Shortwave solar radiation

Calculating equation coefficients

The Sun

 \Box Core temperature $8x10^6$ to $40x10^6$ K.

□ Effective black body temperature of 6000 K.

- Solar constant: extraterrestrial flux from the sun received on a unit area perpendicular to the direction of propagation – mean Sun/Earth distance value is 1353 W/m².
- □ Actual extraterrestial radiation varies with time of year as earth-sun distance varies.

Energy from the sun Incoming Longwave Reflected shortwave solar energy radiation to space radiation 175.10¹⁵ W $122.5 \cdot 10^{15} \text{ W}$ 52.5.10¹⁵ W Atmospheric boundary Convection currents (wind and ocean waves) 368 . 10¹² W Tidal energy $3 \cdot 10^{12} \,\mathrm{W}$ Evaporation of water, heating of water & ice Geothermal $40.10^{15} \,\mathrm{W}$ energy $32 \cdot 10^{12} \,\mathrm{W}$ Photosynthesis on land and sea 98.10¹² W Earth's surface Direct conversion to heat $82 \cdot 10^{15} \,\mathrm{W}$ Formation of fossil fuels 13.10⁶ W

Atmospheric interactions

- The greater the distance that the radiation passes through the atmosphere, the greater is the frequency dependent scattering.
 Spectra at ground level are often referred to particular 'air masses'.
- Air Mass 1 is the thickness of the atmosphere vertically above sea level.
- Air Mass 2 is double this thickness (equivalent to direct solar radiation at an altitude of 30 degrees).

Direct and diffuse radiation

- Solar radiation reaches the Earth directly from the Sun) and diffusely after scattering in the atmosphere and reflected from surrounding objects.
- Only direct radiation can be focussed.
- The total radiation reaching a surface is the summation of the direct, sky diffuse and reflected components.

On clear days around 90% of the total solar radiation is direct.

On heavily overcast days 100% of the solar radiation is diffuse.

Spectral distribution of short-wave solar radiation

NASA/ASTM Standard Spectral Irradiance

	W	/avelength (μm)	
	0 - 0.38	0.38 – 0.78 (visible range)	> 0.78
Fraction in range	0.07	0.47	0.46
Energy in range (W/m ²)	95	640	618

Short-wave radiation impacts

Passive utiulisation

9

Location coordinates

- □ latitude angle N or S above or below equator.
- longitude angle E or W from prime meridian (Greenwich).
- Longitude difference angle from location to local time zone reference meridian (west –ve).

Solar declination

Solar time

$$t_s - t_m = \pm L_{diff} / 15 + (e_t / 60) + d_s$$

where,

 $t_{s} = \text{solar time}$ $t_{m} = \text{local time}$ $L_{diff} = \text{longitude difference}$ $e_{t} = \text{equation of time}$ $d_{s} = \text{daylight saving time}$

Solar geometry

Declination
 d = 23.45 sin (280.1 + 0.9863 Y)
 where Y = year day number (January 1 =1, December 31 = 365)

□ Altitude $\beta_s = \sin^{-1} [\cos L \cos d \cos \theta_h + \sin L \sin d]$ where L is site latitude, θ_h is hour angle = 15 (12 - t_s)

 $\Box Azimuth$ $\alpha_s = sin^{-1} [\cos d \sin \theta_h / \cos \beta_s]$

□ Incidence angle $i_{\beta} = \cos^{-1}[\sin \beta_{s} \cos (90\beta_{f}) + \cos \beta_{s} \cos \omega \sin (90\beta_{f})]$ where $\omega = azimuth$ angle between sun and surface normal, $\beta_{f} = surface$ inclination angle

Solar radiation prediction (all W/m²)

$$\begin{split} I_{dn} &- \text{direct normal or "beam" (pyrheliometer)} \\ I_{dh} &- \text{direct horizontal } I_{dh} = I_{dn} \sin\beta_s \\ I_{fh} &- \text{diffuse horizontal (pyranometer with shadow band)} \\ I_{gh} &- \text{global horizontal (pyranometer or solarimeter)} \\ r_g &- \text{ground reflectivity} \end{split}$$

$$\begin{split} I_{d\beta} &- \text{direct radiation on a surface of inclination } \beta_f \\ I_{s\beta} &- \text{sky diffuse radiation incident on a surface of inclination } \beta_f \\ I_{r\beta} &- \text{ground reflected radiation incident on a surface of inclination } \beta_f \end{split}$$

unknown

known

$$I_{gh} = I_{dh} + I_{fh}$$
$$= I_{dn} \sin \beta_s + I_{fh}$$

Solar data for simulation:

either: I_{gh} and I_{fh} or I_{dn} and I_{fh}

Solar radiation measurement

Pyranometer measures the total solar irradiance on a planar surface.

