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Abstract

A range of different scenarios have been predicted for future UK energy supply. While
there is significant uncertainty, all expect an increase in small-scale distributed gener-
ation integrated in constrained or independent networks and with predominantly do-
mestic consumers. This reduction in system scale has not, however, driven a significant
change in design practices, with deterministic models and rules-of-thumb prevalent.
Little consideration has been given to how the specific household characteristics and
the size of system impact on demand level and timing, the degree of uncertainty in any
demand prediction, and how design practices should change to reflect this. The main
contribution of the presented work has been to address this.

To allow the variation and uncertainty to be quantified; a highly differentiated,
probabilistic, bottom-up demand model has been developed for electrical and hot water
use. The 1-minute resolution model incorporates an enhanced Markov chain occupancy
model and is based on a newly developed discrete-event approach for occupant-initiated
demands. Utilising realistic factoring for appliance ownership, income, occupancy, and
random energy-use behaviours, the model has been shown to capture the range of
potential household demands. Assessment that the developed model, and any existing
model calibrated using group data, tended to rapidly converge to the group average
basis, prompted further method development to improve the model’s performance in
capturing individual household demand behaviours.

Analysis of both existing data and the demand model output has shown that energy
system demand can vary significantly based on socio-economic characteristics and the
types of households supplied. It also highlights that demand uncertainty for individual
households can exceed an order of magnitude, even if household characteristics are
known. As the system scale is increased, the level of overall demand uncertainty remains
significant to at least 200 household systems. A method has therefore been developed
that allows multiple runs of the probabilistic model to be reduced to a representative
subset, which can be used to analyse potential energy system performance scenarios

probabilistically using existing optimisation tools.
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Chapter 1

Introduction

1.1 Chapter Overview

The following chapter provides introduces the overarching themes, the specific research
gaps identified, and the aims of the presented work. The energy system concepts of
distributed generation and increasing electrification of demand are introduced, placed
in context in terms of current and future energy use, and the associated technical
challenges outlined. There is particular focus on the need for improved high resolu-
tion domestic demand prediction methods, focusing on household and community type
influenced demand variations and the residual prediction uncertainty as a result of
different energy use behaviours, to enhance the accuracy and effectiveness of energy

system analysis for small-scale systems.

1.2 Background

Energy systems globally have changed significantly over the last thirty years. The risk
of irreversible climate change from fossil fuel energy sources driving the development
of new methods of generation and, in parallel, significant improvements in the energy
efficiency of buildings and appliances, changing occupancy patterns, and evolving types
and levels of demand.

This transition has given rise to a several design and operating challenges. Criti-
cally, these include increasing energy system complexity with smaller-scale, dispersed
generation units, often incorporating renewable sources with variable output, being
considered and implemented as an alternative to a small number of large sources [1]
and interacting with energy networks in a manner for which they were not originally

designed. For example, decentralising electrical power generation changes the dynamics
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of the national grid, which can have detrimental effects on performance [2]. Additional
challenges include, an increase in the risk of overheating from heat gains because of
improved building thermal performance and specific user behaviours, and identifying
methods to alter demand patterns to better match supply and demand. This requires
a detailed understanding of a number of elements, including the time dependency of
energy supply, building occupancy, and specific energy demands [3]. All these aspects,
and a significant number of others, have reduced the margin for error.

The complexity is likely to increase in most countries in the short-term ([4], [5], [6]).
In addition, the predicted increase in electric car use has the potential to significantly

alter the electricity demand profile with the associated potential and risk [7].

1.3 UK Energy Generation

A consequence of the current and proposed developments, and associated challenges,
is to reduce the scale of interest in energy analysis. The operation of regional and
national grids supplied by centralised generation requires the ability to predict demand
in the immediate future to allow supply and demand to be balanced. Whilst this
requires complex analysis of the various demand drivers, at this scale industrial and
commercial consumption is significant and the influence of individual households or
different types of communities is not. Increasing use of distributed generation, either
at the household level, connected to predominantly domestic sub-sections of the grid,
or designed to supply communities independently, has resulted in an increasing focus
on domestic consumption, and the potential deviation from average demand behaviour
at small scales. As will be discussed, it is not clear that design practices have kept pace
with the changing focus.

