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ABSTRACT 

The ability of UK housing with heat-pump-based heating systems to respond to requests for immediate 
changes to load was assessed using a bottom-up stock modelling approach.  Detailed building 
simulation models of the most common types of UK housing were developed and their ability to respond 
to signals to drop or pick up load tested under two different operating strategies: on-demand heating 
and off-peak heating with supporting thermal storage. Both the thermal storage and heat pump capacity 
were sized prior to undertaking the responsive load simulations. The performance of each building was 
simulated over a calendar year, with the response to load variation signals constrained by thermal 
comfort requirements and hot water needs, which took priority. Without thermal storage and following a 
typical on-demand heating pattern, approximately 20% of heating systems could respond to a drop load 
or pick up load signal. Switching to an off-peak heating pattern with sized thermal storage resulted, 
firstly, in the entire operation of the heat pump could be shifted to off peak periods. Secondly, the overall 
ability to respond to a drop load request was almost unchanged, but typically over 80% of systems could 
respond to a pick up load signal. The aggregate response figures mask significant seasonal and intra-
day variations in response, with the ability to respond being limited during periods of low heating and 
hot water demand. The addition of thermal storage reduced this variability.  

INTRODUCTION 

The UK has seen the substantial reduction in the carbon content of its electricity supply over the last 

decade thanks to a significant increase in renewable generation and a move away from coal as a fuel 

for power generation (BEIS, 2017a). However, if the UK is to meet its own stringent target of an 80% 

reduction in greenhouse gas emissions by 2050, then it must also decarbonise other sectors of the 

economy. One of the most important of these is heat, particularly domestic hot water and space heating, 

which accounts for 30% of total UK demand (BEIS, 2017b). At present, approximately 80% of domestic 

heat is supplied by natural gas (Palmer & Cooper, 2013). The most obvious route to decarbonise this 

sector is to switch from gas boilers to heat pumps, a technology that can capitalise on an increasingly 

low carbon electricity supply. However, moving such a large demand to the electricity network would 

significantly increase the use of electricity and peaks in electrical demand: as peak heating demand 

coincides peak demand for power (Elexion, 2013). Management of electrical heating demands is one 

means to mitigate some of these impacts and falls into two non-exclusive categories: planned load 

shifting to off peak periods and unplanned changes in load to a request from an electricity network 

operator.  

Planned shifting of heating-related electrical demands has been employed for decades. For example, 

in the UK, storage heating has been used to time-shift electrical heating to overnight periods of low-

electrical demand, providing a base load for nuclear generation. Planned shifting typically employs 

thermally-massive storage, allowing a heat demand to be met from the store whilst the electrical heat 

source is turned off or down. The storage can be charged by the electrical source even when there is 

no immediate demand for space or water heating.   

The use of thermal storage for planned load shifting of heat pumps and peak demand reduction has 

received much attention in recent years. For example, Arteconi et al. (2013) assessed the opportunities 

presented by heat pumps and thermal storage to moderate peak electrical demands, though no 

quantitative analysis was undertaken.  Hong et al. (2013) assessed the temporal flexibility offered by 

heat pumps for two different house types and with different levels of storage. More recently, Baeten et 

al. (2017) investigated flexible charging of storage using heat pumps using a multi-objective model 



predictive control strategy to minimise discomfort, cost and emissions; this work involved scaling up 

results from a single archetype building to a large population of domestic heat pumps.  

Unplanned requests for immediate load response could be required to address more acute network 

needs such as sudden changes in frequency or local voltage levels. Unplanned response from electrical 

heating technologies is more problematic than planned shifting as typically, priority is given to the 

provision of heat and maintenance of thermal comfort and so a given heating system may not be in a 

position to respond to a request to either drop or pick up load. Consequently, a key question that arises 

is “what response could be expected from a diverse population of electrified domestic heating systems 

to a request to pick up or drop load?” 