Pyrheliometer measures direct beam solar radiation by tracking the sun's position throughout the day.

Solar radiation measurement

- Shaded pyranometer measures diffuse solar irradiance on a (usually horizontal) surface.
- The shade blocks direct radiation and some diffuse radiation (so need to adjust readings).
- Integrated pyranometer measures both total and diffuse radiation on a (usually horizontal) surface.
- Diffuse is calculated based on shading patterns from internal shades

Short-wave flow-paths

- A reflected shortwave flux
- B flux emission by convection and longwave radiation
- C shortwave flux transmission to cause opaque surface insolation
- D shortwave transmission to cause transparent surface insolation
- E shortwave transmission to adjacent zone
- F enclosure reflections
- G shortwave loss
- H solar energy penetration by transient conduction
- I solar energy absorption prior to retransmission by the processes of B.

Short-wave radiation calculation

Intensity of direct radiation on surface of inclination β : $I_{d\beta} = I_{dh} \cos i_{\beta} / \sin \beta_s$

Intensity of diffuse radiation on same surface ground reflected: $I_{r\beta} = 0.5 [1 - \cos (90 - \beta_f)] (I_{dh} + I_{fh}) r_g$ where r_g is the ground reflectance sky component: $I_{s\beta} = 0.5 [1 + \cos (90 - \beta_f)] I_{fh}$ assuming an isotropic diffuse sky

- i_{β} angle between the incident beam and the surface normal vector
- ω surface-solar azimuth (= $|\alpha_s - \alpha_f|$)
- α_{f}, β_{f} surface azimuth and inclination respectively
- α_s , β_s solar azimuth and elevation respectively

In practice the sky is not isotropic and so empirically-based models that correct for circumsolar and horizon brightening are employed:

sky component

$$I_{s\beta} = I_{fh} \left(\frac{1 + \cos(90 - \beta_{f})}{2} \right) \times \left(1 + \left[1 - \left(\frac{I_{fh}^{2}}{I_{gh}^{2}} \right) \right] \sin^{-3} \left(\frac{\beta_{f}}{2} \right) \right] \times \left(1 + \left[1 - \left(\frac{I^{2}_{fh}}{I_{gh}^{2}} \right) \right] \cos^{-2} (i_{\beta}) \sin^{-3} (90 - \beta_{s}) \right)$$

Angle of incidence: $i_{\beta} = \cos^{-1} \left(\sin \beta_s \cos(90 - \beta_f) + \cos \beta_s \cos \omega \sin(90 - \beta_f) \right)$

Numerical approach using 145 sky vault patches.

Surface-solar angles

Solar angle tables (altitude & azimuth)