Lifestyles for a large proportion of people have changed in the same time period
with consequences for domestic energy consumption patterns. Changes in occupancy
patterns have been primarily driven by changes in employment with more flexible work-
ing hours and weeks ([8] and [9]), and more people working from home [10]. The result
for energy system planning and design is less predictable occupant behaviour at a time
when the influence of individual households needs to be better understood.

Recent years have also seen an increase in the number and type of appliances owned
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([11] for UK data) and changes in how they are used, in parallel with the improvements
in energy efficiency. Understanding the combined impact of these potentially conflicting
influences is critical for a detailed understanding of household energy use [12].

UK electricity generation, as shown by Figure 1.1, has seen a significant reduction
in coal use and an increase in renewable sources since 1998 [13]. The primary driver
for change has been the need to decarbonise generation.

Heat and hot water use in the UK remains predominantly from gas. The integra-
tion of renewable sources has been directly from biofuel sources and indirectly using
renewables-generated electricity for heating and hot water generation from heat pumps,
but remains low at 5% based on 2013 UK data [14].

The drive for further decarbonisation is generally considered to require multiple
actions [15], combining both reductions in demand and carbon emissions per unit gen-
erated, including: replacement of fossil-fuel generation with nuclear power; increased

appliance energy efficiency; demand management; and, using low-carbon sources.

1.3.1 Distributed Generation

1.3.1.1 Concept

Low carbon source systems are typically characterised by smaller, modular individual
generating units and either the ability or technical requirement to be located close
to consumers. These systems are known generally as ‘distributed generation’, and
range in scale from individual household supply to generation equivalent to demand for
significant areas.

There are many different types and potential combinations of distributed generation.
These include: CHP systems that can supply all three primary energy inputs; wind
turbines or solar panels for electricity; heat pumps that use both electricity and heat
from the environment to provide heating and hot water; solar thermal for heating and
hot water; and gas or biomass boilers for heating and hot water supply.

As outlined, an implication of their integration has been a reduction in analysis
scale from national grids to smaller sub-systems, which were not originally designed
for supply connections, and in extreme cases can be either self-contained or minimally

grid-connected ‘microgrids’ [16]. As an example of the different scales, the UK Power
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Network authority identifies four levels of electrical distributed generation [17] in terms
of the impact on the national grid. Single household systems (roof-top PV, small
wind turbines), multiple connections up to 11kW, larger systems up to 50kW, and
over 50kW. For electricity generation, in particular, the degree to which the generation
system, or the sub-system to which it is connected, interacts with the overall grid is
a significant consideration, with the potential time dependency of both supply and
demand influencing the degree, timing, and even direction, of the current flows in each

part of the system.

1.3.1.2 Role and Potential

UK National Grid data shows that ‘distributed generation’ (DG) electricity capacity
(i.e. systems less than 100MW) was ¢.14GW in 2015 [1]. Of this 3.5GW is connected to
the low voltage network and a further 4.3GW to 11kV subsystems [18], which represent
the proportion most likely to require detailed analysis for grid interaction impact or
potential for grid independence.

Future electricity DG potential in the UK has been assessed by the National Grid
based on four potential future energy strategies as outlined above [5]. The two most
optimistic cases predict the capacity increasing to either 20 or 33GW by 2030 [1]. This
suggests both significant potential and uncertainty.

District heating (DH) systems, ‘distributed generation’ primarily for heating and
hot water supply (including CHP which also provides electricity), accounts for ¢.1%
of UK heat demand (of which ¢.73% is domestic) [19]. There is potential for DH to
account for 9% of total demand by 2030 and 18% by 2050 [19], but there are significant
barriers to this level of implementation.

A number of consistent benefits have been attributed to DG by various sources
([20], [21], [22], [23]), which include: lower emissions; reduction of transmission losses;
shorter build times; security of supply; improved competition; consumer and commu-
nity involvement; network balancing; and resource efficiency. The short build time
potential is increasingly becoming a focus in the UK. Aging and polluting centralised
energy generation and slow decision-making on alternatives, including nuclear power
options, may require fast, localised solutions to fill the supply gap, in addition to any

climate change drivers [15].
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Distributed generation does, however, have potential problems. For electricity sys-
tems, major technical issues include maintaining stable grid voltages and power quality
[17]. All system types have inherent economic issues, including economies of scale com-
pared to large-scale generation, supply agreement complexity and instability [23], and
imbalanced stakeholder benefits [24]. Other issues include: intermittency, with several
renewable sources not having constant supply characteristics; and reliability, with the
need for either a grid connection or redundant generating units for back-up.

