

Microgeneration definition

- OFGEM: "The term 'microgeneration' is used to refer to electricity generation equipment of the smallest capacity which covers generation of electricity up to 50 kWe."
- DECC: Extended to renewable heat: plant fuelled or partly fuelled by renewable sources (less than 100 or 200 kW thermal output).

Types of microgeneration

- □ Heat and electricity:
 - microCHP (Stirling, ICE)
 - fuel cells (SOFC, PEM)
- □ Heat only:
 - biomass (woodchip, biogas)
 - solar thermal (flat plate evacuated tube);
 - heat pumps (GSHP, ASHP, WSHP).

□ Electricity only:

- SWECS
- PV
- micro hydro

<u> Drivers – FIT, RHI</u>

- EU 20/20/20 target, UK 15% of total energy provision from renewables by 2020 ... 9% achieved by 2016.
- To boost green energy provision the Feed-in Tariff (FIT; 2009) and the Renewable Heat Incentive (RHI; 2011) were introduced.

Installations - electricity

- Feed in tariff FIT payment for renewable generated electricity (<5MW) + export payment
- □ FIT was wildly successful (particularly PV)
- Resulted in tariff cuts to reduce scheme costs

Technology	Scale	Tariff level (p/kWh) (2017 Dec)
Solar electricity (PV)	≤10 kW	4p
Anaerobic digestion	≤250 kW	4.99
Wind power	≤50 kW	8.26
Micro CHP	≤2kW	13.95
Hydroelectricity	≤100 kW	7.78

Number of registered installations cumulative
Number of registered installations per quarter

Source: OFGEM

Legislation - heat

Renewable Heat Incentive (RHI) qualifying technologies:

- air, water and ground-source heat pumps;
- solar thermal;
- biomass boilers;
- renewable combined heat and power;
- use of biogas and bioliquids;
- injection of biomethane into the natural gas grid.

Domestic tariffs:

Solar thermal	10.44 p/kWh
Biomass boiler < 200kW	2.96 p/kWh
ASHP	2.61 p/kWh
GSHP	9.09 p/kWh

Domestic installations must be accompanied by energy efficiency improvements.

Technologies - Heat Pumps

□ Promoted via RHI.

- □ Three broad categories:
 - ground source;
 - water source;
 - air source.

Anaction Well

Air Source Heat pump

Technologies - Heat pumps

- Performance measured by SPF seasonal performance factor.
- □ For a heat pump to be considered renewable SPF > 2.5 according to EU.
 - Typical values from field trials (EST).

$$SPF = \frac{Q_s + Q_w}{E_e}$$

- Q_s space heat delivered (kWh)
- Q_w water heat delivered (kWh)

E_e — electrical of	consumption	(kWh)
-----------------------	-------------	-------

		SPFH2
Air-	Average	2.72
source	Standard deviation	0.45
	Range	2.2-3.9
	Number of	15
	systems	
Ground-	Average	3.08
source	Standard deviation	0.40
	Range	2.2-3.9
	Number of	21
	systems	

Technologies - Heat pumps

 \Box CO₂ (kg) saving per kWh of heat output:

$$s = \frac{\varepsilon_G}{\eta_B} - \frac{\varepsilon_E}{SPF}$$

 ε_E – carbon intensity grid electricity (kgCO₂/kWh) ε_G – carbon intensity natural gas – 0.18 (kgCO₂/kWh) η_B – gas boiler efficiency (~0.85)

 $\begin{pmatrix} 0.30 \\ 0.20 \\ 0.10 \\ 0.00$

 $\square 2017 \text{ intensity} - 2.9 \text{ kgCO}_2/\text{kWh}.$

Savings *improve* as grid decarbonises.

Technologies - combined heat and power (CHP)

Technologies - combined heat and power (CHP)

- $\square 2017 \text{ intensity} 2.9 \\ \text{kgCO}_2/\text{kWh}.$
- □ Savings *deteriorate* as grid decarbonises.