North Sun Lati- Time tude	Jan.	Jan. 21		Jan. 21		Feb. 21 Mar. 21		ır. 21	Apr. 22		May 22		Ju	ine 21	L	July 23		Aug. 22		pe. 22	0	0ct. 22		w. 22	D	ne. 21	Sum
	Alt	Az	Alt	Az	Alt	Az	Alt	AI	Alt	AI	Alt	Az	Alt	Az	Alt	Az	Ait	Az	Alt	Az	Alt	Az	Alt	Az	Time		
	06 07 08	8 1	25	4	108 118	0 11 22	90 100 110	8 19 31	81 90 100	13 24 36	74 83 92	15 26 37	72 80 89	13 24 36	74 83 92	8 19 31	81 90 100	0 11 22	90 100 110	4	108 118	8	125	6	127	06 07 08	
	09 10 11	17 1 24 1 28 1	36 49 64	24 32 37	130 145 161	33 42 48	123 138 157	42 52 59	112 128 150	47 58 67	104 118 142	49 60 69	100 114 138	47 58 67	104 118 142	42 52 59	112 128 150	33 42 48	123 138 157	24 32 37	130 145 161	17 24 28	136 149 164	14 21 25	138 151 165	09 10 11	
40°	12 13 14 15	30 1 28 1 24 2 17 2	80 96 11 24	39 37 32 24	180 199 215 230	50 48 42 33	180 203 222 237	62 59 52 42	180 210 232 248	70 67 58 47	180 218 242 256	74 69 60 49	180 222 246 260	70 67 58 47	180 218 242 256	62 59 52 42	180 210 232 248	50 48 42 33	180 203 222 237	39 37 32 24	180 199 215 230	30 28 24 17	180 196 211 224	27 25 21 14	180 195 209 222	12 13 14 15	
	16 17 18	8 2	35	15 4	242 252	22 11 0	250 260 270	31 19 8	260 270 279	36 24 13	268 277 286	37 26 15	271 280 288	36 24 13	268 277 286	31 19 8	260 270 279	22 11 0	250 260 270	15 4	242 252	8	235	6	233	16 17 18	
45°	06 07 08 09 10 11 12 13 14	5 1 13 1 19 1 24 1 25 1 24 1 19 2	25 37 50 65 80 95 10	3 12 21 28 32 34 32 34 32 28	108 120 132 146 162 180 198 214	0 10 21 30 38 43 45 43 38	90 101 112 125 141 159 180 201 219	8 19 30 40 48 55 57 55 48	81 92 103 116 133 154 180 206 227	14 25 35 46 55 62 65 62 55	75 85 96 108 125 148 180 212 235	16 27 37 48 58 65 68 65 58	73 83 93 105 121 146 180 214 239	14 25 35 46 55 62 65 62 55	75 85 96 108 125 148 180 212 235	8 19 30 40 48 55 57 55 48	81 92 103 116 133 154 180 206 227	0 10 21 30 38 43 45 43 38	90 101 112 125 141 159 180 201 219	3 12 21 28 32 34 32 28	108 120 132 146 162 180 198 214	5 13 19 24 25 24 19	125 137 150 165 180 195 210	2 10 16 20 22 20 16	127 139 152 165 180 195 208	06 07 08 09 10 11 12 13 14	
	15 16 17 18	13 2 5 2	23 35	21 12 3	228 240 252	30 21 10 0	235 248 259 270	40 30 19 8	244 257 268 279	46 35 25 14	252 264 275 285	48 37 27 16	255 267 277 287	46 35 25 14	252 264 275 285	40 30 19 8	244 257 268 279	30 21 10 0	235 248 259 270	21 12 3	228 240 252	13 5	223	10 2	221	15 16 17 18	

<u>Solar tables (I_{dv} & I_{dh})</u>

		diffus	e (clo	udy a	ind cl	ear s	ky) so	olar ir	radia	nces	on ho	rizon	taí su	urface	es, I _{dt}	, (W	/m²).		L	55	٥N
	Orien-	Daily										Sun Tin	ne								
Date	tation	mean	03	04	05	06	47	08	09	10	11	12	13	14	15	16	17	18	19	20	21
June 21	N.EEESSES N.H	35 85 145 145 145 145 145 145 85 290		95 160 130 20 0 0 0 0	175 385 365 135 0 0 0 0 80	135 485 550 290 0 0 0 195	25 470 640 435 0 0 0 0 335	0 365 630 530 115 0 0 0 465	0 205 545 565 255 0 0 0 585	0 20 395 540 365 0 0 675	0 210 455 435 160 0 735	0 0 325 465 325 0 0 755	0 0 160 435 455 210 0 735	0 0 365 540 395 20 675	0 0 255 565 545 205 585	0 0 115 530 630 365 465	25 0 0 435 640 470 335	135 0 0 290 550 485 195	175 0 0 135 365 385 80	95 0 0 20 130 160	
Diff (Clr	iv) }	50		15	45	60	75	80	90	95	100	100	100	-60	90 90	80	75	95 60	45	20 15	
July 23 and May 22	N.E.E.SSSS H	25 75 135 150 130 150 135 75 265		25 45 35 00000	135 310 305 120 0 0 0 0 50	110 445 520 290 0 0 0 0 160	0 445 625 445 0 0 0 0 295	0 345 630 545 145 0 0 430	0 185 545 585 285 0 0 0 550	0 400 565 395 0 0 640	0 0 210 480 470 185 0 0 700	0 0 350 495 350 0 0 720	0 0 185 470 480 210 0 700	0 0 395 565 400 640	0 0 285 585 545 185 550	0 0 145 545 630 345 430	0 0 0 445 625 445 295	110 0 0 290 520 445 160	135 0 0 0 120 305 310 50	25 0 0 0 5 35 45 0	
Diff (Cld Diff (Clr	y))	50		5	40 35	85 55	125	170 80	210	245 95	270 100	280 100	270	245 95	210 90	170 80	125	85 55	40 35	5 5	
August 22 and April 22	NEEESS SEESS	5 45 115 155 160 155 115 45			20 60 65 30 0 0 0	45 295 370 230 0 0 0	0 355 555 430 50 0 0	0 285 605 570 200 0 0 0	0 135 540 630 350 0 0	0 400 620 470 50 0 0	0 0 215 540 550 240 0 0	0 0 410 580 410 0 0	0 0 240 550 540 215 0	0 0 50 470 620 400 0	0 0 350 630 540 135	0 0 200 570 605 285	0 0 50 430 555 355	45 0 0 230 370 295	20 0 0 30 65 60		
Diff (Cld Diff (Clr)	у)	85 40			5	65 50 40	95 60	135 70	445 175 80	205 85	600 230 90	620 235 90	600 230 90	540 205 85	445 175 80	320 135 70	185 95 60	65 50 40	0 5 5		