The ability of domestic electrified heating to provide unplanned load response has received less 

attention in the literature. Hu et al (2017), look at the ability of air conditioners in Hong Kong to offer 

demand response through both planned pre-charging and instantaneous set point alteration. Scaling 

results from a grey-box room model, they indicate electrical demand reductions of over 25% are 

possible. Alahäivälä et al (2017) use a stock model with 12 different housing archetypes to look at 

instantaneous and planned demand response. Assuming direct control of heating in housing and a price-

based demand response scheme, the authors quantify flexibility on terms of a cost per MWh of 

response. Using a reduced-order building model, Fischer et al. (2017) simulate the behaviour of a 

diverse population of German dwellings with heat pumps and subject them to external requests for load 

response. The authors express response in terms of the power and duration of response to an external 

‘on’ or ‘off’ signal.  

AIM  

The aim of the work described here was to assess the ability of UK housing, equipped with domestic 

heat pump systems to respond to short-duration, external control signals of up to 2-hours to either pick 

up or drop load. This was tested under two different heating operating strategies: the provision of heat 

on-demand and where heat is provided by thermal storage, which is pre-charged during off-peak 

periods. The following work was undertaken: 

• a sample of dwelling models that reflect the UK housing stock was developed; 

• diverse occupancy and occupant-driven electrical and hot water demand use profiles were 

developed for each dwelling using a custom statistical tool; 

• an air source heat pump heating system plus thermal storage (suitable for off-peak heating 

operation) was sized for each dwelling;  

• the thermal performance of all dwelling models was simulated over a calendar year for four 

operating scenarios shown in Table 1;  

• the results from the simulations were analysed to quantify the ability of domestic electrified 

heating to respond to requests from the network for load variation.  

Table1: scenarios for assessment of instantaneous demand response.  

Case  Description 

1 no dedicated thermal storage, heating on-demand and no requests for demand response (base case) 

2 no dedicated thermal storage, heating on-demand and random requests for short-term demand 
response 

3 dedicated thermal storage, off peak heat pump operation (midnight-7am) and no requests for demand 
response 

4 dedicated thermal storage, off-peak peak heat pump operation (midnight-7am)  and random requests 
for demand response   

Contribution  

The paper quantifies the ability of UK housing with heat-pump heating systems to respond to short-term 

load management signals (i.e. pick up or drop load) under different operating scenarios: on-demand and 

off-peak heating with storage.  

METHOD 

To obtain an indication of the level of responsive demand that UK housing could provide in a future 

energy network, an extensive stock modelling exercise has been undertaken. This involved developing 

a range of housing models complete with an electric (air source heat pump) heating system and 



dedicated, sized thermal storage. For each model, the ability to respond to calls for demand response 

was tested by simulating its performance over a calendar year, polling the model with random signals 

to pick up or drop load and noting whether or not the system could respond when constrained by 

occupant comfort criteria.  

Building Modelling 

The modelling software used for the simulations was ESP-r, a long-established building simulation tool 

that explicitly computes the transient energy and mass transfer processes in a building over a user-

defined time interval (e.g. a day, a year, etc.). An ESP-r model comprises a 3-D building geometry, 

coupled with explicit details of constructions, internal heat gains and hot water draw profiles, and heating 

control requirements (set points).  The tool can model any building type. The technical basis of ESP-r 

described in detail by Clarke (2001).  ESP-r’s has been extensively validated and many of these 

validation efforts are summarised by Strachan et al (2008).   

A set of diverse dwelling models have been developed, which were derived from a comprehensive 

survey of English housing (DCLG, 2013): England accounts for approximately 80% of the UK housing 

stock. 380 separate house archetypes were generated, which comprise combinations of the different 

building elements (shown in Table 2)1. The archetypes modelled and used in this study represent the 

vast majority of the dwellings seen in the UK.  ����� �� ��		�
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Figure 1 shows typical examples of the modelled house type 3-D geometries. Each building geometry 

is divided into up to nine thermal zones, each of which represents a defined area of use in the dwelling, 

e.g. kitchen, living room, bedrooms, etc.  

Unique occupancy and occupancy-driven electrical and hot water demand profiles were generated for 

each of the 380 archetype models, using the approach developed by Flett (2017); this used UK census 

and time-use-survey data to generate populations of unique occupancy, hot water demand and 

appliance power demand profiles, which can then be attributed to individual ESP-r models. Figure 3 

shows an example of these profiles. Flett (ibid) describes the profile generation process in detail.  