 \Box CO₂ (kg) saving per kWh of heat output

$$s = \left(\frac{1}{\eta_B} - \frac{1 + \frac{1}{HPR}}{\eta_{CHP}}\right)\varepsilon_G + \frac{\varepsilon_G}{HPR}$$

HPR - heat: power ratio

Technologies - biomass heating

- □ Uptake encouraged by renewable heat incentive (RHI).
- More expensive and more maintenance required than gas boiler.
- \Box Efficiency < gas boiler.
- Substantial running cost savings compared to oil boilers or electricity in off-gas grid areas.
- Usually combined with a substantial thermal store.
- Question marks over carbon savings and air pollution.

Technologies - wind power

Source EST

- □ Uptake encouraged by FITS.
- Most small wind turbines installed in rural areas
 good wind resource.

Source EST

- □ Uptake encouraged by renewable heat incentive (RHI).
- Efficiencies ~ 70% but dependent on heating system and control as well as collector.
- Usually installed with thermal storage.
- □ Poor uptake in UK compared to PV.

Technologies - photovoltaics

- □ Explosive growth due to FITS.
- Growth in rooftop PV and PV farms.
- □ PV capacity was ~0 in 2009 now 12.8 GW.
- □ Now a significant part of the UK power generation mix.

Solar variability

□ Solar thermal and solar PV vary diurnally (over the course of a day).

□ Also exhibit significant seasonal variability.

Thermal Storage

Positives:

- allows intermittent supplies to meet demands;
- provides more benign operating environment for hybrid microgeneration;
- allows different temperature sources to be couple;
- □ facilitates load management.

Negatives:

typically increases standby losses;
takes up space.

Microgeneration controllability

Two broad categories:

- *despatchable* output can be controlled to accommodate fluctuations;
- *non-despatchable* output is generally variable and unpredictable.

□ Energy storage can turn a non-despatchable resource into a despatchable one.

Zero energy buildings

- Microgeneration is increasingly being deployed in buildings – opening up possibility of zero energy buildings.
- Autonomous Zero Energy Buildings all demand are met by on-site generation; no external network connections.
- Net-zero site energy local generation completely offsets on-site demand; demand and supply are not temporally matched but balance over a year.
- Net-zero source energy local generation completely offsets primary energy demands; demand and supply are not temporally matched but balance over a year.

Zero energy buildings

The Lighthouse Building, Glasgow

Demand: 68 kWh/m².yr RE supply: 98 kWh/m².yr

Microgeneration and the electricity network

- Microgeneration power feeds into the low voltage (LV) network.
- □ In Europe the LV network operates at 220-250 V a.c.

LV network couples directly to dwellings.

- So microgeneration feeding into this part of the network has a direct impact on the power supplied to dwellings.
- Microgeneration could drive the development of a highly distributed power system.
- □ Local power used locally ... but with significant penetration power could flow back up through the voltage levels i.e. reverse power flow.

Changes in Voltage

- Adding power into a network causes the local voltage to rise.
- □ Taking power from a network causes the local voltage to drop.
- A surplus of PV power in the middle of the day could result in high LV network voltage levels.
- Excessive heat pump operation in the morning/evening could cause periods of low voltage.

Source: Cobben et al PV Upscale, WP 4 Report

Harmonics and losses

- Harmonics cause increased energy losses in electricity network
- Can shorten lifespan in electrical components.
- Also having increased power flows in LV network increases I²R losses

Source: Saribulut *et al* Electric Power Systems Research, Vol 86.

Microgeneration for network support

□ The interaction between microgeneration and the network can be beneficial as well as causing problems.

□ Microgeneration technologies can act co-operatively with the network to improve its operation.

□ For power producing technologies (e.g. PV):

- provision of power when the local network is heavily loaded (positive participation);
- stopping operation at times of low loading (negative participation).

□ For power absorbing technologies (e.g. heat pumps):

- absorbing power at times of high renewables/ microgeneration production;
- stopping operation at time of heavy network loading.
- □ To provide support as described, microgeneration technologies need to be controlled and *despatchable*.

Micro-grids

Conclusions

- □ Microgeneration growing rapidly.
- Strong legislative drivers.
- Power and heat from zero low-carbon technologies.
- □ Patchy performance history so-far.
- Power quality and energy efficiency issues.
- Could play a part in future power supply as part of a microgrid.

