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Abstract 

The planning-level design of local energy systems requires sufficiently capable modelling 

tools which incorporate heat pumps, thermal storage, future electricity markets, and 

predictive control strategies. Gaps were identified in a review of existing local energy 

system tools: (i) ability to adapt and access source code; (ii) temperature dependence for 

heat pump models; (iii) stratification model for thermal storage models; (iv) modelling of 

evolving electricity markets; and (v) ability to explore predictive controls. 

A novel modelling tool, PyLESA, has been developed to tackle these gaps and to 

explore predictive and non-predictive controls, and existing and future electricity tariffs. 

PyLESA possesses the following modelling capabilities: resources, and electrical and heat 

demands; electricity production; heat pump; hot water tank; electricity tariffs; fixed order 

control (FOC); model predictive control (MPC); and KPIs. 

A sizing study for a proposed design of a district heating network was devised to 

showcase an application of PyLESA. Aims were to compare control strategies and 

electricity tariffs, and to identify an optimal size combination of heat pump and hot water 

tank. Comparisons between control strategies found that MPC offers savings over FOC. 

The lowest levelized cost of heat for the existing electricity tariffs was for the time-of-use 

tariff with MPC, 750kW heat pump and 500m3 hot water tank. 

A wind tariff, with a 1000kW heat pump and 2000m3 hot water tank, benefits from 

using MPC over the FOC: levelized heat costs reduce by 41.1%, and heat demand met by 

RES increases from 52.8% to 70.2%. It is shown that the proposed design can be sized 

using existing electricity tariffs, and additional hot water tank capacity added later to 

benefit from future tariffs.  

The results convey the advantage of combining flexible tariffs with optimally sized 

thermal storage and showcase PyLESA as capable of usefully aiding the design of local 

energy systems.  
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Source code for PyLESA 

PyLESA stands for Python for Local Energy Systems Analysis and is pronounced "pai-

lee-suh". It is an open source tool capable of modelling local energy systems containing 

both electrical and thermal sector technologies modelled in hourly timesteps. It was 

developed by the author as part of the work of this thesis with the aim of aiding the 

planning-level design of local energy systems, and the focus is on modelling systems with 

heat pumps and thermal storage alongside time-of-use electricity tariffs and model 

predictive control. Additionally, it is anticipated that the tool provides a framework for 

future development including electrical battery studies and participation in grid balancing 

mechanisms. 

The source code of PyLESA can be accessed from the following GitHub repository: 

https://github.com/andrewlyden/PyLESA. 
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1. Introduction 

This chapter introduces the general context and background underpinning the motivation 

for the work carried out in this thesis. It begins with a discussion of the current transition 

of the energy system in Scotland and the UK. Local energy systems are clearly defined to 

help contextualise the scale and scope of this work. Heat pumps, thermal storage, 

electricity markets, and control strategies are then explored and discussed with a view to 

motivating the vital role they can play in flexible, low-carbon, low-cost, and local energy 

systems. Finally, an overview of widely used energy modelling tools, and reviews of 

modelling tools, is provided to give a flavour of the current status and future challenges 

of local energy system modelling. 

1.1. General Context 
The usage and sourcing of energy is currently undergoing a fundamental transition as 

society aims to tackle climate change, improve urban environments, and progress energy 

equity. Reducing energy use across all sectors including buildings, industry, and transport, 

and increasing sourcing energy from sustainable sources are both required to meet these 

aims. This transition mandates a paradigm shift in how energy systems at all scales are 

designed. Supply of energy using renewable energy sources such as wind and solar are 

low-grade and stochastic and cannot easily be matched to inflexible demand. This 

contrasts with the high energy density and abundant nature of fossil fuels which when 

burned in power plants provide a means of meeting demand. This problem necessitates 

new methods for introducing flexibility in future energy systems to match supply and 

demand. 

Various storage technologies can introduce the required flexibility at different 

timescales (sub-second, day, seasonal). However, there are significant future uncertainties 

and differences in the efficiencies and costs of these storage technologies. Future systems 

need to be designed carefully to ensure optimal solutions for different applications are 

implemented.  

Another consequence of a renewable energy-based system is the localisation of energy 

production. While fossil fuels are used to produce electricity in large-scale and centralised 
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power plants, renewable energy can be produced regionally, across the country in smaller 

scale installations. This has given rise to the increased importance of local energy systems 

which are formed of a variety of co-located demand, supply, and storage technologies 

which can be integrated within the wider national energy system. 

Heat pumps can play a vital role in local energy systems as they can utilise low-carbon 

power generation and sources of low-grade heat to meet space heating and hot water 

demands. They can be employed in single dwellings or be scaled up to supply district 

heating networks. Importantly they can be used with hot water tanks which are one of 

the cheapest forms of storage technology currently available. Heat pumps and thermal 

storage together have the potential capability to add flexibility to local energy systems in 

a cost and carbon effective way.  

A low-carbon, local energy system is complex and needs to be modelled to be 

understood and properly designed. These systems need suitable control strategies to be 

able to optimise the use of time-of-use electricity tariff structures and local energy 

production via renewable energy sources. 

1.2. Transitioning Energy System 
Future energy system pathways to aid in tackling climate change in the UK have emerged 

which involve interactions between a centralised power grid with large amounts of 

fluctuating renewable power and decentralised local systems including generation and 

storage [1–3]. Technologies already exist which can contribute to this potential pathway: 

rooftop PV on domestic households with bi-directional grid flows [4], community-owned 

distributed wind farms [5], micro-hydro schemes [6], smart grids [7], district heating 

utilising waste heat [8] or combined heat and power (CHP) [9], hydrogen from renewable 

energy sources [10], etc. 

Scotland is undergoing a transition to a low-carbon energy system, underpinned by 

the introduction of renewable energy sources into the electricity grid network. Renewable 

sources accounted for 74.6% of gross electricity consumption in 2018 [11]. However, 

electricity is only 23.5% of final energy consumption of which heat constituted 52.0% and 

transport 24.4% in 2016 [11]. Efforts are necessary to decarbonise the heat sector where 

non-electrical, renewable sources contributed 5.9% to heat demand in 2017 [11]. 
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Traditionally Scotland has developed a gas grid in urban areas and used oil and 

electricity to heat homes in rural areas. Little district heating has been developed with 

approximately only 30,000 buildings connected to district heating as of 2018 [11]. District 

heating can potentially increase the use of renewable heat. This has led to interest in 

micro-district heating in rural towns and villages with low heat demand density, as well as 

larger scale district heating projects such as housing schemes. Many of these rely on 

expensive electrical heating due to restrictions on gas infrastructure in high-rise dwellings. 

This, coupled with government incentives and grants, has made district heating an 

economically favourable alternative with the added benefit of the perceived low-carbon 

aspect. 

There has been a significant uptake of biomass boilers in Scotland. These installations 

are typically set-up to provide heat for large public buildings and are often built by local 

councils to meet their sustainability targets. However, it is unclear that these systems have 

been built to best practice and there is concern around sustainability and air pollution 

issues related to the burning of wood for domestic heating [12]. Additionally, biomass 

may have a pivotal role to play in the wider energy system in decarbonising difficult sectors 

such as high-temperature industry and heavy transportation [13].  

Electrification of heat could prove to be an effective method of decarbonising heat 

due to the transition of the electrical grid to higher penetrations of renewable energy 

sources. As this transition is occurring, electrical heat options such as heat pumps will 

become increasingly low-carbon as seen from the falling grid carbon intensity factors in 

Figure 1.1 [11]. From a holistic view of the wider energy system it is worthwhile exploring 

design options incorporating heat pumps as the primary heat source. 
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1.3. Local Energy Systems 
Local energy systems consist of energy production units and demand side management 

(DSM) enabling technologies co-located with demands [14]. There are many terms used 

to describe similar energy systems such as community, district, decentralised, etc. Each 

have their own specific definitions and different interpretations in technical, social, and 

economic contexts. The term local energy system is used here in a technical context and 

defined on the co-location of technologies and the scale, ranging from a cluster of 

buildings to an entire region of a country. 

An example of a local energy system may contain locally owned wind turbines and/or 

PV which provide electricity to local customers, and heat generation units utilising local 

resources (e.g. biomass, local renewable generation) serving district heating networks.  

The implementation of these has been motivated by reducing imported energy costs, 

increasing self-reliance, reducing carbon footprints, and providing revenue streams via 

government subsidies and exported electricity. The development of such systems in the 

UK marks a shift from the historical means of delivering electricity from centralised fossil 

fuel power production plants and providing heating from gas via large-scale piping 

infrastructure. 

Local energy systems also open opportunities for sector integration possibilities. 

Energy sectors which have been historically considered in silo can be designed holistically. 

This could be designing a heat pump with a thermal store controlled to turn on when 

Figure 1.1: Average carbon intensity factor for electricity consumed in Scotland [11]  



23 | 
 

there is local excess generation of wind power. These require connected systems to 

facilitate logic decisions based on external signals. 

Local energy systems should also be designed to be integrated within the wider 

national energy system. Only considering on-site renewable power production could lead 

to very large capacities of expensive storage technologies being installed, but often local 

energy systems are connected to a wider national grid network. This grid in the future 

could heavily rely on wind power from across the country and have periods of large excess 

production. A local energy system should be designed to take advantage of this. 

Additionally, grid services which provide response to stress events to ensure grid stability 

could in the future be aided by local energy systems. 

1.4. Heat Pumps 
Heat pumps are a decentralised technology which couple the electrical and thermal 

sectors. They efficiently use electricity and low-grade heat sources to provide heat at useful 

temperatures, commonly for small-scale household purposes of hot water and space 

heating although district heating and industrial applications do exist [15]. Previous studies 

have identified large-scale heat pumps for district heating as providing 25-30% of heat in 

future roadmaps for Europe [16], and concluded the technology is mature for deployment 

[17]. 

CHP provide competition to heat pumps as a low-carbon form of district heating 

supply, however it is possible a combination of both could be employed to optimise 

energy balancing in larger schemes [18]. CHP can increase overall primary energy 

efficiency in comparison to traditional power generators by making use of waste heat. 

They are usually located close to heat demands and are categorised as a decentralised form 

of electricity and heat production. Natural gas is currently the most commonly used fuel 

in CHP plants. Biomass is potentially a cleaner fuel [19], however due to limited 

availability and sustainability concerns, it is likely to be more useful in other sectors [13]. 

Synthetic fuels, such as hydrogen, produced from renewable power could be used and 

these have been identified as important for 100% renewable energy systems [20].  

Viability of each of the competing technologies is dependent on local conditions and 

grid dynamics such as power prices and carbon intensities. A local system may have 

existing renewable generation or heat infrastructure, e.g. gas grid, available to utilise which 
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influences technology choices. When the grid power price and carbon intensity is high, 

CHP electricity production is favourable, however, when these are low and lots of 

renewable power production is on the grid (or there is low demand), electrical 

consumption with heat pumps can provide low-cost and low-carbon heat. This simple 

example illustrates the importance of using control strategies which account for grid 

dynamics and local power generation in design. As power grids become increasingly low-

carbon it is possible heat pumps could become the dominant source of low-carbon heat 

for district heating networks. 

1.5. Thermal and Electrical Storage 
A flexible energy system consists of generation, demand, and storage components which 

can respond to stochastic weather conditions and the dynamic carbon intensity and 

pricing of a renewable-dependent electrical grid. The control of shifting demand and 

production is commonly known as Demand Side Management (DSM) and is enabled by 

storage technologies such as electrochemical batteries, hot water tanks, hydrogen 

electrolysers, etc., and non-technology methods such as encouraging behavioural change. 

Flexibility technologies have been analysed and compared in previous studies in the 

electrical network [21] and across sectors [22].  

Thermal storage can provide flexibility to an energy system when paired with heat 

pumps by decoupling the heat demand and electrical consumption. Applications of 

thermal storage include hot water tanks and heat pumps in domestic buildings with smart 

control [23], phase change materials (PCM) for solar water heating [24], thermal mass of 

residential buildings [25], etc. Hot water tanks can be used in district heating and have 

been identified as an important component of 4th generation district heating systems [26]. 

The economic savings due to scale for hot water tanks at the district-level provides 

motivation for encouraging their usage [27]. 

There are a number of potential applications of electrical storage technologies and 

these range from large scale generation and transmission network systems, to smaller-

scale generation and distribution network systems, to individual consumers and end-users  

[28]. These applications have been categorised in literature [29]: (i) Generation – arbitrage, 

power reserve, area control,  frequency regulation, and black-start; (ii) Transmission and 

distribution – system stability, voltage regulation, and asset deferral; (iii) Energy service – 
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Energy management, power quality, and power reliability; (iv) Renewables – Transmission 

curtailment, load-shifting, grid frequency support, and fluctuation suppression. 

1.6. Electricity Markets 
Electricity markets are changing to reflect the transition from dispatchable power 

generation to stochastic, renewable power generation. Traditional tariffs such as flat rate 

or day/night periods are being challenged by emerging half hourly time-of-use tariffs 

issued a day ahead. These incentivise users with reduced prices during periods of surplus 

zero marginal cost renewable generation, and correspondingly dis-incentivise with 

increased prices during periods of peak demand and low renewable generation. This 

reflects pricing already being seen in wholesale markets with negative pricing in high wind 

and low demand periods [30]. The time-of-use pricing is currently largely driven by 

electricity demand profiles which only require simple time-based controls to gain most of 

the benefits of flexibility. However, as the proportion of renewable generation increases 

the tariffs will become more variable and motivate deploying improved communications 

and control technologies. 

Future commercial arrangements through aggregators, and others, could further 

reward flexibility which can contribute to local network and wider grid electricity services 

such as frequency response and other longer-term balancing requirements. Engagement 

in these services will also require communication and control solutions. 

1.7. Control Strategies 
Communication and control are essential in enabling flexibility to deliver value in future 

energy systems. Secure communications, monitoring and control software and hardware 

platforms are being standardised, developed and deployed at commercial [31,32] and 

community cooperative scales [33–36]. Communications services available to these 

platforms include weather forecasts and next 24-hour time-of-use tariffs. 

These platforms allow controls to be developed that optimise the operation of the 

system to meet the customer needs while maximising financial parameters or meeting 

other objectives such as maximising local or global renewable (self) consumption etc. 

Predictive controls and non-predictive controls have been studied with extensive 

literature on control methods with building integrated thermal energy storage [37,38]. A 
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rule-based controller has been compared to an MPC control finding that MPC control is 

vital when sizing thermal storage [39]. 

Classical local-loop control is typically PID (Proportional-Integral-Derivative) and 

PLC (Programmable Logic Controller). These use predetermined setpoints and 

instructions instead of predictions of load and supply which allow improved optimisation. 

A PID control for drying temperature has been designed for a heat pump for drying [40], 

and a PLC control has been designed to provide commercial demand side management 

to shed load during peak hours [41]. PID and PLC control offer the local control which 

implements the control decisions from supervisory controllers. 

Two classifications of supervisory control have been identified in literature [38]: hard 

and soft control. Soft controls have the capability to learn complex relationships between 

system input and output variables, e.g. neural network control, fuzzy logic control, and 

reinforcement learning control. Neural network control has been applied to optimise 

control of batteries in a household [42] and fuzzy logic control used to optimise the 

performance of a PV, solar thermal and heat pump hybrid system [43]. Reinforcement 

learning control uses machine learning to determine how to take actions in order to 

maximize a long-term objective over a sequence of decisions. It has been applied to a 

demand response aggregator of electrical water heaters using a 40-45 day learning period 

[44]. 

Hard control uses physical models to determine control signals which optimise a 

system performance parameter. Model predictive control (MPC) captures the dynamics 

of an energy system, and this can be based upon building and system simulation models 

or artificial intelligent techniques. An MPC controller consists of several key components:  

 Objective function which an optimiser minimises/maximises. 

 Prediction horizon which is the period over which the optimisation is performed. 

 Decision timestep which is the interval between solving optimisation problem. 

 Manipulated variables can be varied by the controller. 

 Optimisation solver which is chosen based upon optimisation type and required 

speed. 

 Feedback signal which provides updated system variables for next optimisation 

step. 



27 | 
 

Adaptive control is another hard control approach which accounts for the changing 

dynamics of a system and requires less accuracy of the physical system model. It consists 

of three main components: the optimal control models which contain the objective 

functions and constraints; the identification of the time-varying control parameters which 

are adjusted; and optimal algorithms which make decisions and determine the values for 

the control variables. Downsides include overcomplication and large computational time 

requirements meaning that this control has been rarely applied.  However, it has been 

applied to microgrid operation to evaluate flexibility benefits [45]. 

Combinations of control methods have also been applied with a typical approach 

using two stages. Firstly, a preliminary learning stage where a simple dynamic model is 

developed in order to train the controller. Secondly, a refined learning phase where the 

controller is applied to an actual system and continues to learn and further improves its 

performance via feedback from actual performance. 

A key challenge is how to capture these controls together with appropriate system 

characteristics in early stage modelling to appropriately inform design. 

1.8. Modelling Local Energy Systems 
Given the importance of local energy systems and wide variation in possible supply, 

storage control options, and variation in contexts such as climates and user expectations, 

there have been many efforts to provide modelling support for the planning process from 

a range of different perspectives. A general method for community energy planning is 

described in [46] and a key element identified is the use of modelling tools. This thesis 

focusses on the planning-level stage of design where often there is a limited set of data 

available. Many planning-level energy system tools have been developed and applied to a 

range of situations, and a sample of the most popular ones are discussed below. 

EnergyPLAN [47] is a national and regional planning tool which has been used to 

model a 100% renewable energy future for Denmark [48] and for many other studies [49]. 

It is applicable at community scale, and was used to model the island of Mljet in Croatia 

[50] in a comparative study with H2RES, an alternative tool designed for simulating the 

integration of renewables and hydrogen storage into island systems [51]. In this study, it 

was shown that both tools gave very similar results; H2RES focus is technical while 

EnergyPLAN supports technical and economic analyses. Both tools are deterministic and 
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use an hourly energy balance over a year to calculate energy generated, stored, rejected, 

consumed, exported, lost, and produced in excess, as well as percentage of energy 

consumed from renewable sources. 

HOMER [52] is a community scale tool, originally developed to support design of 

off-grid electrical energy systems but expanded to model grid connected and thermal 

systems [53]. One example is modelling a hybrid solar-biomass system for a remote area 

in Pakistan [54].  This study used electricity demand, available solar and biomass resource, 

and costs to analyse the techno-economic viability of such a system. HOMER was used 

to optimise system size using an hourly energy balance and with minimum net present 

cost (NPC) as objective function. 

Merit [55] is another community scale tool which has been used to model a hybrid 

wind/solar system for a care home in Scotland [56]. Merit models demand, supply and 

storage using an hourly energy balance and provides results showing demand/supply 

match and renewable and non-renewable supply. Multiple systems were modelled, and 

those shown to satisfy demand all year round analysed. The tool provides technical 

analysis only with cost calculations being done outside of the tool.  

TRNSYS [57] has a user-defined timestep as small as 1 second. A comprehensive 

library of components is available. Systems are described in detail and the solver is 

dynamic which means that TRNSYS is usually a building-level simulation tool [58]. The 

number of components and parameters required for a community scale system could be 

complex requiring expert level of technical systems knowledge. These complex 

calculations take considerable time. It has been used to model hybrid solar PV/thermal 

systems with thermal and electrical storage [59] etc. TRNSYS and similar building-level 

simulation tools can be scaled up for use at community scale. 

The tools described above are a sample of those available and serve to illustrate 

different approaches. There is general agreement that hourly modelling timesteps (or less) 

are required to adequately model such systems [60]. Tools are often first developed from 

a specific perspective e.g. hydrogen for H2RES, off-grid for HOMER, building systems 

for TRNSYS, and then adapted to support broader planning of community scale systems. 

How to choose between the plethora of different tools, particularly for planning of 

renewable energy systems where storage and DSM are to be considered is a key challenge. 

A number of reviewers have previously provided an overview of modelling tool 

capabilities specific to the effective integration of renewable energy. In general it was 
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found that the prior work, although a useful foundation for tackling the aims of this thesis, 

did not fully: (i) address all storage and DSM options, (ii) provide a sufficiently detailed 

categorisation of the models used to represent storage and DSM, and (iii)  provide a 

structured tool selection process. The most relevant of these previous works are briefly 

described below. 

[61] reviewed 37 tools (narrowed down from 68) regarding their suitability for the 

integration of renewable energy into energy systems; the details on the storage 

technologies used in the tools are high level i.e. stating whether a tool is capable of 

modelling pumped hydroelectric, battery, compressed air and hydrogen storage. Thermal 

storage and DSM are not included in the provided tables; ‘thermal storage’ is mentioned 

for 3 of the tools in textual descriptions.  The underlying models for electrical and thermal 

storages are not discussed in detail; such information can be useful to inform tool 

selection as some models can be more accurate than others [62,63]. The authors provide 

the review to inform tool selection and the provided information is indeed useful in this 

regard, but a formal selection process is not specified.  

[64] considered 72 tools to find those capable at city scale of modelling multi energy 

systems considering all relevant energy carriers (electricity, heating, cooling, transport 

etc.). They considered in detail 13 of the tools which were open source. Information 

regarding the tools was usefully tabulated including: available RES components, storage 

options, economic parameters, scale, availability, objective, modelling approach, timestep, 

evaluation criteria, user friendliness and training requirement. The paper identified the 

different storage technologies included in the energy tools but did not give detail on the 

underlying models. While it was highlighted that grid balancing is essential in districts 

utilising stochastic energy sources the DSM and grid support modelling capability of the 

tools was not captured. No tool selection process was specified.   

[65] reviewed 20 tools chosen based on their ability to “simulate and analyse urban 

energy systems”. Storage discussion was limited to seasonal thermal storage modelling, 

with building level storage capability documented within the tables but not in detail, DSM 

also is not covered in detail. 

Several further reviews of energy system tools have been undertaken. [66] reviewed 

219 studies, examining areas of urban energy systems (technology design, building design, 

urban climate, systems design, policy assessment, land use and transportation modelling) 

to evaluate their potential for integrated urban design. [67] reviewed 6 bottom-up tools 
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which focus on optimisation of community energy systems, finding DER-CAM and 

MARKAL/TIMES to be the most appropriate. [68] documented the capabilities and 

inputs/outputs of 11 energy tools, a short paragraph on each was provided in terms of 

their energy, economic and environmental analysis capabilities. [69] undertook a review 

of 12 tools to consider the methods available for integrated energy analysis for cities and 

territories. 

1.9. Uncertainty in Energy System Modelling 
Energy system modelling tools are being used to provide decision support, and therefore 

it is important to consider the types of uncertainties and the methods which exist for 

incorporating uncertainty into the design process.  

Typologies of uncertainty have been developed for different purposes [70], and 

Mirakyan and De Guio [71] developed an overall framework of uncertainty specific to 

modelling and decision support in the context of energy planning. The sources of 

uncertainty which form this particular framework are described here:  

 Linguistic uncertainty: has been defined “as uncertainty that arises because our 

natural language is vague, ambiguous, and because the precise meaning of words can 

change over time” [72]. It has an influence at all stages of modelling because the 

information used in energy planning and modelling is in linguistic terms. 

 Variability uncertainty: is due to inherent variability of human and natural systems 

(e.g. wind and temperature changes). 

 Decision uncertainty: can occur where there is ambiguity over how to define 

modelling objectives. 

 Planning procedural uncertainty: can occur because of available resources or time. 

 Knowledge uncertainty: occurs due to the limitation of our knowledge. It may be 

reduced by additional research and empirical efforts. There are different subcategories 

of this uncertainty and these are described below. 

o Context and framing uncertainty: occurs when setting out of the context 

and boundary conditions of the modelling and is influenced by the 

modellers/stakeholders perception of the scope of the planning exercise. 
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o Model inputs and parameters: Input data can describe external conditions 

(i.e. weather data), or model system data which defines characteristics of the 

system. Uncertainty of the input data and parameters may occur due to: 

measurement errors, data reading, user-error, and biases in data retrieval. 

o Model structure uncertainty: occurs due to incomplete understanding of 

the system processes (e.g. performance of components), when approximating 

a real, complex system to a mathematical model. The complexity of the model 

is dependent on the context of the modelling exercise, the available data input 

to the model, and the required outputs from the model (reliant on the 

requirements for validation and interpretation of the results). 

o Model technical uncertainties: occur due to errors/bugs in the software 

and/or hardware. 

o Model output uncertainty: defined as the accumulation of all the other 

described uncertainties. 

Methods exist for incorporating uncertainty analysis into the decision making of 

energy system planning. A number of these methods have been reviewed in literature in 

relation to their application in energy system planning and feasibility [73]. A sample of 

these are explored below: 

 Stochastic optimisation techniques: Stochastic optimisation studies introduce 

uncertainty to input parameters which exhibit stochastic behaviour using a range 

of different modelling approaches such as fuzzy, dynamic, and interval 

mathematical programming [74]. One study used interval parameter fuzzy linear 

programming and multistage stochastic programming which were integrated with 

a mixed-integer linear programming framework in order to aid planning of energy 

and environmental systems management under multiple uncertainties [75]. 

Examples of stochastic input parameters are electricity prices, fuel prices, 

production costs of power plants, CO2 emission policy, energy demand, and 

technological efficiency. 

 Monte Carlo simulation: Monte Carlo simulation performs uncertainty analysis 

by modelling possible outputs using a range of values (in the form of a probability 

function) for an input parameter which has inherent uncertainty. It repeatedly 

calculates results, each time using a different set of random values from the 
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probability functions. For example, this method has been applied to optimal sizing 

of cogeneration systems under long-term uncertainty in energy demand [76]. 

 Scenario analysis: Uncertainty can be incorporated by evaluating various 

scenarios which incorporate the dynamics and the drivers resulting in a specific 

future scenario. Scenarios utilised often represent situations that are likely to occur 

or extreme cases (worst-case or best-case scenarios). For example, in a study 

modelling Egyptian office buildings, to capture the inherent variability in 

operation and behaviour a set of ‘best and worst case parameter sets’ were used 

to investigate their impacts on performance [77]. 

Other methods for incorporating uncertainty analysis include mean-variance portfolio 

analysis [78], real-options analysis [79], and multi-criteria decision analysis (MCDA) [80]. 

This section provides a discussion of the types of uncertainty related to energy system 

modelling and identified that knowledge uncertainty can be reduced through research and 

empirical efforts. It also explored methods for incorporating uncertainty analysis into 

energy system decision making. The approach taken in this thesis is to develop a 

modelling framework which can be integrated into these methods. 

1.10. Related Projects 
The work undertaken in this thesis builds on the experiences and outputs from related 

previous and ongoing projects, as well as the literature explored in this chapter. 

The ORIGIN project (Orchestration   of   Renewable   Integrated   Generation   In   

Neighbourhoods) aimed to develop and implement load shifting mechanisms in order to 

both maximise the usage of local renewable generation and minimise the import of energy 

[81]. The project developed algorithms which were capable of (i) encouraging occupant 

behavioural change, and (ii) remote control of systems. An ecovillage, Findhorn, was used 

to trial the developed algorithms and different types of system were tested on-site. One 

of these system types consisted of a close to Passivhaus standard dwelling with space 

heating and hot water delivered by an air-source heat pump, with auxiliary electric boost, 

coupled with solar thermal. MPC was implemented on this system type and was shown 

to reduce use of the auxiliary electric boost by 44% in summer and increase the match of 

the boost heat with renewable generation by 22%. This highlights the potential benefits 

of employing MPC along with heat pumps, thermal storage, and local renewable 
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generation (i.e. solar thermal in this example). These systems require planning-level 

modelling in order to capture these benefits at the early stage of design. 

The author of this thesis was involved in Annex 31 of the IEA Technology 

Collaboration Programs (TCPs), Energy Conservation through Energy Storage, “Energy 

storage with energy efficient buildings and districts: Optimization and automation” [82]. 

The aim of this annex was to address challenges in integrating thermal energy storage 

systems in buildings/districts from the perspective of design, development of simplified 

modelling tools, and optimization techniques. The work undertaken in this annex 

identified the need for simplified design modelling tools at the district-level which capture 

heat pumps, thermal storage, electrical storage, and optimal control strategies. 

These projects, along with the literature reviewed in this chapter, point towards the 

need for design modelling tools which can incorporate heat pumps, thermal storage, local 

renewable generation, and MPC. 

1.11. Problem Statement 
Overall, it is clear that there is a need to transition the energy system from the current 

paradigm of centralisation, and reliance on fossil fuels for flexibility to using zero-carbon 

technologies across all energy sectors aided by decentralisation and measures to 

incentivise and enable renewable-led flexibility.  

The design of future local energy systems which incorporate heat pumps, thermal 

storage, future electricity markets, and predictive control strategies is complex and 

requires sufficiently accurate planning-level modelling tools to help aid in understanding 

the performance of these systems. This is vital in comprehending the role that properly 

designed low-carbon, integrated, local energy systems will have in the transition to a 100% 

renewable energy system. 
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2. Research Question, Aims, and 
Methodology 

2.1. Research Question 

The research question to be addressed in this thesis is: 

Can a modelling methodology and supporting modelling tool be developed 

that usefully aids the planning-level design of local energy systems incorporating 

heat pumps, thermal storage, local renewable electricity production, time-of-use 

electricity tariffs, and predictive controls? 

2.2. Research Aims 
The following aims are set out to help answer the research question: 

 Identify gaps in existing planning-level modelling tools. 

 Develop a modelling methodology capable of aiding design of local energy 

systems incorporating heat pumps, thermal storage, local renewable electricity 

production, time-of-use electricity tariffs, and predictive controls. 

 Develop a supporting modelling tool with the capabilities to address the identified 

gaps. 

o Open source to enable accessibility and build upon previous work. 

o Heat pump model with explicit temperature-dependent performance. 

o Hot water tank model with explicit thermal characteristics. 

o Future electricity markets. 

o Set of supervisory control strategies including model predictive control. 

 Explore developed control strategies and existing and future electricity tariffs 

through demonstration of application of the modelling methodology by 

undertaking a sizing study. 

o Demonstrate application of the developed modelling tool and position it 

in the context of the state of the art. 
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o Compare the performance of predictive and non-predictive control 

strategies. 

o Compare the use of existing electricity tariffs. 

o Investigate the use of a future wind-based renewable electricity tariff. 

The scope of the work undertaken in this thesis is limited to the planning-level design 

of local energy systems where it is desirable to use modelling tools with hourly or sub-

hourly timesteps, low-carbon technology models, and storage and DSM capabilities. This 

type of tool would preferably provide useful outputs with minimal computational time or 

input requirements. More detailed building and system design tools which require high 

user expertise, are computationally heavy, and have detailed input demands, have been 

considered outside of the scope of this paper. 

2.3. Research Methodology 

The research methodology sets out the work undertaken in order to tackle the stated 

research question and aims. The thesis chapters follow the structure outlined below. 

Chapter 3 

1. Identification of gaps in existing tools through a review of existing modelling 

tools, categorisation of capabilities, selection process to identify appropriate tools, 

and application to a case study.              

Chapter 4 

2. Introduction of the novel modelling tool including modelling methodology, 

capabilities, framework and applications with the ability to address the identified 

gaps.     

Chapter 5 

3. Description and validation of new modelling tool capabilities: resources and 

demands; electricity production technologies; heat pumps; hot water tanks; 

electricity tariffs; fixed order controls; model predictive controls; and key 

performance indicators.            

Chapter 6 

4. Carry out a sizing study for a proposed design of a residential district heating 

system aided by an application of the developed modelling methodology to 
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explore and inform design decisions regarding control strategies and electricity 

tariffs.  

a. Carry out operational analysis. 

b. Size heat pump and thermal storage capacities. 

Chapter 7 

5. Discussion and conclusions of the contributions and strengths in relation to 

addressing both the identified modelling tool capability gaps and the exploration 

of the control strategies and electricity tariffs; limitations and future developments 

of the novel modelling tool; and potential future applications. 
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3. Review of Existing Modelling 
Tools 

This chapter reviews existing modelling tools with the aim of identifying gaps to be 

addressed in the proposed modelling tool. The focus is on the tool capabilities regarding 

storage technologies and demand side management (DSM), but the categorisation section 

covers a wide range of capabilities and forms a thorough review of the overall ability of 

the identified tools to perform according to user requirements. This work appears in a 

peer-reviewed journal paper co-authored by the author [83]. 

The review consists of the following steps: 

 Initial screening process to identify 13 applicable local energy system modelling 

tools from an initial list of 51. 

 Categorisation and tabulation of the modelling capabilities overall with focus on 

heat pumps, storage, and DSM capabilities. 

 Development of a tool selection process using the tables and demonstration for 

a case study. 

 Discussion of the tool selection process and modelling tool capabilities. 

 Identification of the gaps to be addressed in this research. 

The scope of the review has been limited, in line with the thesis scope, to tools 

designed for hourly or sub-hourly timestep modelling of local energy systems containing 

low-carbon technology, storage and DSM, for use at the planning stage. More detailed 

building and system design tools have been considered outside of the scope of this thesis. 

There is an increasing trend towards using modelling tools in conjunction with other 

modelling tools or external software such as MATLAB [84], GEN-OPT [85], 

EnergyTRADE [86] etc. particularly to support mathematical optimisations or realistic 

controls. These multi-tool processes are also outside the focus of this review. 

It is recognised that tools are continuously being developed and that the screening 

analysis and the tool classification exercise will need to be refreshed periodically. The 

work of this review, in addition to providing a current snapshot, provides a useful 

framework for this refresh within the context of the proposed tool selection process. 
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3.1. Initial Screening Process 
An initial list of 51 tools with some ability to model an energy system was derived from: 

literature including review papers and papers describing the development and application 

of tools; tool user manuals and websites; and communications with tool providers. Tools 

captured in previous reviews but clearly not capable of modelling local energy systems 

were discounted. For example, Envi-met is a microclimate and landscaping tool [87], and 

Radiance is used in daylight prediction [88].  

A set of criteria were applied to the 51 tools in order to determine in more detail their 

potential suitability. A tool passed the criteria if it could be used at local energy system 

scale (i.e. was defined as such or had a case study demonstrating this capability), was 

appropriate to the planning stage, incorporated renewable and low-carbon technology 

and storage and DSM, had hourly or sub-hourly timestep and could cover either thermal 

or electrical energy supply. The screening process is captured in Table 3.1 along with 

relevant references. Additionally, the dark shading indicates fail and light shading indicates 

potential fail. 

This process resulted in the identification of 15 tools suitable for modelling 

community scale energy systems incorporating renewable energy sources, storage and 

DSM, for use at planning design stages. Two of the 15, MODEST and Mesup/PlaNET 

were discounted due to lack of accessible information required for more detailed analysis. 

This left 13 tools to be carried forward into the categorisation of capabilities and tool 

selection processs.
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Table 3.1: Screening process for 51 tools using a set of criteria 

Tools Criteria 
Met? 