Table A2.35 (m) Basic direct solar irradiances on vertical, low, and horizontal, low, surfaces and basic

PV power output

A simple model:

$$P_{mp} = P_{STC} \frac{J_{tot}}{1000} (1 - \beta [T - 25]) \times p$$

Example 1

Calculate the power output from a PV panel at 60°C with 840 W/m² incident solar radiation if the same panel produces 150 W at STC (1000W/m² & 25°C). β is measured at 0.003 W/K

Example 1

For the same situation calculate the power output if the temperature was 30° C. β is again measured at 0.003 W/K

$$P = P_{STC} \frac{J_{tot}}{1000} [1 - \beta(T - 25)]$$
$$P = 150 \times \frac{840}{1000} [1 - 0.003(60 - 25)]$$
$$= 112.8 W$$

$$P = P_{STC} \frac{J_{tot}}{1000} [1 - \beta(T - 25)]$$
$$P = 150 \times \frac{840}{1000} [1 - 0.003(30 - 25)]$$
$$= 124.1 W$$

Longwave Radiation Exchange

Calculating equation coefficients

Internal long-wave radiation – calculation

Figure 7.18: Four grey surfaces bounding an enclosure.

$q_1 = \epsilon$ $q_3 = \epsilon$	ε ₁ σA ₁ θ ⁴ q ε ₃ σA ₃ θ ⁴ q	$e_{2} = \varepsilon_{2}\sigma A_{2}\theta_{2}^{4}$ $e_{4} = \varepsilon_{4}\sigma A_{4}\theta_{4}^{4}$		
$a'_{1} = a'_{2} = a'_{3} = a'_{4} = a'_{4}$	$\begin{array}{l} +q_1 f_{1 \rightarrow 2} \varepsilon_2 \\ +q_1 f_{1 \rightarrow 3} \varepsilon_3 \\ +q_1 f_{1 \rightarrow 4} \varepsilon_4 \end{array}$	$\begin{array}{l} +q_2 f_{2 \rightarrow 1} \varepsilon_1 \\ +q_2 f_{2 \rightarrow 3} \varepsilon_3 \\ +q_2 f_{2 \rightarrow 4} \varepsilon_4 \end{array}$	$\begin{array}{l} +q_{3}f_{3\rightarrow1}\varepsilon_{1} \\ +q_{3}f_{3\rightarrow2}\varepsilon_{2} \\ +q_{3}f_{3\rightarrow4}\varepsilon_{4} \end{array}$	$\begin{array}{l} +q_4 f_{4 \rightarrow 1} \varepsilon_1 \\ +q_4 f_{4 \rightarrow 2} \varepsilon_2 \\ +q_4 f_{4 \rightarrow 3} \varepsilon_3 \end{array}$
$\dot{r_i} = \dot{a_i}$	$(1-\varepsilon_i)/\varepsilon_i$; i	= 1, 2, 3, 4		
$a_1'' = a_2'' = a_3'' = a_4'' =$	$\begin{array}{ccc} a_{1}' & & \\ a_{2}' & +r_{1}'f_{1\to 2} \\ a_{3}' & +r_{1}'f_{1\to 3} \\ a_{4}' & +r_{1}'f_{1\to 4} \end{array}$	$+ \dot{r_2} f_{2 \to 1} \varepsilon_1$ ε_2 $\varepsilon_3 + \dot{r_2} f_{2 \to 3} \varepsilon_3$ $\varepsilon_4 + \dot{r_2} f_{2 \to 4} \varepsilon_4$	$\begin{aligned} &+r_{3}^{'}f_{3\rightarrow1}\varepsilon_{1}\\ &+r_{3}^{'}f_{3\rightarrow2}\varepsilon_{2}\\ &+r_{3}^{'}f_{3\rightarrow4}\varepsilon_{4}\end{aligned}$	$\begin{array}{l} +\mathbf{r}_{4}^{'}\mathbf{f}_{4\rightarrow1}\boldsymbol{\varepsilon}_{1} \\ +\mathbf{r}_{4}^{'}\mathbf{f}_{4\rightarrow2}\boldsymbol{\varepsilon}_{2} \\ +\mathbf{r}_{4}^{'}\mathbf{f}_{4\rightarrow3}\boldsymbol{\varepsilon}_{3} \end{array}$
