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ABSTRACT 

Wind pressure coefficients (Cp) are important elements in the simulation of natural ventilation in urban 
environments, where it tends to be less effective. Cp values can be obtained by wind tunnel experiments 
or CFD simulations, but these methods are not always available to building simulators due to cost and 
time constraints. Cp values also can be obtained by inexpensive methods, such as databases and 
analytical models, but these values are usually surface-averaged and introduce major errors in the 
calculation. This paper reports early results on the use of machine learning techniques to derive more 
accurate models for obstructed buildings with the potential use for urban stock modelling. Artificial 
neural networks (ANN) were applied to the empirical data from wind tunnel experiment in order to 
predict local (non surface-averaged) values of Cp. The cases used were obstructed, flat-roofed 
buildings with different area density values and surrounding buildings’ height.  One ANN was developed 
per wind attack angle using the statistical package R and consists of 5 inputs, three hidden layers and 
the output. Results obtained indicate than an ANN can predict the local Cp in obstructed buildings with 
uncertainty of ± 0.05 for a confidence level of 95%. This paper demonstrates promising results in the 
use of machine learning techniques to model complex input required by urban building performance 
simulation. Cp values by ANN show major improvements when compared to current practice sources.  

INTRODUCTION  

Predictions indicate that, by 2030, almost 80% of the world population will be loving in cities increasing 

from 50% where it currently is. Cities use a large amount of energy  resources and account for over 

70% of global carbon emissions (Luederitz, Lang and Von Wehrden, 2013; Vega-Azamar et al., 2013). 

In order to manage the use energy of the built environment in a sustainable way and to minimise harmful 

emissions, the performance of the city in sectors or ‘as a whole’ must be considered. For sustainable 

urban planning there is a need to consider large number of buildings at the same time. This will have 

an impact to the natural ventilation of buildings when not considered to be isolated. An accurate 

coefficient of wind pressure on a building’s façade would result in a more accurate calculation of natural 

ventilation. This work proposes the prediction of wind pressure coefficient (Cp) of obstructed buildings 

through the use of machine learning.  

Wind is a key factor affecting infiltration and ventilation in buildings (Hens et al., 1996; Ramponi, 

Angelotti and Blocken, 2014). Energy use of buildings, air quality and indoor and outdoor thermal 

comfort are directly affected by the air flow around the buildings. Wind pressure difference and pressure 

fluctuations around the building, inducing internal air flows, are one of the most essential driving forces 

of power for indoor natural ventilation. Thus, the arrangement of surrounding buildings in relation to 

wind direction fully impacts natural ventilation. Natural ventilation occurs due to pressure difference 

between in and out of the building  allows the air to move through it (Zhang, Gao and Zhang, 2005). In 

the majority of Air Flow Network (AFN) modelling and Building Energy Simulation (BES) programmes, 

wind interaction with building is addressed using Cp on building facades as a boundary condition 

(Clarke, 2001; Sahal and Lacasse, 2005). Cp has been used in a variety of contexts, from calculating 

ventilation in standard buildings (Kalogirou, Eftekhari and Marjanovic, 2003; Guan et al., 2016), to 

evaluating ventilation in greenhouses (Kwon et al., 2016; Kim et al., 2017; Kuroyanagi, 2017), impact 

of microclimate in air flow rates (Charisi, Waszczuk and Thiis, 2017), performance of solar panels 

(Stathopoulos, Zisis and Xypnitou, 2014), and relation between ventilation and building shapes/sizes 

(Jendzelovsky, Antal and Konecna, 2017; Zhao and He, 2017). Cp is defined as: 
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2

2
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where Px is the static pressure at a given point on the building facade (Pa), Po is the static reference 

pressure (Pa), Pd is the dynamic pressure (Pa), ρ is the air density (kg/m3) and Uh  is the wind speed 

(m/s). 

Secondary sources are largely used to obtain Cp data, as they are straightforward and inexpensive 

when compared to more accurate sources such as custom wind tunnel experiments or computational 

fluid dynamic simulations (Cóstola, Blocken and Hensen, 2009). The most widely used secondary 

source for Cp data is the regression model proposed by Swami and Chandra (S&C) (Cóstola, Blocken 

and Hensen, 2009). In this model, there are two different equations for low-rise and high-rise 

unobstructed buildings with rectangular floor plans (Swami and Chandra, 1987). The correlation 

coefficient of the low-rise equation is 0.8 and the model has only two input parameters: building floor 

plan aspect ratio and wind direction (Cóstola, Blocken and Hensen, 2009). The S&C model calculates 

surface-averaged Cp, as it assumes that cracks are evenly distributed over the building facades (Wiren, 

1985) and (Knoll B, Phaff JC, 1995). The use of surface-averaged Cp has major limitations and may 

incur significant errors error in the calculated airflow rate (Cóstola et al., 2010). Other widely used data 

sources of Cp, the Air Infiltration and Ventilation Centre (AIVC) database, also adopts surface-averaged 

Cp values (Liddament, 1986). 