Local energy 
system scale 

Case 
study 

Planning
-level 

design 
LZCT Storage/

DSM Time step Electrical Thermal References 

AEOLIUS No 
National/ 
regional 

No Yes Yes Yes Minutes Yes No [61] 

Balmorel No No No Yes Yes Yes Hourly Yes Yes [89] 
BCHP 

Screening 
Tool 

No No No Yes No Yes Hourly Yes Yes [61,90] 

Biomass 
decision 

support tool 
Yes Yes - Yes Yes Yes Hourly No Yes [91] 

CitySim No Yes - No Yes Yes Hourly Yes Yes [65,92,93] 
COMPOSE Yes Yes - Yes Yes Yes Hourly Yes Yes [61,94] 
DECC 2050 
Calculator 

No No No Yes Yes Yes Yearly Yes Yes [95] 

DER-CAM Yes Yes - Yes Yes Yes 5 mins Yes Yes [96,97] 
E4Cast No No No Yes Yes Yes Yearly Yes Yes [61] 
EMPS No No No Yes Yes Yes Weekly Yes No [61,98] 

EnergyPlan Yes 
National/ 
regional 

Yes Yes Yes Yes Hourly Yes Yes [47,50] 

EnergyPRO Yes Yes - Yes Yes Yes Minutes Yes Yes [99,100] 

ENPEP-
BALANCE 

No 
National/ 
regional 

No Yes Yes No Yearly Yes Yes [61,69,94] 

ESP-r No Yes - No Yes Yes Seconds Yes Yes [58,101] 
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ETEM/Mark
al-lite 

No Yes - Yes Yes Yes Yearly Yes Yes [69,102,103] 

eTransport Yes Yes - Yes Yes Yes Hourly Yes Yes [104,105] 
GTMax No No No Yes Yes Yes Hourly Yes Yes [61,106] 
H2RES Yes Yes - Yes Yes Yes Hourly Yes Yes [50,107,108] 

HOMER Yes Yes - Yes Yes Yes Minutes Yes Yes [52,109,110] 
Hybrid2 Yes Yes - Yes Yes Yes Minutes Yes No [111,112] 

HYDROGE
MS No Yes - No Yes Yes Minutes Yes No [61,113] 

IDA-ICE No No No No Yes Yes Minutes No Yes [65] 
iHOGA Yes Yes - Yes Yes Yes Minutes Yes No [114–116] 
IKARUS No No No Yes Yes Yes 5 years Yes Yes [61,69] 

INFORSE No No No Yes Yes Yes Yearly Yes Yes [61] 

Invert No 
National/ 
regional 

Yes Yes Yes No Yearly Yes Yes [61,117] 

KULeuven 
OpenIDEAS 
framework 

No Yes - No Yes Yes Minutes Yes Yes [61,118,119] 

LEAP No No No Yes Yes Yes Yearly Yes Yes [69,120,121] 
MARKAL/T

IMES Yes Yes - Yes Yes Yes Hourly Yes Yes [122,123] 

MERIT Yes Yes - Yes Yes Yes Minutes Yes Yes [124] 
Mesap/PlaN

et 
Yes Yes - Yes Yes Yes Minutes Yes Yes [61,69,125] 

MESSAGE No No No Yes Yes Yes 5 Years Yes Yes [61,69,105,12
6] 
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MiniCAM No 
National/ 
regional 

No Yes Yes Yes 15 years Yes Yes [61] 

MODEST Yes Yes Yes Yes Yes Yes Hourly Yes Yes [61,127,128] 
NEMS No No No Yes No Yes Yearly Yes Yes [61] 
Neplan No Yes - No Yes Yes Minutes Yes Yes [129] 
NetSim No Yes - No Yes No Hourly No Yes [130,131] 

ORCED No No No Yes Yes Yes Hourly Yes No [125,132] 
PERSEUS No No No Yes Yes Yes 36-72/year Yes Yes [61] 

Polysun No No No Yes Yes Yes 15 minutes Yes Yes [84,133] 
PRIMES No No No Yes Yes Yes Yearly Yes Yes [130,134] 
ProdRisk No Yes - Yes Yes Yes Hourly Yes No [61,135] 
RAMSES No No No Yes Yes Yes Hourly Yes Yes [61,136] 

RETScreen No Yes - Yes Yes Yes Monthly Yes Yes [61,69,137,13
8] 

SimREN Yes Yes - Yes Yes Yes Minutes Yes Yes [61,120,139] 

STREAM No 
National/ 
regional 

No Yes Yes Yes Hourly Yes Yes [140] 

Termis No Yes - No Yes No Minutes No Yes [141,142] 

TRNSYS No Yes - No Yes Yes Seconds Yes Yes [57,59,61,65,9
4,116] 

UniSyD3.0 No No No Yes Yes Yes Bi-weekly Yes Yes [61] 
WASP No Yes - Yes Yes Yes 12/year Yes Yes [61] 

WILMAR 
Planning 

Tool 
No No No Yes Yes Yes Hourly Yes Yes [61] 
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3.2. Categorisation of Modelling Tool 
Capabilities 

Tool capabilities tables were generated for the 13 modelling tools that document:  

 Input data requirements and input support capabilities. 

 Electrical and thermal supply technology modelling capabilities including district 

heating. 

 Design optimisation, outputs capabilities, controls and DSM modelling 

capabilities. 

 Storage modelling capabilities and underlying storage models. 

 Practical considerations. 

These tables are intended to be useful in the tool selection process (described later in 

Section 3.3) by providing information on the capability of tools to be assessed against 

requirements for a local energy system analysis task.  

3.2.1. Input Data Requirements and Input Support Capabilities 

Tools have different levels of input data requirements; some tools require the energy 

demand profiles, local climate, system characteristics, or generation profiles to be 

explicitly input as time series directly by the user. Other tools have embedded functions 

and libraries that provide support in generating detailed datasets from simple inputs, 

and/or support a mix of both directly entered and tool generated calculation inputs. This 

functionality could be essential, desirable, or not applicable depending on availability of 

data or expertise.  

The key characteristics related to data input requirements for the various tools are 

captured in Table 3.2 and described below. 

Demand profile generator 

Tools were deemed to contain a demand profile generator (‘Yes’ in Table 3.2) if 

functionality exists to support synthesis of electrical, thermal or fuel demand profiles in 

hourly or sub-hourly timesteps from simple inputs such as monthly or annual bill data or 

descriptions of building numbers and types, demographics, etc. Others which take the 

approach that either explicit half-hourly or hourly metered data needs to be obtained, or 
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potentially generated using a secondary modelling process (e.g. using building 

performance simulation tools), were categorised as ‘No’ for this category.  

Resource assessor 

A resource assessor gives access to weather and other resources (e.g. solar radiation, wind, 

water, biogas and biomass) in a suitable data input format (e.g. from national or 

international datasets) based on simple inputs (e.g. location). The resources covered were 

identified for each tool. 

Supply profile generator 

A supply profile generator provides electric, thermal or fuel-producing system outputs for 

use in the modelling. ‘Modeller’ describes a tool which generates the supply profile from 

the resource input (e.g. climate) and the device specifications. For example, in HOMER, 

local wind speeds (the resource input) and a specific wind turbine specification (a power 

curve and other details) are used to calculate the wind turbine supply profile.  ‘Database 

and input’ describes a tool where the hourly or sub-hourly supply profiles are input 

directly requiring the user to do some outside tool calculations or source such datasets.  
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Table 3.2: Input data support capabilities 

Tools 
Demand profile 

generator 

Resource 

assessor 

Supply profile 

generator 

Biomass decision 

support tool 
Yes No Modeller 

COMPOSE No No 
Database and 

input 

DER-CAM No S, T, Wi Modeller 

EnergyPLAN No No 
Database and 

input 

EnergyPRO Yes B, H, S, T, Wi Modeller 

eTransport Yes Yes* Modeller 

H2RES No B, H, S, Wi Modeller 

HOMER Yes B, H, S, T, Wi Modeller 

Hybrid2 Yes S, Wi Modeller 

iHOGA Yes H, S, Wi Modeller 

MARKAL/TIMES No B, H, S, T, Wi Modeller 

Merit Yes S, T, Wi Modeller 

SimREN Yes Yes* Modeller 

Resource Assessor Key: Biomass (B); Hydro (H); Solar radiation (S); Temperature (T); Wind 
(Wi)  

*indicates that a resource assessor exists but the specifics were unable to be determined. 

  



45 | 
 

3.2.2. Electrical and Thermal Supply Technology Modelling 
Capabilities 

Tools vary with respect to the range of supply technologies that can be directly modelled. 

This section captures information about available supply technologies within the different 

tools and more detailed description is given in Table 3.3. 

A wide range of electrical supply systems can be modelled, most tools support 

modelling of connection to the external electricity grid. Two categories have been 

assigned for modelling of the grid connection: ‘Grid simple’ allows for limitless import 

and export, with static pricing; more complex ‘Grid’ models include features such as 

connection limits and charges, complex time-based import and export tariffs etc. In 

general, the tools lack the ability to model the evolving electricity markets and tariffs. 

The modelling of district heating systems, if available in the tools, is only as an 

estimated heat loss. This is a continuous heat loss as a percentage of peak load in the 

Biomass decision support tool, or a percentage of real-time load as in EnergyPRO. The 

heat demand density, distribution temperature and other factors such as controls which 

have a large effect on ancillary energy use and losses in district systems are not directly 

considered and are required to be captured by the user in inputting thermal demand 

profiles. 

District heating is becoming more popular in the UK [143,144], and is ubiquitous in 

Scandinavia and Eastern and Central Europe [145]. It has potential to increase energy 

system overall efficiency and provide flexibility for more effective use of waste heat and 

renewables using thermal storage which is much cheaper at district scale than for 

individual buildings, and much cheaper than an equivalent capacity of electrical storage 

[146]. It is therefore important to consider district heating while it will not necessarily be 

appropriate in all circumstances.  

Heat pumps are commonly modelled using simple energetic models which do not 

account for temperature dependent COP. Additionally, available data for specific heat 

pumps is often limited such as a COP provided under one set of conditions. This leads 

to an overestimation of seasonal performance. 
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Table 3.3: Electrical and thermal supply technologies and district heating 

Tools Electrical supply Thermal supply 
District 

heating 

Biomass 

decision support 

tool 

No FBo Yes 

COMPOSE B, C, CHP, G, Gr, PV, Wi  
CHP, EBo, FBo, 

HP, ST  
No 

DER-CAM CHP, D, G, Gr, PV, Wi 
CHP, EBo, FBo, 

Geo, HP, ST 
No 

EnergyPLAN 
B, C, CHP, D, G, Geo, Gr, GrS, 

H, N, PP, PV, T, Wa, Wi 

CHP, EBo, FBo, 

Geo, HP, I, ST, Was 
Yes 

EnergyPRO 
B, C, CHP, D,  G, Gr, H, PV, 

Wi 

CHP, EBo, FBo, 

HP, ST  
Yes 

eTransport CHP, Gr, PP  CHP, FBo, HP Yes 

H2RES B, C, D, G, GrS, H, PV, Wa, Wi,  EBo, FBo No 

HOMER B, C, CHP, D, G, Gr, H, PV, Wi CHP, FBo No 

Hybrid2 D, PV, Wi None No 

iHOGA D, G, Gr, H, PV, Wi None No 

MARKAL/TIM

ES 

B, C, CHP, D, G, Geo, Gr, GrS, 

H, N, PP, PV, T, Wa, Wi 

CHP, EBo, FBo, 

Geo, HP, I, ST, Was 
No 

Merit C, CHP, G, GrS, PV, Wi,  CHP, HP, ST No 

SimREN Geo, H, PP PV, Wi CHP No 

Key: 

Electrical: Biomass power plant (B); Coal power plant (C); Combined heat and power plant (CHP); Diesel 
plant (D); Gas plant (G); Geothermal plant (Geo); Grid (Gr); Grid simple (GrS); Hydro (H); Nuclear (N); 

Generic power plant (PP), Photovoltaic (PV); Tidal (T); Wave (Wa); Wind (Wi) 

Thermal: Combined heat and power (CHP); Electric boiler (EBo); Fuel boiler (FBo); Geothermal (Geo); 
Heat pump (HP); Industrial surplus (I); Solar thermal (ST); Waste incineration (Was) 
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3.2.3. Design Optimisation and Output Capabilities 

Two attributes important in supporting design tasks are: the capability of the tool to aid 

the identification of optimum design solutions, and the ability of the tool to directly 

provide outputs required to support decision making. Key capabilities of the 13 tools in 

these areas are captured in the first two columns of Table 3.4 and further discussed below. 

Design optimisation  

Optimisation tools find the minima, or maxima, for a defined objective function by 

systematically searching a defined modelling space according to a mathematical algorithm. 

Design optimisation involves a search for the optimal system w.r.t. combination and 

sizing of components. Most of the reviewed tools, where they support optimisation, use 

a full factorial deterministic approach based on user defined inputs to solve the 

optimisation problem and use a simple financial and/or carbon emissions objective. 

HOMER historically has executed a grid search based on user defined inputs specifying 

the system options to be included but recently provided an update allowing users to only 

input upper and lower limits to the grid search. iHOGA was the only identified tool with 

multi-objective function capability, it includes a choice of available objective functions 

and embedded genetic algorithms [147]. The Biomass decision support tool supports the 

optimisation of thermal storage size. A number of reviews have covered the mathematical 

optimisation methods that could potentially be employed [148,149]. Tools which do not 

directly support mathematical optimisation could be used within an external mathematical 

optimisation process by an iterative approach, but this can be logistically complex or 

require advanced software skills to automate. 

Outputs 

The outputs are key in assessing system performance. Different tools focus on different 

aspects of the system performance; most tools provide financial analysis such as 

cost/kWh of energy produced or information on energy market interactions, some are 

purely technical and focus on the energy production, system analysis, demand/supply 

match, or fuel consumption, others assess emission and renewable penetration, and others 

consider social factors such as job creation and the human development index. Specific 

tool outputs can be used in external calculations to generate a wider range of analysis 

outputs but only the in-tool capabilities are documented here. 
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Table 3.4: Design optimisation, outputs, controls and DSM controls capabilities 

 

 

Tools Design 

optimisation 

Outputs Controls DSM 

control 

Biomass Decision  

Support Tool 

S E, EP, FA, FC, 

RP, SA 

FO, NO FO 

COMPOSE E, F E, EP, FA, FC, 

SA 

MO, OO (F) OO (F) 

DER-CAM E, F A, E, EP, FA, 

FC, SA 

DC, EV, LS, 

MO, OO (F, 

E) 

DC, EV, 

LS, OO 

(F, E) 

EnergyPLAN No E, EP, FA, FC, 

SA, RP 

FO, LS, MO, 

OO (F) 

FO, LS, 

OO (F) 

EnergyPRO No E, EMI, EP, FA, 

FC, SA 

EV, MO, NO, 

OO (F), UO 

EV, OO 

(F) 

eTransport F E, EMI, EP, FA, 

FC,  SA 

MO, OO (F) OO (F) 

H2RES No EP, FC, RP, SA FO, MO FO 

HOMER F A, E, EP, FA, 

FC, RP, SA 

AC, LS, MO, 

NO, OO (F), 

UO 

LS, OO 

(F) 

Hybrid2 No EP, FA, SA FO, LS, MO, 

NO 

FO, LS 

iHOGA F, A, E, F, 

HDI, JC, NPC 

A, E, EP, FA, 

FC, HDI, JC, 

RP, SA 

FO, MO, NO, 

OO (F) 

FO, OO 

(F) 

MARKAL/TIMES F E, EMI, EP, FA, 

FC, RP, SA, 

MO, NO, OO 

(F) 

OO (F) 

Merit No EP, FC, M, SA FO, LS, MO FO, LS 

SimREN No EMI, EP, SA - - 
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Key for Table 3.4:  

Design Optimisation: Autonomy (A); Emissions (E); Financial (F); Human development index (HDI); Job creation 
(JC); System (S)  

Outputs: Autonomy (A); Emissions (E); Energy market interaction (EMI); Energy production (EP); Financial analysis 
(FA); Fuel consumption (FC); Human development index (HDI); Job creation (JC); Demands/supply match (M); 

Renewable penetration (RP); System analysis (SA)  

Controls/DSM Controls: Advanced control (AC); Demand curtailment (DC); Electric vehicles (EV); Fixed order 
(FO); Load shifting (LS); Modulating output (MO); Non-modulating output (NO); Operational optimisation (OO) 

with objective function in brackets; User-defined order (UO) 

3.2.4. Control Modelling Capabilities including DSM  

The ability to correctly capture controls is important in assessing the performance of local 

energy systems. Particularly when assessing the impacts of storage and DSM. Modelling 

tools often have in-built control logic intended to mimic real or idealised controls, it is 

important to comprehend and assess the control regime underpinning each of the models. 

Control capabilities of the 13 tools are captured previously in Table 3.4 and are further 

discussed below. 

3.2.4.1. General Control Capabilities 

Controls regulate how supply, storage and DSM technologies meet loads by determining 

the control logic and constraints applied. A simple local energy system control strategy 

can include: (i) an order of dispatch for the different resources, and (ii) a set of constraints.  

Operational Optimisation 

Operational Optimisation (OO) control is where the tool optimises, at each timestep, the 

order of dispatch of supply, storage, and DSM technologies to satisfy an objective 

function which may relate to cost, emissions, etc. There are differences in detailed logical 

implementation between tools; a general description is given here.   

Most tools use the OO control chronologically i.e. calculations are performed at each 

individual timestep to establish an optimum based on prevailing conditions at that 

timestep only, before the next timestep is then considered. Storage is generally charged 

and discharged when it is deemed favourable to do so according to the specific logical 

implementation and objective function. Typically charging will occur when there is excess 

energy from renewable or non-modulating supply where storage is deemed to have 

benefit over export or curtailment, or where grid parameters, e.g. tariff, make charging 

from grid advantageous. Discharge from available storage is generally treated as a 

dispatchable supply option. The value attached to storage charge and discharge takes 

account of characteristics of the storage system, e.g. efficiencies and costs, plus parameters 
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such as tariffs and carbon contents. For example, in HOMER the discharge energy cost 

includes average charge energy cost, efficiencies, and battery wear, lifetime and 

replacement costs. 

OO control is applied non-chronologically in some tools e.g. in EnergyPRO the whole 

calculation period is scanned for energy supply costs and an optimised supply schedule 

determined, with excess low-cost generation charging storage and discharge occurring to 

meet demand in subsequent favourable high cost periods. These OO control 

functionalities may replicate real control systems for situations where local renewable 

consumption is prioritised or where a set tariff structure is established for energy import 

and export; the non-chronological OO implementation may in some circumstances 

provide an optimistic view of system performance as perfect foresight is implied.   

Fixed Order Control 

Fixed Order Control (FOC) is where there is an available set of functions with pre-defined 

order of dispatch of supply, and fixed conditions for the use of storage and DSM 

technologies. Dispatchable supply is dispatched in a fixed order in periods where non-

dispatchable, typically renewable, supply is below demand. EnergyPLAN, H2RES, and 

Merit charge electrical storage in periods of excess renewable production and prioritise 

discharge from electrical storage over generators and power plants. In Merit thermal 

storage discharge is prioritised over other thermal supply options. In EnergyPLAN 

thermal storage charging is prioritised to absorb excess electricity or heat production and 

discharged to avoid non-renewable generation. In iHOGA batteries can charge/discharge 

at fixed, user input tariff values. In the Biomass decision support tool excess heat from 

the biomass boiler is stored in a thermal storage and discharged when demand exceeds 

supply. EnergyPLAN includes several selectable functions for dealing with excess 

electricity production. Hybrid2 contains embedded functionality for 13 pre-defined fixed 

order controls relating to the practical performance of electric systems [150]. 

User-defined Order 

User-defined Order (UO) control is where the order of dispatch, for at least some part of 

the supply, is defined by the user. For example, UO in EnergyPRO requires all supply 

options to be given an order of preference, which can also include separate priorities for 

production to satisfy different (peak, high, low) loads; storage priority setting is not an 

option and in this tool storage operation always follows the OO control strategy. 
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Modulating Output 

Modulating Output (MO) control applied to a dispatchable supply allows modulation of 

output to match load above some minimum supply output level. In all tools the grid 

connection, if enabled, can modulate output to follow electrical load with a minimum 

supply level of zero. HOMER can only designate grid or generator supplies to this control 

while in EnergyPRO, DER-CAM, and eTransport any dispatchable supply can be 

assigned.  

Non-modulating Output 

Non-modulating Output (NO) control sets the constraint that a designated supply must 

run at a fixed output whenever it is running. In the Biomass decision support tool, the 

designated supply is the biomass boiler. In EnergyPRO the user selects supplies. In 

iHOGA and HOMER the designated supplies are the generators. In these two tools a set 

state of charge can be specified, and the designated supply will continue operating, 

regardless of availability of renewable generation, until the set point is reached. This 

mimics a common feature in real systems used to maximise battery life but which reduces 

the potential for renewable inputs to the store. 

Advanced Control 

HOMER offers the capability to use Advanced Control (AC) strategies where users can 

define more complex control operating regimes than those previously outlined by 

interfacing with externally written code in MATLAB [151]. 

3.2.4.2. DSM-related Control Capabilities 

The general control modelling capabilities described in the previous section, such as OO 

and FOC, can be used where there is storage in the system to capture DSM functionality 

associated with storage charging and discharging. Several tools have further DSM specific 

functionality to represent ‘Load Shifting’, ‘Demand Curtailment’ and ‘Electrical Vehicles’ 

in the system. All DSM related control capabilities are captured in the 'DSM control' 

column of Table 3.4, further DSM specific functionalities are described below. 

Load Shifting 

Load Shifting (LS) is where a flexible load is defined which can be met or deferred to a 

later timestep within a limited deferrable time period, while incurring no loss. The flexible 

load can be input as a specific energy quantity over the deferrable period in EnergyPLAN 

which uses 1 day, 1 week, or 4 weeks deferrable periods, and in Hybrid2 which allows 
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users to input the deferrable period. In DER-CAM the flexible load is sized as a 

percentage of the main load over a 1-day deferrable period. The flexible loads in these 

tools are actuated when lowest cost or surplus energy is available within the flexibility 

period. HOMER and Hybrid2 can accommodate more detailed model parameters such 

as: average deferrable load (kWh/day), capacity (kWh), peak load (kW), and minimum 

load ratio, flexible load in these tools is treated as secondary to the main load but 

prioritised over charging storage. 

Demand Curtailment 

Demand Curtailment (DC) is where demand can be curtailed under certain conditions, 

and, unlike load shifting, is not shifted but reduced. DER-CAM is the only reviewed tool 

capable of modelling DC and curtails demand when tariff prices exceed a user defined 

curtailment cost (£/kWh) within an annual maximum number of curtailment hours. 

There is also additional functionality to allow for up to 5 daily hourly profiles capturing 

the proportions of the main load which can be curtailed at each timestep. 

Electric vehicles 

Electric vehicles are going to play a vital role in the future of energy systems [152,153], 

and there has been research into the system flexibility they can provide [154,155]. Only 

two of the identified tools include models for an electric vehicle to grid interaction. 

EnergyPRO has a model based on the energetic capacity of the batteries in the cars, and 

limits on the charging and discharging along with associated efficiencies. The demand for 

the vehicles is input as a time series and there are options accounting for availability. 

Charging/discharging can be set to on/off with charging allowed at zero demand, it can 

be set to proportional to the driving demand time series, or it can be set its own time 

series. EnergyPLAN contains a similar model. The inputs are for maximum 

discharge/charge, capacity of batteries in vehicles, efficiencies, and a time series for 

demand. Simpler assumptions are made on the availability, with the fraction of cars 

driving at peak demand and, of cars parked used to calculate the connection of cars to 

grid. 
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3.2.5. Storage Modelling Capabilities and Underlying Models 

This section looks at relevant capabilities of the 13 screened tools and underlying models 

with respect to storage functionality. Such functionality enables DSM and, in the reviewed 

tools, is used with the operational optimisation and fixed order controls (see Section 

3.2.4.1). 

Storage capabilities are captured in two look-up tables for use in tool selection. Table 

3.5 describes the range of storage modelling capabilities available in each tool, with more 

detailed descriptions of these capabilities in the sub-sections below. Table 3.6 gives a 

summary of the more advanced models i.e. more detailed models than the simple storage 

model (SSM) for each storage technology; SSM can be used to model all storage types and 

is not included in Table 3.6 for this reason. A brief summary of each capability and 

underlying model is given below, further details including model equations can be found 

in the relevant references. 
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Table 3.5: Storage modelling capabilities and underlying models 

Tools Electrical storage 
Thermal 

storage 

Fuel 

synthesis 

Fuel 

storage 

Biomass decision 

support tool 
No MB No B 

COMPOSE KiBaM CS, SSM No No 

DER-CAM FB, SSM MB No No 

EnergyPLAN CAES, PH, SSM  SSM, STS 
BF, BG, 

EF, GtL, H 
G, O, M 

EnergyPRO PH, SSM CS, MB 
BF, BG, 

EF, GtL, H 
G, O, M 

eTransport Yes Yes Yes Yes 

H2RES Yes Yes No Yes 

HOMER 
FB, KiBAM, 

MkiBaM, PH, SSM 
No H H 

Hybrid2 EKiBaM No No No 

iHOGA 
KiBAM, MKiBaM, 

SSM 
No H H 

MARKAL/TIMES Yes Yes Yes Yes 

Merit EKiBaM SSM No No 

SimREN Yes No No No 

Key:  

Electrical: Compressed air energy storage model (CAES); Extended kinetic battery model (EKiBaM); Flow battery 
model (FB); Kinetic battery model (KiBaM); Modified kinetic battery model (MKiBaM); Pumped hydro model (PH); 

Simple storage model (SSM) 

Thermal: Cold storage model (CS); Moving boundary model (MB); Seasonal thermal storage model (STS); Simple 
storage model (SSM) 

Fuel synthesis: Biofuel (BF); Biogas (BG); Electrofuel (EF); Gas to liquid (GtL); Hydrogen (H) 

Fuel storage: Biomass (B); Gas (G); Hydrogen (H); Methanol (M); Oil (O)  

*”Yes” indicates that the tool has a certain capability but specific models used were not able to be confirmed; these 
tools were assumed to have SSM as minimum electrical and thermal storage models 
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Table 3.6: Electrical and thermal storage technologies and advanced models (beyond SSM) 

Electrical storage 

(ES) type 

Advanced ES 

models used 

Thermal storage 

(TS) type 

Advanced TS 

models used 

Lead-acid battery 
EKiBaM, KiBaM, 

MKiBaM 
Hot water tank MB 

Li-ion battery 
EKiBaM, KiBaM, 

MKiBaM 
Cold storage CS 

Flow battery FB 
Seasonal thermal 

storage 
STS 

Pumped hydro PH   

CAES CAES   

Key:  

Electrical: Compressed air energy storage model (CAES); Extended kinetic battery model (EKiBaM); Flow battery 
model (FB); Kinetic battery model (KiBaM); Modified kinetic battery model (MKiBaM); Pumped hydro model (PH); 

Simple storage model (SSM) 

Thermal: Cold storage model (CS); Moving boundary model (MB); Seasonal thermal storage model (STS); Simple 
storage model (SSM) 

Note: SSM can be used to model all storage types and is not included 
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3.2.5.1. Electrical Storage Modelling Capabilities and Underlying Models 

Electrical storage is a general term used here to include electrochemical (li-ion, flow, lead-

acid batteries), electromagnetic (supercapacitors), and mechanical (CAES, hydro, 

flywheels) forms. Electrical storage can be represented using a number of different 

mathematical models, the different models used in the tools are categorised and described 

below. The level of detail required at the planning stage depends on the specifics of the 

system being modelled and the outputs to be derived from the modelling.  

Simple Storage Model 

A tool possessing a Simple Storage Model (SSM), which can interact with supply and load, 

can model any storage technology. EnergyPLAN and EnergyPRO use the SSM to define 

all types of storage, including all electrical storage types. iHOGA, DER-CAM and 

HOMER support the use of the SSM, e.g. for high-performance batteries [136]. HOMER 

also recommends its use for simple pumped hydro storage systems. The SSM consists of 

a simple energy in/out balance via an energy store. Energy can enter the store below a 

threshold maximum charging rate up to a maximum store capacity. There can be self-

discharge from the store e.g. a percentage or other function at each timestep. Energy can 

leave the store below a threshold maximum discharging rate. For charging and discharging 

there are associated efficiencies, which combine with self-discharge to give a round-trip 

efficiency. Charge and discharge efficiencies are both generally fixed values. The SSM has 

fixed maximum charge and discharge rates independent of the state of the system, this 

approximation may be sufficient for some analyses, but may not be realistic in other cases, 

more detailed models are available. Storage lifecycle analysis is included in some tools with 

the SSM, e.g. in HOMER lifetime is modelled as both an energy throughput and time, 

however performance degradation effects are only included in the MKiBaM model 

described later. 

Kinetic Battery Model 

The Kinetic Battery Model (KiBaM) was first developed for modelling lead-acid batteries 

in hybrid energy systems [156]. It is described as a two tank model [157], where one tank 

holds the available energy to directly support charge and discharge and the other holds 

the bound energy which transfers energy to and from the available tank according to a 

defined exchange function representing the chemical process. The model supports 

charge/discharge rates as functions of stored energy in the two tanks. The underpinning 
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electronic mechanisms are still simplified with voltage modelled only as a linear function 

of energetic state etc. iHOGA and HOMER both possess this model and have libraries 

of electrochemical batteries with parameters established from test data. 

Extended kinetic battery model 

Work was done to improve the KiBaM in terms of modelling voltage behaviour [158]. 

These models are denoted here as Extended Kinetic Battery Models (EKiBaM). Hybrid2 

includes such an improved model [159], with voltage, charging and discharging 

efficiencies and current as non-linear functions of the state of charge. Merit also contains 

a different but similar model with improved voltage modelling [124].  

Modified Kinetic Battery Model 

A further Modified Kinetic Battery Model (MKiBaM) is used by HOMER and iHOGA 

to give deeper insights. This includes a thermal model component whereby the resistive 

properties of the battery produce heat which affects temperature, capacity and lifetime. 

Secondly, it involves cycle-by-cycle degradation of the battery as a function of depth of 

discharge; this is accounted for using the Rainflow counting algorithm [160], which 

iHOGA also utilises to account for corrosion effects over time. iHOGA offers 

customised models for lead-acid batteries [161,162] and Li-ion batteries [163–165]. 

Flow battery model 

Flow batteries can also be modelled explicitly with models which account for the 

independence between capacity and charge/discharge and other flow cell characteristics. 

Flow battery specific models based on manufacturers data are included in DER-CAM 

[166] and HOMER [157].  

Pumped hydro model 

Pumped hydro is often modelled using the SSM by factoring in the capacity and efficiency 

of the pump and generator as well as the capacity of the reservoir. EnergyPLAN and 

HOMER include pumped hydro as a technology using the SSM. Only EnergyPRO 

includes an explicit pumped hydro model and includes inputs such as reservoir volume, 

friction factors and head difference. 

Compressed air energy storage model 

A simple compressed air energy specific storage model (CAES) is included in 

EnergyPLAN, with a focus on the economic trading possible [167]. 
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3.2.5.2. Thermal Storage Modelling Capabilities and Underlying Models 

Thermal storage allows for sensible or latent heat to be kept for meeting a demand later. 

It can include hot water tanks, brick radiator stores, phase change materials (PCM), and 

cold storages. It can also be designed for buildings or community/district scales. A 

summary of different thermal storage models including underlying equations is given by 

[63]. The tools that are the focus of this paper use only the least complex models, some 

of the limitations associated with this are discussed later. The categorisation of thermal 

storage models found in the tools is captured in Table 3.5 and Table 3.6, and described 

below. 

Simple storage model 

The SSM model does not consider temperatures but only accounts for energy and was 

described earlier. EnergyPLAN uses the SSM to model all thermal storage technologies. 

Moving boundary model 

The most common model for thermal storage in the examined tools is the moving 

boundary model (MB), where the additional inputs over the SSM are top and bottom tank 

temperatures. It assumes that there is no mixing between the upper hot zone and the 

lower cold zone and the thermocline boundary layer is infinitesimally small. This is again 

an energy balance model with inflows and outflows of energy moving the boundary layer 

up and down the store and stored energy calculated based on the thermocline position. 

The model does not explicitly capture temperature variation due to losses and 

destratification. This model is incorporated in the Biomass decision support tool, DER-

CAM, EnergyPRO, and Merit. The model can be adjusted in EnergyPRO using a 

utilisation factor which reduces the useful energy which can be used for supply. DER-

CAM allows for different high temperature and low temperature stores within the system 

to allow for different heat generation devices [168]. EnergyPRO also uses the MB model 

for cold storage (CS) and was the only tool identified to have electrical, heat, and cold 

storage modelling capability. 

Seasonal thermal storage model 

A seasonal thermal storage model is included in EnergyPLAN. It is simplified and only 

two inputs are required: capacity, and ‘days of optimising storage’ which allows for the 

model to identify inter-seasonal variations in demand. [65] set out the state of art in 



59 | 
 

modelling seasonal thermal storage in building-scale simulation tools, but in general this 

functionality is not supported in the tools analysed here apart from EnergyPLAN. 

Other thermal storage models 

Temperature variations, and therefore entropy considerations, are vital in real thermal 

storage analysis [169]. There may appear to be enough energy in a tank to meet the energy 

demand, but if the temperature does not meet the supply requirement it is not useful 

energy. The MB model does not account for changes in the temperature zones; there are 

no entropic considerations. A  summary of modelling approaches for sensible thermal 

storage tanks [63] includes the MB model and highlights the models which would be used 

to include entropy, with increasing detail at the expense of computational and data input 

complexities.  

3.2.5.3. Modelling of Fuel Synthesis and Storage 

Fuel synthesis is the production of fuels within a system creating a new energy vector 

which can be used across a range of energy sectors, and acts as storage to be used later 

[170]. EnergyPLAN, iHOGA and HOMER can model the synthesis of hydrogen. This is 

produced using electricity with an electrolyser to form hydrogen, stored in a hydrogen 

tank, and then converted to meet transport, heat, or electricity demands. All three 

technical components can be modelled within the three tools. EnergyPRO contains a 

simple model for the synthesis of any fuel.  EnergyPLAN allows for synthesis of different 

types of fuel: biofuel, biogas, hydrogen from electrolysis, electrofuel, and gasification to 

liquid transport fuel. These fuels are used to form interactions between energy sectors 

and ensure high-value energy is used for high-value processes.  

These fuels must then be kept in storage. The Biomass decision support tool can size 

biomass fuel storage, while iHOGA and HOMER can model hydrogen storage tanks. 