Infiltration 

Each dwelling model was also attributed with unique, randomly generated infiltration rate. This was 

based on the work reported in Johnstone et al. (2011) and Stephen (2000). It was assumed that variation 

in infiltration rates in UK housing follows a normal distribution, with a mean of 0.66 air-changes-per-hour 

(ACH) and a standard deviation of 0.195 ACH.  

 

                                                      

1 Note that not all combinations of building elements are valid and so the number of archetypes is less than the product of the 

different variants. 

 



 

 

Figure 1: typical ESP-r dwelling model examples. 

Heating and Storage 

It was assumed that all domestic heating demands (heating and hot water) were electrified and supplied 

using an air-source heat pump system. Two heating system variants were modelled – with and without 

thermal storage; this required that storage was sized to meet the heating and hot water demands for 

each modelled dwelling. An initial, 1-year building performance simulation was run using the UK 

reference climate data set to determine the heat input required to maintain a heating set point and meet 

hot water demand. The following three-step equipment sizing process was performed for each case. 

1. The dwelling heating demand profile, along with the unique hot water demand profile was combined 

and scanned to determine the peak heating load and hence the required heat pump capacity. The 

peak heating load used corresponded to the 3-σ maximum of all daily peaks; this was to eliminate 

abnormally large outlier heating demands. 

2. The same demand data was processed using a thermal storage sizing algorithm developed by 

Alison et al. (2018) to determine the thermal storage capacity required to store the peak daily heat 

requirement for the dwelling.  

3. Finally, the heat pump capacity required to fully charge the thermal store in a 7-hour off peak period 

(midnight-7am) was calculated and compared to the capacity from step 1 – the larger of the two 

capacities was used in the performance simulations.     

The heat storage model was technology agnostic, with stored heat being modelled as a quantity of 

energy rather than being explicitly modelled as a volume of storage material at varying temperature. 

The principal reason for this approach is that it allows the data generated by these simulations to be 

employed later to investigate different storage options including materials and material locations and 

builds on earlier work by the authors (Allison et al., 2018). 

Heating Control  

Two control schemes were used with each housing model, depending upon whether or not there was a 

thermal store.  

• Scheme 1 - without thermal storage heat is supplied ‘on-demand’ and the heat pump operates 

whenever space or hot water heating is required during the day.  The heating set point was 

determined stochastically from data from Shipworth et al. (2010), who indicate that heating set 

points in the UK follow a normal distribution with a mean of 21 oC and a standard deviation of 

2.5 oC. Heating system start and stop times are also determined stochastically, again using 

data from Shipworth et al (ibid). The mean heating system start time is 06.00 hrs with a 

standard deviation of 1 hour. The stop time was 23.00 hrs with a standard deviation of approx. 

2 hours. 

• Scheme 2 - with thermal storage, the heat pump was used to charge the thermal store during 

periods of low-cost, off-peak electricity; for the purposes of this study, this was assumed to be 

between 00.00 and 07.00 hrs. If the store depleted during heating, then heat was supplied 

directly by the heat pump as in Scheme 1.  

 

 



Figure 2: examples of generated occupancy, hot water demand and occupant driven 

appliance demand profiles. 

Grid Signals 

In addition to the heating control scheme, a grid signal also affects the operation of the heating system. 

This is a randomly generated sequence at a 15-minute time resolution, which takes the value of -1 (drop 

load), 0 (do nothing) or 1 (pick-up load) with each drop or pick up request lasting up to two hours. The 

sequence was generated based on a uniform 1% probability of a grid signal occurring per time step and 

a 50/50 probability of the signal being either pick-up or drop load. The duration of the signal was 

calculated based on a uniform probability distribution of a duration between 15 minutes and 2 hours. An 

example of the signal is shown in Figure 3.  

Local heating control is given priority and a grid signal can only be responded too if the space heating 

and storage conditions described here are met.  

Without a thermal store, load can be dropped if there is no hot water draw and if the average space 

temperature t > tsp – 2, where tsp  is the set point temperature (21oC). Load can be picked up if t < tsp + 

2. 

With a thermal store then load could be dropped if t > tsp – 2, there was no hot water demand and/or 

the store was not depleted. Load could be picked up if t < tsp + 2, there was no load on the system 

and/or the store was not fully charged. 