The primary barrier to the introduction of DG in the UK is currently political. Re-
cent reduction in subsidies and an environment that favours large, commercial projects
[25] has limited recent uptake. Rebalancing of incentives and drivers is required to
achieve an integrated decarbonisation strategy [15].

Whilst this research project has focused primarily on the UK, the potential for
distributed generation is global [26]. For the developed world, the drivers for grid
decarbonisation are universal. DG is also a potential solution for areas without ex-
isting centralised infrastructure ([27], [28]), which typically include rural areas in the

developed world and more widely in the developing world.

1.4 UK Domestic Energy Use

1.4.1 Current Status

In the UK in 2014, domestic energy consumption was 27% of overall energy use [29].
This comprises 17.0% for electricity, 17.3% for hot water, and 65.7% for space heating,
based on end-use consumption. The balance of these three primary uses has been stable
since 2000, with the total falling by ¢.10% from the peak in 2004.

Electricity use peaked in 2007 following a 100% increase in consumption through the
80’s and 90’s, primarily driven by increased use of consumer electronics and computer
equipment. Since 2007, the impact of improvements in appliance and lighting energy
efficiency have predominated.

Hot water energy consumption has been falling steadily since 1970 as the result of
more efficient boilers offsetting any lifestyle changes [30], and, in particular, changing

bathing habits [31].
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Despite significant improvements in building thermal efficiency in the same period,
heating energy increased steadily by 68% from 1970 to 2000 as a result of a 6°C increase
in internal temperature from greater central heating availability and a 40% increase in

the number of households [30]. Since 2004 it has fallen by 22% from the peak.

1.4.2 Future Drivers

Projections for future UK energy use are highly variable [5]. The uncertainty reflects
that demand is driven by a wide range of influences, including economic growth, speed
and scale of energy efficiency initiatives, and the willingness of consumers to change
habits. Of four potential 2030 scenarios mooted by the UK National Grid [1], with
significant variations in projected economic growth and decarbonisation speed, the
proportion of energy from renewable sources varies from 11% to 30%, annual electricity
demand from 332 to 362TWh, and gas demand from 200 to 300TWh [5].

There are three primary drivers for future changes in domestic energy use. Major
disruptors, such as smart meter-driven demand shifting and electric cars, that individ-
ually have the potential to change overall demand profiles significantly. In addition,
building design and appliance technology changes provide a constantly changing di-
mension which can range from small incremental changes to immediately apparent
effects, driven by a diverse range of factors, such as new technologies, legislated en-
ergy efficiency targets, and changing trends. And finally, changes in occupant lifestyle,
driven primarily by changes in employment patterns, average age, and evolving habits,

influences both the frequency and timing of specific demands.

1.4.2.1 Major Disruptors

Household smart energy meters linked to a wider ‘Smart Grid’ will allow increased
monitoring and control of energy use facilitating better balancing of supply and demand
[32]. Household monitoring of use has the potential to reduce overall demand, although
initial results suggest that the impact is small (<2.5%) in overall terms [33]. Shifting of
demand through timers, remote activation, and increased use of time-based tariffs, is
therefore the potentially more significant outcome. These elements are typically known

collectively as demand management.
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Electric car registrations in the UK have increased from an average of 0.3% of
total sales for the first six months of 2014 to 1.3% for the first six months of 2016
[34]. Projections for future penetration, both in the UK [35] and globally [36], are
highly variable but all indicate a high growth rate. This has implications for domestic
electricity demand with potentially a significant number of, typically off-peak, hours
of charging required and the potential to use the car battery for storage ([37], [38]).
Understanding how this can be integrated with the timing of other energy use, both at
the household and grid scales, will be required.

Other potential disruptors include the electrification of heating demand through
use of heat pumps, and the development of energy storage technologies that make
large-scale storage a feasible option, which would require a significant improvement on
current storage technology [39]. The integration of some or all of these major disruptors

requires detailed modelling of their impact, both individually and in combination [7].