EnergyPLAN can model gas, oil and methanol storages, and EnergyPRO can model any 

fuel storage as a generic model. 
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3.2.6. Practical Considerations 

Table 3.7 sets out the practical considerations associated with selecting a tool: cost, access, 

support, whether it is academic or commercial, user-friendliness, and whether there is 

existing available expertise.  

Cost may be a vital factor in choosing an energy system tool and depends on the 

resources available to a user. A student is likely to choose a free tool which there is 

abundance of: Biomass decision support tool, COMPOSE, DER-CAM, EnergyPLAN, 

iHOGA, Hybrid2, Merit and MODEST. Often tools are available at discounted prices 

for students. A government agency or an engineering consultancy may have the resources 

available to afford the cost for a tool such as 3,000+ EUR for EnergyPRO, 500-1,500 

USD for HOMER, or 1,275-3,130 EUR to manipulate the code for MARKAL/TIMES.  

Accessibility is defined in terms of availability, purchase requirement, and if the tool 

was downloadable or browser based. Available support as indicated by tool websites and 

verified by the authors is listed. These include user manual, available contact details, 

videos, training, and an online forum. The tools are classed as academic or commercial 

based on the development and ownership of the tools through either a 

university/research group, or a private company, respectively.  

User friendliness was judged on the provision of an intuitive model-building pathway 

which was subjectively graded by the authors at a low, medium, or high level. This 

required first-hand knowledge of the tools so where the tool was not available to the 

authors, the grade by [94] was referenced. 

Most modelling tools require a significant investment in time to develop expertise in 

order to be used correctly and proficiently so there will be a strong practical driver to use 

a modelling tool which has established available expertise if this exists. If there is no 

established expertise available and the aim is to develop such an expertise, then this driver 

will be less strong or zero. 
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Table 3.7: Practical considerations 

Tools Cost Access Support Academic / 

Commercial 

User 

friendly 

Biomass 

decision 

support 

tool 

Free Download User manual, 

videos, online 

course 

Commercial High 

COMPO

SE 

Free Download Videos, forum Academic Med 

DER-

CAM 

Free Browser User manual, 

videos, forum 

Academic Med 

EnergyPL

AN 

Free Download User manual, 

contact, 

videos, 

training, 

online course 

Academic High 

EnergyP

RO 

3,000+ EUR 

for all 

modules 

Purchase User manual, 

contact, 

training 

Commercial High 

eTranspo

rt 

Not available Not 

available 

Not available Academic High1 

H2RES Not available Not 

available 

NA Academic Not 

available 

HOMER Free 2-week 

trial, 500 - 

1500 USD 

Purchase User manual, 

contact, 

videos, forum 

Commercial/

Academic 

High 

      

Hybrid2 Free Download User manual, 

contact 

Academic Not 

available  
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iHOGA Educational 

Free, 500 EU 

for 1 year 

Purchase User manual, 

forum, 

contact 

Academic Med 

MARKA

L/TIME

S 

Costs 1275-

3130 EUR to 

manipulate 

source code 

Download User manual, 

paid support, 

forum 

Academic Low1 

Merit Free Download Training Academic Med 

SimREN Not available Not 

available 

Not available Commercial Not 

available 

1From [94], 2 User to self-assess 
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3.2.7. Discussion  

Through the categorisation and documentation of tool capabilities it is apparent that there 

are many differences between tools. Some tools, such as EnergyPLAN, combine all 

energy sectors based on the view that holistic consideration across sectors leads to optimal 

solutions. Other tools are primarily single domain focussed, e.g. iHOGA has strong 

capabilities for electrical analysis with a wide range of storage models but no thermal 

capability.  

Design optimisation capabilities in the tools generally optimise for financial or 

technical considerations. Only iHOGA optimises for human considerations (human 

development index, job creation) and two tools optimise for environmental 

considerations. Much work has been done on external optimisation used in a two-step 

process. This may influence the lack of embedded optimisation options in the tools, 

another factor is the preference for the simplicity and transparency available in full 

factorial parametric analysis. 

The review identified a lack of detailed district heating modelling capability in any of 

the local energy system tools, with only a heat loss parameter as input, factors such as the 

heat demand density, distribution temperatures, network layouts and controls which have 

a large effect on ancillary energy use and losses in district systems are not directly 

addressed.  

Analysis of controls modelling capabilities in the tools showed a wide range including 

operational optimisation, fixed order, and user-defined orders, for dispatch of supply and 

storage.  Operational optimisation control is usually used with a cost based objective 

function, other possible objective functions such as maximising local use of renewable 

generation, minimising grid imports or minimising emissions are not generally directly 

supported, with DER-CAM a notable exception. More advanced predictive controls 

based on weather forecast and demand prediction are not supported, although the non-

chronological operational optimisation in EnergyPRO and the deferrable load 

functionality in HOMER etc. can represent this type of control but with significant 

simplifications. The option to run tools in combination with external control algorithms 

in separate software packages is one way round this limitation.  

The tools, with the exception of DER-CAM, focus on load shifting and use of storage 

where there is grid connection to optimise value based on cost (arbitrage) while it is widely 
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accepted that other grid services (such as frequency stabilisation, peak reduction, 

avoidance of capital investments etc.) may also be very important.  

The review of storage functionality and modelling revealed frequent use of the simple 

storage model. More complex models for electrochemical storage exist particularly for 

use with lead-acid, li-ion and flow batteries.  

Thermal storage and heat pumps are generally limited to simple energetic models 

which do not directly take account of temperature variations other than in assessing 

capacity. These may be suitable for initial planning design stages but have limitations. For 

thermal storage, to take account of temperatures, heat transfer rates, stratification, and 

phase change in thermal stores necessitates more complex models. These will be required 

in the future to support realistic modelling of the hybrid systems and advanced controls 

for which these parameters have critical importance. 

There were few tools found to be directly capable of analysing fuel synthesis 

technologies, such technology, however, is currently unlikely to be at a local energy system 

scale in the short term. For this reason, tools developed for regional scale have most 

capability.  

The wide range of tools available and their differing capabilities makes a capability 

categorisation of value to the end user of such tools, and of use to inform those looking 

to expend effort or resources in modelling of such systems. The abundance of available 

tools and rapidly developing field dictated that it was impossible to include them all. The 

author believes the selection is however reasonably representative of the state of the art 

in tools for planning-level design at local energy system scale. 

A gap in this review is the exclusion of open source modelling tools written in 

programming languages such as Python, GAMS, Java, Fortran, C++, Julia, etc. An 

overview of these tools is available on the opendmod website [171]. 

An element not considered here is the validation of the modelling tools. So far in 

available literature case studies are largely based on design and do not include monitored 

data on completed schemes that include DSM and storage. Experience in the buildings 

industry has found that performance gaps are common [172] and identified that industry 

process needs to evolve to address these gaps [173]. It is critical that similar issues are 

addressed to avoid performance gaps in future local energy systems. 
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3.3. Tool Selection Process 

A stepwise tool selection process was developed in order to compare different tools in 

the context of a specific modelling problem. The methodology is based on a software 

selection method from Sandia National Laboratories [174] in order to aid in the 

identification of an appropriate tool for a particular analysis. This analysis was for the 

planning-level design of a local energy system incorporating storage and DSM.  

3.3.1. Determination of Requirements 

The first process step is to establish which of the modelling tool capabilities (documented 

in the previous tables) are ‘essential’, ‘desirable’ or ‘not applicable’ and to assign values of 

2, 1, and 0 respectively to each of these tool capabilities. This process requires that each 

of the capabilities described in the column headings and associated keys of the tables are 

individually considered against the requirements for the intended analysis.  

For example, if we look at Table 3.2 then the three tool capabilities captured are 

'demand profile generator', ‘resource assessor’, and ‘supply profile generator’. If the user 

requires the tool to provide demand profiles, weather data and renewable generation 

supply profiles from simple input data, such as location and demographics, then these 

capabilities would be considered essential and each of these capabilities would be assigned 

a value of 2. Alternatively, if the user has available data for demand, weather and 

renewable generation and supply (e.g. from monitored data) then these capabilities are 

not applicable so would be assigned a value of 0 and can be eliminated from further 

consideration. If the user can source information and generate the demand, weather and 

renewable generation input data, but with significant effort, then this capability could be 

ranked as desirable and allocated a value of 1.  

Similarly, if we consider Table 3.3 it may be that it is essential that there is capability 

to model electrical generation with both PV and wind so each of these capabilities would 

be allocated a 2, while if there is no potential for hydro then this capability would be 

allocated a 0.  

When this process is complete the essential and desirable capability requirements have 

been established. The first 4 rows of Table 3.8 illustrate this process for a simple case 

study example which will be described in more detail in Section 3.3.3. 
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3.3.2. Scoring of Tools Against Requirements 

Once the requirements have been established then each of the tools can be scored against 

them. The first consideration is whether all the essential capabilities are available, if a given 

modelling tool has all the essential capabilities it can be considered further, those which 

do not pass this check can be discounted. For the tools which pass, their scores for the 

essential plus desirable capabilities are summed into an overall score and ranked with the 

most suitable tools having the highest scores. Again, Table 3.8 illustrates this process for 

the simple case study which is described in more detail in the following section.      

3.3.3. Example Application of the Modelling Tool Selection Process 

Findhorn is an ecovillage in the north-east of Scotland with an ambition to transition to 

a local, low-carbon energy system. It consists of around 75 buildings, with a private wire 

electrical network, wind and solar generation, a grid connection, micro-district heating 

from biomass, and individual household heat pumps and solar thermal systems. The 

community could be said to be net zero carbon but has large electricity surpluses and 

shortfalls due to stochastic demands and renewable production. They have an interest in 

the use of thermal and electrical storage with advanced controls as a potential route to 

achieving their aims. They had also previously been monitored as a research and 

demonstration site for advanced DSM [81].  

The community overall objective is to increase their energy autonomy and use of local 

renewable energy resources; they have some concerns over the sustainability of biomass. 

To help achieve their objective they enlisted support from a University and after an initial 

scoping process identified two future illustrative scenarios to be investigated: 1) increased 

electrical generation plus battery storage, and 2) increased electrical generation plus heat 

pumps and large hot water tanks replacing the micro-district biomass heat source. The 

modelling tool selection process was then applied in order to identify suitable software to 

use for the investigation.  

The first step was to review the tool capability requirements: demand profile 

generator, resource assessor, and supply profile modeller capabilities (Table 3.2) were all 

deemed to have zero value (i.e. not applicable) since multi-year sub-hourly data was readily 

available from monitoring.  

Electrical supply technologies wind, grid, and solar PV were deemed to be essential 

(Table 3.3). Thermal supply modelling of fuel boiler (biomass fuel in this case) and heat 
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pumps were deemed essential. Capability to model solar thermal and district heating in 

detail were scored desirable. These were not considered essential at this stage as the 

primary focus was on the electrical supply system and the available monitoring data which 

includes heat delivery from existing heat production units, solar inputs, and distribution 

losses. 

Design optimisation capability (Table 3.4) was deemed desirable but not essential as 

the view was taken that the relatively simple range of options to be investigated could be 

covered through a full factorial deterministic investigation and modelling outputs analysed 

outside of the tool to establish potential optima. The output of hourly data allowing either: 

autonomy, emissions, or renewable penetration to be established was deemed essential. 

This level of system performance parameter output would then allow the other required 

outputs to be calculated outside of the tool.  

For control capabilities (Table 3.4), either FOC or OO control was deemed essential 

to support the required ordering of dispatch of supply and storage, in addition to the MO 

control inherent in all the tools for representing the grid. DSM-specific control 

functionality was not required in this example. 

Storage modelling capability was deemed essential for both electrical and thermal 

storage (Table 3.5 and Table 3.6). It was deemed that the simple storage model was 

sufficient but that it would be desirable for more complex models to be available. Fuel 

synthesis and fuel storage are not required in this simple illustrative study. 

These technical requirements are captured in the top 4 rows of Table 3.8 and then 

each of the tools are assessed against these requirements. Where a tool has an essential or 

desirable capability then it scores 2 or 1 respectively against that capability, otherwise it 

scores 0. Once all the potentially capable tools have been assessed they are ranked: (i) the 

tools which do not have all the essential capabilities are deemed ‘FAIL’ to meet the 

essential requirements, and only those that ‘PASS’ this test considered further, (ii) the 

remaining tools are then ranked based on their cumulative score. This process is illustrated 

in Table 3.8, with the result in this case that 6 tools are capable with similar scores of 

either 20 or 21.
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Table 3.8: Output from application of tool selection process 

 
Essential 

Capabilities 

Overall 

Score 

Design 

optimisation 
Outputs 

Controls 

and DSM 
Supply technologies Storage 

 Pass Score Yes 
A, E, or 

RES 
FO or OO  WT PV 

Fuel 

boiler 
Grid 

District 

Heating 

Solar 

Thermal 

Heat    

Pump 

Battery 

SSM 

Battery 

>SSM 

TS 

SSM 

Hot water 

tank >SSM 

D=Desirable 

E=Essential 
  D E E E E E E D D E E D E D 

Value   1 2 2 2 2 2 2 1 1 2 2 1 2 1 

COMPOSE Pass 21 1 2 2 2 2 2 2 0 1 2 2 1 2 0 

DER-CAM Pass 21 1 2 2 2 2 2 2 0 1 2 2 0 2 1 

EnergyPRO Pass 21 0 2 2 2 2 2 2 1 1 2 2 0 2 1 

EnergyPLA

N 
Pass 20 0 2 2 2 2 2 2 1 1 2 2 0 2 0 

MERIT Pass 20 0 2 2 2 2 2 2 0 1 2 2 1 2 0 

MARKAL/ 

TIMES 
Pass 20 1 2 2 2 2 2 2 0 1 2 2 0 2 0 

eTransport F 16 1 2 2 0 0 2 2 1 0 2 2 0 2 0 

H2RES F 16 0 2 2 2 2 2 2 0 0 0 2 0 2 0 

HOMER F 16 1 2 2 2 2 2 2 0 0 0 2 1 0 0 

iHOGA F 14 1 2 2 2 2 0 2 0 0 0 2 1 0 0 

Biomass 

support tool 
F 11 1 2 2 0 0 2 0 1 0 0 0 0 2 1 

Hybrid2 F 9 0 0 2 2 2 0 0 0 0 0 2 1 0 0 

SimREN F 6 0 0 0 2 2 0 0 0 0 0 2 0 0 0 
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3.3.4. Discussion 

The categorisation and selection process presented is not limited to the tools identified 

here but is intended to provide a framework which can be used in future to refresh the 

capabilities categorisation or be applied to further tools. The review of required 

capabilities as the first part of the selection process can also form a guide for modellers 

to ensure relevant factors are considered. More detailed scoring systems in the selection 

process would be possible, the pair-wise comparison suggested by [175] remains to be 

investigated. 

The tool selection process does not take into account the potential for multiple tools 

to be used together to analyse the system under consideration, such work is recommended 

for future studies. The more detailed simulation modelling tools currently used in 

buildings and systems domains have potential to be developed for community scale 

energy systems in future. These would allow more physical detail to be captured in 

planning level design studies. Their capabilities could also be assessed using the same tool 

selection process. 

One observation from carrying out the review has been that the source code is 

generally hidden in the tools. There is generally an inflexible software environment, 

limiting the ability to adapt or evolve the tools or incorporate functionality from elsewhere 

independent of the tool supplier.   

The developed selection process will be used in the sizing study, Chapter 6 where the 

modelling methodology is applied, to consider the position the novel tool to be developed 

in this thesis sits within the state of the art of the existing identified modelling tools. 
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3.4. Gaps to be Addressed 

The identified tools were reviewed against their ability to model local energy systems 

incorporating heat pumps, thermal storage, local renewable electricity production, time-

of-use electricity tariffs, and predictive controls. The gaps identified, and to be addressed 

in this thesis are: 

 Ability to adapt source code and import or exploit functionality from elsewhere. 

 Temperature dependence for the heat pump models. 

 Detailed model with temperature characteristics for the thermal storage models.  

 Ability to model the evolving electricity markets and tariffs. 

 Ability to explore predictive controls. 

This chapter has achieved the first stated research aim from Chapter 2: Identify gaps 

in existing planning-level modelling tools. 

These gaps will be addressed by developing a modelling framework and appropriate 

models addressing the required functionality. This work expands on the growing energy 

system modelling capabilities previously built in the open source programming language 

Python. The proposed modelling framework will be elaborated in the next chapter, and 

the subsequent chapter will detail the underlying models and their validation.  
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4. Introducing PyLESA: Modelling 
Methodology, Capabilities, 
Framework, and Applications 

This chapter describes: (i) a modelling methodology capable of aiding planning-level 

design of local energy systems and, (ii) the capabilities and framework of the novel 

modelling tool PyLESA which was developed in this thesis. The methodology sets out 

the steps for applying PyLESA which can model local energy systems incorporating heat 

pumps, thermal storage, local renewable electricity production, future electricity tariffs, 

and predictive controls. This chapter also explores potential types of design studies which 

can be aided by application of the modelling methodology. The underlying models used 

in PyLESA address the gaps identified in the review of existing modelling tools. 

4.1. Brief Introduction to PyLESA 
PyLESA stands for Python for Local Energy Systems Analysis and is pronounced 

"pai-lee-suh". It is an open source tool capable of modelling local energy systems 

containing both electrical and thermal sector technologies modelled in hourly timesteps. 

It was developed by the author as part of the work of this thesis with the aim of aiding 

the planning-level design of local energy systems. The focus is on modelling systems with 

heat pumps and thermal storage alongside time-of-use electricity tariffs and model 

predictive control. Additionally, it is anticipated that the tool provides a framework for 

future development including electrical battery studies and participation in grid balancing 

mechanisms. 

The source code of PyLESA can be accessed from the following GitHub repository: 

https://github.com/andrewlyden/PyLESA. 
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4.2. Modelling Methodology 
The modelling methodology developed in this work sets out the steps for applying the 

new modelling tool PyLESA to carry out a specified design/scoping/parametric/scenario 

analysis and is outlined below: 

1. Define and gather data on the local energy system to be modelled including 

resources, demands, supply, storage, grid connection, and control strategy. 

2. Optionally run the demand and resource assessment methods to generate hourly 

or sub-hourly profiles depending on available data from step 1. 

3. Input gathered the relevant input data from steps 1 and 2 on the local energy 

system into the input Excel workbook. 

4. Input the increments and ranges to be modelled within the required parametric 

design into the input Excel workbook. 

5. Run PyLESA for the specified analysis. 

5.1. Using a terminal (e.g. PowerShell) navigate to the relevant directory, i.e. 

“…/PyLESA/PyLESA”. 

5.2. Enter “python run.py”. 

5.3. When prompted enter the input Excel workbook filename (excluding the file 

extension “.xlsx”). 

6. Analyse the outputs saved in the “outputs” folder, particularly the KPIs, to inform 

the specified analysis. 

These steps will be explored further in Chapter 6 where the methodology will be 

applied to a sizing study for a residential district heating scheme. 

Steps 1, 2, and 3 relate to the required data input to PyLESA and this highlights the 

importance of the quality of the data to perform useful modelling. Step 4 defines the 

specific analysis to be carried out, step 5 executes the analysis, and step 6 post processes 

the analysis outputs. 

 Since the modelling methodology centres around the use of PyLESA, the rest of this 

chapter describes the capabilities and framework of this tool. Firstly, a discussion of the 

motivation behind choosing Python as the programming language is given. Then, a 

summary of the capabilities of the tool is provided with the contributions which have 

been made towards identified gaps in existing modelling tools, highlighted in Chapter 3. 
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Finally, the framework of the modelling tool and potential design studies are described. 

For further modelling details see Chapter 5 which provides a detailed description of the 

models and assessments used in the modelling tool. 

4.3. Motivation for Choosing Python 
Open source was identified as an important requirement when choosing a programming 

language. This is because open source software can be easily accessed, studied, and, built 

upon. The Open Energy Modelling (openmod) Initiative have highlighted that openness 

“… allows the community to advance the research frontier and gain the highest benefit 

from energy modelling for society” [176]. For the tool developed as part of this thesis to 

make a larger impact it should be open source as this allows the energy modelling 

community the ability to learn from and improve the developed modelling methodology. 

A gap in the review of modelling tools from Chapter 3 is the exclusion of open source 

modelling tools written in programming languages such as Python, GAMS, Java, Fortran, 

C++, Julia, etc. An overview of these tools is available on the opendmod website [171]. 

A significant proportion of these tools use Python as either the sole language, or partly 

contributing to the modelling or processing parts of the software.  

Python is an interpreted, high-level, general-purpose programming language with a 

design philosophy which emphasises the readability of the code. Its object-oriented 

approach allows for programmers to write clear, logical code which can be understood by 

others in the energy modelling community. Potential advantages of using Python include 

transparency, adaptability and re-usability of utilities developed across a range of 

applications including mathematics, optimisation, machine learning as well as energy 

systems [177–179].  This is, in addition to the rising popularity of Python across all 

scientists and engineers, where it has been dubbed “…the de facto standard for 

exploratory, interactive, and computation-driven scientific research” [180]. 

A particular advantage of using Python for energy modelling, as well as the ability to 

effectively disseminate the modelling code, is building on existing models. pvlib [181] is a 

Python package for modelling photovoltaic systems and windpowerlib [182] is a Python 

package for modelling wind turbines. Instead of developing the code for models of these 

technologies from scratch, using Python as the programming language means that it is 

easy to directly use these packages. 
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Python energy system models exist which could have research synergy with the topics 

tackled in this thesis. PyPSA (Python for Power Systems Analysis) [183] and pandapower 

[184] are tools which model and optimise electrical power systems. These have been 

applied to perform analysis of power systems, e.g. a study involving the sectoral 

interactions of a highly-renewable European energy system [185] which utilises PyPSA. 

oemof (Open Energy Modelling Framework) uses a novel approach of providing a 

toolbox for the representation, analysis and modelling of renewable energy and sector 

integrated systems [186], and OSeMOSYS (Open Source Energy Modelling System) is 

intended for national and regional policy development and provides a framework for the 

analysis of energy systems over the medium (10–15 years) and long term (50–100 years) 

using linear optimization or mixed integer programming [187]. 

These frameworks and models could have provided the basis for a starting point for 

the modelling developed in this thesis. However, this would have required a high-level of 

Python competence and instead a modelling tool was built primarily from scratch to aid 

the author in gaining proficiency in Python programming. Additionally, it would be an 

insightful future exercise for the review of modelling tools in Chapter 3 to include those 

identified through the openmod initiative as well as the developed tool. 

Based on the potential to build directly on the state of the art, and pass forward to 

others through open source, Python appears an apposite choice of a programming 

platform for developing new energy system modelling utilities to address the 

shortcomings of the existing tools. 

4.4. Tool Capabilities 
The capabilities of PyLESA are tabulated using the structure of the review of modelling 

tools from Chapter 3. Table 4.1 shows the screening requirements applied with comments 

detailing the result; the tool passes all the defined criteria. Table 4.2 shows the modelling 

and assessment capabilities following the categorisation and highlights, with red bold text, 

the capabilities which address the gaps in existing modelling tools. Figure 4.1 displays the 

models and energy flows of PyLESA. 

PyLESA has been developed with the aim to address the gaps identified in the review 

of existing modelling tools and therefore to advance the state of the art.  
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Table 4.1: Screening requirements applied to PyLESA 

Criteria Result Comment 

Scale Yes Developed specifically for local energy systems 

Case study Yes 
Application of tool to residential district heating 

scheme, see Chapter 6 

Planning-level design Yes Developed specifically for planning-level design 

Low and/or zero 

carbon tech 
Yes Wind turbine, PV, heat pump 

Storage/DSM Yes 
Storage: Electrical storage, hot water tank 

DSM: Fixed order control, MPC 

Timestep Hour 
Hourly timestep chosen for easier data collection 

and lower computational run time 

Electrical Yes 
Electrical demand, electrical RES production, 

electrical storage, and grid 

Thermal Yes 
Heat demand, heat pumps, auxiliary heat, and hot 

water tanks 
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Table 4.2: Categorisation of PyLESA tool capabilities 

Input data requirements and input support 

Demand profile generator Yes 

Resource assessor Yes 

Supply profile generator Modeller 

Electrical and thermal supply technology modelling capabilities 

Electrical supply Grid, PV, Wind turbine 

Thermal supply Auxiliary electric heat, Fuel boiler, Heat pump 

District heating Yes 

Design optimisation and output capabilities 

Design optimisation Parametric analysis 

Outputs EMI, EP, FA, FC, M, RP, SA  

Controls/DSM controls AC, OO, FO, MPC 

Storage modelling capabilities and underlying models 

Electrical storage Simple storage model 

Thermal storage Multi-node model 

Fuel synthesis No 

Fuel storage No 

Practical considerations 

Cost Free (open source) 

Access Download (open source) 

Support Author and ESRU 

Academic/commercial Academic 

User friendly Medium. Chosen because while Python is very popular, and the 

code is commented and structured, many existing tools do not 

require any programming proficiency 

Available expertise Yes/No 

Red bold text indicates the capabilities which address the gaps in existing modelling tools 

Key – Outputs: Autonomy (A); Emissions (E); Energy market interaction (EMI); Energy production (EP); Financial 
analysis (FA); Fuel consumption (FC); Human development index (HDI); Job creation (JC); Demands/supply match 

(M); Renewable penetration (RP); System analysis (SA)  

Controls/DSM Controls: Advanced control (AC); Demand curtailment (DC); Electric vehicles (EV); Fixed order 
(FO); Load shifting (LS); Modulating output (MO); Model predictive control (MPC); Non-modulating output (NO); 

Operational optimisation (OO) with objective function in brackets; User-defined order (UO)
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Figure 4.1: Models and energy flows of PyLESA
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4.5. Tool Framework 
The framework of PyLESA is described in this section which explores the interaction 

of the different models and assessment methods employed to model a local energy 

system. In brief, an Excel workbook is used for inputting data; the modelling is performed 

in hourly timesteps and models for the technologies and assessment methods are written 

in Python scripts; and outputs are in the form of an array of numerical outputs and 

graphical 3D plots of Key Performance Indicators (KPIs). Figure 4.2 is a graphical 

representation of the framework of the modelling tool and is described and shown below. 

The modelling tool follows an object orientated class structure throughout and 

typically technology models and assessment methods are calculated by initialising the 

appropriate class object and executing a method. Models are run using hourly timesteps 

with the input data of first timestep and number of timesteps used to calculate the 

modelling period. 

Data is input via an Excel workbook where a cover sheet, Figure 4.1 from earlier, 

displays the models and energy flows of PyLESA. Through this sheet the worksheets 

relating to the inputs for each of the models and assessment methods can be accessed and 

the necessary data input. Then a Python script is run which reads, processes and locally 

saves the input data from the Excel workbook. Demand assessment scripts can be run to 

synthesise heat and electricity demands which can inform the data input to the Excel input 

workbook. Additionally, parametric analysis inputs are also input into the Excel 

workbook. 

The fixed_order.py or mpc.py Python scripts contain control classes and methods which 

determine how the assessment and technology models are run. The first step for both is 

to run the renewable generation models and obtain renewable electricity production over 

the modelling period. Each timestep in the modelling period is taken sequentially and 

algorithms applied to determine the order of dispatch and magnitude of supply of the 

various input supply technologies in order to meet supply (further details in Chapter 5). 

Class objects for each of the technologies and the assessment methods feed into the 

control class to set constraints and calculate potential actions.  
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Using the run.py script automates the process of running all of the iterations of the 

model defined in the parametric analysis step. 

Results over the modelling period relating to a wide range of data are appended to a 

dictionary object and manipulated using the outputs.py script. The resulting output from 

running this script are a CSV file containing an array of numerical outputs and .png 

graphical 3D plots of KPIs. 

Figure 4.2: Framework of PyLESA showing workflow of a run 
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4.6. Tool Applications: Potential Design Studies 
Three types of design studies which can benefit from applying PyLESA are discussed in 

this section: a feasibility study, an operation study, and a sizing study. General information 

regarding the type of design study is given, before an example study is described to 

illustrate the benefits of applying PyLESA. 

4.6.1. Feasibility Study 

A feasibility study is an evaluation of the practicality of a proposed plan. For a local energy 

system this could aim to investigate the practicalities of the installation of a variety of 

sustainable energy options [188]. Several different steps can be taken to achieve this aim. 

An example feasibility study template is outlined to illustrate the role of PyLESA: 

1. Review a full range of energy supply and efficiency options and narrow down 

options based on their applicability to the local energy system. 

2. Technical appraisal of the potential performance of the narrowed down options. 

3. Economic assessment of the costs and benefits relating to the capital and 

operational costs as well as sources of funding and external financial benefits. 

4. Assessment of the environmental and social impacts of options. 

The first step is highly dependent on the specifics of the local energy system, including 

the geographical location, the weather resources, and availability of skills. An assessment 

of the local energy system, without the need for modelling, would allow the designer to 

rule out a number of options. This results in a narrowed down list of options which have 

practical potential. 

The second and third step require sufficiently detailed modelling such that the 

potential benefits of the narrowed down list of options are captured. Modelling the system 

using PyLESA results in technical and economic output KPIs which can be used to 

inform the technical appraisal and economic assessments required. In its current form 

PyLESA is limited in the technologies it can model. Therefore, where the narrowed down 

list contains technologies beyond PyLESA’s capabilities, either alternative modelling tools 

can be used, or new methods can be developed to further the capabilities of PyLESA. 

The fourth step involves an assessment of the environmental impacts, some of which 

can be calculated from the technical outputs from modelling along with additional 

environmental information of the technologies, i.e. emissions from CO2, NOx and SOx, 
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etc. Expert knowledge of the geographical area and population are required to perform a 

full environmental impact assessment (EIA) [189]. Assessment of the social impacts are 

out of the scope of this thesis. 

In conclusion, application of the PyLESA to a local energy system can inform the 

technical and economic aspects of the example feasibility study provided, which aims to 

investigate the practicalities of the installation of a variety of sustainable energy options. 

4.6.2. Operation Study 

An operation study examines the operation of an existing local energy system and aims 

to investigate avenues for improving performance. Often the controls on existing heating 

systems with low-carbon technologies are poorly designed or installed and analysis is 

required to identify opportunities for improvement.  

An example operation study could be to analyse an underperforming existing heat 

pump and hot water tank heating system. The study could use the following steps: 

1. Monitor the major components of the existing heating system, e.g. heat output 

and electrical usage of heat pump, hot water tank temperatures at different levels, 

demand flow rates and temperatures, etc. 

2. Model the heating system according to design to determine expected 

performance. 

3. Compare to identify differences between design and actual performance, and 

subsequently the components which are causing the performance gap. 

4. Model the heating system with alternative control strategies to identify potential 

improvements to the control design. 

The first step requires an energy monitoring kit capable of collecting all the relevant 

data, see [36] for an example open source monitoring kit. Description of this step is 

outside the scope of the work in this thesis. 

The modelling required in the second and fourth steps can be performed using 

PyLESA as long as the control to be modelled is the fixed order or model predictive 

control strategies. However, given the flexible and open source nature of PyLESA, 

bespoke control strategies can be developed and incorporated into the tool. In future a 

substantial catalogue of control strategies could be contained within PyLESA which 

would mean that operational studies, such as the example outlined here, would be able to 

compare several control strategies easily. 
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4.6.3. Sizing Study 

A number of methods have been used for carrying out sizing studies for energy systems 

and have been classified in literature [190] into three categories: probabilistic, analytical, 

and iterative. 

Probabilistic methods combine models for generation and load to create a risk model 

using a variety of optimisation indicators and design constraints. A number of studies 

have used this type of method to size solar, wind, and/or battery storage hybrid systems 

[191–193]. 

Analytical methods typically use computational tools to model energy systems and 

assess performance (the tools reviewed in Chapter 3 are often used in analytical methods). 

Different system configurations and component sizes are modelled using the 

computational tools and the outputs relating to system performance compared. Often 

tools have design optimisation algorithms which use a single or multiple objective 

function(s) to automate this process. HOMER [194] is an example of a computational 

tool which has been designed to carry this type of sizing study. 

Iterative methods use a recursive process which runs until a configuration is modelled 

which meets design specifications. Genetic algorithms are an optimisation method which 

are used to find global optimal solutions from a population of candidate solutions which 

are evolved towards better solutions [195]. A study developed a genetic algorithm to 

optimize the capacity and operation strategy for a CHP and ground source heat pump 

coupled heating system [196]. 

The data used in methods for sizing studies is also important. Methods which use 

average values such as monthly weather data and worst-case scenarios such as coldest day 

over 20 years to size different energy system components can lead to oversizing because 

of large variability in sub-monthly weather data and the low probability of worst-case 

scenarios. 

In the UK buildings industry, sizing methods rely on estimating peak demands for a 

design day (i.e. coldest day) and sizing the primary unit to match this peak [91]. For hybrid 

systems, typically the heat pump is sized to match base load and the auxiliary units are 

oversized to provide back-up and peaking capability. When including thermal storage 

another approach is to size the primary unit such that continuous output matches the 

demand for the design day, with the thermal storage sized to meet peaks. This approach 
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may enable the thermal storage benefits of plant optimisation and enhancing service and 

resilience but do not enable the other benefits: grid services, shifting electricity 

consumption according to tariffs, and increasing on-site generation self-consumption. 

The modelling methodology developed in this thesis uses an analytical approach 

coupled with a parametric analysis step to perform sizing studies. The capacities of the 

heat pump and hot water tank can be input as a range and the tool will automatically run 

multiple simulations. These are then graphically output as 3D plots where KPIs of the 

various size combinations can be readily compared. Extension of this method could be 

integration of an optimisation algorithm such as that employed in the analytical method 

used by HOMER, or an iterative approach using genetic algorithms. Additionally, a 

simpler future step is to extend the parametric analysis to other technologies such as 

capacity of battery storage, number of PV, and number of wind turbines. 

PyLESA will be showcased in Chapter 6 by carrying out a sizing study for an existing 

residential district heating scheme looking to incorporate heat pumps, thermal storage, 

time-of-use electricity tariffs, and predictive controls. 

4.7. Summary and Next Steps 
This chapter provides the context and outlines a high-level specification of the 

development and potential applications of the proposed modelling tool, PyLESA. 

The next steps are to delve into the details of the underlying models which underpin 

PyLESA and tackle the identified gaps in existing modelling tools. Then, in order to 

further validate and demonstrate the use of PyLESA, an application of the modelling 

methodology will be made. This will aid design decisions for a sizing study focussing on 

the optimal sizing combinations for heat pump and hot water tank capacities; comparison 

of the developed control strategies; and comparison of a range of existing and future 

electricity tariffs. 
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5. Detailing PyLESA: Underlying 
Models and Assessment 
Methods 

This chapter covers the input requirements, detailed description and validation of the 

underlying models and assessment methods used in PyLESA (Python for Local Energy 

Systems Analysis). A published peer-reviewed, conference paper by the author introduces 

aspects of the underlying models [197], but this chapter provides greater detail and 

contains a more complete description. 