As the store was modelled in terms of energy content rather than temperature, these conditions were 

converted to equivalent tests shown in Table 3.   

Table 3: criteria for grid signal response from domestic heating. 
Grid Signal Test with no thermal store 

drop load Qh
req-2 < Qh

req 

pick up load Qh
req+2 > Qh

req 

Grid Signal Test with thermal store 

drop load [ Qh
req-2 < Qh

req and Estore < (Qw
req + Qh

req-2) / n ] or  
[ Qw

req + Qh
req-2 = 0 and Estore > Emin and during charging period ] 

pick up load [ Qh
req+2 > Qh

req ] or [ Qw
req + Qh

req+2 = 0 and Estore < Emax and not during charging period ] 

Where Qh
req (kW)  is the heating required to meet the set point (oC), Qh

req-2 (kW) is the heating required 

to meet the set point minus 2. Qh
req+2 (kW) is the heating required to meet the set point plus 2, and Qw

req 

(kW) is the required hot water draw; Estore (kWh) is the store energy content, and Emax (kWh) is the 

thermal store energy capacity and n is the number of time steps per hour (in all simulations, this was 4). 

Note that a grid signal may be responded too but have no effect on the load drawn from the grid, if the 

heating set point being raised or lowered has no effect on the required heating (i.e. Qreq-2 = Qreq or Qreq+2 

= Qreq); this was not counted as a successful response to a grid signal. 

 



Figure 3: randomly generated grid signals to pick up or drop heating load. 

Simulations 

The 380 building models provide a diverse test bed for response. Each building simulated was unique, 

with building geometry, construction types and insulation materials, floor area, occupant numbers and 

occupancy times, hot water demand, air leakage, heating capacity, heating timing, heating set point and 

storage size, all varying from model to model.  

For each of the four cases shown in Table 1, the performance of each dwelling model was simulated for 

a calendar year using the UK reference climate data set; this generated 1520 individual results sets.  In 

each simulation, ESP-r calculated the heat required to bring the various zones of the dwelling up to their 

set point temperature and to meet the hot water demand.  

In the case of the heat pump with thermal store, the heat demands were met by the store, so the store 

energy content was calculated throughout the simulation. The heat pump was operated to charge the 

thermal store during off-peak electrical demand periods.  

Figure 4 shows an example of the data generated, showing the heat pump demand, the thermal store 

simulated and average dwelling temperature over a one-week period. The results from each simulation 

were processed to obtain aggregate data such as the percentage of heat pump units from the population 

of dwellings that could respond to a pick up or drop load signal. 

RESULTS AND DISCUSSION 

The key question was to determine the ability of a heat pump with and without dedicated thermal storage 

to respond to an external request to drop or pick up load. Figures 5a and 5b are the box and whisker 

plots showing the overall response to drop and pick up load requests over all simulations.   

Without storage (Case 2), the mean response to a drop load request was just over 20% and 

approximately 45% for a request to pick up load.  When sized storage was added and heating operation 

altered to off-peak (Case 4), the median response to a drop load request was almost unchanged, but 

the response to a pick up load request rises to almost 80%. In both cases the variation in response 

about the median was significantly reduced, due to the off-peak operation constraining the operation of 

the heat pump. 

.Figure 4: typical simulation output. 

 



      

 

 

Figure 5a: response to drop load signal. Figure 5b: response  to pick up load signal. 

Figure 6 shows the range of response (in terms of energy) to a signal to either drop or pick up load. In 

the case without thermal storage, an average of 100kWh of demand could be dropped per signal across 

all the houses modelled, up to a 3-σ maximum of about 200kWh. A median of under 200 kWh can be 

picked up, up to a 3-σ maximum of about 300kWh.  

Adding thermal storage and switching operation to off peak increased the median amount of load that 

can be dropped to around 250 kWh per signal with the 3-σ maximum increasing to up to a maximum of 

600kWh. The amount of load that can be picked up increased significantly to a median of c. 750 kWh 

up to a 3-σ maximum of around 1800kWh.The results demonstrate that thermal storage coupled with 

off-peak heat pump heating significantly improves the ability of electrified heating to pick up load in 

response to a signal. However, the ability to drop load is little unchanged.  

