reached. This method allows a continuous distribution of U-values. However, this approach could not 
be extended to the windows, since the window glazing is only available for a limited number of U-values, 
which also determines the optical properties. Therefore, only 6 different glazing options were considered 
(glazing U-values of 0.7, 1.0, 1.1, 1.4, 2.9 and 5.8 W/m²K). Subsequently, for each glazing option, the 
required window frame U-value is calculated. The window frame U-value is restricted from 1.3 and 5.9 
W/m²K. Finally, the glazing option that results in the U-value closest to the sampled U-value is allocated. 

From a fully characterised neighbourhood to a dynamic simulation model 

In this study, TEASER, developed by RWTH Aachen (Remmen et al., 2018), is used to translate 
geometrical CityGML models into Modelica models. However, in order to satisfy the needs of this study, 
TEASER was slightly adapted as described above as well as in (De Jaeger et al., 2017). Firstly, a 
CityGML model – either LOD1 or LOD2 – containing building geometry, building function, construction 
year, number of storeys and storey height is imported. Then, the CDFs of the U-values of the roof, the 
walls, the windows, and the ground floor are estimated. Subsequently, particular U-values are sampled 
randomly from these CDFs and are translated in construction layers and elements. Finally, all building 
descriptions are exported to detailed IDEAS building models.  

The IDEAS library supports detailed building energy simulations modelling transient thermal phenomena 
within the building using a zonal modelling approach, assuming perfect mixture of the air inside the 
zone. A detailed description of the IDEAS library is given in (Jorissen et al., 2018). The adapted TEASER 
version is used to generate two-zone IDEAS building models, assuming that the ground floor represents 
the day zone while all the upper floors belong to the night zone. Each building is implemented with an 
ideal radiator heating system and no ventilation system. To calculate the ventilation losses, air infiltration 
is included, but window opening is not. The simulations are conducted for the heating dominated climate 
of Uccle (Belgium) for a period of 1 year. A 1-month initialization period is used. Simulations are 
performed in Dymola, using the Dassl solver with an output interval of 10 min. 

An introduction to the Boxbergheide district 

To illustrate its added value, the presented probabilistic method is compared to a deterministic approach, 
which makes use of the TABULA typologies. Both approaches are used to simulate 820 single-family 
dwellings of the Boxbergheide district of Genk. In both approaches, the geometry originates from an 
LOD2 CityGML model of the city of Genk. For the sake of simplicity, the construction year is randomly 
allocated, ranging from 1980 to 1989, and therefore the buildings are described by one of the Belgian 
TABULA typologies. The exact assumptions with a view to the construction layers and materials are 
given in (Protopapadaki et al., 2014). Due to the nature of the deterministic approach, all buildings share 
the same U-values for the roof, the walls, the windows, and the ground floor and the variability in energy 
simulation results for this approach is solely due to the variability in geometry. By contrast, in the 
probabilistic approach, each individual building is characterised by both their own geometry and their 
own U-values.  

As the occupant behaviour appears to be decisive for the building energy demand (Baetens & Saelens, 
2015), the comparison is performed for two types of occupants, resulting in four different modelling 
approaches. The first approach for modelling the occupants is to assume standard occupants, identical 
for all buildings, and modelled following the ISO 13 790 standard with an indoor air temperature set point 
for day zone and night zone respectively of 21°C/18°C in the occupied period, 18°C/20°C at night and 
16°C/16°C in unoccupied periods. The internal gains are also set according to the standard. The second 
approach for modelling the occupants is to assume stochastic occupants. For this study, 100 occupant 
profiles were generated following the method of Baetens and Saelens (2015) and randomly allocated to 
the buildings. Obviously, the stochastic approach for the occupants adds more variability to both the 
deterministic and the probabilistic approach.  

RESULTS 

In this Section, the deterministic and the probabilistic approach are compared extensively for the 
Boxbergheide district. First, the focus is on the differences in allocated U-values. Then, the resulting 
distributions of the UA-value and the energy demand for space heating for the studied district are 
studied, while distinguishing between standard occupants and stochastic occupants.  