Validation consists of discussion of previous applications of adopted methods, 

comparison to real data, or inspection and explanation of the outputs. Validation of the 

control strategies is undertaken as part of the application in Chapter 6, as a well-defined 

specific local energy system is required to discuss the operation of controls in detail. The 

following models and assessment methods are described: 

 Resource and demand assessment 

 Electricity production technologies 

 Heat pump and auxiliary heat units 

 Electrical storage 

 Hot water tank 

 Electricity tariffs 

 Fixed order control 

 Model predictive control 

 Modelling outputs including KPIs 

Contributions to the state of the art are made in the development of the following 

models to address previously identified gaps: 

Section 4.3 

 Open source development to enable accessibility and build upon previous work 

by writing the majority of the code in Python.  
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Section 5.3 

 Heat pump model which uses standard test data to generate performance maps 

using multiple variable linear regression analysis with explicit temperature 

dependence.   

Section 5.5                               

 Hot water tank modelled using a multi-node approach to represent thermal 

characteristics through state of charge dependence on node temperatures. 

Section 5.6                                                                                                                               

 Future wind-based electricity tariff generator.      

Section 5.8                                                                                                              

 Model predictive control strategy to optimise system operation.   

All of Sections 4 and 5 describe the contribution below                                                                                                               

 Novel tool for modelling local energy systems incorporating heat pumps, thermal 

storage, future electricity tariffs, and model predictive controls. 

5.1. Resource and Demand Assessment and 
Input Methods 

Methods have been developed that support the user to input the required resource and 

demand information that allows an energy system analysis to be placed in the correct 

context. The user may have direct access to the required input data at the correct timestep, 

or the user may need support in assessing these inputs indirectly, e.g. from available data 

sources or datasets.  

Resources is the term used here to describe weather and climate related parameters 

such as wind speed, direct and indirect solar insolation, and ground or water temperatures. 

These parameters influence the output of the models. For example, wind turbine and PV 

where wind speed and solar radiation data drives the power output, or a hot water tank 

located outside where air temperature is a factor in calculating heat loss. Resource 

assessment methods are included which provide access to available international and 

national datasets.  

A range of energy demands are considered, e.g. electrical power, heat, and transport 

energy demands across the range of entities that make up the district to be analysed. 
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Demand assessment methods are included which provide a means for synthesising hourly 

electrical and heat demand profiles from simple inputs, which are often all that is available 

at the planning-level stage. 

The PyLESA tool has been configured to be flexible and support multiple direct and 

indirect data entry methods. Data can be input into PyLESA using an Excel workbook 

template that has been created for this purpose as illustrated in Figure 5.1, Figure 5.2 and 

Figure 5.3. Methods that can be used to indirectly establish the required resource and 

demand inputs are described in more detail in the following subsections. 

  

Figure 5.1: Electrical and heat demand input requirements 
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5.1.1. Local Resources 

Accessing available data on local resources requires access to the necessary databases 

containing hourly datasets. For weather resources, local stations and reanalysis climate 

databases can be used to obtain datasets over several years. Typically, it is easier to access 

a greater number of year datasets from reanalysis databases than from weather stations 

(as these often require payment to access, e.g. Met Office in the UK [198]). Reanalysis 

Figure 5.2: Heat demand profile generator input requirements 

Figure 5.3: Weather resource input requirements 
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datasets allow access to data which enables energy system modellers to characterise the 

variability of renewable energy resources across days and months. They have emerged as 

a popular tool to the energy modelling community and have been applied to both 

national/global scale [199] and small-scale energy systems [200]. 

The website renewables.ninja [201] provides free and easy access to hourly data from 

the NASA MERRA reanalysis [202] dataset. The website offers a simple interface where 

a point on Google Maps can be clicked and the weather datasets for that point can be 

downloaded, see Figure 5.4 for a screenshot. MERRA has many advantages over other 

reanalysis datasets. It provides hourly data (other datasets use 3 or 6-hourly intervals), 

global coverage, has a high spatial resolution across Europe (1/2° latitude and 2/3° 

longitude, 50 × 50 km), and is stable over long-timescales [203]. MERRA includes direct 

and diffuse solar radiation, windspeed, air temperature, etc. for the past 37 years (from 

1987). The MERRA dataset is widely used in energy system modelling and has advantages, 

however studies have shown that it has systematic errors and needs to be corrected in 

order to reduce error. 

MERRA solar data was used as input to the Global Solar Energy Estimator (GSEE) 

to model PV power output for plants in different European countries and this was 

compared to measured data from individual and aggregated PV plants [199]. The use of 

MERRA input data was found to cause an overestimation of output when simulating 

individual sites. The study found that, for aggregated sites, that applying a simple linear 

correction to the MERRA solar data to adjust for the overestimation improved the fit of 

the simulated to measured power output. The authors concluded that it was likely that the 

corrected data was suitable for the type of energy modelling studies, such as planning-

level design, where the resultant PV power output uncertainty will be similar to other 

input data and model uncertainties. However, this study did not investigate applying this 

correction method when modelling individual PV sites. Therefore, while it the 

functionality to use MERRA input solar data after applying a simple linear correction 

factor is included in PyLESA, this approach has not been validated and it is better to input 

validated data. 

MERRA wind data was used to model wind turbine power output across Europe and 

it was found that it causes errors and suffers spatial bias when uncorrected, overestimating 

wind output by 50% in northwest Europe and underestimating by 30% in the 

Mediterranean [203]. The study describes a method of correcting the systematic error in 
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the MERRA dataset of the wind speed by using correction factors (both a multiplicative 

factor and a linear offset). The study developed a set of correction factors for countries 

across Europe, based on the ratio of observed to simulated wind capacity factor for each 

country. The study did not investigate the suitability for this correction method for 

modelling individual sites. Therefore, while correction factors can be used in PyLESA to 

account for over-estimation of the MERRA wind speed data, this method is not validated 

for individual wind turbines and it is recommended that validated data sources are used 

when available. 

PyLESA can accept any source of local resource input, and it is recommended that 

any data input is validated in order to reduce uncertainties and errors. However, at the 

planning-level stage there is often no validated and stable hourly data available and a 

corrected MERRA reanalysis dataset can be used to carry out concept design studies with 

the caveat that it introduces significant uncertainty into the output. 

 
Figure 5.4: Screenshot of renewables.ninja website for obtaining weather resource data from the MEERA dataset 

with the example of Findhorn, Scotland 

5.1.2. Electrical Demand  

PyLESA can support data input for non-heating electrical demand from a range of 

sources. For the UK context of the applications in this thesis, it has been configured to 

use electrical demand profiles on an hourly timestep such as those generated using 

HOMER software [194]. HOMER contains a module which allows the user to generate 

a profile based upon building types: residential, commercial, industrial and community. 
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Choice of peak demand month accounts for seasonal variability, and a random variability 

parameter is used to include hourly and daily variability. For additional accuracy, the 

resultant hourly profile over a year can be scaled to match the building mix to be modelled 

e.g. by using CIBSE benchmarks [204] for different building types. HOMER has been 

used to synthesise community (or local) electrical loads and validated in previous studies 

by comparing modelled output to real data [205,206]. An agreement suitable for planning-

level design was found. The resultant profile using HOMER is not a function of local 

weather conditions and therefore is fixed for any weather year. It could be adjusted to 

include an ambient temperature dependence to improve prediction.  

PyLESA can accept hourly electrical demand profiles from any source, and the 

method described here can be used where the user has access to and knowledge of the 

HOMER software. 

5.1.3. District Heating Demand 

Predicting heat demand is necessary to generate an hourly profile over a year and for use 

in a predictive control using lookahead periods. A review of existing, similar methods can 

be found in [207] which highlights the need for a simplified approach. 

A method for generating hourly profiles for the district heating demand of a residential 

scheme was developed in PyLESA using regression analysis of pre-simulated housing 

standard profiles, scaling based on floor area, and applying diversity using a moving 

average method. This method builds on work done in the development of the demand 

assessment method used in the Biomass decision support tool [91] which generates a 

design day demand profile and an annual energy estimation. The described method uses 

simple inputs typically available at the planning-level design stage and is included as a 

functionality of PyLESA. The Biomass decision support tool method that was adapted in 

PyLESA also covers non-domestic building types, in future this functionality could be 

easily incorporated in PyLESA. 

The flow diagram, Figure 5.5, shows flow of the PyLESA hourly heat demand profile 

generating method and the steps below describe the method in more detail: 

1. Buildings to be modelled are split into archetypes based upon the following ages 

and types. It is assumed that the age of the building indicates the building 

regulations applied during construction. 

1.1. Ages: pre-1983, 1983-2002, 2003-2007, and post 2007.  



91 | 
 

1.2. Building types: detached, semi-detached, mid-terrace, detached bungalow, 

semi-detached bungalow, ground floor flat, mid floor flat, and top floor flat.  

2. Detailed building simulation models provide standard profiles for each age and 

type and are a function of average day temperature and hour of day (see [91] for 

floor areas, U-values, ventilation rates, and controls used in the detailed 

simulation). Regression models are applied to the standard profiles to predict 

demand as a function of hour of day and outdoor temperature. 

3. The standard profiles are linearly scaled according to floor area which is calculated 

from the user input number of bedrooms and then each of the building types are 

multiplied by the total number of each type. 

4. Diversity is applied by smoothing the demand in each hour across multiple hours 

by applying a moving average algorithm. This calculation is based on flattening of 

the peak heat demand by a factor of 0.63 and is applicable for groups of dwellings 

above 10. This is in accordance with diversity factors used by district heat pipe 

manufacturers Isoplus [208]. 

5. Underground piping heat losses are calculated using industry standard pipe sizing 

software [208] which take the types, lengths and diameters of the different piping 

sections of the network, the design flow and return temperatures, and a design 

ambient temperature to calculate day heat loss. Using average ambient 

temperatures for each day of the design year, the tool is used to calculate the heat 

loss every day of a year. This is uniformly distributed across each hour of that day 

and added to the diversified heat demand.  

6. Hot water demand is added by either (i) a constant baseload by specifying the 

demand in kWh/person/day, or (ii) scaling standard profiles obtained from 

measurements in the EST 107-household survey from 2008 [209]. Further hourly 

specification of hot water demand has been investigated in literature [210]. 

This results in a method for predicting demand for any hour of the design year as a 

function of outdoor temperature for use in the control strategies.  

This method was applied to a 544 flat district heating scheme at West Whitlawburn in 

order to compare to an existing method which can predict annual heating demand (this is 

used as the case study for an application of PyLESA in Chapter 6). The scheme consists 

of a mix of ground, mid and top floor flats, and delivers both space heating and domestic 

hot water (assumed 2kWh/person/day). Each flat has a floor area of 70m2 and, due to 
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recent retrofit improvements to the building fabric, was modelled as post-2007. Annual 

underground piping losses were calculated to be 837MWh. Local monitoring data of air 

temperature from 2017 was also used. The developed method predicted an annual heat 

demand of 4017MWh. 

BREDEM (BRE Domestic Energy Model) [211] is a monthly calculation tool which 

can be used to predict space heating and hot water demand of properties connected to 

district heating networks. It predicts that post-2000 flats will have a combined space 

heating and hot water demand of 6218kWh [212]. The piping losses calculated in the 

previous method were then added as these were not included in this calculation. This 

method predicts an annual demand of 4220MWh. This is 5.1% higher than the prediction 

from the developed method and indicates that the developed district heating demand 

method predicts reasonable values. Further work and data are required to validate the 

hourly output of the method. 

Monitoring data was collected for the heat demand at WWHC over the year 2017 and 

the annual demand for this year was measured to be 3301MWh. This is lower than the 

demand modelled in both the developed model and in BREDEM. It was not investigated 

whether 2017 was a typical weather year, or if it was particularly mild or warm, which 

would have an impact on the heat demand for this year. Other factors causing this include 

the social demographics of the residents, many are in fuel poverty, and under-occupancy, 

with the housing scheme not always operating at full occupancy. This highlights the 

uncertainty in heat demand due to the variable behaviour of different occupants. Work 

has previously captured this behaviour when predicting heat demands [213], and this 

could be incorporated within PyLESA in future.  

PyLESA can accept a heating demand profile from any source. The demand method 

presented here is a useful means of generating an hourly profile based on simple inputs, 

which may be all that is available at the planning stage.  
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Figure 5.5. Flow diagram of district heating demand prediction method with user inputs in text bold 
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5.2. Electrical Production Technologies 
The electrical production technologies modelled in PyLESA are wind turbines and PV. It 

is assumed that these are situated on-site and can directly meet the local electrical demand 

via a local network which allows self-consumption. A grid connection is also included in 

PyLESA which provides the option to configure limitless import and export electricity 

tariffs, described in detail in Section 5.6.  

The renewable electricity production technology models enable assessment of their 

generation against local demands along with the opportunities for sector coupling and 

load shifting through storage and controls to increase the utilisation of on-site renewable 

generation. For example, heat pumps controlled to utilise renewable generation including 

load shifting using thermal stores.  

Both the wind turbine and PV models in PyLESA are existing Python modules which 

have been independently validated [214,215]. Figure 5.6 and Figure 5.7 show the input 

requirements for the wind turbine and PV models respectively. 

 

 

Figure 5.6: Wind turbine input requirements 
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5.2.1. Wind Turbine Model and Validation 

Windpowerlib [182] is an existing Python library which contains functions and classes for 

calculating the power output from wind turbines and is used in this methodology. A 

choice between a user input wind curve and selecting from a database of power curves 

from different manufacturers is provided to simplify the input requirements of the user. 

Hub height and rotor diameter are the additional technical inputs. Local condition inputs 

are wind speed (including measurement height) and roughness length as mandatory, and 

pressure, air density, air temperature, and wind speeds at different heights as optional. 

The power is output in hourly timesteps.  

A first step validation of the Windpowerlib method is through examination of the 

previous applications [186]. In this work a further validation was carried out using an 

example of the modelling output for the power output from 5x Vestas V27 wind turbines 

located at Whitelee, Scotland, for weather data from the year 2017. These wind turbines 

individually have a rated power of 225kW, 27.0m diameters, and cut-in and cut-out wind 

speeds of 3.0m/s and 25m/s respectively [216]. The modelled output is shown in Figure 

5.8 and Figure 5.9. The modelled capacity factor is 20% compared to a reported actual 

2017 capacity factor of 18% [217] which shows sufficient agreement for the Scottish 

context, which in conjunction with the prior validations confirms it is suitable for 

planning-level design. 

 

Figure 5.7: PV input requirements 
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Figure 5.8: Monthly wind power output for each month and output for year 

Figure 5.9: Hourly wind power output for example winter and summer weeks 
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5.2.2. Photovoltaics (PV) Model and Validation 

PV is modelled using the PVLIB Python library [181]. The model consists of a module 

and an optional inverter, and the power output is dependent on the technical model and 

the location. A database for the module and inverter is used to input measured 

performance characteristics based on PVUSA test conditions [218]. The surface azimuth, 

surface tilt, surrounding surface type, and a multiplier are also used to complete the 

technical model. PV location is defined by latitude, longitude, and altitude and local 

conditions by wind speed, air temperature and at least two of direct normal irradiance, 

diffuse normal irradiance, and global horizontal irradiance. The power is output in hourly 

timesteps. 

Validation of the PVLIB method is through previous applications [219] and using an 

example of the modelling output for the power output from 6x residential PV panels 

located at Findhorn, Scotland for weather data from the year 2017 as shown in Figure 

5.10. The modelling gives an 1660kWh annual output. Two existing modelling tools and 

a field monitoring trial were used to independently calculate annual output: 

 PVGIS [220]: 1540 ± 73.5kWh 

 Renewables.ninja [201]: 1719kWh 

 BRE field trial [221]: 1500kWh (results for this latitude suggest 800kWh/kWp) 

 PVLIB: 1660kWh 

The PVLIB shows a sufficiently good correspondence with these monitoring studies 

and models to allow it to be used for the planning-level stage that PyLESA has been 

developed to support.  

Windpowerlib and PVLIB have been demonstrated to be useful Python modules and 

are particularly useful because they are open source and can be easily accessed and the 

source code inspected.  They form the models utilised to model on-site renewable power 

technologies within PyLESA.  
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5.3. Heat Pumps and Auxiliary Heat Units 
The focus of this work, as established earlier, is to investigate the role of heat pumps in 

conjunction with thermal storage and controls in converting renewable electricity into 

heat energy that usefully meets heating demands. Heat pumps are often not implemented 

as stand-alone heat generation but rather they are commonly integrated with direct electric 

'boost heaters' and back-up heating such as gas boilers. In this work these integrated 

systems have been modelled to be used to provide hot water for use in district heating. 

However, the underlying models can be directly used for mini-districts, single residential 

buildings, etc., with only minor modification of PyLESA. An example of this would be 

modifying the code to model a mini-district energy centre delivering heat to a few flats 

with separate hot water tank and heat pump operation for space heating and domestic 

hot water provision (this has been done but is not reported in this thesis).  

Heat pumps are commonly modelled at the planning stage using simple energetic 

models which do not account for temperature dependent COP. Additionally, available 

data for specific heat pumps is often limited and COP under one set of conditions is 

provided. This leads to an overestimation of seasonal performance. 

Figure 5.10: Hourly PV output for year at Findhorn 
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Here, a more detailed heat pump modelling approach is developed going beyond the 

current state of the art in available modelling tools highlighted in Chapter 3. This approach 

requires standard test data to generate performance maps using multiple variable linear 

regression analysis with explicit temperature dependence.  

The thermal production technologies modelled in PyLESA include large and smaller 

scale heat pumps as primary units, back up and boost direct electric heaters, and fuel 

boilers as auxiliary units.  

There are several key characteristics which influence the performance of heat pumps. 

There is variation in the steady state thermal output and power consumption across the 

operating range of heat source and heating system water temperatures and flow rates. 

Transient behaviour including during start-up, shut-down and setpoint variations are 

largely influenced by the thermal inertia of the heat pump, i.e. the energy absorbed by the 

different components (primarily the condenser). A study [222] concluded that for an 

ASHP the transient induced reduction in COP is less than 2% for correctly designed 

systems with continuous run times above 15 minutes. Fixed output heat pumps can run 

the compressor in two modes: on or off. Their performance can be significantly reduced 

by excessive cycling caused by oversizing, with a study suggesting a seasonal efficiency 

reduction up to 25% under stated circumstances [223]. Variable speed heat pumps can 

vary thermal output by controlling the speed of the compressor which is typically achieved 

through an inverter-based variable speed drive or a stepwise compressor speed controller. 

ASHP evaporators can grow frost which requires defrost mechanisms. Studies have 

reviewed defrosting techniques and show COP can be reduced by around 15% in some 

circumstances [224,225]. ASHPs therefore require additional modelling consideration 

with respect to the defrost cycles which effect performance in temperature regions where 

freezing conditions are possible. Water source heat pumps (WSHP) are assumed to have 

a constant flow or limitless supply of ambient water, meaning that there is no degradation 

of the source temperature. Ground source heat pump (GSHP) models have been 

developed throughout literature [226] but an explicit ground model is not included in this 

work. 

Approaches for modelling heat pumps can be categorised into black box, grey box, 

and white box. Black box models do not factor in the physical system but consist of look-

up tables or equation fit models. Grey box models can include aspects of the physical 

system such as refrigeration cycle equations, fundamental system characteristics such as 
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defrost cycles, and empirical-based equation fit models. White box models use explicit 

models to represent each of the major components of the heat pump thermodynamic 

cycle. 

Three separate grey box approaches for modelling ASHP and WSHP, with different 

modelling detail input requirements, have been developed in PyLESA and can each be 

used in the methodology depending on the available input data and desired level of detail 

in the available outputs. The three approaches are:  

 The Generic Regression Model 

 The Lorentz Model 

 The Standard Test Regression Model 

The Generic and Standard Test regression models use performance maps based upon 

empirical data while including an algorithm to incorporate defrosting for ASHPs. The 

Lorentz model uses one empirical data point along with the idealised Carnot cycle 

performance to calculate an estimation of heat pump performance. The Generic 

Regression Model and The Standard Test Regression Model approaches are grey box 

quasi-steady state as they include a reduction in performance to account for the dynamic 

effects and defrosting without fully capturing the associated physical details of evaporator 

design, the system defrosting cycle, and associated controls. The Lorentz Model is grey 

box steady state as it does not account for dynamic effects and defrosting, rather being 

based on a simple equation. 

General inputs required for the heat pump modelling in PyLESA are heat pump type 

(ASHP or WSHP/GSHP), modelling approach, rated thermal capacity of the heat pump, 

the difference between the source in and out temperatures, operation mode (variable or 

fixed speed), auxiliary heat requirement (monovalent or bivalent), and data input type 

(peak performance if data does not include defrost cycling). Figure 5.11 shows the heat 

pump modelling input Excel worksheet with the standard test regression model activated. 

The three methods are set out in the following sections. 
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Figure 5.11: Heat pump modelling input sheet with standard test regression model activated 
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5.3.1. Generic Regression Model  

This approach uses a generic regression performance map to calculate the COP as a 

function of flow temperature and ambient temperature. The following regression 

relations were obtained from [227] and are based upon surveys of manufacturer 

datasheets and field trials. While they were obtained for household-scale heat pumps, the 

assumption is made that they are also applicable to large-scale heat pumps. Ideally, a 

dataset of performance data for large-scale heat pumps would be used, however, this was 

not readily available, but this can be done as future work. Additionally, for ASHPs a 15% 

reduction in COP is assumed below 5°C. For the COP of an ASHP, where ∆𝑇 is the 

difference between flow temperature and ambient temperature: 

𝐶𝑂𝑃ௌு = 6.81 − 0.121∆𝑇 + 0.000630∆𝑇ଶ                                  𝑓𝑜𝑟 15 ≤ ∆𝑇 ≤ 60                          

The same paper includes a regression function for a generic ground source heat pump 

(GSHP) and is included here as also representative of a water source heat pump (WSHP) 

due to similar dynamics of the ambient sources: 

𝐶𝑂𝑃ௐௌு = 8.77 − 0.150∆𝑇 + 0.000734∆𝑇ଶ                                𝑓𝑜𝑟 20 ≤ ∆𝑇 ≤ 60                          

This approach is useful when quickly appraising heat pumps without data for a specific 

heat pump. Figure 5.12 shows the application of the generic regression model to a 14kW 

ASHP by displaying the COP variation with flow and ambient temperature. 

 
Figure 5.12: Generic ASHP regression model COP variation for a 14kW heat pump 
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5.3.2. Lorentz Model 

The Lorentz approach involves calculating a real COP based upon one set of operating 

conditions and then calculating the maximum COP, the Lorentz efficiency, under the 

same operating conditions. The real COP divided by the Lorentz efficiency gives the heat 

pump efficiency. For each timestep the Lorentz efficiency for the conditions is calculated 

and then multiplied by the heat pump efficiency to give the modelled COP. The maximum 

thermal output in a timestep is given by the input maximum electrical capacity multiplied 

by the modelled COP. This follows the same modelling approach as used in a standard 

industry modelling tool EnergyPRO (Figure 5.15) and detailed equations can be found in 

the user manual [228]. This approach is useful with limited data, i.e. COP under a single 

operating condition, but likely leads to overestimation of COP in other operating 

conditions. 

 

Figure 5.13: Flow diagram of generic regression model 
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Figure 5.14: Flow diagram of Lorentz model 

Figure 5.15: Lorentz model output from EnergyPRO [218] 
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5.3.3. Standard Test Regression Model 

The Standard Test Regression Model is based on multiple variable linear regression 

analysis using measured COP and duty (maximum thermal output) at a range of test 

conditions. Ambient temperature (Ta) and flow temperature (Tf) are used as the two 

independent variables. Coefficients for the following 2nd degree polynomial functions for 

COP and duty are calculated automatically based on the input data. Predictions are made 

in each of the timesteps using these equations and the flow and ambient temperatures.  

𝐶𝑂𝑃 = 𝛼 +  𝛼ଵ𝑇 +  𝛼ଶ𝑇 + 𝛼ଵଵ𝑇
ଶ + 𝛼ଶଶ𝑇

ଶ + 𝛼ଵଶ𝑇𝑇  

𝑑𝑢𝑡𝑦 = 𝛽 +  𝛽ଵ𝑇 +  𝛽ଶ𝑇 + 𝛽ଵଵ𝑇
ଶ + 𝛽ଶଶ𝑇

ଶ + 𝛽ଵଶ𝑇𝑇 

If the data input is at peak performance, defrost cycling and dynamic effects, such as 

start up and shut down, are not included in the data. Thus, for ASHPs a 15% reduction 

in COP to account for defrosting is assumed below 5°C but not included for WSHPs. If 

the data input is at integrated performance, then cycling behaviour and dynamic effects 

are included in the testing. This should be the case if measurements are taken under 

standard test conditions according to EN14511 [229]. 

This method is the most detailed of the three approaches and should yield realistic 

heat pump performance across a wider operational range. While the necessary data is not 

always readily available, using standard test conditions means that manufacturers should 

possess the necessary data and correspondence could be sought to obtain this data. Part 

load effects on COP for variable speed heat pumps are neglected in all three modelling 

approaches. Inclusion of this would be a useful future development. 

Validation of the heat pump models is difficult because the models are generated 

based upon the input data. Therefore, it is up to the user to ensure that the input data is 

validated and accurately reflects the performance of the heat pump to be modelled. In 

Chapter 6 the modelling methodology is applied to the case study using the Standard Test 

Regression Model and the performance of the heat pump will be explored. 
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Figure 5.16: Standard test regression model variation of COP 

Figure 5.17: Standard test regression model variation of duty (maximum output) 
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5.3.4. Auxiliary Heat Units and Schematic of Setup 

Heat pumps are not generally used as the sole heating unit and are typically installed 

alongside auxiliary heat units such as gas boilers and direct electric heaters. In these 

systems the heat pump is a priority unit and the auxiliary units allow under sizing of the 

heat pump to reduce capital costs. Additionally, they provide resilience to the heat supply 

for periods of breakdown or planned maintenance. 

Figure 5.19 is a schematic of the connections between the heat pump, electric heater, 

and thermal store, all connecting to a district heating network. 

Figure 5.18: Flow diagram of standard test regression model 
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5.4. Electrical Storage 
Storage models for battery storage and hot water tanks are employed to investigate DSM 

strategies. Electrical storage models have been developed in detail in previous studies and 

utilised in different tools [83]. The input requirements for the electrical storage model are 

shown in Figure 5.20. 

In PyLESA a simple battery model is used which captures the essential technical 

parameters: capacity, initial state, max charging/discharging, efficiency 

charging/discharging, min/max state of charge, and self-discharge. A schematic of the 

energy flows is displayed in Figure 5.21.  

Figure 5.20: Electrical storage input requirements 

Figure 5.19. Heat pump, thermal store, electric heater, and heat network using a 2-port connection 



109 | 
 

Given the generic nature of the model, any electrical storage technology, e.g. flow 

batteries, lithium-ion batteries, lead-acid batteries, which operates on the appropriate 

timestep can be modelled in a low-detail manner by using simplifying assumptions. 

This simplistic model has been included as a starting point for future work on 

incorporating a more advanced electrical storage model for technologies such as batteries, 

pumped hydro, flywheels, etc. Therefore, this model has not been validated but given its 

widespread usage in existing modelling tools, see Section 3.2.5, it is widely accepted within 

current practice as a model capable for planning-level modelling and is included in 

PyLESA. 

𝑄(𝑡 + ∆𝑡) =

⎩
⎨

⎧
𝑄(𝑡) + 𝜂𝑄(∆𝑇) − 𝑄௦(∆𝑇) 𝑖𝑓 𝑄 ≥ 𝑄 𝑎𝑛𝑑 𝑄ௗ = 0   

𝑄(𝑡) − 𝜂ௗ𝑄ௗ(∆𝑇) − 𝑄௦(∆𝑇) 𝑖𝑓 𝑄ௗ ≥ 𝑄ௗ 𝑎𝑛𝑑 𝑄 = 0

𝐶 𝑖𝑓 𝑄(𝑡) + 𝜂𝑄(∆𝑇) − 𝑄௦(∆𝑇)  ≥ 𝐶 𝑎𝑛𝑑 𝑄ௗ = 0

𝑀 𝑖𝑓 𝑄(𝑡) − 𝜂ௗ𝑄ௗ(∆𝑇) − 𝑄௦(∆𝑇)  ≤ 𝑀 𝑎𝑛𝑑 𝑄 = 0

 

 

The stored energy Q at the time 𝑡 + ∆𝑡 can be expressed in the above equation where 

∆𝑇 is the timestep, 𝜂 is the charging efficiency, 𝜂ௗ is the discharging efficiency, 𝑄(∆𝑇) 

is the charging energy, 𝑄ௗ(∆𝑇) is the discharging energy, 𝑄௦(∆𝑇) is the self-discharge, 

𝑄 is the max charging rate,  𝑄ௗ is the max discharging rate, C is the capacity, and M 

is the minimum state of charge. 

 

Figure 5.21. Simple battery model schematic 
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5.5. Hot Water Tank 
Hot water tanks provide a cheap form of mid-term (from days to minutes) thermal 

storage, particularly when used at scale for district heating, and in comparison, to battery 

storage. A contribution is described in this section of the use of a multi-node approach in 

PyLESA to represent the stratification and to incorporate thermal characteristics through 

state of charge dependence on node temperatures.  

The contributions of this work consist of (i) an extension of the Duffie and Beckman 

model [230] by the development of an ambient heat loss method, and (ii) Python code 

implementing the multi-node model which can be utilised in PyLESA and in other 

planning-level tools. 

The approach taken is similar to those implemented in detailed building design 

simulation such as TRNSYS [231]. This addresses the gap which has been identified in 

planning-level modelling tools in representing the temperature dependence of hot water 

tanks. Figure 5.22 shows the PyLESA input requirements for modelling the hot water 

tank.  

The hot water tank is modelled as a cylinder which is vertically orientated with an 

outside shell of insulation. The tank is configured using a 2-port connection and the use 

of 5 temperature sensors, in accordance with CIBSE guidance [232] for district heating 

design, see Figure 5.19 for a schematic showing this configuration.  

The main characteristics [230] which require capturing in the modelling are: 

 Capacity per unit volume 

Figure 5.22: Hot water tank modelling input requirements 
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 Temperature range of operation 

 Means and power requirements of charging and discharging 

 Structural elements of tank 

 Control 

 Degree of stratification 

Physical processes of hot water tanks include: (i) heat losses through tank due to a 

difference in internal temperature and external ambient temperature, (ii) conduction heat 

transfer in the water due to temperature differences at different layers, (iii) convective 

flows due to cooling of water at edge of tank resulting in density differences, (iv) buoyancy 

induced flows due to load temperature being lower than temperature of layer it is entering 

at, (v) entering fluid mixing with lower temperature water due to high flow rate (carrying 

kinetic energy), and (vi) recirculation of water from connections. 

A selection process [233] was used to select a model to represent the stratification in 

the tank, see Figure 5.23. The main selection decisions were to select a suitable model for 

simulating without data and a balance between accuracy and computational time. The 

multi-node model was chosen as it fits these criteria. In addition, due to the use of 5 

temperature sensors a 5-node model was selected as a default, however, the number of 

nodes can be changed by the user. 
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In the multi-node model, the hot water tank is divided into N nodes which are disks 

of fixed volumes. Each node has energy and mass balance equations which can be used 

to determine the changes in temperature due to input and output flow. This results in N 

differential equations which are solved simultaneously to calculate the final node 

temperatures for each node. Duffie and Beckman’s description of a multi-node model 

provides the basis for the model developed here [230].  

Figure 5.24 shows the energy balance for node i, including the top and bottom nodes 

and above and below nodes. The final energy balance equation for each node, denoted i, 

contains four terms which each have an explicit node temperature dependence: 

 Ambient heat loss between inside and outside of the tank. 

 Charging and discharging. 

 Mixing between nodes. 

Figure 5.23: Decision tree for modelling stratification of hot water tank 
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5.5.1. Ambient Heat Loss 

The ambient heat loss is applied to each node in the multi-node model, with additional 

heat loss for the top and bottom nodes. The calculation uses the following steps: 

 Calculate ideal conduction losses through the cylinder at the side and the 

top/bottom, including a correction factor to account for insulation imperfections.  

 Estimate losses from openings in insulation, e.g. pipe connections.  

 Factor by a user input empirical sensitivity parameter. 

Heat losses from a hot water storage tank occurs through the insulation material due 

to the temperature difference between the water medium inside the tank and the 

temperature outside the tank. If the tank is located indoors then a 15°C constant room 

temperature is assumed, and if it is located outside then outdoor air temperature is 

assumed. Figure 5.25 shows a schematic of the hot water tank to be modelled; a vertical 

cylinder with an outside shell of insulation. The curvature of the top and bottom surfaces 

is assumed to be negligible and modelled as flat. 

Figure 5.24: Energy balance for node i, including the top, bottom, above, and below nodes 
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The heat loss from the tank can be estimated by assuming the insulation material 

provides the only significant resistance to heat flow, i.e. neglecting the relatively small 

convective resistances on the inside and outside tank surface, and the minor conductive 

resistances provided by the tank wall and the tank cladding. This calculation also assumes 

the tank is at steady state conditions. The heat losses through the horizontal section and 

the top and bottom plane wall sections are included in the calculation. The losses at the 

corners are neglected. 

For the horizontal losses, Fourier’s law of conduction (the only heat transfer 

considered) is used to calculate the heat transfer between inside the tank and outside the 

tank (for cylindrical tank): 

𝑄ௗ,௬ = −𝑘𝐴
𝑑𝑇

𝑑𝑟
 

where    𝐴 = 2𝜋Δ𝑟𝐿 

integrating both sides… 

Figure 5.25. Hot water tank schematic to be modelled 
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𝑄ௗ,௬ = 2𝜋𝑘𝐿
𝑇 − 𝑇

ln (𝑟ଶ 𝑟ଵ)⁄
 

Taylor expansion of the natural log, assuming small r2 – r1… 

ln(𝑟ଶ 𝑟ଵ⁄ ) =  
2Δ𝑟

𝑟ଶ + 𝑟ଵ
 

𝑄ௗ,௬ = 𝜋𝐿𝑘(𝑟2 + 𝑟1) 
𝑇 − 𝑇

𝑟2 − 𝑟1
൨ 

where Qcond,cyl is the horizontal heat transfer, k is the thermal conductivity, A is the 

surface area, L is the height of the cylinder, Ti is the temperature of node i, T0 is the 

ambient temperature, r2 is the total cylinder radius, and r1 is the internal cylinder radius.  