Both with and without storage, response is significantly less for requests to drop load compared to pick-

up load requests.    

Further disaggregating the results, Figures 7a and 7b show the variation in load response according to 

season. The graphs show the median response and corresponding inter quartile range (IQR). Focusing 

first on response to a drop load request, it is clear from Figure 8a that without storage, response is 

seasonally dependent, with limited opportunity for dropping load over summer as there is little demand. 

The addition of storage reduces seasonal variability, with less opportunity to drop load in winter and 

improved response in warmer months due to the need to charge the store to meet hot water demands.  

 

Figure 6 energy response from stock per grid signal. 

Turning to the ability to pick up load (Figure 7b), without thermal storage, response is again strongly 

seasonally dependent, dropping off in summer with reducing heating load. However, with thermal 
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storage and off-peak operation, the ability to pick up load remains consistently high, with the store able 

to accept heat from the heat pump at any time of year.  

  

Figure 7a response - drop load by season. Figure 7b response- pickup load by season. 

Figures 8a and 8b show the variability of the ability to drop or pick up load, respectively, by time of day. 

The ability to drop load is strongly related to the heat pump operation and thermal storage. Without 

thermal storage and the heat pump operating on demand, the ability to drop load mirrors heating 

demand, with morning and evening peaks. With off peak heating, load can only be dropped when the 

store is being charged. So, although the opportunity to drop load is greater, the hours within which this 

can occur are far more restricted hence there is little overall change in the aggregate response to load 

shift signals. The ability to pick up load is also strongly affected by the operation of the heating system 

and the presence of thermal storage. With no storage and when heating is on demand, the ability to pick 

up load is dictated by the operating times of the heat pump. However, with storage, and off-peak heating 

operation, load can be picked up at any time of the day outside the off-peak period of midnight-7am. 

However, during off-peak hours, the ability to pick up load is limited as it is likely that the heat pump will 

already be operating at that time to charge the store.  

Finally, the ability to load shift to a planned schedule with the thermal store as opposed to responsive 

load management was analysed. Figure 9 shows the heating energy drawn from the grid during off-

peak, low-cost periods. Without thermal storage (Cases 1 and 2), the vast majority of demand is drawn 

during peak periods, potentially leading to problems with high peak electrical demands. With properly 

sized thermal storage, the situation is reversed with the vast majority of the energy drawn during off-

peak periods. This benefits the end-user in that electricity is less expensive at these times and benefits 

the network in that planned load shifting such as this can significantly reduce the peak demand that 

would otherwise occur if heat was supplied on demand. 

  



 

  

Figure 8a response - drop load by hour. Figure 8b response - pick up load by hour. 

 

Figure 9: heating energy drawn during peak and off-peak periods. 

 

CONCLUSIONS 

Without dedicated thermal storage, and heat pumps servicing thermal load on demand, the median 

percentage of heat systems able to responding to a signal to drop load was approximately 20% and 

45% for pick-up load.  

When thermal storage was added and heat pump operation switched to off-peak charging, almost the 

entire daily heating demand for a dwelling could be shifted to low-cost, off peak electrical tariff periods.  

The addition of storage and off-peak operation significantly increased the response to a pick up load 

signal, with a median, aggregate figure of 85% response. The amount of energy that could be picked 

also increased significantly. Response to drop load signals increased only marginally but the amount of 

energy that could be dropped per signal increased. 

Response was seen to be highly variable, seasonally and over the course of a day. Seasonal response 

(to both pick up and drop load signals) was highest in the shoulder months and winter when the heat 

pump was most active with limited during summer months due to a lack of heat demand. The addition 

of thermal storage reduced seasonal variability in response.   

Response over the course of the day was dictated by the heat pump operating times and by thermal 

storage. Without storage, the ability to pick up or drop load mirrored heating periods. With thermal 

storage the ability to drop load was restricted to off-peak hours; conversely, the ability to pick up load 

was greatest in non-off peak hours, when the thermal store was available to receive heat.  



ACKNOWLEDGMENTS 

This work was done as part of the Fabric Integrated Thermal Storage in Low Carbon Dwellings (FITS-

LCD) research project. The authors gratefully acknowledge the funding provided by EPSRC under grant 

EP/N021479/1. 