 

 

 

 



Figure 3: The distributions of all U-values over the 820 studied buildings in the probabilistic approach, in contrast 
with the fixed U-value for all buildings within the deterministic approach. 

 

For every building of the studied district, the CDFs for the U-values of the roof, the walls, the ground 
floor and the windows are predicted by the QR models. Next, particular U-values are sampled from 
these CDFs randomly, resulting in the U-value distributions on district level that are shown in Figure 3. 
In addition to the resulting U-value distributions of the probabilistic approach, the deterministic U-value 
is shown as well in Figure 3. On average, the deterministic U-value from TABULA is lower than the 
mean of the probabilistic U-values for this district. Multiple aspects cause the variability that is 
characteristic for existing districts. Differences in geometry, in building envelope fabrics and in occupant 
behaviour are considered within this study. Figure 4 compares both building UA-value and building 
energy demand for space heating for all four modelling approaches. The variations are also quantified 
in Table 3. The variability in UA-value and in energy demand for space heating due to the natural 
variability of the building geometry is shown by the deterministic approach with standard occupants 
(shown in grey in Figure 4). Including stochastic occupants rather than standard occupants almost 
doubles the variation on the energy demand for space heating (shown in blue in Figure 4), since the 
coefficient of variation increases from 0.178 to 0.296 (Table 3). As a result, buildings can have either a 
larger or a smaller energy demand for space heating, but on average their energy demand decreases 
from 25.4 MWh to 24.4 MWh (Figure 4).  

Figure 4: Building UA-value and total energy demand for space heating as a function of the total loss area for all 
four modelling approaches.  

  

Table 3: Descriptive statistics of building UA-value and total energy demand for space heating for all four modelling 
approaches. 

KPI → UA-value of building [W/K] Energy demand for space heating [kWh] 

Approach → Deterministic Probabilistic Deterministic Probabilistic 

Occupant → 
Statistic ↓ 

Standard = 
Stochastic 

Standard = 
Stochastic 

Standard  Stochastic  Standard  Stochastic  

Mean 538.5 817.5 25372.1 24423.7 40564.1 35492.8 

Standard deviation 94.1 304.9 4516.8 7227.7 18818.4 17373.5 

Coeff. of variation 0.175 0.373 0.178 0.296 0.464 0.489 

Minimum 298.8 242.3 14565.9 9894.5 9872.7 8222.4 

First quartile (25%) 471.2 589.9 22198.3 18832.6 26602.5 23466.3 

Median (50%) 535.0 777.3 24948.9 23176.5 36836.7 31385.4 

Third quartile (75%) 598.4 995.1 28127.0 28791.3 50402.7 42786.2 

Maximum 873.7 2253.0 41079.9 54731.1 118043.9 143531.9 

 



By considering the natural variability in U-values, as achieved by the probabilistic approach, the 
variability in UA-value and in energy demand for space heating increases significantly compared to the 
deterministic approach for the standard occupants (shown in green in Figure 4), as the coefficients of 
variation increase respectively from 0.175 to 0.373 and from 0.178 to 0.464 (Table 3Table 3). By 
including stochastic occupants in the probabilistic approach rather than standard occupants (shown in 
red in Figure 4), the coefficient of variations on the energy demand for space heating increases even 
more from 0.464 to 0.489 (Table 3), but the impact of the stochastic occupants is not as large as within 
the deterministic approach. Based on the comparison of the deterministic approach with stochastic 
occupants and the probabilistic approach with standard occupants, including a natural variability on the 
building envelope fabric appears to enlarge the spread on the energy demand for space heating 
(coefficient of variation (CV) of 0.464) more than including stochastic occupants (CV of 0.296).  

On district level, the energy demand for space heating differs among the deterministic and the 
probabilistic approach as a result of the differences in allocated building envelope fabrics. The 
percentage error of the probabilistic approach compared to the deterministic approach on the energy 
demand for space heating (calculated as (probabilistic – deterministic) / deterministic) is 59.9 % and 
45.3 % respectively for the standard occupants and the stochastic occupants, while the percentage error 
on the building UA-value is 51.8 %. The smaller error for the stochastic occupants is explained by the 
lower temperature set points and thus energy use. 