 

 

Figure 5.26: Schematic showing horizontal conduction loss from hot water tank through the insulation layer 



116 | 
 

For the vertical losses from the top and bottom plane walls: 

𝑄௧/௧௧ = −𝑘𝐴
𝑑𝑇

𝑑𝑥
 

𝑄௧/௧௧ = 𝑘𝜋𝑟ଵ
ଶ 

𝑇 − 𝑇

𝑟2 − 𝑟1
൨ 

Combining the horizontal and vertical heat losses: 

𝑄ௗ,௬ + 𝑄௧/௧௧ = 𝑘𝜋𝑟ଵ
ଶ𝐿 

𝑇 − 𝑇

𝑟2 − 𝑟1
൨ (𝑟ଶ + 𝑟ଵ) 

The calculation for this first step then includes a correction factor, Fc, to account for 

insulation imperfections, such as voids and thermal bridges between the inner tank shell 

and outer casing (e.g. a stainless-steel ring supporting the inner tank shell on the ground). 

𝑄ௌ௧ ଵ = 𝐹 (𝑄ௗ,௬ + 𝑄௧/௧௧) 

Table 5.1: Thermal conductivity of insulation materials 

 

Further corrections are made by considering the openings in the insulation such as for 

pipe connections, valves, thermostats and electric elements. 

Table 5.2: Empirical approximations of heat loss due to tank insulation openings 

Tank insulation opening Heat loss increase [kWh/24 h 

@ ΔT = 55 K] 

Tank opening (e.g. thermostat pocket) 𝐴  ×  27 

Uninsulated pipe or fitting (e.g. PTR valve) 𝑑  ×  5 

Insulated pipe or fitting 𝑑  × 3.5 

 

Losses from these are added to the previously calculated heat losses to give a final 

heat loss (divide by 0.024 to convert from kWh/day to W). PTR valve is a pressure relief 

valve, thermostat pocket is for thermostats (i.e. temperature sensors), and insulated pipe 

or fitting is where water is taken in and out of the tank. 

Insulation Material Thermal conductivity [W/m.K] 

Polyurethane 0.025 

Fibreglass 0.040 

Polystyrene 0.035 
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𝑄௦௦௦ = 𝑄ௌ௧ ଵ + 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠𝑒𝑠 

The final step is to add an empirical factor, Fe, which can be input by the user who 

has data on heat loss from the hot water tank to be modelled. This is introduced as hot 

water tanks have been monitored to have higher heat losses than theoretical models 

suggest.  

𝑄௦௦௦  =  𝑄௦ ∗  𝐹 

An alternative approach would have been to determine a regression equation based 

on existing hot water tank data and to determine a lumped heat loss coefficient which 

encompasses all the theoretical considerations included here. However, this approach 

would require monitored data. Therefore, it was decided, since the work here focusses on 

design, that this data may not be available and that a theoretical approach with correction 

factors was more suitable. 

5.5.2. Charging and Discharging 

The hot water tank can be in a state of charging, discharging, or standby. These states 

dictate which of the flows and returns are active to and from the heat source and demand. 

Flow from the heat source to the tank and flow from the tank to the heat demand are 

only to or from the top node. Return from the heat demand to the tank and return from 

the tank to the heat source are only to or from the bottom node. This means that in each 

modelling timestep the maximum charge/discharge is limited to the volume of one node. 

To get around this an internal hot water tank timestep is used based on the number of 

nodes. For example, take a hot water tank with 5 nodes and a volume of 1000L. The 

maximum charge/discharge in one timestep is a total flow of 200L but there may be 

situations where the charge/discharge is larger than this. Therefore, for each model 

timestep (1 hour) the number of internal hot water tank simulation timesteps is the same 

as the number of nodes. In this example there are 5 nodes, so 5 hot water tank internal 

timesteps are run for each model timestep in order for the tank to be able to 

charge/discharge fully in each simulation timestep. 

The state of the hot water tank is calculated using the following charging and 

discharging functions. 



118 | 
 

 

If the charging function is 1 then the node is charging, and the following charging 

term is non-zero. 

 𝑄 =  𝐹𝑚ప̇ 𝑐𝑇 

where Fc is the charging function, 𝑚 is the mass flow of charging water into the 

node i, 𝑐 is the specific heat of water, and 𝑇 is the temperature of charging water. 

Similar equations are used for the discharging term. 

 

𝑄ௗ௦  = −𝐹ௗ𝑚௨௧̇ 𝑐𝑇 

where Fd is the discharging function, 𝑚௨௧ is the mass flow of discharging water out 

of the node i, 𝑐 is the specific heat of water, and 𝑇 is the node temperature. 

5.5.3. Mixing Between Nodes 

The mixing between nodes is dependent on the state of the hot water tank, and therefore 

the charging and discharging functions from above. The following equations, along with 

the state of the tank, are used to determine the mixing term. 

If the hot water tank is in a state of charging, the direction of mixing between node i 

and the node above is downwards: 

𝑄௫ = 𝐹𝑚ௗ௪̇ ∗ 𝑐 ∗ 𝑇ିଵ 

If the hot water tank is in a state of discharging, the direction of mixing between node 

i and the node above is upwards: 

𝑄௫ = 𝐹ௗ ∗ −1 ∗ �̇�௨ ∗ 𝑐 ∗ 𝑇 

In these equations a negative sign is representative of flow leaving the node i. 
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If the hot water tank is in a state of charging, the direction of mixing between node i 

and the node below is downwards: 

𝑄௫ = 𝐹 ∗ −1 ∗ 𝑚ௗ௪̇ ∗ 𝑐 ∗ 𝑇 

If the hot water tank is in a state of discharging, the direction of mixing between node 

i and the node below is upwards: 

𝑄௫ = 𝐹ௗ�̇�௨ ∗ 𝑐 ∗ 𝑇ାଵ 

5.5.4. Final Energy Balance Equation 

The final energy balance equation for a node, denoted i, contains the four terms which 

are described above and can be written as: 

൫𝑚𝑐൯
𝑑𝑇

𝑑𝑡
= 𝐹�̇�𝑐𝑇 − 𝐹ௗ�̇�௨௧𝑐𝑇 + �̇�ௗ௪𝑐𝑇ିଵ − �̇�௨𝑐𝑇 − �̇�ௗ௪𝑐𝑇

+ �̇�௨𝑐𝑇ାଵ − 𝐹  𝐹𝑘 
𝑇 − 𝑇

𝑟ଶ − 𝑟ଵ
൨ 𝜋[𝑟ଵ

ଶ + ℎ(𝑟ଶ + 𝑟ଵ)] + 𝑐. 𝑙. ൨ ൫𝑚𝑐൯ 

This equation can be written in a simpler format using coefficients: 

𝑑𝑇

𝑑𝑡
= 𝐴𝑇 + 𝐵𝑇ିଵ + 𝐶𝑇ାଵ + 𝐷 

where the coefficients are: 

𝐴 ∗ ൫𝑚𝑐൯ = −𝐹ௗ�̇�௨௧𝑐 − �̇�௨𝑐 − �̇�ௗ௪𝑐

− 𝐹 𝐹𝑘 
𝑇

𝑟ଶ − 𝑟ଵ
൨ 𝜋[𝑟ଵ

ଶ + ℎ ∗ (𝑟ଶ + 𝑟ଵ)] ൫𝑚𝑐൯ 

𝐵 ∗ ൫𝑚𝑐൯ = �̇�ௗ௪𝑐 

𝐶 ∗ ൫𝑚𝑐൯ = �̇�௨𝑐 

𝐷 ∗ ൫𝑚𝑐൯ = 𝐹�̇�𝑐𝑇 + 𝐹𝐹𝑘 
𝑇

𝑟ଶ − 𝑟ଵ
൨ 𝜋[𝑟ଵ

ଶ + ℎ(𝑟ଶ + 𝑟ଵ)]൫𝑚𝑐൯

+ 𝐹𝑐. 𝑙. ൫𝑚𝑐൯ 

Each node can be written in this form which together are a set of N first-order 

ordinary differential equations. These are solved simultaneously using the odeint function 

from the SciPy software package which is commonly used to solve a system of ordinary 

differential equations [234]. 
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5.5.5. Validation 

The developed multi-node model was validated by comparison between modelled output 

and monitored data collected from a biomass and hot water tank district heating system 

at West Whitlawburn (see description in Section 6.2).  A 10-hour charging period, a 3-

hour discharging period, and a two-day period of operation are analysed by interpreting 

the difference in node temperature evolutions between the model output and the data. 6 

nodes were used in the model to directly compare to the 6 temperature points available 

from the monitored data, and 15-minute timesteps were used in both the modelling 

output and monitored data. The analysis is undertaken both graphically, with explanation 

of differences, and statistically, through calculation of the absolute error and the mean 

absolute percentage error. While graphically the evolution of the node temperatures looks 

different for the modelled output and the monitored data, the statistical analysis shows 

that there is a small absolute percentage error for each node and on average across all 

nodes. This validation section ends with a comparison of the outputs from the multi-node 

model and a simple energetic model. 

5.5.5.1. Charging Period (10-hour) 

Figure 5.28 shows the evolution of the node temperatures over a 10-hour charging period 

for the modelled output and monitored data. The model output shows in the first timestep 

the top node charging, along with increases in the temperatures of the nodes below the 

top node, due to mixing from the nodes above. In subsequent timesteps all nodes are 

Figure 5.27: Flow diagram for hot water tank model 
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charged and, additionally, increase in temperature due to mixing from the nodes above. 

The monitored data displays a node temperature evolution with short periods of each 

node increasing in temperature from low to high.  

Comparison of the two shows that the time taken to charge the hot water tank is 

similar in both the data and model. It also indicates the thermocline is smaller for the real 

tank than is modelled, meaning there is greater stratification in the real tank. This is caused 

by the mixing between the nodes in the model, an effect which is increased with low flow 

relative to node volume. The use of the internal timesteps for the hot water tank reduces 

the flow in each computational step and further increases the mixing between the fixed 

volume nodes. It is possible to capture greater stratification by using a larger number of 

nodes relative to flow rates. However, this results in slower computational time. 

Alternatively, a moving boundary model, which uses two variable mass nodes, could be a 

more computationally efficient approach for modelling perfect stratification.  

The absolute error on the node temperatures for the modelled hot water tank is shown 

over the charging period in Figure 5.29. The absolute error briefly exceeds 6°C for the 3rd 

and 6th nodes (purple and green on graphs), and these nodes are discussed below.  

Figure 5.28: 10-hour charging period showing modelled and monitored node temperatures. Four 15-minute timesteps 
is one hour. 
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For the 3rd node the monitored data shows the thermocline pass at the 4th timestep, 

and after this the temperature exceeds the nodes above. This could be due to uncertainty 

around the exact position of the inlet, which in the real tank could be closer to the third 

node than the top node. There could also be dynamic turbulent effects near the top of 

the tank which cause this temperature inversion. The multi-node model assumes that the 

inlet is to the top node and does not include turbulent effects. 

For the 6th node the real tank shows slight increase in temperature until a sharper 

gradient around the 30th timestep. This indicates low mixing from the nodes charging 

above, and the movement of the thermocline through the node around the sharp 

temperature gradient. The model shows a more consistent temperature gradient slope and 

does not capture the sharp temperature gradient caused by the thermocline. As discussed 

earlier, this is due to the low flow and number of nodes modelled causing greater mixing 

between the nodes over the charging period.  

The mean absolute error and mean absolute percentage error were calculated for each 

node over the charging period. The average of the mean absolute percentage error across 

the nodes is 2.2% and this is in agreement with a similar multi-node tank model which 

Figure 5.29: Absolute error on node temperatures for 10-hour charging period. Four 15-minute timesteps is one hour. 
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was validated against experimental data [235]. Additionally, due to the reasons discussed 

above relating to greater node mixing in the model output, the bottom node has the largest 

margin of error. An average across the nodes of a mean absolute percentage error of 2.2% 

indicates that the model is suitable to represent the charging period of a hot water tank. 

Table 5.3: Statistical analysis of example charging period 

Statistical Measure  1 2 3 4 5 6 Average 

Mean absolute error (°C) 1.2 1.4 1.5 1.8 1.8 2.5 1.7 

Mean absolute percentage error (%) 1.5 1.6 1.8 2.3 2.3 3.4 2.2 

 

5.5.5.2. Discharging Period (3-hour) 

Figure 5.30 shows the evolution of the node temperatures over the discharging period for 

the modelled output and monitored data. The model output shows the node temperatures 

decreasing as the hot water tank meets a heat demand. The lower nodes decrease 

temperature first, while the above nodes decrease in temperature due to mixing from the 

nodes below. The hot water tank stops discharging when the top node drops below the 

service temperature of the district heating network. 

The monitored data displays a node temperature evolution where each node 

consistently reduces in temperature, and short periods where there is a more rapid 

decrease in temperature from low to high as the thermocline moves within the tank. The 

tank is emptied when the top node decreases to the service temperature (in this example 

this is 72°C). 

Comparison between the model and data shows that the time taken to charge the hot 

water tank is similar in both the data and model. However, it shows the thermocline is 

smaller for the real tank than is modelled, meaning there is greater stratification in the real 

tank. This effect appears to be less pronounced for the discharging period compared to 

the charging period analysed above. 

The end of the discharging scenario has ending node temperatures in a range between 

the return temperature and the service temperature. There will be scenarios where nodes 

are charged above the return temperature but below the service temperature. In these 

scenarios the charging is not wasted because in subsequent periods less charging is 

required from the heat source to charge the hot water tank to a stage where some nodes 

are above the service temperature. 
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The absolute error on the node temperatures for the modelled hot water tank is shown 

over the charging period in Figure 5.31. The absolute error briefly exceeds 5°C for the 1st 

and 4th nodes (red and yellow on graphs). The 1st node mixes with other nodes earlier in 

the multi-node model than the real tank data, and as a result towards the end of the 

discharging period is below the real tank node temperature. The 4th node discharges more 

quickly in the model than in the real tank. 

The mean absolute error and mean absolute percentage error were calculated for each 

node over the discharging period. The average of the mean absolute error across the 

nodes is 1.4°C and this is, as with the charging period, in broad agreement with a similar 

multi-node tank model which was validated against experimental data [235]. An average 

across the nodes of a mean absolute percentage error of 1.9% indicates that the model is 

suitable to represent the discharging period of a hot water tank. 

 

 

Figure 5.30: Discharging period showing modelled and monitored node temperatures. Four 15-minute timesteps is 
one hour. 
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Table 5.4: Statistical analysis of example discharging period 

Statistical Measure  1 2 3 4 5 6 Average 

Mean absolute error (°C) 1.6 1.0 1.5 1.5 1.4 1.2 1.4 

Mean absolute percentage error (%) 2.1 1.3 2.0 2.0 2.1 2.0 1.9 

 

5.5.5.3. Two-Day Period 

An example two-day period is analysed in order to investigate the ability of the model to 

respond to both charging and discharging period, and to carry out statistical analysis over 

a longer time period.  

Figure 5.32 shows the evolution of the node temperatures over the two-day period 

for the modelled output and monitored data. The model output shows the node 

temperatures increasing and decreasing over the period as the hot water tank is charged 

and discharged, and the monitored data shows similar patterns. 

Figure 5.33 shows the absolute error, and there are periods with an absolute error 

higher than that identified in the charging and discharging periods. This can be due to 

Figure 5.31: Absolute error on node temperatures for discharging period. Four 15-minute timesteps is one hour. 
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reliability of the data. For example, the 2nd node shows the highest absolute error over the 

period, and this is due to a charging event which occurs in the real tank data, as seen by 

the increase of temperature of the 2nd node. However, this does not correlate with the 

data on the output from the heat source and the demand of the district heating network, 

which indicates that there is missing or wrong data, or that there are dynamics between 

the measured points which is not captured. Additionally, the error is also due to not fully 

capturing the stratification, as was identified in analysis of the charging and discharging 

periods earlier. 

The mean absolute error and mean absolute percentage error were calculated for each 

node over the charging period. The average of the mean absolute error across the nodes 

is 2.5°C, and an average across the nodes of a mean absolute percentage error of 3.2%. 

The maximum absolute values over the 2-day period exceed 12°C which indicates that 

the model is not suitable for precise tracking of the node temperatures. However, the 

average error over the period is still low which indicates that while the model does not 

provide accurate snapshots of the tank node temperature it is capturing the consecutive 

charging and discharging events over this two-day period. The statistical analysis for the 

Figure 5.32: Two-day period with charging and discharging periods showing modelled and monitored node 
temperatures. Sixteen 15-minute timesteps is four hours. 
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charging, discharging, and two-day period indicates that the model is suitable to represent 

the consecutive charging and discharging events, over multi-day periods, characteristic of 

a hot water tank in a district heating system. 

Table 5.5: Statistical analysis of example 2-day period 

Statistical Measure  1 2 3 4 5 6 Average 

Mean absolute error (°C) 1.6 2.2 2.7 2.4 2.8 3.4 2.5 

Mean absolute percentage error (%) 1.9 2.7 3.3 3.2 3.7 4.6 3.2 

 

 

5.5.5.4. Comparison to Energetic Model 

The developed multi-node model was also compared to a simple energetic model which 

is typically used by planning-level energy system tools similar to PyLESA.  

Figure 5.34 shows the calculated available discharging capacity output by both the 

multi-node model and energetic model over the same two-day period examined in the 

previous sub-section. The available discharging capacity is calculated using the multi-node 

model based upon node temperatures in each timestep, while the energetic model either 

Figure 5.33: Absolute error on node temperatures for two-day period. Sixteen 15-minute timesteps is four hours. 
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adds or subtracts the charging or discharging energy below a maximum capacity. The 

available discharging capacity calculated using the multi-node model at the beginning of 

the evaluated period is used as the starting value for the energetic model.  

  The energetic model predicts both higher charging and discharging compared to the 

multi-node model. This can be seen by an increase in the difference between the available 

discharging capacity over the two-day period. At the end of this period the energetic 

model predicts the available discharging capacity is 277kWh (+35%) greater than the 

multi-node model.  

In conclusion, this work shows the strengths and weaknesses of a multi-node model 

and its importance in planning-level modelling tools in order to justify its inclusion in 

PyLESA. The multi-node model is an approach which attempts to capture the thermal 

characteristics of a hot water tank in order to capture the available state of charge more 

realistically than the commonly used energetic model. Other models of hot water tank 

may be included in PyLESA and these may more accurately capture the evolution of node 

temperatures. However, it is key that balance is struck between accuracy and the need for 

simple inputs along with low computational times. In future work and outside the scope 

Figure 5.34: Comparison of output from multi-node model and energetic model. Sixteen 15-minute timesteps is four 
hours. 
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of this thesis, thermal storage modelling may benefit from standardised system 

performance testing across a range of thermal storage technologies and their applications 

which would enable standard modelling methods to be established.  

5.6. Electricity Tariffs 
Existing and future tariffs can be generated and modelled in PyLESA. A contribution to 

the state of the art is made by including a future wind-based electricity tariff generator in 

PyLESA. This allows PyLESA to perform analysis of future energy system scenarios 

which may include electricity pricing structures which are highly differential and based on 

renewable power generation. This differs to existing tariffs which are priced according to 

demand and inflexible baseload generation, amongst other complex factors. 

The input requirements for these are in Figure 5.35, Figure 5.36, and Figure 5.37, and 

the modelling details are described below. Figure 5.38 is an example of the inputs required 

for future work to be done by including the balancing mechanism and grid services. 

 

 

 

 

 

Figure 5.35: Input requirements for time-of-use tariff linked to wholesale market 
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Figure 5.36: Input requirements for variable periods tariff 

Figure 5.37: Input requirements for a future wind-based tariff coupled with a flat rate base 
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5.6.1. Existing 

Traditionally, domestic electricity tariffs available from energy suppliers in the UK have 

been flat rate tariffs where a price is agreed which is static regardless of when electricity 

is used or variable periods tariffs, such as economy 7 where a cheaper electricity price is 

available for 7 hours during the night. A newer form of tariff is time-of-use where 

electricity prices fluctuate hourly (or sub-hourly) and are linked to the wholesale market. 

This encourages users to shift demand from peak periods.  

Table 5.6: Existing electricity tariff descriptors and examples 

Tariff Description Pricing structure example 

Flat rates Fixed price £130/MWh – All times 

Variable 

periods 

Variable hourly with a fixed 

structure, e.g. day/night, 

weekday/weekend  

£150/MWh – Day 

£75/MWh - Night 

Time-of-use Variable hourly, or sub-hourly, 

e.g. linked to wholesale market 

Linked to wholesale market, 

premium pricing period between 

4pm and 7pm, maximum set to 

£350/MWh 

Figure 5.38: Example of future work to be done by including balancing mechanism and grid services 
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Figure 5.39: Existing electricity tariffs over 72 hours 

5.6.2. Future 

In the future electricity grids are expected to be highly dependent on stochastic renewable 

energy sources. Electricity prices could be affected by this with decreases during periods 

where there are abundant zero-marginal cost renewable electricity and increases during 

periods of low renewable electricity and there is increased reliance on power from 

dispatchable sources.  

Possible future renewable tariff synthesis can be supported in PyLESA. For example, 

a future tariff could be synthesised in PyLESA using the following method. Firstly, an 

existing tariff is chosen as a base: (i) a continuously fixed tariff, (ii) low demand coupled 

with inflexible generation (such as nuclear) causing low price periods during the night, or 

(iii) a flexible tariff based on avoidance of peak late afternoon demands. Then, a wind 

farm output is modelled using the same method for the on-site wind power generation 

described previously, and the resultant hourly power output is separated into top and 

bottom bands of production. A discount is applied to the base tariff where wind power 

output is in the top band of production and a premium applied where it is in the bottom 

band. The wind bands, and the discount, and premium to be applied to the base tariff are 

defined by the user. Figure 5.40 shows PyLESA synthesised tariffs with the wind 
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generation discount and premium applied to each of the three base cases. The 

functionality in PyLESA allows other future tariff scenarios to be generated and 

investigated in the modelling of future scenarios.  

 

Figure 5.40: Top graph: wind farm modelled output including upper band and lower band over 72 hours; Bottom 
graph: renewable electricity tariff with discounts and premiums applied over the same 72 hours 
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5.7. Fixed Order Control 
The fixed order control implementation in PyLESA uses a pre-defined set of rules to 

order the dispatch of supply and determine the usage of storage. The user can rearrange 

the set of rules at the start of the simulation but cannot change the order according to 

dynamic system variables during the simulation period. This functionality is intended as a 

representation of a commonly employed control when introducing load shifting 

mechanisms. It will be compared to more advanced model predictive control which is 

described in the next section. Figure 5.42 shows the input requirements for the fixed order 

controller. 

Figure 5.42: Fixed order control input requirements 

Figure 5.41: Flow diagram for electricity tariff generator 
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This control is used to represent a classical controller which uses fixed setpoints for 

components (e.g. thermal storage temperature setpoint) to provide on/off and PID 

output responses. Table 5.7 splits the set of processes between above/below an import 

setpoint. This split allows for a different set of rules for day and night to take load shift 

from higher prices during the day to lower prices during the night. 

 

 

The processes are run sequentially with the output from each process producing a set 

of results and checks. Figure 5.43 shows the flow of results and checks when running the 

fixed order controller in PyLESA. The validation of this controller can be found in 

Chapter 6, where the methodology is applied to a case study. This is because it is easier 

to analyse the operational decisions made using a well-defined example. 

 

  

1 RES to demand
2 ES to demand
3 Import to demand

4 HP RES to demand
5 E-AUX RES to demand
6 TS to demand
7 ES to HP to demand
8 HP import to demand
9 AUX to demand

10 HP RES to TS
11 E-AUX RES to TS

12 RES to ES

13 RES to export
Export

Heat demand

Electricity demand
Above import setpoint

Electricity storage

Thermal storage

1 RES to demand
2 Import to demand
3 ES to demand

4 HP RES to demand
5 E-AUX RES to demand
6 HP import to demand
7 TS to demand
8 ES to HP to demand
9 AUX to demand

10 HP RES to TS
11 E-AUX RES to TS
12 HP import to TS

13 RES to ES
14 Import to ES

15 RES to export

Electricity storage

Export

Heat demand

Below import setpoint
Electricity demand

Thermal storage

Table 5.7: Rules for fixed order control strategy, split into condition based on an import setpoint 
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Figure 5.43: Flow diagram showing process i as a chunk of the flow of results and checks when running the fixed 
order controller 
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5.8. Model Predictive Control 
Model Predictive Control (MPC) captures the dynamic influences of energy systems and 

optimises the performance of the components as a supervisory control strategy. MPC can 

be based upon models from building and system simulation models or artificial intelligent 

techniques. Contributions to the state of the art are made by including MPC in PyLESA 

as the review identified a gap in the ability of existing planning-level energy tools to model 

a model predictive control strategy. 

An MPC controller consists of several key components:  

 Objective function which an optimiser minimises/maximises. 

 Prediction horizon which is the period over which the optimisation is performed. 

 Decision timestep which is the interval between solving optimisation problem. 

 Manipulated variables can be varied by the controller. 

 Optimisation solver which is chosen based upon optimisation type and required 

speed. 

 Feedback signal which provides updated system variables for next optimisation 

step. 

PyLESA uses Economic Model Predictive Control (EMPC) which aims to maximise 

the economic performance of a system by varying control variables to minimise costs 

over a receding prediction horizon. It is useful for complex local energy systems which 

consist of multiple supply options, stochastic renewable power generation, storage, and 

fluctuating electricity prices. Traditional controllers are not suited to optimise the 

operation of these types of systems. PyLESA allows the range of optimisation algorithms 

available in Python to be accessed. 

Figure 5.44: Model predictive control input requirements 
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State equations are used to predict changes in state variables and are shown here for 

the heat balance, thermal storage state of charge, storage charging, heat pump thermal 

output, electric auxiliary thermal output, and use of surplus on-site renewable generation. 

 

𝐻𝐷 = 𝐻𝑃௧ௗ + 𝐻𝑃௧ௗ + 𝐴𝑈𝑋ௗ + 𝐴𝑈𝑋ௗ + 𝑇𝑆ௗ 

𝑑 SOC

𝑑𝑡
= 𝑇𝑆 − 𝑇𝑆ௗ − 𝑙𝑜𝑠𝑠𝑒𝑠 

𝐻𝑃/. 𝐻𝑃௧_௩ = 𝐻𝑃௧௦ + 𝐻𝑃௧ௗ + 𝐻𝑃௧ௗ + 𝐻𝑃௧௦  

𝐴𝑈𝑋 = 𝐴𝑈𝑋ௗ + 𝐴𝑈𝑋௦ + 𝐴𝑈𝑋ௗ + 𝐴𝑈𝑋௦ 

𝑇𝑆 = 𝐻𝑃௧௦ + 𝐻𝑃௧௦ + 𝐴𝑈𝑋௦ + 𝐴𝑈𝑋௦ 

𝑅𝐸𝑆௦୳୰୮୪୳ୱ = (𝐻𝑃௧௦ + 𝐻𝑃௧ௗ)/𝐶𝑂𝑃 + 𝐴𝑈𝑋ௗ + 𝐴𝑈𝑋௦ + 𝑒𝑥𝑝𝑜𝑟𝑡 

where HD is the heat demand, HPtrd is the heat pump thermal output from renewables 

to demand, HPtid is the heat pump thermal output from imports to demand, AUXd is the 

auxiliary thermal output to demand, AUXrd is the auxiliary thermal output from 

renewables to demand, TSd is the thermal storage discharging, SOC is the state of charge 

of the thermal storage, TSc is the thermal storage charging, losses is the losses from the 

thermal storage, HPon/off is the binary on/off state of the heat pump, HPt_var is the total 

thermal output of the heat pump, HPtrs is the heat pump thermal output from renewables 

to storage, HPtis is the heat pump thermal output from imports to storage, AUX is the 

total auxiliary thermal output, AUXs is the auxiliary thermal output from imports to 

storage, AUXrs is the auxiliary thermal output from renewables to storage, RESsurplus is the 

surplus electricity after electrical demand electrical demand has been met, COP is the 

coefficient of performance of the heat pump in that timestep, and export is the surplus 

electricity exported from the local energy system. 

A mixed integer linear programming problem can then be formulated which 

minimises electricity costs by controlling the heat pump and thermal storage. The 

formulation contains: the objective function, state equations lumped into a generic state 

equation, inequality constraints, and allowed values for the heat pump status (integer 

on/off operation is allowed). 

𝑚𝑖𝑛
௫,௨,௬

  𝜙 = ∑ [Iୡ,୩(HP୧,୩ + ED୧,୩) + Aୡ,୩AUX୧,୩  − Eୡ,୩EXୣ,୩୩∈ℳ ] 

s.t. 
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𝑥ାଵ = 𝐴ௗ𝑥 + 𝐵ௗ𝑢 + 𝐸ௗ𝑑 

𝐻𝑃ௗ௨௧௬, ≥ 𝐻𝑃୲ ୴ୟ୰,୩ ≥ 𝐻𝑃, 

𝑆𝑂𝐶 ≤ 𝑇𝑆௧௬ 

𝑇𝑆, ≤ 𝑇𝑆୫ୟ୶  

𝑇𝑆ௗ, ≤ 𝑆𝑂𝐶 

𝐴𝑈𝑋 ≤ 𝐴𝑈𝑋௧௬ 

𝐻𝑃௦௧௧௨௦ ∈ {0, 1} 

ℳ ∈ {0, 1, …, N} and N is the prediction horizon and a sampling time of 1 hour is 

used. At each timestep the optimisation problem is solved, and a set of control variables 

is obtained. The first control variable is implemented and new state variables and forecast 

variables are updated in the next iteration of the optimisation problem.  

It is assumed in this formulation that forecast variables and cost coefficients are 

known with perfect foresight. However, an MPC running in real-time is dependent on 

the accuracy of the predictions of the forecast variables. Therefore, the perfect foresight 

MPC approach results in an idealised operational schedule; the potential benefits from 

MPC will be overestimated. Stochastic MPC approaches have been developed which 

incorporate the uncertainty in forecast variables [236]. Alternative approaches for 

incorporating uncertainty of prediction variables have used the future value of the 

reference signal [237], and historical value of the control signal [238]. In future PyLESA 

can be developed to incorporate methods for representing prediction error. 

The presented mixed integer linear programming problem is solved using GEKKO, 

a Python package for machine learning and optimisation [239]. It uses large-scale solvers 

for linear, quadratic, nonlinear, and mixed integer programming and in the MPC 

developed for PyLESA the APOPT solver is used [240]. GEKKO has previously been 

used in energy system analysis to optimise the performance of thermal storage to minimise 

cost operation of a district energy system in a time-of-use electricity market [241] and 

optimization of a hybrid solar thermal and fossil fuel system [242].  

The developed MPC strategy uses a simplified energetic model for the thermal storage 

in the optimisation problem. This may lead to overestimation of the ability of the thermal 

store to meet demand in a later period, and an increase in the electrical import costs due 

to sub-optimal deployment of the heat sources.  



140 | 
 

The validation of this controller is undertaken in Chapter 6, where PyLESA is applied 

to a case study. This is because it is easier to analyse the operational decisions made using 

a well-defined example. 

 

5.9. Modelling Outputs (KPIs) 
A set of Key Performance Indicators (KPIs) are included as outputs from PyLESA in 

order to compare different system configurations and component sizes.  

Economic KPIs are useful for design studies such as sizing studies, as larger heat 

pumps and thermal storage will generally decrease operating cost, but this needs to be 

balanced against the increase in capital cost. Levelized cost of heat and energy can be used 

as a metric to explore this relationship. Larger thermal storage can mean that a smaller 

heat pump is required which is economically advantageous because thermal storage has a 

smaller capital cost compared to heat pumps.  

The economic KPIs are simplified because they are designed to allow for comparisons 

between system configurations and component sizes, as opposed to being used to make 

final financial decisions. For example, the levelized cost of heat does not include a 

Figure 5.45: Flow diagram for model predictive control 
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discount factor or maintenance costs. However, raw outputs from the tool, along with 

additional financial parameters, can be used to calculate more advanced economic KPIs, 

and/or the tool developed to incorporate these directly. 

Technical KPIs are useful as economics are not always the sole driver of a project. 

Additionally, future electricity tariff prices are uncertain [243,244] particularly when 

calculating KPIs over 20-year system lifetimes. 

The full set of KPIs output from PyLESA are listed in Table 5.8 and the equations 

used are described in the following sub-sections. 

Table 5.8: Set of key performance indicators which are outputs of the modelling methodology 

Economic KPIs Technical KPIs 

Capital cost (£) On-site RES used (%) 

Operating cost (£) On-site RES used (kWh) 

Cost of heat (£) Grid RES used (kWh) 

Cost of electricity (£) Total RES used (kWh) 

Lifetime total cost (£) Demand met by RES (%) 

Levelized cost of heat (£/kWh) Heat met by RES (%) 

Levelized cost of energy 

(£/kWh) 

Peak HP to demand ratio 

 Heat pump utilisation (%) 

 Days of storage content 

 

5.9.1. Levelized Cost of Energy 

Levelized Cost of Energy (LCOE) is defined here as a measure of the average cost of 

meeting electrical and heat demands over a 20-year project lifetime and has units of 

£/kWh. 

𝐿𝐶𝑂𝐸 =  
𝐶𝐴𝑃𝐸𝑋 + 20 ∗ 𝑂𝑃𝐸𝑋 − 𝐼𝑁𝐶𝐸𝑁𝑇𝐼𝑉𝐸

(𝐻𝐸𝐴𝑇 𝐷𝐸𝑀 + 𝐸𝐿𝐸𝐶 𝐷𝐸𝑀) ∗ 20
 

5.9.2. Levelized Cost of Heat 

Levelized Cost of Heat (LCOH) is defined as a measure of the average cost of meeting 

the heat demand over a 20-year project lifetime and has units of £/kWh. 
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𝐿𝐶𝑂𝐻 =  
𝐶𝐴𝑃𝐸𝑋 + 20 ∗ 𝐻𝐸𝐴𝑇𝑂𝑃𝐸𝑋 − 𝐼𝑁𝐶𝐸𝑁𝑇𝐼𝑉𝐸

(𝐻𝐸𝐴𝑇 𝐷𝐸𝑀) ∗ 20
 

5.9.3. On-Site RES Used 

On-site RES used (ORES) is a metric which quantifies the percentage of self-

consumption of on-site renewable power generation. It can be adapted to specify the 

source of on-site renewable power generation, i.e. ORESpv for on-site PV in the sizing 

study in Chapter 6. 

𝑂𝑅𝐸𝑆 = 1 −
𝑆𝑈𝑀 𝐸𝑋𝑃𝑂𝑅𝑇

𝑆𝑈𝑀 𝑅𝐸𝑆 𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐼𝑂𝑁
 

5.9.4. Grid RES Used 

Grid RES used (GRES) is a metric which quantifies the percentage of the grid imports 

which are classed as generated from RES. In this work it is only applicable for the wind 

tariff. During periods where a discount is applied there is a high penetration of wind on 

the grid and imports during these periods are classed as from renewable energy sources. 

