
Energy Resources and Policy 

Handout: 

Power from water 
 

 
For an application such as a hydro-electric scheme, the typical requirement is to evaluate the 

power delivered at the end of a pipeline as depicted in the following figure. 

 

 

 

 

 

 

 

 

 

From the free surface in the reservoir to the pipe exit, the energy equation is                                      
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and the power available in the flow at pipe exit is 
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where V2 = V = mean velocity in pipe. Clearly, power = 0 if =V  0 and if V is large
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 and so power tends to 0. 

A graph of power against volume flow rate 

would look like the sketch shown here, 

with a maximum at a certain value 

of  q. 

 

For a maximum power condition, 
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Thus the energy available at the end of the pipe =
2

3
gH and the transmission 

efficiency, ηtr, for the pipeline is defined as 

energy extracted

total energy available
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Note that in general,η tr
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So ηtr  will be 1.0 for q = 0, falling to zero where losses = gH. An accurate plot of 

power and efficiency characteristics is shown in the graph below. 

 

                 
 

Practical hydro-electric plants have two possible configurations, depending on the 

type of turbine used. Systems with reaction turbines (Francis, Kaplan) are the more  

common - there is a substantial pressure drop  across the turbine,  which is fully  

                                            submerged. The water then escapes to a tail-race (a 

stream, river or lake) which behaves 

         like another reservoir.  

 

 
             turbine    
For this system, the power 

developed by the turbine is given by 
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For a given system, there is a maximum power which can be made available to the 

turbines, its value depending on H, f, l and d. 
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A hydro-electric plant will normally run at less than maximum power, say at a level 

indicated by the dashed line on the graph.   If this power is known, a cubic equation 

for q is produced, which in general will have two real solutions qA and qB, as 

illustrated in the graph. The transmission efficiencies are very different; the system 

will of course be run at the lower flow rate, qA. 

 

Sometimes an impulse turbine is used: a Pelton Wheel, Turgo or cross-flow design.  

Here, the energy of the water is converted entirely into kinetic energy using a variable                                             

nozzle or spear valve. The water is discharged to atmosphere with a velocity VN, and 

the energy equation becomes 
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If these losses are represented by a velocity coefficient CV, the true value of VN is 
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The power in the water jet is 
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For maximum power, 
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so the friction loss  =  gH
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  as before. 
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Hydraulic turbines 

 

Impulse – all energy converted to kinetic before impact with runner. 

 

 

Pelton wheel: - jet is split 

symmetrically by blades on the wheel; 

wheel can have up to 6 jets if mounted 

on vertical shaft. 

 

Turgo: - jet passes through the wheel 

from left to right; it may have a larger 

diameter than the jet for a Pelton wheel 

of the same size. 

 

Cross-flow (or Banchi or Ossberger): 
has a cylindrical runner, and water 

passes through the blade ring twice.  

Runner may have several segments on 

the same axis, to deliver high efficiency 

for a wide range of flow rates.  Runner 

has simple geometry, may be fabricated 

from sheet metal. 

 

Francis: fed by water from a spiral 

casing, fitted with a ring of guide vanes 

immediately upstream of the runner.  

These may be adjusted to vary the 

volume flow rate through the machine.  

Water exits through a gently expanding 

draft tube. 

 

Propellor: an axial-flow machine, 

normally fitted with guide vanes as 

shown. If it has adjustable-pitch blades, 

it is known as a Kaplan turbine.  It 

may also be installed with its shaft 

vertical. 

 

All reaction turbines will operate efficiently as pumps; impulse turbines will not!  
 