Wirén (Wiren, 1985) examined a Swedish single-family building and the possible effects on pressure 

distributions from the surrounded identical buildings in various arrays. The magnitude and distribution 

of the wind pressure on the test building is affected by the density of the surrounding buildings. A similar 

study done by Tsutsumi et al.(Tsutsumi, Katayama and Nishida, 1992) which modelled some blocks in 

order to find out the wind pressure on groups of buildings mainly discussed the relationship of the 

various layouts and the average wind pressure coefficient. Different geometries and wind directions 

were examined and concluded that these two factors are very important in terms of natural ventilation.  

Artificial Neural Networks (ANN) has shown success results in a variety of fields, such as banking 

(Tavana et al., 2017), solid state physics (Carrillo et al., 2017), ocean engineering (Seyedashraf, Rezaei 

and Akhtari, 2017), microelectronics (Khera and Khan, 2017), human science (Aram et al., 2017), 

archaeology (Burry et al., 2017), agriculture(Elnesr and Alazba, 2017), thermal comfort (von Grabe, 

2016) and particularly on applications related to building performance (Kumar, Aggarwal and Sharma, 

2013; Melo et al., 2014; Jovanović, Sretenović and Živković, 2015; Li et al., 2015; Deb et al., 2016; 

Magalhães, Leal and Horta, 2017). ANN has been recently used to predict surface-averaged Cp (Bre, 

Gimeneza and Fachinottia, 2018). In terms of Cp data, Tokyo Polytechnic University (TPU) provides a 

considerable amount of high-quality data for various building configurations (Tokyo Polytechnic 

University, 2017b). The present paper describes an investigation on the modelling local Cp for 

obstructed buildings using ANN and the TPU database. 

METHODOLOGY 

This work adopts the box-shape flat-roof models of the TPU wind tunnel database for low-rise 

obstructed buildings (Tokyo Polytechnic University, 2017a). Data from these models was used for the 

training and validation of ANNs. Cp data has been analysed across all wind attack angles for each 

facade (0o-338o) using the different geometric parameters of these flat-roof models in a scale of 1:100 

and Figure 1 shows the aspect ratios of the target model and surrounding identical models. TPU 

database consists of 30 models, tested for 5 wind directions (0°, 23°, 45°, 68° and 90°) and 8 different 

area densities (CA) (from 0.1 to 0.6) resulting in a total of 23,281 entries (corresponding to a given model 

/ wind direction / pressure tapping position on the façade/ area density). The chosen arrangement type 

of models is the simplest in the TPU database, the regular one as shown in Figure 2, which can be 

compared to the building stock of Barcelona.   
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As S&C and AIVC are the most common sources of Cp data, it is useful to provide an evaluation of the 

difference between their predictions and actual local Cp data obtained in wind tunnel experiments. 

Figure 3 shows a sample of local Cp data from TPU for different wind attack angles when compared to 

surface-averaged data from S&C and AIVC. The figure shows that such methods oversimplify the wide 

distribution of values seen in wind tunnel experiments. While the figure is informative, it is useful to 

quantify the difference between S&C and AIVC when compared to TPU. Such quantification was 

performed by comparing each one of the 23,281 local Cp data entries to the prediction of S&C and 

AIVC. The absolute errors were analysed both using histograms and using the root-mean squared error 

(RMSE) to create confidence intervals for S&C and AIVC predictions. The confidence intervals were 

based on a confidence level (95%) and assumed that errors were normally distributed. These 

confidence intervals provide a reference point to quantify the improvement in accuracy obtained by the 

ANN model for local Cp. 

Figure 3: Wind pressure coefficient values of the models compared to TPU local Cp and surface-averaged  
of S&C and AIVC (with samples of Cp distribution over some facades for wind attack angles  

0°, 90°, 270° and 338°). 

Figure 1: Aspect ratios of target model and 
surrounding models of box-shape flat-roof 

obstructed TPU models 

Figure 2: Different area densities of surrounding 
buildings 
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The modelling of the neural networks for this work has been done using the statistical package R and 

‘neuralnet’ package (Fritsch et al., 2016). The neural networks in this package are feed-forward trained 

and focuses on multi-layer perceptrons (MLP) (Günther and Fritsch, 2010). The training and validation 

data was randomly separated by R to 80% and 20% respectively. Five input parameters were used for 

the creation of the neural network: the x coordinate, the y coordinate of the pressure tapping on the 

facade of the model, the aspect ratio of the surface, the surrounding models’ height in relation to the 

target model and the area density. Several configurations of ANN were investigated to define the best 

number of hidden layers and neurons in each layer and the final one is shown Figure 4. The log sigmoid 

function (Eq. 2) has been used in all configurations of the ANN to ensure that the output signal of each 

node is smooth and as stated by Duch and Jankowski (Duch and Jankowski, 1999) and Widrow and 

Lehr (Widrow and Lehr, 1990) ensuring it was appropriate for the application. 