𝐺𝑅𝐸𝑆 =
𝑆𝑈𝑀 𝑅𝐸𝑆 𝐼𝑀𝑃𝑂𝑅𝑇𝑆

𝑆𝑈𝑀 𝐼𝑀𝑃𝑂𝑅𝑇𝑆
 

5.9.5. Demand Met by RES 

Demand met by RES (DRES) is the percentage of the total electrical and heat demand 

which is met from both Grid RES and On-site RES. As a reminder, the electrical demand 

here refers to non-heat electricity. It can be adapted to specify the source of RES, i.e. on-

site PV and electrical imports during high wind periods in the sizing study in Chapter 6. 

𝐷𝑅𝐸𝑆 =
𝑆𝑈𝑀 𝐺𝑅𝐼𝐷 𝑅𝐸𝑆 + 𝑆𝑈𝑀 𝑂𝑁𝑆𝐼𝑇𝐸 𝑅𝐸𝑆

𝑆𝑈𝑀 𝐻𝑃 + 𝑆𝑈𝑀 𝐴𝑈𝑋 + 𝑆𝑈𝑀 𝐸𝐿𝐸𝐶𝑇𝑅𝐼𝐶 𝐷𝐸𝑀𝐴𝑁𝐷
 

5.9.6. Heat Met by RES 

Heat met by RES (HRES) is the percentage of the total heat demand which is met by 

Grid RES and On-site RES. It can be adapted to specify the source of RES, i.e. HRESpv 

and/or HRESpv+windtariff as used for on-site PV and/or electrical imports during high 

wind periods in the sizing study in Chapter 6. 

𝐻𝑅𝐸𝑆 =
𝑆𝑈𝑀 𝐺𝑅𝐼𝐷 𝑅𝐸𝑆 𝐻𝐸𝐴𝑇 + 𝑆𝑈𝑀 𝑂𝑁𝑆𝐼𝑇𝐸 𝑅𝐸𝑆 𝐻𝐸𝐴𝑇

𝑆𝑈𝑀 𝐻𝑃 + 𝑆𝑈𝑀 𝐴𝑈𝑋
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5.9.7. Peak HP to Demand Ratio 

Peak Heat Pump to Demand ratio (PHPD) is the peak output of the heat pump and peak 

demand over the simulation period. This is a measure of the utilisation of the heat pump 

capacity. If a heat pump is oversized this ratio will be low. 

𝑃𝐻𝑃𝐷 =  
𝑃𝐸𝐴𝐾 𝐻𝐸𝐴𝑇 𝑃𝑈𝑀𝑃 𝑂𝑈𝑇𝑃𝑈𝑇

𝑃𝐸𝐴𝐾 𝐻𝐸𝐴𝑇 𝐷𝐸𝑀𝐴𝑁𝐷
 

5.9.8. Heat Pump Utilisation 

Heat Pump Utilisation (HPU) is defined as the percentage of heat demand which is met 

by the heat pump. It does not incorporate losses from the heat pump, so may result in a 

higher than 100% percentage. 

𝐻𝑃𝑈 =
𝑆𝑈𝑀 𝐻𝐸𝐴𝑇 𝑃𝑈𝑀𝑃 𝑂𝑈𝑇𝑃𝑈𝑇

𝑆𝑈𝑀 𝐻𝐸𝐴𝑇 𝐷𝐸𝑀𝐴𝑁𝐷
 

5.9.9. Days of Storage Content 

Days of Storage Content (DOSC) is a measure for quickly comparing the energetic 

capacity of a hot water tank in the context of the heat demand to be met and has units of 

days. The average day demand takes the annual demand and divides it by the number of 

days in a year, 365. The equation below contains the following parameters with units: 

capacity in kg, Cp in kJ/(kg °C), T in °C, and average day demand in kWh. 

𝐷𝑂𝑆𝐶 =
𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌 ∗ 𝐶 ∗ Δ𝑇

3600 ∗ 𝐴𝑉𝐸𝑅𝐴𝐺𝐸 𝐷𝐴𝑌 𝐷𝐸𝑀𝐴𝑁𝐷 
 

5.10. Discussion 
The underlying models of PyLESA detailed in this chapter have been developed to 

address the identified gaps from the review of existing modelling tools, and the 

contributions to the state of the art are discussed below: 

 Open source: PyLESA is written primarily in Python and incorporates previous 

tools for modelling wind turbines and PV. The inputs are via an Excel workbook 

which is not open source software. However, building a GUI in Python for 

inputting data and viewing modelling outputs would complete PyLESA as a fully 

open source modelling tool. A distinct advantage of using open source software 

is the ability to build upon the work done in the developed modelling tool. Several 
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avenues of further work are identified in this discussion (and in Chapter 7) and 

PyLESA provides a useful framework for undertaking it. 

 Heat pump: A few heat pump modelling approaches have been detailed, and the 

choice is dependent on the available data. The standard test regression approach 

includes explicit temperature dependence and is an advance on the existing 

models utilised by planning-level modelling tools. Dynamic effects and part load 

conditions are largely neglected, and for timesteps ≤10 minutes a dynamic model 

is needed to capture start-up characteristics. To fully capture these a future 

advanced model could be developed which uses a white-box model where each 

of the major components of the heat pump is modelled [245]. However, this 

approach could increase the input data requirements beyond that available at the 

planning-level. 

 Hot water tank: The multi-node modelling approach advances on the simple 

energetic models utilised by other tools, as it means that thermal characteristics 

can be represented while maintaining low input requirements. This modelling 

approach means that the state of charge and heat loss of the hot water tank is 

dependent on the node temperatures. The developed model increases 

computational time significantly and the code could be optimised to decrease this. 

The model does not allow for multiple heat sources to charge the tank, nor does 

it allow the heat source to inject at any other node but the top node. This would 

form a useful future development as technology such as solar thermal could be 

incorporated to provide complimentary heat to a heat pump and hot water tank 

system. The developed model exaggerates the mixing between nodes which is 

likely to occur for a hot water tank designed to be highly stratified, as is desirable 

for the load shifting mechanisms investigated. Therefore, while the energetic 

models used in existing models likely result in underestimations of the capacity 

required to perform load shifting, the model developed within PyLESA is likely 

to overestimate the capacity required. 

 Future electricity markets: A wind-based electricity tariff generator has been 

presented as a way of including a tariff which could exist in the UK in the future. 

This is because of the high resource of onshore and offshore wind power that 

exists, and a future 100% renewable energy system would likely have wind power 

as one of the main producers of energy. Electricity markets which incentivise 
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flexibility will become more prevalent as the grid decarbonises. This will likely 

involve higher rewards from participating in ancillary markets such as those 

existing, e.g. balancing mechanism, frequency response, and new markets, e.g. 

European wide balancing energy market TERRE [246]. 

 Predictive control: PyLESA incorporating a model predictive control strategy 

allows analysis including optimal system operation. Particular advantages from 

this are where dynamic time-of-use tariffs are connected in which case simple 

rule-based controls would need to be constantly updated by an expert to minimise 

import costs. Additionally, where on-site renewable production competes with 

the electricity tariff, it is non-trivial to identify the low-cost periods. MPC enables 

an optimal operation which ensures that current and future on-site generation and 

electricity prices are included in the control decisions. An important aspect of 

future work on the MPC strategy presented here is the inclusion of uncertainties 

in the future predictions as currently these are modelled with perfect foresight 

[247,248]. This overestimates the benefits of the MPC as in its present form it 

always makes the right decision.  

Further methods and assessments, and future developments are also discussed: 

 Resource assessment methods: Resource data can be obtained via the MERRA 

reanalysis dataset which provides a free, hourly dataset for a number of years. The 

method provides a means of obtaining data easily, but it does not consider analysis 

such as developing a typical meteorological year [249], or investigating resilience 

to extreme [250], or worst case, weather conditions. This type of analysis would 

typically be performed at the detailed design level but inclusion at the planning 

stage would improve robustness. 

 Electrical demand: This method relies on the use of a commercial software 

which is not open source. While this ensures that the method is user-friendly and 

reliable, it means that there is a cost and the underlying code is not accessible. 

Implementing a similar solution with open source software would contribute 

towards a fully open source software solution. However, demand profile 

generation is not within the scope of the aims of this thesis, and it was decided to 

use an existing method.  
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 Heat demand: The method used to simulate heat demand is built upon the 

method used in the Biomass decision support tool [91] which produced a design 

day demand profile. The new method used the same underlying pre-simulated 

building models to produce an hourly heat demand over the year. Importantly, 

this only requires simple inputs so is suitable at the planning stage.  

The focus was on residential district heating schemes, therefore similar 

methods could be developed for other building types, e.g. industry, commercial. 

When applying diversity the moving average algorithm used could be modified to 

reflect real data from monitored UK district heating schemes. Additionally, more 

detailed modelling of the district heating network losses would allow better 

comparison of the effect on system performance of changes in flow and return 

temperature.  

Only one heat demand can be input into the current model. Allowing input of 

separate space heating and hot water demand profiles would allow for the 

modelling of systems where there are separate hot water tanks and heat pump 

modes (high/low temperature outputs). This is commonly the case for single 

buildings. 

Stochastic demand profile generators exist  which can be used to account for 

unpredictable influences on demand such as occupancy behaviour and could be 

incorporated into this tool [213,251]. 

 Energy production technologies: Adding an electrical generator which 

produces power from a fuel would allow for off-grid energy systems to be 

simulated [252–254]. A number of additional renewable energy technologies 

could also be added, e.g. tidal, wave, pumped hydro, solar thermal. 

 Electrical storage: This method used a simple energetic model which is the most 

often employed by other modelling tools. This can give an idea of how a generic 

electrical storage technology may perform. However, more detailed models which 

are technology specific could be included as future work. 

 Thermal storage: The developed hot water tank model is a contribution to the 

state of the art and is discussed above. Additional thermal storage technologies 

could be included in future work such as Phase Change Materials (PCM) 
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[255,256], next generation smart hot water tanks [257], building thermal mass 

[258], etc. 

 Control strategies: The model predictive control strategy is a contribution to the 

state of the art and is discussed above. The fixed order control strategy developed 

is similar to the control algorithms used in existing modelling tools and is a useful 

basis as a comparator to explore the performance benefits of the MPC. This will 

be explored further in Chapter 6 where the two will be compared for a case study. 

PyLESA has been written in an object-orientated manner which should allow for 

future work to build upon it as a framework. This means that further control 

strategies can be developed within the tool. These could be simple, rule-based 

controllers which have special conditions, e.g. forced opportunistic charging from 

on-site renewable power production, and it could be heuristic controls which are 

data driven and adapt operation according to analysis of performance data [259]. 

 Modelling outputs: The set of KPIs developed allow for analysis of the 

economic and technical performance of the modelled energy system. When the 

tool is run an output file is saved which contains all the hourly output data of a 

full range of parameters. This allows users to inspect the data and develop their 

own KPIs which can be specific to their analysis. 

 Uncertainty: PyLESA does not explicitly account for sources of uncertainty, 

however it can be integrated within existing design methodologies which include 

uncertainty analysis (see Section 1.9.). Integrating PyLESA with an uncertainty 

analysis method such as Monte Carlo simulation would account for the inherent 

uncertainty of input parameters, such as demand, and output design solutions 

which are robust to these uncertainties. Scenario analysis is another approach 

which, for example, could use worst-case (coldest) weather years, to ensure robust 

solutions for uncertainties in weather. PyLESA can also be used in conjunction 

with design optimisation methods which are used to search for an optimum 

design solution for a given objective function and often incorporate uncertainty 

[260]. 

The modelling methodology which describes the application of the developed 

modelling tool PyLESA will be applied and validated further in the next chapter using a 

case study of a housing cooperative. The case study currently consists of a biomass district 
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heating network and are looking to investigate the potential benefits from installing heat 

pumps and thermal storage with predictive controls and alternative electricity tariffs. 
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6. Applying PyLESA: Proposed 
Design and Sizing Study 

This chapter explores the application of the developed modelling tool, PyLESA, for a 

sizing study undertaken for a proposed design of a specific local energy system. The 

primary aim from the perspective of the case study was to identify a low-cost and highly 

renewable size combination of heat pump and hot water tank for three existing electricity 

tariffs, a future wind-based tariff, and the developed control strategies. Additional aims 

of the application were to showcase PyLESA as a useful tool to aid planning-level design; 

and provide validation of the developed control strategies and workflow of the steps of 

the tool. 

In a peer-reviewed, conference paper the author performed a simple application of 

PyLESA to inform a sizing study for a proposed design of a district heating scheme with 

the fixed order controller and a time-of-use electricity tariff [261]. This chapter expands 

on this work to compare the fixed order control and model predictive control as well as 

four electricity tariffs. 

The chapter is structured as follows: 

 The aims, KPIs, and methodology of the sizing study are outlined.  

 The existing system and proposed design are described.  

 The steps of applying the modelling methodology are set out including the 

required input data requirements.  

 The modelling input requirements for the sizing study are provided.  

 The results from PyLESA are presented for the performance of the model 

predictive control and the fixed order control for all the modelled electricity 

tariffs, along with a comparison of outputs to EnergyPLAN. 

 Sizing results for the existing electricity tariffs and a future electricity tariff with 

both controllers are discussed and graphically represented using 3D KPI plots.  
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The chapter concludes with a discussion which considers the results and the 

performance differences for the range of electricity tariffs and control strategies, as well 

as the overall applicability and usefulness of PyLESA in aiding the sizing study. 

6.1. Study Aims, KPIs, and Methodology 
The sizing study aims are split between two perspectives: informing design decisions for 

the case study, and assessing the contribution of the developed modelling capabilities of 

PyLESA to the state of the art.  

From the case study perspective, the aim of the application of the developed 

methodology was to aid the design and sizing of a low-cost and highly renewable local 

energy system. A design consisting of an air-source heat pump and hot water tank system, 

plus back-up electric heat, with a connection to on-site PV generation, participation in a 

variable electricity tariff, and operation by a predictive control strategy, was proposed as 

a solution to meet this aim.  

The heat pump and hot water tank components of the proposed design require sizing 

in order to enable the following load shifting mechanisms: increase on-site PV self-

consumption; take advantage of varying electricity costs under existing electricity tariffs; 

and utilise low cost wind power under a future wind-based electricity tariff. 

A set of KPIs (Table 6.1) are used in this sizing study to quantify the ability of the 

proposed design to enable these load shifting mechanisms and allow for comparisons of 

the technical and economic performance under the different control strategies and 

electricity tariffs. The KPIs were chosen from Section 5.9. and the renewable-related KPIs 

were adapted to suit this sizing study and provide clarity on the specific source of RES. 

The LCOH was used as the KPI for choosing the optimal heat pump and hot water 

tank size combination. LCOH acts as a cost metric and as a proxy for quantifying the 

ability of the proposed design to enable the various load shifting mechanisms. Technical 

renewable-related KPIs were also used to further explore the performance of the 

proposed design with the different control strategies and electricity tariffs. 

ORES has been adapted to ORESpv to clarify that the on-site PV generation is the 

only form of on-site RES generation included in this study. HRES has been divided into 

two adapted KPIs. HRESpv is defined to clarify that the on-site PV generation is the only 

contributing RES generation source to this KPI and is used for the existing electricity 
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tariffs. HRESpv+windtariff is defined to clarify that both the on-site PV generation and 

the electrical imports during high wind periods (as defined in the wind tariff, Section 

6.4.5.) contribute to the RES in this KPI and is used solely for the wind electricity tariff. 

These KPIs were chosen to illustrate the framework application and PyLESA tool 

capabilities, other choices could be made in applications that best suit the situation. 

Table 6.1: Set of KPIs for sizing study 

KPI Comment Section 

Levelized cost of heat 

(LCOH) 
Same as in previous chapter 5.9.2. 

On-site RES used – PV 

(ORESpv) 

Adapted ORES to represent the on-site PV 

generation 
5.9.3. 

Heat met from RES – PV 

(HRESpv) 

Adapted HRES for the existing electricity 

tariffs where on-site PV is only source of RES 
5.9.6. 

Heat met from RES – 

PV+Windtariff 

(HRESpv+windtariff) 

Adapted HRES for the wind electricity tariff 

where both on-site PV and electrical imports 

during high wind periods are classed as RES 

5.9.6. 

 

A set of specific aims were developed in order to illustrate the use of the tool to 

investigate various load shifting mechanisms and aid sizing decisions for the proposed 

heat pump and thermal store design. These aims use the above KPIs as metrics to allow 

comparisons and sizing decisions to be made. Specific aims are to: 

 Investigate the performance of the developed control strategies, fixed order 

control and model predictive control, with respect to their ability to enable the 

various load shifting mechanisms. 

 Investigate the use of existing electricity tariffs (flat rate, variable periods, and 

time-of-use), particularly in relation to the proposed systems ability to take 

advantage of variable electricity import costs. 

 Explore the ability of the proposed system to utilise low cost wind power with 

the use of a future wind-based electricity tariff. 

 Identify an optimal LCOH heat pump and hot water tank size combination for 

the different control strategies with both the existing tariffs and the wind tariff. 
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From the perspective of assessing the contributions of PyLESA to the state of the art 

the following aims were set out: 

 Review the position of the developed modelling tool in the context of the state of 

the art of existing modelling tools. 

 Validation of the developed control strategies. 

 Demonstrate the function of the developed tool. 

The methodology of the sizing study is framed to ensure that the above aims are 

achieved. It is based around the concept of an existing local energy system investigating 

the possibility of converting to a new proposed design. This methodology can be easily 

adapted for designing from scratch.  

The sizing study methodology reflects the structure of the rest of this chapter and 

consists of the following steps: 

1) Describe the case study and set out the existing local energy system. 

2) Outline the design of the proposed local energy system. 

3) Identify input data availability and output requirements. 

4) Model the proposed local energy system with PyLESA using the modelling 

methodology, including multiple runs for different size combinations of heat 

pump and hot water tank. Rerun for all combinations of control strategy and 

electricity tariffs. 

5) Carry out a qualitative inspection of the operation to verify modelling and control 

strategies, including a comparison to EnergyPLAN, and to compare and explore 

the control strategies and electricity tariffs. 

6) Tabulate the KPIs of the optimal heat pump and hot water tank sizing results for 

each control strategy and electricity tariff combination. 

7) Evaluate the output 3D plots of the KPIs for each control strategy and electricity 

tariff combination. 

The scope of this application is to illustrate the deterministic modelling capabilities of 

PyLESA for heat pump and hot water tank sizing. It does not consider other system 

component sizing and uncertainties in a wider optimisation and robustness analysis, 

although PyLESA could be adapted to support such analysis in future. 
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6.2. Case Study Description 
The sizing study is applied to a residential district heating scheme operated by West 

Whitlawburn Housing Co-operative (WWHC) [262]. The scheme connects to 544 flats 

and is supplied by a biomass boiler and backup gas boilers. WWHC are interested in 

investigating the potential of transforming their existing assets into a low-cost and highly 

renewable local energy system incorporating on-site PV, a heat pump, a hot water tank, 

time-of-use electricity tariffs representing potential future power purchase arrangements 

with local large scale wind generation (WWHC is adjacent to Whitelee wind farm, one of 

the biggest in Europe), and predictive controls. 

WWHC is a fully mutual, tenant owned and controlled Housing Co-operative with 

charitable status, located in the south of Glasgow in Cambuslang, South Lanarkshire. It 

is in an area of multiple deprivations and they hold an overarching aim to provide 

affordable, sustainable, and community energy to the households. Previously, heat was 

supplied via electric storage and panel heaters in the individual flats as gas heating could 

not be installed due to regulations which apply to the multi-storey and low-rise tenement 

buildings. A demand reduction initiative has seen these properties have fabric upgrades 

to the buildings, windows, and roofs, in addition to the substantial external cladding 

installed onto the multi-storey flats. 

To tackle the problem of fuel poverty in the community alternatives to the inefficient 

electric heaters were sought. Therefore, a biomass district heating system was installed 

with a centralised energy centre supplying domestic instantaneous heat and hot water to 

544 of the flats via a district heating network. A 740kW Viessman Pyrotec biomass boiler 

operates as the primary heat source and is connected in parallel to a 50m3 hot water tank. 

3x 1.2MW gas boilers are included to contribute to large peaks in demand during winter 

and provide back up in the event of a breakdown or maintenance of the biomass boiler. 

See Figure 6.3: Schematic of existing setup of the WWHC energy centre for a schematic 

of the existing setup of the WWHC energy centre. 

There are concerns around sustainability and air pollution issues related to the burning 

of wood for domestic heating [12]. Additionally, biomass may have a pivotal role to play 

in the wider energy system in decarbonising difficult sectors such as high-temperature 

industry and heavy transportation [13]. From this holistic view of the wider energy system 

it is worthwhile exploring alternative design options.  
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Figure 6.1: Panoramic view of WWHC with the 6 high rise towers and 5 low rise blocks 

Figure 6.2: WWHC hot water tank and flue chimney in foreground, and boiler house in background 
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Figure 6.3: Schematic of existing setup of the WWHC energy centre 



156 | 
 

 

6.3. Proposed Design 
As an alternative to the current design at WWHC it is proposed that an air-source heat 

pump and hot water tank system, plus back-up electric heat, with a connection to on-site 

PV generation, participation in a time-of-use electricity tariff, and operation by a 

predictive control strategy, can offer a solution for low-carbon and low-cost provision of 

heat. This section discusses the motivation behind the choice of the various components 

and ends with a schematic illustrating the proposed setup of the design. 

The choice of heat source for a heat pump influences performance and installation 

cost. Generally, ground source heat pumps have a high initial capital cost but offer lower 

running costs because of improved COP due to the on average higher and more stable 

temperature of the ground. Air source heat pumps (ASHP) have lower capital costs but 

typically perform with a lower seasonal COP due to on average lower air temperatures.  

A 400kW ASHP, using R134a as the refrigerant, is capable of providing hot water at 62°C 

and has been installed along with a district heating network at Hillpark, Glasgow. This 

connects to 351 homes which are similar to the residential scheme of WWHC [263]. 

Performance data for the COP and the maximum thermal output (duty) was readily 

available thanks to links to the heat pump manufacturer, Star Refrigeration [264]. For 

these reasons it seems apt to investigate the potential of installing a similar heat pump at 

WWHC and modelling it using the available performance data. A back-up electric heater 

is included as it fits with an all-electric design and simplifies the local energy system by 

removing gas as an energy vector. 

Thermal storage generally either stores sensible or latent heat. The primary technology 

utilising latent heat are Phase Change Materials (PCM), and these can be expensive, are 

primarily installed at a small-scale in homes, and they have the complication of being 

associated with a fixed phase change temperature [256]. Hot water tanks are a widely used, 

inexpensive example of a sensible storage technology [265]. Hot water tanks were chosen 

as the investigated thermal storage for inclusion in the proposed design because it is 

cheap, technically simple, allows temperature flexibility, and can be built in a wide range 

of capacities. Additionally, WWHC already has a hot water tank to aid in the operation of 
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the biomass boiler so it is assumed that there is community acceptance and knowledge 

regarding this technology. 

On-site renewable generation possibilities are dependent on the resources available in 

the local energy system. PV is a renewable power generation technology which is cheap 

and widely installed in the UK. PV can connect to local electrical loads, such as the 

residential electrical demand from the flats, to meet the electrical consumption needs of 

the heat pump and auxiliary heater, and to the national grid to be exported. Therefore, 

PV is chosen to be included on-site as part of the proposed system because it is cheap, 

widely used, can contribute to both local electrical and heat demands, and can be exported 

when not locally needed. PV has the limitation that while it supplies electricity in the 

summer, its winter performance is limited. Hence, PV on its own is not an obvious fit 

with winter space heating demand. 

Renewable electrical power can also be sourced from at a range of scales through the 

renewables connected to the local distribution network and through transmission via the 

national grid, not solely from the on-site renewable power generation discussed above. 

Wind is the predominant renewable electrical generation source on the Scottish networks 

and transmission grid with excess capacity available being exported or curtailed [266] 

(wind farm constraint payments in the UK have risen from £174,00 in 2010 to £139 

million in 2019, with Scottish onshore wind farms receiving 94% of the 2019 payment 

[267]). With further offshore and onshore capacity expansion planned there are expected 

to be greater incentives to increase demand on high wind days. The use of this renewable 

grid power will be explored in the proposed design indirectly through a representative 

local wind influenced tariff rather than directly through on-site wind generation. In this 

sizing study the primary KPI used to measure the ability of the proposed design to utilise 

low cost wind power is HRESpv+windtariff. This KPI is the percentage of the heat 

demand met by both the on-site PV generation and the electrical imports during high 

wind periods. 

Several electricity tariffs currently exist which incentivise shifting demand. Flat rate 

tariffs are the most common domestic electricity tariff and do not change electricity prices 

according to time of use. Variable periods tariffs such as day/night and weekday/weekend 

tariffs incentivise users to shift to low-cost periods. Time-of-use pricing structures vary 

prices in hourly, or sub-hourly, timesteps and can include facets such as dependence on 

the wholesale market, premium price periods, etc. Future tariffs may emerge which are 
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based on inflexible, stochastic renewable generation and incentivise shifting electricity 

consumption to periods of high renewable generation. An example is the wind tariff 

discussed above. It is proposed that all these types of electricity tariff are included as 

options in the proposed design so that modelling can differentiate which is the most 

appropriate in terms of cost and integration with renewable generation. 

Both a traditional fixed order controller and a model predictive controller would be 

useful to include in the proposed design to compare the performance of each. Benefits 

from simple tariffs may be maximised using only simple controls, while more complex 

designs may require the optimisation element from model predictive control. These 

controls are modelled with a view to maximising the use of on-site renewable generation 

and minimising overall electricity import costs.  

Figure 6.4 is a schematic which illustrates the proposed setup, combining all the 

components discussed above. The system provides both space heating and hot water 

through a district heating network. Note that the design study carried out here does not 

size the buffer section of the hot water tank which is required for safe operation of the 

heat source but instead focuses solely on sizing the thermal store section which enables 

load shifting. On the diagram, red lines indicate communication between component and 

controller, and not shown is the grid connection which allows import and export priced 

by the electricity tariffs.
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Figure 6.4: Schematic of proposed design 
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6.4. Input Data and Output Requirements 
This section details each component of the proposed setup outlining the required and 

available input data, and ending with the modelling output requirements. The structure 

follows the description of the underlying models in Chapter 5.  

The year 2017 is used as the reference year and subsequently the collected data is 

applicable to this year. 

6.4.1. Resource and Demand Assessment and Input Methods 

 Local resources: The only available local resource data was air temperature, 

which was collected on-site using local sensors with 2017 data available. Wind 

speed data was collected from the MERRA reanalysis hourly dataset for 2017 for 

wind speed (at 10m height) due to the lack of available on-site data. A simple 

multiplication correction factor of 0.67 is applied to this data, in accordance with 

a study which shows a 50% overestimation of the MERRA wind speed for 

northwest European countries [203]. The uncertainty introduced by using the 

MERRA could be further reduced by using the correction factors as calculated 

specifically for the UK [203] or by using more reliable data, such as from a weather 

station. 

 Electrical Demand: Due to a lack of monitoring data a generic community 

electrical demand profile was synthesised in HOMER. 

 District Heating Demand: Hourly monitored data was available for the district 

heating demand for WWHC including for the year 2017. 

6.4.2. Electrical Production Technologies 

 PV: 1.74MW rated capacity, 6000 x 290W LG LG290N1C-G3 [2013] panels, 

south-facing, with 40° surface tilt and LG295A1C-B3 [240V] 240V [CEC 2018] 

inverters. This capacity was chosen to ensure that there is a large opportunity for 

utilising excess PV generation with the heat pump and hot water tank. There will 

be periods where the 1.74MW PV generation exceeds electrical demand, which 

has a peak of 650kW. Additionally, there will be periods where the excess PV 

generation can be used to meet heat demand, which has a peak of 1.36MW. Due 
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to uncertainties in the future of government incentives for PV, these are not to 

be included in this modelling exercise. 

6.4.3. Heat Pumps and Auxiliary Heat Units 

 Heat pump: Star Refrigeration ASHP Neatpump [264] with variable speed 

compressor and 65/55 flow/return temperatures feeding a district heating 

network at 60/40 flow/return temperatures. The heat pump and district heating 

temperatures are the same as used for an existing ASHP and district heating 

scheme in Scotland, with similar building characteristics as WWHC. It is assumed 

that the heat exchangers in the flats at WWHC can be adapted to work at these 

temperatures. This type of ASHP was chosen because it is state of the art and the 

performance curves were available. Capital costs were assumed linear at £600/kW 

as given by the Danish Energy Agency [268]. Due to uncertainties in the future 

of government incentives for heat pumps, these are not to be included in this 

modelling exercise. 

 Electric heater: Backup electric heater with 100% efficiency sized to peak heat 

demand. This capacity was chosen to ensure that the electric heater can act as a 

back up to the heat pump and always meet heat demand. 

6.4.4. Hot Water Tank 

 Hot water tank: Modelled using the following inputs: 5 nodes, polyurethane 

insulation, located outside, 5 thermostat tank openings with diameter 35mm, and 

2 insulated connections for the flow and return with diameter 50.8mm. Capital 

cost is presumed to follow an exponential decay function for £/m3 [268], Figure 

6.5. This configuration is typical of hot water tanks used in current district heating 

schemes. 5 nodes were chosen to balance the accuracy in modelling tank 

stratification and computational time. 
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6.4.5. Electricity Tariffs 

4 different electricity tariffs are modelled in the sizing study using the following inputs. 

The prices used for the different tariffs are representative of typical prices available from 

domestic energy suppliers in 2017. Exports have been set to zero value in order to increase 

the incentive for the system to self-consume. Additionally, while currently export prices 

can be agreed and sold to an energy supplier, there is uncertainty as to the future value of 

exports from on-site generation such as PV.  

 Flat rate: £130/MWh. 

 Variable periods: 12am to 7am - £75/MWh, 7am to 12am - £150/MWh. 

 Time-of-use: Tracks wholesale market (2017 prices) with £120/MWh premium 

from 4pm to 7pm and £350/MWh maximum. This mimics the currently available 

Octopus Agile tariff [30]. 

 Wind: Combination of variable periods and wind pricing structures. 12am to 7am 

- £75/MWh, 7am to 12am - £150/MWh and a £50/MWh discount during top 

20% of wind output and a £50/MWh premium during bottom 20% of wind 

output. Wind output is based upon Whitelee Wind Farm, which consists of 215x 

Siemens SWT-2.3MW. 

Figure 6.5: Exponential function of hot water tank volume and specific price 
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6.4.6. Fixed Order Control 

The fixed order controller requires an import setpoint. For the flat rate electricity tariff 

the import setpoint was set below the import cost to avoid unnecessary charging and 

discharging of the hot water tank using high-cost grid imports. For the variable periods 

electricity tariff the import setpoint was set between the day and night import costs to 

enable load shifting from day to night. For the time-of-use and wind electricity tariff the 

import setpoint was set to £100/MWh. 

6.4.7. Model Predictive Control 

MPC only requires the prediction horizon as an input. For the existing electricity tariffs a 

24-hour period was used and for the wind tariff a 168-hour (1 week) prediction horizon 

was used. The existing tariffs used follow a 24-hour pattern because they generally follow 

demand, therefore a prediction horizon of 24 hours captures general price fluctuations. 

The wind tariff is variable over a longer timescale as it is dependent on periods of high or 

low wind, therefore a 1 week prediction horizon to take advantage of longer term 

variations. 

6.4.8. Output Requirements 

Economic and technical outputs are required to inform comparisons of the control 

strategy and electricity tariff combinations. Additionally, sizing the heat pump and hot 

water tank components require outputs which can quantify the ability of the proposed 

design to perform the following load shifting mechanisms: increase on-site PV self-

consumption; take advantage of varying electricity costs under various existing electricity 

tariffs; and utilise low cost wind power under a future wind-based electricity tariff. 

A set of KPIs to be used in this sizing study was described in Section 6.1. and displayed 

in Table 6.1. LCOH was the economic metric chosen as it can act as a proxy for 

quantifying the ability of the proposed design to enable the various load shifting 

mechanisms. Technical renewable-related KPIs (ORESpv, HRESpv, and 

HRESpv+windtariff) were also used to further explore the performance of the proposed 

design with the different control strategies and electricity tariffs. These KPIs can be 

calculated from economic and renewable-related outputs, and are directly calculated with 

PyLESA. 
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6.5. Application of PyLESA Modelling 
Methodology  

This section describes applying the developed modelling methodology, from Chapter 4, 

which sets out the steps for running PyLESA, for the proposed design of WWHC. The 

aim is to size a heat pump and a hot water tank as part of a low-cost and highly renewable 

local energy system. The following are the methodology steps including the details relating 

to this specific application.  

1. Define the local energy system to be modelled:  

The proposed design for WWHC was defined in Section 6.3, and the input data 

available outlined in Section 6.4. 

2. Optionally run the demand and resource assessment methods:   

Resource method and electrical demand methods were run as monitored data was 

not available. However, not needed for the heat demand as monitored data was 

available. 

3. Input gathered data to PyLESA: 

Take data from first two steps and input to PyLESA using the Excel workbook. 

4. Input ranges to be modelled for parametric analysis: 

 Fixed Order Control and Model Predictive Control with existing tariffs: 

o Hot water tank capacity range: 0 -> 800m3 in 100m3 steps. 

o Heat pump thermal output capacity: 0 -> 2000kW in 250kW steps. 

 Fixed Order Control with wind tariff: 

o Hot water tank capacity range: 0 -> 3000m3 in 250m3 steps. 

o Heat pump thermal output capacity: 0 -> 3000kW in 500kW steps. 

 Model Predictive Control with wind tariff: 

o Hot water tank capacity range: 0 -> 3000m3 in 1000m3 steps. 

o Heat pump thermal output capacity: 0 -> 3000kW in 500kW steps. 

5. Run PyLESA: 

 Use the run.py script inputting the appropriate input Excel workbook name. 

 Rerun the tool for all combinations of control strategy (fixed order and model 

predictive control) and electrical tariffs (flat rate, variable periods, time-of-use, and 

wind). 
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6. Analyse the outputs: 

 In order to illustrate (and further validate) the system operation in detail, an 

operation analysis snapshot is provided allowing inspection of four example week 

operational graphs consisting of (i) heat pump thermal output, auxiliary electric 

heat output, and heat demand, (ii) hot water tank node temperatures, (iii) import 

costs, and (iv) surplus and exports. 

 To showcase how PyLESA can support component sizing and compare control 

strategies and electricity tariffs, KPIs for the optimal LCOH heat pump and hot 

water tank size combinations with the range of control and tariffs are tabulated. 

These KPIs are LCOH, ORESpv, HRESpv, and HRESpv+windtariff. See 

Section 6.1. for further details on these. 