DISCUSSION 

This paper presents a probabilistic method to introduce variability on the building envelope fabrics. To 
this end, quantile regression is deployed, as it enables to include the natural variability on the building 
envelope fabrics on two levels. First, as applied in this work, it enables to characterise districts in a 
probabilistic way and allocate a different U-value to every building as opposed to assuming a fixed U-
value for all buildings of the 1980s. Second, it allows to characterise buildings in a probabilistic way and 
thus to perform uncertainty analyses of the energy demand on district level, which will be the scope of 
future work. This approach can also be extended to include building systems and thus quantify the 
district energy use in a probabilistic way.  

Although this work highlights the added value of a probabilistic approach, the QR models should be 
enhanced. A disadvantage of the current models is that, since each output variable is estimated based 
on its particular QR model, the CDFs for the different output variables are not correlated. The 
dependence of the roof U-value on the wall U-value, as an example, was visually observed within the 
EPC dataset and this issue will therefore be corrected with novel methods in future work. Moreover, the 
use of the EPC dataset to determine distributions on the U-values should be considered with care 
because of two aspects. First, Energy Performance Certificates are only established before purchasing 
or renting a building and buildings are very likely to be renovated right after they have been purchased. 
Second, only Energy Performance Certificates of existing buildings are considered and their exact 
construction layers and materials are often unknown. If the exact composition of a construction element 
is unknown, conservative values are assumed. As a result, the EPC dataset gives a very conservative 
view of the existing building stock. For this reason, the assumed initial construction layers are not 
adjusted according to the EPC U-values and worse U-values are automatically replaced by a predefined 
maximal U-value. These drawbacks of using EPC data highlights the need for more accurate data on 
the current state of our existing building stock.  

As a new probabilistic method to allocate building envelope fabrics was compared to the TABULA 
method, the resulting district models differ significantly in thermal performance, which encumber drawing 
conclusions for the influence on the energy demand on district level. However, previous literature 
(Reinhart & Cerezo Davila, 2016) showed that the error, using archetype approaches, was reasonably 
small compared to measured data. Nevertheless, the variation between the buildings is of significant 
importance for designing district energy systems (Happle et al., 2018) and defining the optimal location 
of production and storage units. Also, local implementation of renewable energy as well as energy 
flexibility assessment are benefitting from this work. Therefore, the conclusions of this work should be 
viewed from a district perspective, rather than from a city perspective. On city level, with a view to the 
occupancy model, deterministic models suffice for quantifying the annual energy demand and single 
building peak loads due to the averaging effect of stochastic models (Happle et al., 2018).  

CONCLUSION 

In this work, the existing building stock is characterised in a probabilistic manner by means of data-
based CDFs of the U-values of the buildings and combined with stochastic occupancy data, allowing to 
capture the diversity in the existing building stock more accurately. This probabilistic approach was 
compared to a deterministic approach with a view to the building UA-values and the energy demand for 



space heating based on a district of 820 buildings while considering either standard or stochastic 
occupants. Including a probabilistic characterization of the building envelope fabrics increased the 
coefficient of variation for the studied district for the building UA-value from 17.5 % to 37.3 %, and for 
the energy demand for space heating from 17.8 % to 46.4 % and from 29.6 % to 48.9 % respectively 
for the standard and the stochastic occupant. Moreover, introducing variability on the building envelope 
fabric enlarges the spread on the energy demand for space heating more than including stochastic 
occupants. Including the spatial variation of the energy demand is beneficial for optimising the location 
of production and storage units, local implementation of renewable energy as well as energy flexibility 
assessment within district energy systems. The probabilistic definition of building archetypes, based on 
EPC data, is novel and is particularly interesting to perform uncertainty analyses and assess the impact 
of input data uncertainty on the district energy demand within future work. 
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