𝑠(𝑥) = 1 (1 + 𝑒−𝑥)⁄  (2) 

Where x corresponds to the sum of the weighted input of each previous node plus the bias of the node 

itself.  

The input and output data associated with the ANN was normalised within the same boundaries as the 

activation function, i.e. the sigmoid function, giving a value between 0 and 1 (Guoqiang Zhang, B. Eddy 

Patuwo and Michael Y. Hu, 1998). Validation is a critical aspect of any model construction and therefore 

only the validation results were included in the graphs of ANN predictions compared to TPU database 

values (Figure 6a). The comparison between the TPU Cp values data and the ANN results was 

analysed based on the RMSE, which was used to calculate confidence intervals based on the same 

criterion and assumptions listed in the following sections. The frequency of errors between the TPU 

database and the neural network results was also analysed using histograms. 

 

 

RESULTS AND DISCUSSION  

Figure 5a and 5b show a comparison for each data entry between the local Cp from TPU database and 

the surface-averaged Cp of the two existing data sources typically used in energy and airflow 

simulations (S&C and AIVC). These figures show symmetry plots where wind tunnel data from TPU is 

on x-axis and the S&C and AIVC data on the y-axis. In both cases, the surface-averaged data assumes 

discreet values that fail to capture the complexity of local wind pressure distribution in the models. This 

can be better quantified through the histograms in Figure 5c which shows the frequency of errors as 

described in a previous section. Errors are comparable for both data sources and vary from -1.0 to +0.8, 

which are if the same order of magnitude as Cp itself (which varies from -1.3 to 0.9 in this dataset). 

Assuming a normal distribution of errors, the calculated confidence intervals of AIVC and S&C Cp data 

are ±0.45 and ±0.58 respectively for a confidence level of 95%. These results are in agreement with 

Figure 4: ANN configuration for obstructed low-rise buildings 
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the large uncertainties reported in the literature, (Cóstola et al., 2010), which result from the  surface-

averaging  of  Cp.  

Results in Figure 6a show the comparison between the ANNs predictions for the validation data and 

the local Cp data from the TPU database. The ANN results show good agreement, particularly in 

comparison to data in Figure 5  (which represents the best practice in terms of Cp data using secondary 

sources). The best configuration identified for the ANN comprises three hidden layers with 7, 5 and 3 

nodes respectively and the strategy of using one ANN per wind attack angle proved to deliver good 

results. The frequency of error (calculated based on the method outlined in methodology) is shown in 

the histogram in Figure 6(b). The histogram captures all the errors, even though it cannot be clearly 

seen due to the fact that the frequency is small compared to the columns shown. For the present 

application, predictions made using the ANN gave a confidence interval of ±0.05 (RMSE=0.025) for a 

confidence level of 95%. 

 

 

 

 
The results obtained in this study are in line with previous studies and demonstrate the ability of ANN 

to handle complex relations between input and output data. These results provide a promising 

perspective towards the future application of ANNs in the prediction of local Cp in obstructed buildings 

a) b) c) 

Figure 5: Comparison between TPU wind pressure coefficients and data from S&C and AIVC: (a) symmetry plot 
of AIVC, (b) symmetry plot of S&C and (c) histogram of errors in Cp calculations 

Figure 6: Reference data of TPU compared to ANN per angle predictions: (a) symmetry plot and (b) histogram of 
errors in ANN calculations. 



6 
 

with more complex geometry and/or in sheltered of partially sheltered environments. There are many 

other promising applications for ANNs in relation to building simulation.  

CONCLUSIONS  

This work described the development of artificial neural networks for the prediction of local wind 

pressure coefficients in box-shape obstructed building facades.  The conclusions drawn based on the 

results presented are:  

 The most widely used sources for wind pressure coefficients of Swami and Chandra and AIVC 
database provide the surface-averaged wind pressure coefficient that fail to describe the 
variation of pressure seen in building facades. Swami and Chandra and AIVC models have a 
confidence interval of ±0.58 and ±0.45 respectively for a confidence level of 95%.  

 The trained and tested artificial neural networks using Tokyo Polytechnic University wind 
pressure database showed that local wind pressure coefficients can be predicted with ±0.05 
confidence interval for a confidence level of 95%.  

 One artificial neural network per wind attack angle with three hidden layers with 7, 5 and 3 
nodes respectively showed the best results when compared to other ANN configurations. 

 This model can be used for the accurate prediction of wind pressure coefficient for a large 
number of building types, geometries, and different wind angles, supporting high-resolution 
stock models addressing naturally ventilated buildings. Further work can be focused on 
embedding this ANN into building energy simulation software.   
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