 To explore the ability of the proposed design in enabling the various load shifting 

mechanisms, the same set of KPIs are presented for the modelled ranges of heat 

pump and hot water tank sizes using 3D graphs.  
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6.6. Outputs from PyLESA 
Running PyLESA produces several graphical and numerical outputs which can inform 

planning-level design decisions such as those encountered in this sizing study. This section 

gives a brief overview of example of outputs from PyLESA to inform the reader the type 

of analysis which is readily available after running the tool. The next two sections will then 

present the operational analysis results and sizing results for the sizing study. 

To provide an illustrative example of PyLESA outputs, the results for a possible 

WWHC design option is presented here, with a 1000kW heat pump and 500m3 hot water 

tank size combination, a variable periods tariff and MPC. 

Raw data containing the hourly, sub-data of the underlying outputs is made available 

in the outputs.pkl file. This is saved at the end of running the tool and can be used to 

perform external analysis. This is the file which the outputs.py script uses to perform the 

output analysis included in PyLESA to produce numerical and graphical outputs. 

The output graphical plots are a mixture of bar charts, 2D plots, and 3D plots. The 

2D plots are generated for a summer week, winter week, and the year in hourly timesteps. 

If the user has defined a modelling period shorter than a year then the plots are generated 

for the user-defined period. 

Key performance indicators (KPIs) have been developed within PyLESA and are 

described in Section 5.9. LCOH was the economic metric chosen as it can act as a proxy 

for quantifying the ability of the proposed design to enable the various load shifting 

mechanisms. Technical renewable-related KPIs (ORESpv, HRESpv, and 

HRESpv+windtariff) were also used to further explore the performance of the proposed 

design with the different control strategies and electricity tariffs. These KPIs are used in 

Section 6.8. where 3D plots illustrate the sizing decisions and performance of the 

electricity tariffs and control strategies investigated. 

The total PV, wind turbines and combined renewable power production (Figure 6.6) 

are output as bar charts which display the gross power production for each month, along 

with a heading which contains the annual power production for the modelled year. This 

example does not include on-site wind power production and hence the wind power 

production is zero, this is included here because the outputs described in this section 

follow a generic template and are designed to be useful for a wide variety of modelling 

exercises. 
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Electrical demand, renewable generation, and renewable generation usage plots are 

included together in Figure 6.7 for a summer week as this season has the highest PV 

production. The electrical demand plot allows the modeller to quickly assess which supply 

options are meeting electrical demand from imports, renewable generation (RES), and/or 

electrical storage (ES). The renewable generation plot displays, on an hourly scale, the 

wind and PV power generation and is included to compliment the above bar charts. The 

renewable generation usage plot shows how the PV and wind power generation is being 

used within the local energy system. In the example figure the electrical demand uses a 

baseload proportion of the generation, while the heat pump and auxiliary electric heater 

consume most of the remainder. Little of the power is exported showing that, for this 

week, the system has enough flexibility built in to self-consume almost all of the on-site 

renewable power generation.  

 

Figure 6.6: Total PV, wind turbines and combined renewable power production in bar charts 
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The grid interaction plots, Figure 6.8, shows the flow of imports and exports along 

with the financials of the import cost and cashflow for a summer week. As was seen from 

the renewable power usage plot, little power is exported from the local energy system for 

the example summer week. The variable periods pricing structure can be readily viewed, 

along with the cashflow which is useful as a proxy metric of viewing the combined import 

and export interaction. In this example exports have no value which explains why the 

short period of export does not result in a positive cashflow.  

Two figures are output to explore the modelling results of the heat pump. Figure 6.9 

shows the heat demand, heat pump output, and heat pump electrical usage. Additionally, 

Figure 6.10 displays the variation in heat pump performance in terms of the COP and 

maximum thermal output. The heat demand plot shows when the heat demand is met by 

the heat pump, the hot water tank discharging, and the auxiliary heat. It can be seen by 

viewing the heat demand and heat pump thermal output plots together that, in this 

example, load shifting is occurring as there are distinct periods where the heat pump 

thermal output is charging the hot water tank, the heat pump turns off, and then the hot 

Figure 6.7: Electrical demand, renewable generation, and renewable generation usage plots for summer week 
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water tank meets the heat demand. The heat pump is utilising excess power generation 

from the PV to charge the hot water tank to meet the heat demand in a later period, where 

the PV is not producing.  

In this analysis the usage of excess PV generation is assigned a zero-marginal cost and 

exports zero value. In this case the MPC makes no distinction in the electrical cost 

between running the heat pump or auxiliary electric heater. The MPC does include the 

advantage that using the heat pump is a more efficient conversion of the surplus electricity 

into heat than using the auxiliary electric heat. However, there are periods where there is 

no advantage from the more efficient use of the surplus, such as where the hot water tank 

can be filled, or the hot water tank charged sufficiently to cover the heat demand until the 

next PV surplus, by either the heat pump or auxiliary electric heat. This is seen in the 

periods where the heat pump turns off and the electric heater meets demand and charges 

storage using surplus PV generation, and discharging the hot water tank is then capable 

of meeting the heat demand until the next PV surplus. See Section 6.8.2.2. for further 

discussion of the operation of this example. 

Figure 6.8: Grid interaction plot for summer week 
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The hot water tank plots combine the calculated energy flow of charging and 

discharging along with the modelled node temperature variations, Figure 6.11. The top 

and middle plots show the charging and discharging over a summer week, and these 

coincide with the heat pump and auxiliary electric heater utilising the hot water tank to 

shift load in order to maximise use of on-site PV power generation. The bottom plot 

shows the fluctuation of the temperature of the nodes, which matches the periods of 

charging and discharging. In the summer the heat demand is substantially lower than in 

the winter, and this leads to an underutilisation of the hot water tank in the summer. This 

is seen in this plot as the temperatures of the lower nodes are consistently at lower 

temperatures than the maximum, which means that effectively only a fraction of the hot 

water tank capacity is being used. 
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Figure 6.9: Heat demand, heat pump output, and heat pump electrical usage plots for summer week 

Figure 6.10: Heat pump performance with COP and duty 
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Thus far, the graphical outputs described have generally focussed on individual 

components of the local energy system. However, to understand the complex interactions 

between the supply, demand, and storage components it is useful to view these plots side 

by side in a figure. Operational graphs are output to help understand the relationships 

between the system components, and consist of four plots: heat pump output, auxiliary, 

and heat demand; hot water tank node temperatures; import cost; and, surplus and export. 

These are explored fully for the different control strategies and electricity tariffs in the 

Section 6.7. 

  

Figure 6.11: Thermal storage charging and discharging as energy, and node temperatures for summer week 
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6.6.1. Comparison to EnergyPLAN 

The aim of this section is to compare the outputs from a widely used planning-level 

modelling tool, EnergyPLAN, to PyLESA, to help build confidence in the modelling 

capabilities of PyLESA. This was done by comparing a sample of outputs from both tools 

and explaining differences in the output due to the different hot water tank modelling and 

control approaches. EnergyPLAN was chosen because it is widely used, can model all the 

required components, is free to download and use, and the author has user expertise. The 

scope of this section is not a detailed analysis of EnergyPLAN, which is one of the tools 

reviewed in detail in Chapter 3, or PyLESA, where the outputs are explored in detail 

elsewhere in this chapter. The purpose of this section is to check if the outputs from both 

tools are similar, and that any differences can be explained by the different functionality. 

Given the widespread usage of EnergyPLAN, it is assumed that if PyLESA can produce 

similar outputs then it is producing reasonable outputs. This can then help build 

confidence in the modelling capabilities of PyLESA. 

Both tools were used to model the proposed design of WWHC (described in Section 

6.3.), with a 1000kW heat pump and 500m3 hot water tank size combination, a variable 

periods tariff and MPC. This size combination was chosen as it has large enough 

capacities to use the heat pump and hot water tank to load shift to both utilise excess PV 

generation and to take advantage of the day/night electrical import cost timings of the 

variable periods tariff.  

The inputs to EnergyPLAN are described here:  

 The electricity and heat demands are input using the annual demand and distributions 

of the hourly variation. For the heat demand monitored data was input, and for the 

electricity demand the synthesised profile from HOMER was input.  

 PV generation is input as a capacity and a distribution profile. The solar radiation 

global horizontal incident from the MERRA reanalysis dataset was input as the 

distribution profile, while the capacity was adjusted to match the annual power 

production as modelled using PVLIB.  

 The heat pump is input as a fixed electrical capacity and COP. This was input as 

417kW to obtain a 1000kW heat output capacity using a COP of 2.4. This is the 

seasonal COP over the year as calculated by PyLESA, and is used because 
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EnergyPLAN can only accept a fixed COP. A 1000kW auxiliary electric boiler is also 

added for backup and peak demand periods.  

 For the hot water tank, the energetic capacity is calculated using the specific heat 

formula, where the mass is 500,000kg and the delta T is 25°C (from 65°C heat pump 

flow and 40°C district heating return temperatures). The energetic capacity is 

calculated and input as 14.5MWh.  

 The variable periods tariff is input as a timeseries distribution, with day prices of 

£150/MWh and night prices of £75/MWh. 

 The technical control strategy selected balances heat and electrical demands, while 

maximising self-consumption of excess electrical generation. A sample of the available 

control strategies were tested, and this one was found to minimise operational costs.  

Table 6.2 shows the imports, percentage of PV exported, import costs, and LCOE 

are similar for both tools. This suggests that the outputs from PyLESA are in broad 

agreement with the outputs from the widely used planning-level tool, EnergyPLAN, and 

therefore, producing outputs which are reasonable. However, the outputs are not exactly 

the same, and this is due to the differences in the way PyLESA and EnergyPLAN models 

and controls the hot water tank. These differences are discussed in the rest of this section. 

Table 6.2: Outputs from application of PyLESA and EnergyPLAN 

Output (over a year) PyLESA EnergyPLAN 

Imports (MWh) 2011 2000 

Percentage of PV generation 

exported (%) 
4.5 9.3 

Import costs (£k) 247 273 

LCOE (p/kWh) 5.8 6.3 

 

The tools use different approaches for modelling the hot water tank. PyLESA uses 

the multi-node model which accounts for the evolution of temperature throughout the 

tank, and for losses to both the environment and mixing. EnergyPLAN uses an energetic 

model which does not account for any losses and does not incorporate temperatures of 

the tank. This contributes to the higher imports and lower percentage of PV generation 

exported (increased PV self-consumption) as output by PyLESA compared to 
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EnergyPLAN, as there is a greater energy requirement for meeting demands plus the 

losses. 

There are also differences in the approaches of the tools to the control of the hot 

water tank. In this example, PyLESA has been applied with MPC which optimises the 

operation of the hot water tank over a 24-hour period in order to minimise electricity 

costs. This means that the hot water tank is used to flexibly operate the heat pump and 

auxiliary electric heater in order to meet demand by using excess PV generation and 

avoiding the high-cost periods of the variable tariff. EnergyPLAN controls the hot water 

tank using a technical strategy which stores excess PV generation whenever possible and 

is independent of fluctuations of prices of the variable tariff. 

The control logic used by EnergyPLAN results in periods where the storage reaches 

capacity and forces excess PV generation to be exported. PyLESA operates to maximise 

the use of the excess PV generation, as it is considered zero marginal cost electricity. 

Additionally, it also occasionally uses the auxiliary electric heater to use or store excess 

PV generation. This is because operation is minimised for cost and does not distinguish 

between the greater energy utilisation possible by using the heat pump over the auxiliary 

electric heater. The optimisation strategy, use of the auxiliary electric heater, and losses 

from the hot water tank all contribute to a lower percentage of the PV generation which 

is exported in the outputs from PyLESA compared to EnergyPLAN. 

EnergyPLAN does not attempt to shift electricity imports to low-cost periods, in 

contrast to PyLESA which accounts for both PV generation and the variability of the 

electricity tariff when operating the heat pump and hot water tank.  This contributes to 

lower import costs and LCOE from PyLESA compared to EnergyPLAN. This is despite 

the higher energy demand for PyLESA due to incorporating hot water tank losses, which 

will contribute to increasing import costs and LCOE for PyLESA.  

This analysis does not explore the extent to which the different approaches change 

the outputs, and this can be done as future work to complete a more detailed comparison 

of the two tools. However, the above discussion of the effects of the different approaches 

to control and modelling of the hot water tank explains the reasons for the differences 

between the outputs. 

PyLESA could be configured to imitate the control logic of EnergyPLAN by setting 

losses to zero and utilising a significantly longer prediction horizon. However, this 

approach is not realistic as keeping the hot water tank hot over periods of days, as 
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EnergyPLAN does in periods of high PV generation, will result in higher heat losses. Not 

modelling these heat losses results in a lower overall energy demand than would be 

expected with a system containing a hot water tank. This highlights the advantage of using 

PyLESA with its more realistic hot water tank modelling and control. Additionally, 

EnergyPLAN cannot be configured to imitate the more realistic control used by PyLESA. 

This highlights the greater user flexibility of PyLESA over EnergyPLAN. 

In conclusion, the similar outputs show that PyLESA produces reasonable outputs, 

while the differences in the outputs can be explained by the more realistic approach taken 

to the modelling and control of hot water tanks in PyLESA than in EnergyPLAN. 
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6.7. Operational Analysis Results 
This section contains the results and discussion of the operational analysis for all the 

modelled combinations of control strategies and electricity tariffs. The algorithms and 

decision making behind the controllers will be discussed by examination of the behaviour 

of the supply and storage components as they meet demand. This contributes to two aims 

of the sizing study, (i) to compare the performance of the control strategies and, (ii) to 

compare the performance of the electricity tariffs. 

This section also contributes to another aim of the sizing study which was to validate 

the control strategies by inspection. This is crucial as the development of these constitute 

a contribution made to the state of the art. Additionally, the analysis in this section helps 

validate the workflow of PyLESA; ensuring that the underlying models work together and 

can produce outputs which are logical and realistic. 

The operational graphs presented here consist of four plots: heat pump output, 

auxiliary, and heat demand; hot water tank node temperatures; import cost; and, surplus 

and export. A summer week and winter week are shown for most tariff and control 

combinations, with a windless winter week shown for the wind tariff with MPC. 

The following key applies to all the operational graphs: HPt – heat pump heat output, 

aux – auxiliary heat output, and HD – heat demand. 

The case study for the control strategy and electricity tariff combinations use a 

1000kW heat pump and 500m3 hot water tank size combination as the illustrative example 

to carry out the analysis, except those with the wind tariff where a 3000kW heat pump 

and 3000m3 hot water tank combination was used. A different size combination is chosen 

for the wind tariff to explore the ability of a larger sized system to take advantage of the 

larger price differentials on a longer timescale. 

 

 

 

 

  



178 | 
 

6.7.1. Fixed Order Control 

6.7.1.1. Flat Rate Tariff 

The operation of the fixed order control with the flat rate tariff is displayed for a summer 

week in Figure 6.12 and a winter week in Figure 6.13. The main load shifting mechanism 

on display is shifting heat pump electricity consumption to match excess PV generation 

which charges the hot water tank to meet heat demand during periods of little or no PV 

generation. Since the flat rate tariff does not vary with time (3rd plot) there is no cost 

benefit for shifting heat pump operation according to import cost.  

The heat pump capacity, stated as 1000kW, is the rated capacity under rated operating 

conditions. The heat pump output exceeds 1000kW in the 1st plot because it is operating 

in summer conditions which are warmer than the rated conditions which results in a high 

heat pump maximum output. 

In the first few hours of the plotted period, the heat pump is meeting demand (1st 

plot) from surplus PV generation (4th plot) and charging the storage (2nd plot). When there 

is no longer surplus PV generation the heat pump turns off and the hot water tank 

discharges to meet demand. Then, the hot water tank becomes depleted, the top node 

Figure 6.12: Operational graphs with FOC and flat rate tariff over a summer week 
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drops below the required flow temperature of the district heating network, and the heat 

pump modulates output to meet heat demand. Surplus PV generation is available again 

and the heat pump operates at maximum output to meet demand and charge storage. The 

controller also chooses to turn on the auxiliary electric heater to aid charging of the hot 

water tank in the periods where relying on the heat pump using surplus PV is insufficient 

to cover the heat demand. After the PV is no longer producing a surplus, the hot water 

tank discharges to meet the heat demand. Over the remainder of the plotted week a similar 

pattern as described is repeated. Excess PV generation is utilised by the heat pump and 

electrical heater to meet demand and charge the hot water tank. This then discharges to 

meet demand where there is no excess PV generation.  

During the winter there is little surplus PV generation and therefore, few opportunities 

to shift load using the hot water tank. Figure 6.13 shows the heat pump modulating output 

to meet heat demand (1st plot), negligible hot water tank charging/discharging (2nd plot), 

and small peaks of surplus generation (4th plot) which will be used by the heat pump to 

directly meet the heat demand.  

 

Figure 6.13: Operational graphs with FOC and flat rate tariff over a winter week 
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6.7.1.2. Variable Periods Tariff   

The operation of the fixed order control with the variable periods tariff is displayed for a 

summer week in Figure 6.14 and a winter week in Figure 6.15. Load shifting occurs in this 

example for both utilising excess PV generation and avoiding importing during high-cost 

electricity tariff periods during the day (3rd plot).  

At the start of the displayed summer week, the heat pump is meeting demand from 

surplus PV generation (4th plot). When there is no longer surplus PV generation the heat 

pump turns off and the hot water tank discharges to meet demand (2nd plot). When the 

import cost drops from £150/MWh to £75/MWh (3rd plot) the heat pump output is 

turned up to the maximum output and simultaneously meets the heat demand and charges 

the hot water tank. During the low-cost period, when the hot water tank is full, the heat 

pump modulates its output to match demand. During the high-cost period the hot water 

tank discharges and the heat pump turns off unless there is surplus PV generation, in 

which case the heat pump meets demand and charges the hot water tank. However, 

Figure 6.14: Operational graphs with FOC and variable periods tariff over a summer week 
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because the hot water tank has only briefly been discharging after fully charging from the 

low-cost overnight period, there is little spare capacity to utilise the surplus PV generation. 

During the winter, there is little surplus PV generation and the primary load shifting 

mechanism is moving demand from day to night. The higher demand in the winter means 

that the heat pump operates at maximum output during the low-cost period to meet 

demand and charge the hot water tank. In the displayed example, at the start of the high-

cost period, the hot water tank discharges to meet demand but there is not enough stored 

heat to meet the entire demand during the high-cost period. When the hot water tank is 

empty the heat pump modulates its output to meet heat demand.  

 

  

Figure 6.15: Operational graphs with FOC and variable periods tariff over a winter week 
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6.7.1.3. Time-of-use Tariff  

The operation of the fixed order control with the time-of-use tariff is displayed for a 

summer week in Figure 6.16 and a winter week in Figure 6.17. Load shifting occurs mainly 

to avoid importing during the premium period which occurs each day between 4pm and 

7pm (3rd plot), and due to the lack of sophistication of the fixed order control the surplus 

PV generation is largely exported.  

The heat pump operation (1st plot) generally follows the heat demand but spikes to 

charge the hot water tank immediately after the premium price period. The hot water (2nd 

plot) stays fully charged for long periods and discharges to meet heat demand during the 

premium price period. While there are periods of surplus PV generation, this is largely 

exported because of the lengthy periods where the hot water tank is fully charged. 

The size of the hot water tank is also sufficient in the winter week to cover the larger 

heat demand during the premium period. 

Figure 6.16: Operational graphs with FOC and time-of-use tariff over a summer week 
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Figure 6.17: Operational graphs with FOC and time-of-use tariff over a winter week 
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6.7.1.4. Wind Tariff 

The operation of the fixed order control with the wind tariff is displayed for a summer 

week in Figure 6.18 and for a winter week in Figure 6.19.  

The larger size of heat pump allows the demand to be met during the low-cost periods 

where there is a large amount of wind on the grid. The large hot water tank meets the low 

summer demand for long periods using surplus PV generation and cheap wind tariff 

imports. 

Load shifting occurs mainly to avoid importing during the premium period which 

occurs each day between 4pm and 7pm (3rd plot), and due to the lack of sophistication 

of the fixed order control the surplus PV generation is largely exported.  

Again, in the winter week the large heat pump and hot water tank are operated to take 

advantage of the low-cost periods. This shows the potential of coupling large hot water 

tanks with this type of future electricity tariff which has large price differentials over long 

periods. 

 

Figure 6.18: Operational graphs with FOC and wind tariff over a summer week 
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Figure 6.19: Operational graphs with FOC and wind tariff over a winter week 
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6.7.2. Model Predictive Control  

6.7.2.1. Flat Rate Tariff 

The operation of the MPC with the flat rate tariff is displayed for a summer week in Figure 

6.20 and a winter week in Figure 6.21. The main load shifting mechanism is moving heat 

pump electricity consumption to match excess PV generation which charges the hot water 

tank to meet heat demand during periods of little or no PV generation. Since the flat rate 

tariff is constant (3rd plot), shifting heat pump operation according to import cost does 

not happen.  

In the first hours of the plotted period, the heat pump is running on surplus PV 

generation, charging the hot water tank and meeting the heat demand. Then the surplus 

PV generation goes to zero and the hot water tank is discharged to meet demand, until it 

is fully discharged, and the heat pump turns back on to meet demand. When surplus PV 

generation later returns, it is used by both the heat pump and electric heater to meet 

demand and charge storage. 

The heat pump only operates in the plotted period when there is surplus PV 

generation. The MPC optimises the operation based on minimising operational costs. 

Figure 6.20: Operational graphs with MPC and flat rate tariff over a summer week 
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Since the usage of excess PV generation is assigned a zero-marginal cost, the algorithm 

makes no distinction in cost between running the heat pump or auxiliary electric heater. 

This is seen in periods where the heat pump turns off and the electric heater meets 

demand. 

In the winter period, where there excess PV generation is negligible, the heat pump is 

primarily controlled to meet demand and charge storage in periods where the COP is 

highest. This results in a high number of heat pump cycling as the controller optimises 

the performance. 

  

Figure 6.21: Operational graphs with MPC and flat rate tariff over a winter week 
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6.7.2.2. Variable Periods Tariff 

The operation of the MPC with the variable periods tariff is displayed for a summer week 

in Figure 6.22 and a winter week in Figure 6.23. 

In the summer week, the system shifts heat pump and electrical heater usage to match 

the surplus PV generation. The operation manages to cover most of the heat demand 

using the surplus. This means that in the summer week shown, there is little interaction 

with the variable periods tariff. Between the 25th and 50th hour of the summer week the 

heat pump is turned on at the end of the low-cost period and charges the hot water tank 

to avoid a proportion of the consumption during the high-cost period, despite the excess 

of PV generation and spare hot water tank capacity in the 26th hour. The implemented 

MPC uses a simplified energetic model in the optimisation problem, which leads to an 

overestimation of the use of the hot water tank. In the illustrated period, the hot water 

tanks ability to meet demand from the 26th hour is overestimated, and this shortfall met 

at the end of the low-cost period. This shows a limitation of the implemented MPC in 

PyLESA.  

Figure 6.22: Operational graphs with MPC and variable periods tariff over a summer week 
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In the winter period the surplus PV generation is negligible and the MPC instead 

maximises the heat pump output during the night to shift as much load as possible from 

the high-cost period to the low-cost period. There is insufficient heat pump capacity to 

charge the hot water tank to cover the entire high-cost period. During the day, the heat 

pump charges the hot water tank during higher COP periods to improve overall 

performance, and ultimately minimise the operational cost.  

   

Figure 6.23: Operational graphs with MPC and variable periods tariff over a winter week 



190 | 
 

6.7.2.3. Time-of-use Tariff 

The operation of the MPC with the time-of-use tariff is displayed for a summer week in 

Figure 6.24 and a winter week in Figure 6.25. The time-of-use tariff is variable hourly 

throughout the day and the MPC should be adept at ensuring that electrical consumption 

coincides with the lowest cost periods.  

In the summer week, operation is similar to the MPC and variable periods 

combination. The MPC successfully shifts most of the electrical consumption to match 

the surplus PV generation, while utilising the lowest cost periods of the time-of-use tariff 

to meet the remaining heat demand. 

In the winter period, the surplus PV generation is negligible and the MPC instead 

optimises the heat pump output to match the lowest cost periods of the time-of-use 

tariffs, as well as incorporating the effect of outdoor temperature on the COP. This results 

in a complex operation of the heat pump cycling on and off throughout the day, 

responding to fluctuations in electricity prices and ambient temperature. 

Figure 6.24: Operational graphs with MPC and time-of-use tariff over a summer week 
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Figure 6.25: Operational graphs with MPC and time-of-use tariff over a winter week 
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6.7.2.4. Wind Tariff  

The operation of the MPC with the wind tariff is displayed for a windless, winter 10-day 

period. The MPC is modified to a 168-hour prediction horizon when modelling using the 

wind-based tariff with a 3000kW heat pump and 3000m3 hot water tank. The increase in 

prediction horizon increases computational time but allows for operation to be optimised 

during windless periods. 

.  

In the first 50 hours there are periods of high wind resulting in low cost, and it is 

during these periods the heat pump operates at maximum output to fill storage and meet 

demand. Additionally, the auxiliary electric heat turns on because the direct electric heat 

is cheaper in these periods than operating the heat pump in the high-cost periods. The 

hot water tank is then used to cover a large proportion of the high-cost period, as can be 

seen by the trend of reducing node temperatures. However, there is not enough capacity 

to cover this entire period and the heat pump occasionally operates to charge the hot 

water tank. This will occur during the highest heat pump performance periods which are 

when the air temperature is highest.  

Figure 6.26: Operational graphs with MPC and wind tariff over a windless winter 10-day period 
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6.7.3. Discussion 

The operational analysis results allow discussions on the performance of the developed 

control strategies and the existing electricity tariffs, as well as exploring the use of a future 

wind-based electricity tariff. Additionally, this close examination of the operation ensures 

that the control strategies are operating as expected and that the workflow connecting the 

underlying models of PyLESA can produce logical and useful outputs. 

Flat rate tariff:  

 The fixed order control enables load shifting to increase the self-consumption 

from on-site PV generation. This is because load shifting heat pump and electric 

heater power consumption for surplus PV generation is the only avenue of 

reducing costs. The flat rate tariff offers no incentive for shifting load.  

 Consequently, qualitative analysis of the operation does not reveal an advantage 

of using MPC as it performs the same function – increasing utilisation of surplus 

PV generation. 

Variable periods tariff:  

 The fixed order control attempts to load shift for both increasing use of surplus 

PV generation and avoiding high-cost tariff periods. However, the hot water tank 

is often fully charged at the end of the low-cost period and just before there are 

surpluses of PV generation. This results in a significant portion of PV generation 

being exported, despite this having zero value to the local energy system in this 

case study. Additionally, keeping the hot water tank at a high temperature for long 

periods will incur higher tank losses.  

 MPC allows the operation to optimise for both avoiding high-cost periods and 

utilising PV with the variable periods tariff. This results in a much higher 

utilisation of surplus PV generation, and lower import costs as a result of only 

charging the hot water tank at low-cost periods in order to cover the remaining 

heat demand. 

Time-of-use tariff:  

 This is a highly variable tariff outside the premium period meaning that using the 

fixed order control is limited to avoiding imports during the premium period. The 

fixed order control is not suited to avoid the premium period and load shift based 

on price variations outside of the premium.  
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 MPC makes it possible to avoid premium prices and take advantage of the other 

variable prices. Additionally, similar to the variable periods tariff, the PV 

utilisation can be maximised and imports limited to the lowest cost periods and 

restricted to only meeting the remainder of the demand in the calculation period. 

Wind tariff:  

 Using the fixed order control with the wind tariff shows great potential for the 

use of large hot water tanks and heat pumps with this type of tariff. The heat 

pump only runs in the low-cost and renewable periods which should lead to low 

operating costs and a high percentage of heat met by renewables. 

 MPC requires a longer prediction horizon than that used for the existing electricity 

tariffs to account for the large windows of fluctuations, over periods closer to a 

week. It can be seen that the electric heater is still needed to see the system 

through long periods of high cost. However, the sizing results should show 

employing the MPC resulting in a higher proportion of renewables meeting 

demand. 
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6.8. Sizing Results 
The heat pump and hot water tank are sized for the proposed design using three existing 

electricity tariffs: flat rate, variable periods, and time-of-use; and a future wind-based 

electricity tariff. Price data for the existing tariffs is from 2017 and taken to be 

representative of the types of price differentials available and allow this sizing study to 

investigate and compare system performance using the different tariff structures.  

The KPI levelized cost of heat (LCOH) was used to select the optimum size 

combination in this study. The LCOH metric does not reflect the total cost of the system, 

as only the heat pump and hot water tank capital expenditures are included, but it does 

provide a helpful insight into trade-offs between the larger capital cost and the smaller 

operating cost associated with increasing capacities of heat pump and hot water tank. The 

capital cost plot is shown in Figure 6.27 and the shape of this plot shows the relative 

expensive cost of increasing heat pump capacity as compared to hot water tank capacity. 

Cost may not be the sole driver of a project, as environmental, e.g. CO2 emissions, or 

wider societal benefits may be more important. Therefore, 3D plots are included for the 

existing electricity tariffs of the following KPIs: LCOH, ORESpv, and HRESpv. For the 

wind tariff 3D plots of the following KPIs are displayed: LCOH, ORESpv, and 

HRESpv+windtariff. ORESpv is the percentage of on-site PV generation which is self-

consumed. HRESpv is the percentage of the heat demand which is met through usage of 

the on-site PV generation. HRESpv+wind is the percentage of the heat demand which is 

met through both the usage of the on-site PV generation and the usage of electrical 

imports during high wind periods. See Section 6.1. for further details on these. 

Results for the optimum LCOH size combinations of heat pump and hot water tank 

are in Table 6.3 for the existing electricity tariffs and developed control strategies, and in 

Table 6.4 for the wind electricity tariff and developed control strategies. 
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Table 6.3: Optimum LCOH results for the existing electricity tariffs and control strategies including KPIs (brackets is 
the relative change from FOC to MPC) 

Tariff Control 
HP 

(kW) 

TS 

(m3) 

HRESpv  

(%) 

ORESpv  

(%) 

LCOH 

(p/kWh) 

Fixed Rate 

FOC 750 400 33.8 92.7 4.75 

MPC 750 500 32.7 96.7 
4.62 

(-2.7%) 

Variable 

Periods 

FOC 1000 400 18.7 70.2 4.49 

MPC 1000 500 33.6 95.5 
4.13 

(-8.0%) 

Time-of-use 

FOC 750 300 15.8 67.0 3.86 

MPC 750 500 32.1 95.9 
3.11 

(-19.4%) 

 

Table 6.4: : Optimum LCOH results for the wind electricity tariff and control strategies including KPIs (brackets is 
the relative change from FOC to MPC) 

Tariff Control 
HP 

(kW) 

TS 

(m3) 

HRESpv+windtariff 

(%) 

ORESpv  

(%) 

LCOH 

(p/kWh) 

Wind 

FOC 1000 1500 52.8 73.8 5.81 

MPC 1000 2000 70.2 98.1 
3.25 

(-44.1%) 
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Figure 6.27: 3D plot of capital cost for a range of size combinations 
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6.8.1. Fixed Order Control  

6.8.1.1. Flat Rate Tariff   

The main load shifting mechanism for fixed order control with the flat rate tariff is shifting 

heat pump electricity consumption to match excess PV generation. The LCOH optimum 

size combination is a 750kW heat pump and a 400m3 hot water tank. 

The LCOH is reduced by increasing hot water tank capacity before levelling off above 

capacities of 400m3 (Figure 6.28), and by increasing heat pump capacity to 750kW after 

which the LCOH increases. The main driver for the reduction in LCOH is increasing the 

heat pump capacity, as the higher usage of the heat pump over the auxiliary electric heat 

meets the heat demand more efficiently. Another driver is a larger hot water tank which 

allows higher on-site PV self-consumption (Figure 6.29). Both graphs show the same 

levelling off point with increasing hot water tank capacity. 

 

 

 

Figure 6.28: 3D plot of LCOH (levelized cost of heat) for FOC with flat rate tariff 
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The on-site PV self-consumption increases with a larger hot water tank, and then 

levels off above hot water tank capacities of 400m3. The decrease in on-site PV self-

consumption as heat pump size increases is due to the more efficient conversion of 

electricity to heat using the heat pump as opposed to the auxiliary electric heater.  

This is clarified in Figure 6.30 which shows that increasing the heat pump and hot 

water tank capacities also increases the percentage of the heat demand met by on-site PV. 

Therefore, while the on-site PV self-consumption decreases with greater heat pump 

usage, the increase in efficient use of the produced electricity results in a higher percentage 

of heat demand met by on-site PV.  

 

 

 

 

 

 

 

Figure 6.29: 3D plot of ORESpv (on-site PV self-consumption) for FOC with flat rate tariff 
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Figure 6.30: 3D plot of HRESpv (heat demand from on-site PV) for FOC with flat rate tariff 
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6.8.1.2. Variable Periods Tariff    

The fixed order control with the variable periods tariff shifts load to move electricity 

consumption from the high-cost period during the day to the low-cost period at night, 

and to utilise excess PV generation. The LCOH optimum size combination is a 1000kW 

heat pump and a 400m3 hot water tank. This is a larger heat pump capacity but the same 

hot water tank capacity as compared to the optimum found for the flat rate tariff (750kW 

heat pump and 400m3 hot water tank).  

The size of the hot water tank is limited to the heat pump running at full output for 

the duration of the low-cost period, as seen in the levelling of LCOH (Figure 6.31) for 

additional hot water tank capacity larger than 500m3.  

 

 

 

 

 

Figure 6.31: 3D plot of LCOH (levelized cost of heat) for FOC with variable periods tariff 
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An interesting phenomenon occurs when increasing the size of heat pump beyond 

250kW. The percentage of heat demand from on-site PV decreases, and this is because 

the increased charging of the hot water tank during the night, decreases the potential for 

charging using the surplus PV generation further (Figure 6.33). While increasing heat 

pump capacity decreases the LCOH by shifting additional load from day to night, the 

renewable fraction lowers because of the hot water tank having less available charging 

during the day where there is surplus of generation.  This disadvantage of the controller 

can be seen as additional storage has little effect on increasing the usage of on-site PV 

above 100m3 (Figure 6.32).  

 

 

Figure 6.32: 3D plot of ORESpv (on-site PV self-consumption) for FOC with variable periods tariff 
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Figure 6.33: 3D plot of HRESpv (heat demand from on-site PV) for FOC with variable periods tariff 
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6.8.1.3. Time-of-use Tariff  

The fixed order control with the time-of-use tariff shifts load mainly to avoid importing 

during the premium period which occurs each day between 4pm and 7pm, and due to the 

lack of sophistication of this control strategy the surplus PV generation is largely exported. 

The LCOH optimum size combination is a 750kW heat pump and a 300m3 hot water 

tank.  