$r_1'' = (a_1'')$ $r_3'' = (a_3'')$	$(-a_1)(1-\varepsilon_1)(1-\varepsilon_3)(1-\varepsilon_3)(1-\varepsilon_3)$	$ \begin{pmatrix} \varepsilon_1 & \mathbf{r}_2' = (\mathbf{a}_2' + \mathbf{a}_3') \\ \varepsilon_3 & \mathbf{r}_4' = (\mathbf{a}_4' + \mathbf{a}_4') \\ \end{cases} $	$- \dot{a_2}(1 - \varepsilon_2)/\varepsilon$ $- \dot{a_4}(1 - \varepsilon_4)/\varepsilon$	22 24
$a_i^n = a_i^{n-1}$ $r_i^n = (a_i^n + 1)$	$\mathbf{r}^{-1} + \sum_{j=1}^{N} \mathbf{r}_{j}^{n-1} \mathbf{f}_{j \to i} \varepsilon_{i}$ $- \mathbf{a}_{i}^{n-1} (1 - \varepsilon_{i}) / \varepsilon_{i}$	$\left\{ \begin{array}{l} 1\leq n\leq\infty\\ a_{i}^{0}=0\\ r_{i}^{0}=q_{i}\\ f_{i\rightarrow i}=0 \end{array} \right. \label{eq:intermediate}$		

Internal long-wave radition

$$Q_e = \varepsilon \sigma A \theta^4$$
 $Q_{1 \rightarrow 2} = h_r A \Delta \theta$

Table 7.14: Application of the recursive techniques to low emissivity surfaces.

Internal long-wave radiation – numerical method

- Surfaces divided into finite elements and a unit hemisphere superimposed on each element.
- Unit hemisphere's surface divided into patches representing the radiosity field of the associated finite element.
- 'Energy rays' are formed by connecting the centre point of the finite element and all surface patches.
- □ Each ray is projected to determine an intersection with another surface.
- At this intersection a surface response model is invoked to determine the energy absorption and the number and intensity of exit rays – these are continually added to the stack of rays queued for processing.
- Ray processing is discontinued when the inherent energy level falls below a threshold.
- □ The energy absorptions for each finite element are then summated as appropriate to give the final net longwave radiation exchanges for the enclosure.

External long-wave radiation

$$\mathbf{q} = \mathbf{A}_{\mathbf{s}} \varepsilon \sigma (\theta_{\mathbf{e}}^{4} - \theta_{\mathbf{s}}^{4})$$

$$\theta_{e}^{4} = f_{s}\theta_{sky}^{4} + f_{g}\theta_{grd}^{4} + f_{u}\theta_{sur}^{4}$$

Table 7.15: Representative values of sky, ground and obstructions view factors.

Location	fs	fg	fu
City centre: surrounding buildings at same height, vertical surface	0.36	0.36	0.28
City centre: surrounding buildings higher, vertical surface	0.15	0.33	0.52
Urban site: vertical surface	0.41	0.41	0.18
Rural site: vertical surface	0.45	0.45	0.10
City centre: sloping roof	0.50	0.20	0.30
Urban site: sloping roof	0.50	0.30	0.20
Rural site: isolated	0.50	0.50	0.00