REFERENCES 

Alahäivälä, A., Corbishley, J., Ekström, J., Jokisalo, J., & Lehtonen, M. (2017). A control framework for 
the utilization of heating load flexibility in a day-ahead market. Electric Power Systems Research, 
145, 44-54. 

Allison, J., Bell, K., Clarke, J., Cowie, A., Elsayed, A., Flett, G., ... Tuohy, P. (2018). Assessing domestic 
heat storage requirements for energy flexibility over varying timescales. Applied Thermal 
Engineering, 136, 602-616. DOI: 10.1016/j.applthermaleng.2018.02.104 

Arteconi A., Hewitt N.J., Polonara F. Domestic demand-side management (DSM): Role of heat pumps 
and thermal energy storage (TES) systems. Applied Thermal Engineering. 2013: 51; pp 155-165. 

Baeten, B., Rogiers, F., & Helsen, L. (2017). Reduction of heat pump induced peak electricity use and 
required generation capacity through thermal energy storage and demand response. Applied 
Energy, 195, 184-195. 

BEIS, Department for Business Energy and Industrial Strategy (2017a) Digest of UK Energy Statistics 
(DUKES) https://www.gov.uk/government/collections/digest-of-uk-energy-statistics-dukes   
Accessed (6/06/17). 

BEIS, Department for Business Energy and Industrial Strategy (2017b)  Energy Consumption in the 
United Kingdom. Available at: https://www.gov.uk/government/statistics/energy-consumption-in-
the-uk 

Clarke J A. (2001) Energy Simulation in Building Design. 2nd Ed. Butterworth-Heinemann: Oxford.  

DCLG, Department for Communities and Local Government (2013), English Housing Survey: HOMES 
Annual report on England’s housing stock, 2011, DCLG, London, ISBN: 978-1-4098-3922-4. 

Elexon (2013) Load Profiles and their Use in Electricity Settlement, Elexon guidance document. 
Available at: https://www.elexon.co.uk/wp-content/uploads/2013/11/load_profiles_v2.0_cgi.pdf 

Fischer, D., Wolf, T., Wapler, J., Hollinger, R., & Madani, H. (2017). Model-based flexibility assessment 
of a residential heat pump pool. Energy, 118, 853-864. 

Flett G (2017) 'Modelling and Analysis of Energy Demand Variation and Uncertainty in Small-Scale 
Domestic Energy Systems', PhD Thesis, University of Strathclyde. 

Frame, D. F., Bell, K., & McArthur, S. (2016). A Review and Synthesis of the Outcomes from Low Carbon 
Networks Fund Projects. London. 

Hong J, Kelly N J, Thomson M, Richardson I. Assessing heat pumps as flexible load. Proc. of the 
IMECHE Part A: Journal of Power and Energy. 2013: v227;1; pp 30-42. 

Hu M, Wang L (2017), Investigation of demand response potentials of residential air conditioners in 
smart grids using grey-box room thermal model, Applied Energy, 207, 324-335. 

Johnstone D., Miles-Shenton D., Bell M. and Wingfield J. (2011). Airtightness of buildings – towards 
higher performance (Final Report – Domestic Sector Airtightness). Department for Communities 
and Local Government, London, UK. 

Palmer J, Cooper I (eds.). (2013) United Kingdom Housing Energy Fact File. Department for Energy 
and Climate Change Publication. URN 13D/276 

Shipworth, M., Firth, S. K. , Gentry, M. I., Wright, A. J., Shipworth, D. T. and Lomas, K. J. (2010) Central 
heating thermostat settings and timing: building demographics, Build. Res. & Inf.; 38; 1: 50-69. 

Stephen R. (2000) Airtightness in UK dwellings. Information paper IP 1/00. Building Research 
Establishment, UK. 

Strachan P, Kokogiannakis G and Macdonald I (2008) 'History and Development of Validation with the 
ESP-r Simulation Program', Building and Environment, 43(4), pp601-609.  

Strbac G, Aunedi M, Pudjianto D, Teng F, Djapic P, Druce, R, Carmel A, Borkowski K. (2015) Value of 
Flexibility in a Decarbonised Grid and System Externalities of Low-Carbon Generation 
Technologies; Imperial College London, NERA Economic Consulting. 