The tariff varies through all periods of the day making it difficult to choose a setpoint 

for the fixed order controller. The setpoint in this example is below the premium period 

cost to ensure that the controller is attempting to use the hot water tank and avoid heat 

pump usage in this period. A sensitivity analysis would be required to fine tune the 

setpoint. With this primary objective of avoiding the premium period, the optimum hot 

water tank for minimising LCOH is smaller than for the other tariffs as there is only a 

three-hour period for which the hot water tank is used to shift load.  

Similar to the variable periods, the on-site PV self-consumption and percentage of 

heat demand met by on-site PV is limited due to insufficient hot water tank capacity 

during PV generation which is due to limitations with the fixed order control strategy.  

Figure 6.34: 3D plot of LCOH (levelized cost of heat) for FOC with time-of-use tariff 
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Figure 6.35: 3D plot of ORESpv (on-site PV self-consumption) for FOC with time-of-use tariff 

Figure 6.36: 3D plot of HRESpv (heat demand from on-site PV) for FOC with time-of-use tariff 
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6.8.1.4. Wind Tariff 

The wind tariff incentivises load shifting by offering high price differentials between 

windy and non-windy periods, in addition to the day/night differential. As with the time-

of-use tariff the fixed order control is difficult to setup due to the importance of defining 

the setpoint. The LCOH optimum size combination is a 1000kW heat pump and a 

1500m3 hot water tank. 

The fixed order control does not successfully take advantage of the price differentials 

available with the wind tariff. The modelling results show a higher LCOH than the 

existing tariffs. This is because the control is not shifting enough load from the high cost 

periods, which are substantially higher than the existing tariffs, to the low-cost periods, 

which are substantially lower than the existing tariffs. 

 

 

 

 

Figure 6.37: 3D plot of LCOH (levelized cost of heat) for FOC with wind tariff 
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Similar to the variable periods and time-of-use tariffs, the on-site PV self-consumption 

and percentage of heat demand met by on-site PV and high wind grid import is limited 

due to insufficient hot water tank capacity during PV generation which is due to charging 

the storage according to the import price and only charging from the surplus PV 

generation opportunistically. However, unlike the existing tariffs, importing using the 

wind tariff during periods of high-wind can be classed as from RES. Therefore, the 

percentage of heat demand met from on-site PV and high wind grid import increases with 

additional heat pump capacity up to 1500kW and for any additional hot water tank 

capacity.  

 
 
 
 

Figure 6.38: 3D plot of ORESpv (on-site PV self-consumption) for FOC with wind tariff 
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Figure 6.39: 3D plot of HRESpv+windtariff (heat demand from on-site PV and electrical imports during 
high wind periods) for FOC with wind tariff 
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6.8.2. Model Predictive Control  

6.8.2.1. Flat Rate Tariff  

The only load shifting opportunity for MPC with the flat rate tariff is shifting heat pump 

electricity consumption to match excess PV generation. The LCOH optimum size 

combination is a 750kW heat pump and a 500m3 hot water tank. 

Compared to the fixed order control, use of the MPC reduces the LCOH by 2.7%. 

This is small because the fixed order control is only storing heat generated via excess PV 

generation and discharging the hot water tank when no excess is available. As this is the 

only form of load shifting available, the MPC performs a similar process.  

The MPC control strategy is slightly better at utilising the surplus PV generation. This 

is because the MPC optimisation is cost-driven and PV generated electricity is modelled 

with zero marginal cost which means that use of the heat pump and auxiliary electric heat 

are equal in priority of dispatch. Meanwhile, the fixed order control always prioritises the 

heat pump. This means that when employing MPC there will be more periods where the 

auxiliary electric heat uses the surplus generation.  

 

Figure 6.40: 3D plot of LCOH (levelized cost of heat) for MPC with flat rate tariff 
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As with the fixed order control, while the on-site PV self-consumption decreases with 

greater heat pump usage, the increase in efficient use of the produced electricity results in 

a higher percentage of heat demand met by on-site PV.  

 

Figure 6.41: 3D plot of ORESpv (on-site PV self-consumption) for MPC with flat rate tariff 

Figure 6.42: 3D plot of HRESpv (heat demand from on-site PV) for MPC with flat rate tariff 
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6.8.2.2. Variable Periods Tariff 

The MPC with the variable periods tariff aims to optimise operation in order to shift load 

to move electricity consumption from the high-cost period during the day to the low-cost 

period at night, and to utilise excess PV generation. The LCOH optimum size 

combination is a 1000kW heat pump and a 500m3 hot water tank. 

Using MPC with the variable periods tariff decreases the LCOH by 8.0%. This saving 

is made because the MPC allows greater usage of the on-site excess PV generation. This 

is achieved by limiting the charging of the hot water tank during the cheaper night-time 

periods such that there is sufficient capacity during the day to increase the storing of heat 

from excess PV generation. 

 

 

 

 

 

 

Figure 6.43: 3D plot of LCOH (levelized cost of heat) for MPC with variable periods tariff 
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The MPC enables almost all of the surplus PV generation to be self-consumed above 

a hot water tank capacity of 300m3 (Figure 6.44). Increasing the heat pump capacity 

reduces the self-consumption of the PV, and this is because of a greater use of the heat 

pump which is more efficient than the auxiliary electric heat. This is again, similar to 

previous tariffs, seen in the increase in percentage of heat demand met from on-site PV 

by increasing either heat pump or hot water tank capacities. 

 

  

 

 

 

 

 

 

 

Figure 6.44: 3D plot of ORESpv (on-site PV self-consumption) for MPC with variable periods tariff 
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Figure 6.45: 3D plot of HRESpv (heat demand from on-site PV) for MPC with variable periods tariff 
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6.8.2.3. Time-of-use Tariff 

The time-of-use tariff is variable hourly throughout the day and the MPC should be adept 

at ensuring that electrical consumption coincides with the lowest cost periods, including 

utilising surplus PV generation. The LCOH optimum size combination is a 750kW heat 

pump and a 500m3 hot water tank. 

Using MPC over the fixed order control decreases LCOH by 19.4%, making it the 

lowest LCOH tariff for this control strategy. The savings come about because the fixed 

order controller is limited to avoiding the premium period and does not use the storage 

to shift load in the other price-varying periods. The MPC has the advantage of not 

requiring a setpoint and can therefore utilise all the storage to shift load outside the 

premium period to minimise operating cost across all periods. Additionally, as was seen 

with the variable periods tariff, the MPC optimises the usage of the excess PV generation.  

 

 

 

Figure 6.46: 3D plot of LCOH (levelized cost of heat) for MPC with time-of-use tariff 
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As with the variable periods tariff, the MPC enables almost all of the surplus PV 

generation to be self-consumed above a hot water tank capacity of 300m3 (Figure 6.47). 

A drop in the self-consumption for large heat pump and hot water tank combinations is 

due to the greater proportion of heat demand being met by the heat pump which is more 

efficient than the auxiliary electric heat. Again, similarly to previous tariffs, an increase in 

percentage of heat demand met from on-site PV is achieved by increasing either heat 

pump or hot water tank capacities. 

 

 

 

 

 

 

 

Figure 6.47: 3D plot of ORESpv (on-site PV self-consumption) for MPC with time-of-use tariff 
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Figure 6.48: 3D plot of HRESpv (heat demand from on-site PV) for MPC with time-of-use tariff 
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6.8.2.4. Wind Tariff 

The wind tariff incentivises load shifting by offering high price differentials between 

windy and non-windy periods, in addition to the day/night differential. The MPC with 

the wind tariff uses a 168-hour prediction horizon which allows the operation to account 

for long periods of lots of wind or no wind. The LCOH optimum size combination is a 

1000kW heat pump and a 2000m3 hot water tank, marking a significant increase in optimal 

hot water tank size and similar optimal heat pump size compared to the existing tariffs. 

Due to the larger parametric steps used for the hot water tank sizes, two additional 

simulations were undertaken for a 1000kW heat pump with both 1500m3 and 2500m3 hot 

water tank capacities. These both result in an increase in LCOH, therefore a 2000m3 hot 

water tank remains the optimal size.  

Using MPC over the fixed order control decreases LCOH by 44.1%, which clearly 

shows that using MPC is beneficial. These substantial savings are possible due to the 

ability of the MPC, with the week-long prediction horizon, to optimally shift the heat 

pump electrical consumption to the periods of low-cost. The wind tariff is highly variable 

with a large differential between low-wind and high-wind periods, and this heavily 

Figure 6.49: 3D plot of LCOH (levelized cost of heat) for MPC with wind tariff 
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incentivises the load shifting mechanism which is enabled by a large hot water tank and 

use of MPC.  

As with the existing electricity tariffs, the MPC enables almost all of the surplus PV 

generation to be self-consumed. A drop in the self-consumption for larger heat pump and 

hot water tank combinations is due to the greater proportion of heat demand being met 

by the heat pump which is more efficient than the auxiliary electric heat.  

Unlike the existing tariffs, importing using the wind tariff during periods of high-wind 

can be classed as from RES. In Figure 6.51 it can be seen that the percentage of heat 

demand met from on-site PV and high wind grid import increases with additional heat 

pump capacity and hot water tank capacity. With the wind tariff and MPC, along with a 

large hot water tank, the percentage of heat demand met from on-site PV and high wind 

grid import is greater than any of the other tariff and control combinations. This illustrates 

the importance of combining MPC with a large hot water tank in future highly renewable 

energy systems in order to maximise the local energy system renewable usage. 

 

 

Figure 6.50: 3D plot of ORESpv (on-site PV self-consumption) for MPC with wind tariff 
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Figure 6.51: 3D plot of HRESpv+windtariff (heat demand from on-site PV and electrical imports during 
high wind periods) for MPC with wind tariff 
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6.8.3. Discussion 

Tariffs with greater variability provide more incentive to use the hot water tank to load 

shift demand, as can be seen with lower LCOH for variable periods and time-of-use tariffs 

over the flat rate tariff (using the given cost assumptions).  

When using the fixed order controller, the flat rate and time-of-use tariffs both have 

an optimal heat pump capacity of 750kW. This similarity is linked to the comparable, 

short duration of the surplus PV generation and the premium period. The flat rate tariff 

utilising surplus PV generation is the main load shifting mechanism, while with the time-

of-use tariff avoiding heat pump usage during the three-hour premium period is the 

primary objective. Additionally, the variable periods tariff has a higher optimal heat pump 

capacity of 1000kW which reflects the longer duration of the low-cost period. For the 

variable periods tariff, shifting heat pump electrical consumption from day to night is the 

main utility of the hot water tank.  

When using the fixed order controller, the flat rate and variable periods tariffs both 

have an optimal hot water tank capacity of 400m3. Increasing hot water tank capacity for 

the variable periods tariff does not reduce operating cost with the fixed order controller 

because the controller is not predictive and cannot increase the usage of surplus PV 

generation and is limited in shifting load from day to night. The time-of-use tariff with 

the fixed order controller has the lowest optimum hot water tank capacity because it is 

only avoiding heat pump usage in a three-hour window. 

Using MPC does not affect the optimal size of heat pump but increases the optimal 

hot water tank size. With MPC, the hot water tank can load shift for multiple objectives 

such as day to night shifting, optimising heat pump COP by shifting operating times, and 

utilising excess PV generation.  

Comparisons between the control strategies found that MPC offers savings over the 

fixed order control for all the existing electricity tariffs, but particularly for a time-of-use 

tariff where savings of 19.4% were obtained. Comparisons between the existing electricity 

tariffs found that the time-of-use tariff delivered the lowest levelized cost of heat. This 

conveys the advantage of combining tariffs which promote flexibility through load 

shifting with optimally sized hot water tank. 

MPC has the largest reduction in LCOH when paired with the wind tariff. Using MPC 

over the fixed order control decreases LCOH by 44.1%. This shows how when using a 



221 | 
 

tariff which heavily incentivises the load shifting mechanism, a larger hot water tank and 

use of MPC is advantageous. Additionally, the percentage of heat demand met by on-site 

PV and high wind grid import increases from 52.8% to 70.2% for the fixed order control 

and MPC. 

The wind tariff optimal heat pump and hot water tank combination, 1000kW heat 

pump and 2000m3 hot water tank, has the same heat pump capacity as the existing tariff 

optimal sizes but has a larger hot water tank capacity. This means that systems which are 

sized for the existing electricity tariffs can be modified later by adding hot water tank 

capacity to take advantage of future tariffs, such as the wind tariff used in this sizing study. 

6.9. Results Summary 
Application of this methodology to a sizing study for a residential district heating scheme 

has showcased the ability of PyLESA as a useful aid to investigate the benefits of model 

predictive control (MPC) and different electricity tariffs including a novel future wind 

tariff. PyLESA has proved to be a useful addition to the current set of existing modelling 

tools to model the proposed design for WWHC including heat pumps, hot water tank, 

variable electricity tariffs, and MPC. Close examination of the operational analysis 

provided a validation of the underlying algorithms of the control strategies and showed 

that running PyLESA can produce logical and useful outputs. 

The operational analysis results provided a qualitative discussion of the comparisons 

of the developed control strategies and the electricity tariffs.  It identified limitations with 

the fixed order controller when attempting to shift load beyond simple situations, i.e. 

when attempting to utilise on-site renewable generation as well as avoiding high-cost 

periods of a tariff. The operation of the MPC was explored and this illustrated the 

advantages of the MPC which can optimise the operation of the heat pump and hot water 

tank, for a number of objectives, in order to lower operating costs. The operational 

analysis also revealed the potential for the use of large hot water tanks and heat pumps 

with the future wind tariff. 

A 750kW heat pump and 500m3 hot water tank using MPC and a time-of-use 

electricity tariff were found to deliver the lowest LCOH in comparison with the existing 

electricity tariff structures and control strategies. This marks a significant 10x expansion 

of the existing hot water tank at WWHC which is used to aid peaks in demand for the 
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existing biomass boiler. This signifies a shift in the methods which are used to size hot 

water tank; sizing to enable load shifting and not only for flattening peak demands during 

design periods.  

An optimal size combination of a 1000kW heat pump and a 2000m3 hot water tank 

was found with MPC and the wind tariff. For the wind tariff performance improvements 

were found by using MPC over the fixed order control: LCOH reducing from 5.81p/kWh 

to 3.25p/kWh (44.1% reduction); and heat demand met by on-site PV and high wind grid 

import increasing from 52.8% to 70.2%. The optimal heat pump size for the wind tariff 

was found to be similar, or the same, as for the existing tariffs. The optimal hot water 

tank capacity is significantly larger. Therefore, the proposed design could be sized for an 

existing electricity tariff and later additional hot water tank capacity can be added to take 

advantage of future tariffs. 
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7. Conclusions 

The previous chapters have described the development of the local energy system 

modelling tool, PyLESA, and the application of it to inform a sizing study of a proposed 

design for a district heating network.  

This chapter discusses the strengths and limitations of the research undertaken. This 

will consist of discussion on the contributions to the state of the art in terms of the 

modelling capabilities of PyLESA; exploration of the performance of the control 

strategies and electricity tariffs; the limitations of PyLESA and potential future tool 

developments; and potential applications of PyLESA. The chapter ends with a final 

summary.  

7.1. Contributions 
Several contributions have been made in this work. They were achieved in order to answer 

the central research question, which was introduced in Chapter 2 and is restated below: 

Can a modelling methodology and supporting modelling tool be developed 

that usefully aids the planning-level design of local energy systems incorporating 

heat pumps, thermal storage, local renewable electricity production, time-of-use 

electricity tariffs, and predictive controls? 

Specific aims were set in order to answer this research question and a research 

methodology was developed to organise the work required to achieve these aims. These 

aims are discussed below and are split between those which address the gaps in existing 

modelling tools, and those which explore the developed control strategies and electricity 

tariffs in the context of the proposed district heating system design. The contributions 

made are highlighted in this discussion. 

7.1.1. Addressing Modelling Capability Gaps 

The first research aim which was to identify gaps in existing planning-level modelling 

tools. This was achieved by categorising the capabilities of the identified tools and 

developing a modelling tool selection process. By analysis of these capabilities against the 
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local energy system specified in the research question, a set of modelling gaps were 

identified.  

The second and third research aims were to develop a modelling methodology and 

supporting modelling tool which would address the identified gaps and aid design 

decisions at a planning level by modelling local energy systems incorporating heat pumps, 

thermal storage, local renewable electricity production, time-of-use electricity tariffs, and 

predictive controls. This was achieved by the development of a modelling methodology 

which consists of the steps for applying the novel modelling tool, PyLESA. The modelling 

capabilities of PyLESA was then described, including details of the models which 

contributed to identified gaps. 

The discussion below concerns how the specific gaps were addressed, and the 

strengths of the contributions made. The limitations and future developments of PyLESA 

and its underlying models will be discussed in Section 7.2. 

Ability to adapt source code and import or exploit functionality from elsewhere. 

PyLESA was written in the programming language Python which was chosen because it 

is open source and widely used across science and engineering fields. This meant that 

PyLESA could build on the state of the art, utilising energy system models previously 

built, as well as providing a platform from which the developed models can be shared 

with other researchers in the energy system modelling community. As compared to the 

reviewed tools which were primarily written in programming languages which require 

expert software development skills, or are completely closed source, PyLESA offers the 

explicit ability for others to adapt the source code or to easily couple PyLESA with other 

energy system models developed in Python. 

Temperature dependence for the heat pump models. 

It was identified that in the reviewed tools that heat pumps were being modelled using 

simple energetic models and are based upon a limited set of performance data. This leads 

to an overestimation of performance across the operating conditions. In PyLESA a more 

detailed heat pump modelling approach is developed which uses standard test data to 

generate performance maps using multiple variable linear regression analysis with explicit 

temperature dependence. This extends the current state of the art of approaches 

employed by energy system planning tools. 
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Detailed stratification model for the thermal storage models.  

Similar to the approach of the reviewed tools for modelling heat pumps, when modelling 

thermal storage simple energetic models are utilised which do not capture the thermal 

characteristics associated with stratified hot water tanks. The multi-node modelling 

approach advances on these simple energetic models with thermal characteristics 

modelled in more detail. The state of charge and heat loss of the hot water tank is 

dependent on the node temperatures. This approach means that a hot water tank can be 

represented with more detail while maintaining low input requirements which is helpful 

at the planning stage. 

Ability to model the evolving electricity markets and tariffs. 

Existing modelling tools either have in-built simple tariffs which used fixed prices and 

unlimited import and export or allow the user to input unique tariffs. As an advancement 

on this, PyLESA can generate a range of electricity tariffs. Some of which reflect existing 

and emerging tariffs such as the flat rates, variable periods, and time-of-use tariffs. 

Additionally, a wind-based electricity tariff generator has been presented as an example 

of a tariff which could exist in the UK in the future. A future UK 100% renewable energy 

system would likely have wind power as one of the main producers of energy, and 

therefore, a tariff pricing structure which is linked to wind power production is likely to 

be similar to a future electricity tariff.  

Ability to explore predictive controls. 

A distinct disadvantage of the existing modelling tools was the lack of options for control 

strategies with a notable gap for utilising predictive controls. These typically use simple 

rule-based controls which need to be adjusted by an expert in order to minimise import 

costs. There are also cases where on-site renewable production competes with a variable 

electricity tariff which makes it difficult to identify a low-cost operation schedule. 

Modelling local energy systems including a model predictive control strategy allows the 

performance to be optimised. MPC enables the operation to minimise cost, even when 

multiple competing dynamics influences are active, such as heat pump performance, 

variable tariffs, and on-site renewable power generation. In PyLESA an economic MPC 

strategy was developed and incorporated. These aspects were further explored in the 

sizing study where the performance of the MPC was compared to the fixed order control, 

with both using a range of electricity tariffs. 
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7.1.2. Exploration of Developed Control Strategies and Electricity 

Tariffs 

The fourth research aim was to demonstrate the application of PyLESA by undertaking 

a sizing study and explore the control strategies and electricity tariffs. This aim was 

achieved by carrying out a sizing study for a proposed design of a residential district 

heating system which incorporates a heat pump, a hot water tank, on-site PV electricity 

production, variable electricity tariffs, and MPC. The sizing study allowed for the 

developed control strategies and the use of existing electricity tariffs to be compared. 

These were compared by operational analysis which was used to qualitatively describe the 

control strategies and the influence of the different electricity tariffs, and also compared 

by sizing of the heat pump and hot water tank capacities for the different control strategies 

and electricity tariffs. Additionally, these included an exploration of a future wind-based 

renewable electricity tariff. 

The discussion below concerns the findings on the comparisons of the developed 

control strategies and existing electricity tariffs. It also discusses the exploration of the use 

of a future wind-based renewable electricity tariff which is useful for studies of future 

energy systems with large renewable penetrations. Finally, a discussion of the results from 

the sizing study of the proposed design for WWHC for the optimal heat pump and hot 

water tank size combination with control strategy and electricity tariff conclude this 

section. 

Compare the performance of the developed control strategies for existing tariffs. 

The fixed order control and MPC perform differently for each of the electricity tariffs. 

There is little advantage of using MPC over the fixed order control when the only load 

shifting mechanism available is utilisation of surplus PV generation. The fixed order 

control enables as much load shifting as the MPC to increase the self-consumption from 

on-site PV generation. The advantages of the MPC are illuminated when there are 

multiple load shifting mechanisms available, e.g. surplus generation, low-cost tariff 

periods, heat pump performance.  The MPC can optimise the operation of the heat pump 

and hot water tank for all of these objectives simultaneously, resulting in lower operating 

costs. 
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Comparisons between the control strategies found that MPC offers savings over the 

fixed order control for all the existing electricity tariffs, but particularly for a time-of-use 

tariff where savings of 19.4% were obtained. 

Compare the use of existing electricity tariffs. 

Load shifting with the flat rates tariff is only incentivised by attempting to increase the 

self-consumption from on-site PV generation. This is because load shifting heat pump 

and electric heater power consumption for surplus PV generation is the only avenue of 

reducing costs.  

With the variable periods tariff load shifting is useful for both increasing use of surplus 

PV generation and avoiding high-cost tariff periods. However, the hot water tank is often 

fully charged at the end of the low-cost period and just before there are surpluses of PV 

generation. This results in a significant portion of PV generation being exported, despite 

this having zero value to the local energy system in this case study. Employing MPC 

results in a much higher utilisation of surplus PV generation, and lower import costs as a 

result of only charging the hot water tank at low-cost periods in order to cover the 

remaining heat demand.  

The time-of-use tariff is highly variable, while the fixed order control does not take 

advantage of this variability. The MPC makes it possible to avoid premium prices and 

take advantage of all the periods of variability. Additionally, similar to the variable periods 

tariff, the PV utilisation can be maximised, and imports limited to the lowest cost periods 

and restricted to only meeting the remainder of the demand in the calculation period. 

Comparisons between the existing electricity tariffs found that the time-of-use tariff 

delivered the lowest levelized cost of heat. This conveys the advantage of combining 

tariffs which promote flexibility through load shifting with optimally sized hot water tank 

capacity. 

Explore the use of a future wind-based renewable electricity tariff. 

From the operational analysis, it is apparent that using the fixed order control with the 

wind tariff shows great potential for the use of large hot water tanks and heat pumps for 

this type of tariff. The heat pump generally runs in the low-cost and renewable periods 

which should lead to low operating costs and a high percentage of heat met by renewables. 

MPC requires a longer prediction horizon than that used for the existing electricity tariffs 

to account for the large windows of fluctuations, over periods closer to a week. It can be 
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seen in the operational graphs that the electric heater is still needed to see systems through 

long periods of high cost.  

The sizing results show that using MPC over the fixed order control decreases LCOH 

by 44.1%. This shows that using the wind tariff, which heavily incentivises the load 

shifting mechanism, a larger hot water tank and use of MPC, is advantageous. 

Additionally, the percentage of heat demand met by on-site PV and high wind grid import 

increases from 52.8% to 70.2% for the fixed order control and MPC. 

Identify optimal heat pump and hot water tank size combination. 

A 750kW heat pump and 500m3 hot water tank using MPC and a time-of-use electricity 

tariff were found to deliver the lowest LCOH in comparison with the existing electricity 

tariff structures and control strategies. This marks a significant 10x expansion of the 

existing hot water tank at WWHC, which is used to aid peaks in demand for the existing 

biomass boiler. This signifies a shift in the methods which are used to size hot water tanks; 

sizing to enable load shifting and not only for flattening peak demands during design 

periods.  

The wind tariff optimal heat pump and hot water tank combination is a 1000kW heat 

pump and 2000m3 hot water tank, this has the same heat pump capacity as the existing 

tariff optimal sizes but has a larger hot water tank capacity. This means that systems which 

are sized for the existing electricity tariffs can be modified later by adding hot water tank 

capacity to take advantage of future tariffs, such as the wind tariff used in this sizing study.  

7.2. Future Tool Development 
In this section the limitations of the framework and underlying models of PyLESA are 

explored along with potential future tool developments. PyLESA has the potential to 

incorporate a significant number of models for an assortment of technologies, and the 

discussion presented is limited to the particularly pertinent models. 

7.2.1. Tool Framework 

Several existing frameworks could have provided the basis as a starting point for 

developing the models which addressed the identified gaps. Instead, PyLESA was built 

primarily from scratch to aid the author in gaining proficiency in Python programming. 

Given the nature of Python and the accessibility of the code of PyLESA, it is possible for 

others to take individual models/class objects and implement them within 
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existing/developing frameworks. Ultimately, PyLESA itself now offers a useful 

framework for modelling local energy systems which can be expanded by incorporating 

new models or developing the existing models, but alternative research directions were 

available. 

The modelling framework uses an Excel workbook as the method for the user to input 

the necessary data, and outputs several images and .csv files. A more pythonic method 

would be to develop an open source GUI written in Python where data can be input, the 

tool can be run, and outputs explored.  

For certain types of analysis, it would be useful to be able to model systems on smaller 

timescales. An hourly timestep is used in PyLESA due to the typical data availability at 

the planning stage and the modelling assumptions used. For example, the heat pump 

regression model does not explicitly account for dynamic effects associated with actions 

such as startup/shutdown. Therefore, using a timestep below 15 minutes would result in 

inaccurate outputs for these short periods. 

The current framework limits the number of technologies and demands which can be 

modelled. For example, it may be useful to be able to model a system with a heat pump 

connected to two hot water tanks for providing hot water and space heating separately. 

PyLESA could be modified to include the option to model two hot water tanks and two 

heat demands. 

The capital costs which are used to calculate financial KPIs such as levelized cost of 

energy/heat, currently only include the heat pump and hot water tank capital costs. In 

order to perform sizing and feasibility studies looking at other components of the local 

energy system, it would be useful to incorporate the full range of capital cost expenditures, 

e.g. wind turbine costs and district heat network piping installation costs. 

7.2.2. Demand Modelling 

Simplified, deterministic assessment methods have been presented as a means of 

generating electrical and heat demands at the required timestep and detail for inputting 

into PyLESA. These methods only produce demands for a single year and do not account 

for year-to-year variability and extreme demand events. Weather has a significant impact 

on peak demand and energy use, and varies across years [269,270]. Therefore, an 

improvement to the methods developed as part of PyLESA would be to generate demand 

profiles based on weather data over multiple years. Additionally, sub-hourly, high-
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resolution models which use stochastic techniques could be incorporated to account for 

a range of occupancy behaviours, and other complex factors [213]. District heating 

network piping models could also be incorporated to facilitate aiding design decisions, 

and computationally inexpensive methods for modelling these have been reviewed in 

literature [271].  

7.2.3. Heat Pump and Auxiliary Units 

The most advanced model for heat pumps in PyLESA is the standard test regression 

model. This approach uses a relatively substantial amount of data input regarding the 

performance of the heat pump under the standard test range of operating conditions, and 

this is not always readily available at the planning-stage. This is the reason simpler models, 

similar to those utilised in existing modelling tools, have been included as alternative 

approaches. Despite this, a more detailed approach, requiring greater input requirements, 

could fully capture the major components such as the physical details of evaporator 

design, the system defrosting cycle, and associated controls [39,272]. This more detailed 

approach could include important factors such as COP as a function of the variation of 

the compressor speed. It would also allow for simulations at a high time resolution as the 

dynamic effects below 15-minutes could be fully captured. 

PyLESA does not incorporate solar thermal and this technology has the potential to 

be an auxiliary, renewable heat generation unit which could assist a heat pump in meeting 

heat demands. Models have been developed previously for solar thermal hot-water 

heating systems [273], and photovoltaic thermal flat plate collectors [274]. 

7.2.4. Thermal Storage 

PyLESA uses a multi-node modelling approach for hot water tanks and this was justified 

as a suitable balance between accuracy and computational time. The developed model 

exaggerates the mixing between nodes which is likely to occur for a hot water tank 

designed to be highly stratified, as is desirable for the load shifting mechanisms 

investigated. Therefore, while the energetic models used in existing models likely result in 

underestimations of the capacity required to perform load shifting, the model developed 

within PyLESA is likely to overestimate the capacity required. 

To increase the user flexibility of PyLESA, hot water tank models with both increased 

and decreased accuracy could be included. Fully mixed or moving boundary models, 

similar to those used by existing modelling tools, provides a computationally efficient 
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approach, but fails to capture stratification. More complex approaches include 2D or 3D 

CFD simulations [275], zonal approach [276], etc. PyLESA could also be developed to 

include more thermal storage technologies such as phase change materials [255,256], next 

generation smart hot water tanks [257], and building thermal mass [258]. 

A potential development of this approach would be to allow for multiple heat sources 

to charge the tanks at different points of the tank. This would enable the integration of 

solar thermal as a complimentary renewable source of heat along with a heat pump.  

7.2.5. Electrical Storage and Fuel Synthesis 

PyLESA uses a simple storage model for electrical storage, and this only captures generic 

energetic technical characteristics of different types of storage. More detailed models 

which are technology specific could be included, e.g. HOMER and iHOGA models for 

battery types reviewed earlier [277–279], pumped hydro [280], CAES [281]. 

PyLESA is not capable of analysing fuel synthesis technologies as they are currently 

unlikely to be applicable at a local energy system scale in the short term. However, this 

capability could be included in the future, using models such as those developed for 

hydrogen [282–284].  

7.2.6. Electricity Tariffs and Balancing Markets 

In PyLESA existing and future wind electricity tariffs can be modelled. Balancing markets 

could provide a greater incentive for flexibility and may become more prevalent as the 

grid decarbonises e.g. balancing mechanism, frequency response, and new markets such 

as the European wide balancing energy market TERRE [48]. Including these would be a 

useful future tool development. This would require a smaller simulation timestep to be 

used, which requires developing the underlying models and assessment methods, in 

particular the demand assessment and heat pump model.  

The future tariff developed is based upon wind power production which may be 

suitable in the UK context, but for other countries it may be apt to include a future tariff 

which is dependent on PV. A future tariff could also be developed based upon an energy 

systems model of the UK using a national-scale energy modelling tool such as 

EnergyPLAN [285]. Additionally, PyLESA currently uses a flat rate for the export tariff, 

however variable export tariffs are also emerging [286]. 
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7.2.7. Model Predictive Control 

PyLESA includes model predictive control and this formed an important contribution to 

the state of the art of planning-level local energy system modelling. An important aspect 

of future work on the developed MPC is the inclusion of uncertainties in the future 

predictions as currently these are modelled with perfect foresight [49,50]. This 

overestimates the benefits of the MPC which will always makes the perfect decisions, 

even when using a long prediction horizon. Further research is required to include 

uncertainties with weather forecasts and electricity prices at the design stage, although a 

large number of studies have developed controllers suitable for real-time control of 

various energy systems, e.g. thermal storage [287,288], HVAC applications [289], building 

cooling [290], community battery storage [291], community micro-grid [292], stochastic 

MPC [248,293]. 

7.3. Future Tool Applications 
PyLESA has been applied to a sizing study for a proposed design of an existing district 

heating network as is described in Chapter 6. Potential applications of using PyLESA to 

inform feasibility studies and operation studies have already been discussed in Section 4.5. 

The applicability of PyLESA to different scales of energy system is another potential 

tool development. For example, developing the tool to enable separate thermal stores and 

multiple heat pump operation modes in order to model configurations commonly used 

at the building or mini-district scale.  It would also be useful to add to the set of control 

strategies in order to be able to easily model the assortment of controls which are used at 

the different scales, which would in turn increase the number of situations PyLESA is 

applicable to. 

PyLESA could also be utilised as the first step towards the development of the 

software and hardware necessary to build a real-time model predictive controller. This 

could be possible through the open-source communications and control software and 

hardware available from the OpenEnergyMonitor project [36]. 
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7.4. Final Summary 
In this thesis a modelling methodology and a supporting modelling tool, PyLESA, have 

been developed which can usefully aid the planning-level design of local energy systems 

incorporating heat pumps, thermal storage, local renewable electricity production, time-

of-use electricity tariffs, and predictive controls. 

Several gaps were identified in a review of the modelling capabilities of existing energy 

system tools: (i) ability to adapt source code and import or exploit functionality from 

elsewhere; (ii) temperature dependence for the heat pump models; (iii) detailed 

stratification model for the thermal storage models; (iv) ability to model the evolving 

electricity markets and tariffs; and (v) ability to explore predictive controls. 

These gaps motivated the development of the novel modelling tool PyLESA which 

can aid design studies at the planning stage and includes appropriate technology and 

control models to tackle the identified gaps. The following tool capabilities of PyLESA 

were described and validated: resources and demands; electricity production technologies; 

heat pumps; hot water tanks; electricity tariffs; fixed order controls; model predictive 

controls; and key performance indicators. 

A sizing study was then devised to showcase the application of PyLESA and to 

explore the developed control strategies, and existing and future electricity tariffs. 

Comparisons between the control strategies found that MPC offers savings over the fixed 

order control for all the existing electricity tariffs, but particularly for a time-of-use tariff 

where savings of 19.4% were obtained. Comparisons between the existing electricity 

tariffs found that the time-of-use tariff delivered the lowest levelized cost of heat. This 

conveys the advantage of combining tariffs which promote flexibility through load 

shifting with optimally sized hot water tank.  

A 750kW heat pump and 500m3 hot water tank using MPC and a time-of-use 

electricity tariff were found to deliver the lowest LCOH in comparison with the existing 

electricity tariff structures and control strategies. This signifies a shift in the methods 

which are used to size hot water tank; sizing to enable load shifting and not only for 

flattening peak demands during design periods. 

An optimal size combination of a 1000kW heat pump and a 2000m3 hot water tank 

was found for MPC and the wind tariff. With the wind tariff, performance improvements 

were obtained by using MPC over the fixed order control: LCOH reducing from 
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5.81p/kWh to 3.25p/kWh (44.1% reduction); and heat demand met by on-site PV and 

high wind grid import increasing from 52.8% to 70.2%. The optimal heat pump size was 

similar for the existing tariffs and future tariff. Therefore, the proposed design could be 

sized for an existing electricity tariff and later, additional hot water tank capacity added to 

take advantage of future tariffs. 

The research has highlighted the advantage of combining flexible tariffs with optimally 

sized thermal storage and showcased PyLESA as capable of usefully aiding the design of 

local energy systems. 
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