1.4.2.2 Changing Technologies

Less dramatic but no less significant changes in demand are driven by the continuous
evolution in appliance-level demand because of changing trends (e.g. use of internet-
linked devices), technological improvements (e.g. flat-screen televisions replacing CRT
units), and the drive to reduce energy consumption (e.g. increasing use of low energy
lightbulbs, condensing boilers).

As outlined, until 2007, the overall impact of this evolution was to increase domestic
electricity use, but since then has driven a reduction. Projecting the overall influence
into the future is difficult with the conflicting requirements of a more technology-driven
society and the need for an overall reduction in energy use. It is, however, at least safe
to conclude that the effect is unlikely to be neutral and requires the means to analyse
the impact.

Changes in the energy efficiency requirements of building construction standards
has driven a significant reduction in the heating energy used by new-build housing.
For example, a 2016-built UK home requires approximately 20% of the heating energy
of a 1976-built home for the same thermal performance [40]. The overall effect is
reduced by the slow replacement rate for housing, with an average net increase in stock

of 0.2% but a demolition rate of only 0.12% between 2011 and 2015 in Scotland [41]
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Figure 1.2. Ranked distribution of annual gas and electricity demand per household from
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and equivalent values of 0.6% and 0.06% for England [42]. However, building thermal
efficiency improvements remain a significant driver for energy consumption reduction

in the long-term.

1.4.2.3 Lifestyle Changes

The recent, primarily employment-driven, changes in UK lifestyles identified are pre-
dicted to continue and potentially accelerate [44]. This has implications for occupancy
prediction with fewer people having traditional working patterns and increased home-
working. Prevalence of frequent homeworking increased from 11.1% to 13.9% of the
working population between 1998 and 2014 [10].

Another future energy driver will be an ageing population, as both historical de-
mographic patterns and improved health care take effect. As a minimum, this will
influence occupancy patterns and household spending power, both of which impact

energy use.

1.5 Demand Variation and Uncertainty

Reducing the scale of analysis increases the influence of individual household behaviours
on system demand, significantly for household-scale analysis and with a diminishing
influence as the scale increases. There are two main determinants of demand variation
and uncertainty for any group of households; scale and type. In addition, the level
of known information about the households at the design phase is another potential
source. The degree of influence is also dependent on whether average or time-dependent

demand is considered.

1.5.1 Scale-Dependent Uncertainty

Average energy demand per household varies significantly and is driven by a number of
factors, including household size, income, and occupant behaviours, which are reviewed
in detail in 2.4. This is demonstrated by the range of average annual electricity and
gas use per gas-connected household from the nationally representative 1345-household
UK EFUS dataset [43] as shown in Figure 1.2. As the scale of analysis is reduced the

impact of these individual variations becomes increasingly important.
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As an indication, the electricity distribution shown in Figure 1.2 was extrapolated
and 1000 random combinations of different fixed numbers of households selected. The
maximum and minimum ratios to the mean are shown in Figure 1.3. Whilst the gen-
erated groups of households will be more diverse than would be expected for many
localised systems, and the extent to which the uncertainty is important is dependent
on the type of analysis, scale-dependent average demand uncertainty is potentially
significant to at least the 200-500 household range.

The scale influence on temporal demand is more difficult to assess due to the lack of
large datasets with high resolution demand data for individual households. However,
time-dependent electricity and hot water use per household is highly stochastic. As
shown in Figure 1.4, electricity demand patterns for individual households are char-
acterised by a baseline demand with intermittent spikes associated with high power,
short cycle appliances, and the pattern varies from day to day. From this it can be
inferred that data is required for a significant number of households on a single day,
or for several days for a single household, for a stable average demand profile to be

discernible, and therefore to any extent predictable.

1.5.2 Type-Dependent Variation

Published average electricity [46] and gas [47] demand data for England and Wales for
areas of between 600 and 1000 households shows significant variation in average energy
use between areas (data at this resolution is not currently available for Scotland). Each
area has a unique set of socio-economic characteristics with significant variations in age,
household size, employment, and income; factors that have been identified as having
an influence on relative energy use as reviewed in detail in 2.4.

Figure 1.5(a) shows the distribution of electricity use differentiated by deciles of
the combined Index of Multiple Deprivation (IMD), the official UK area deprivation
measure that captures several socio-economic criteria, including income, employment
probability, and living environment quality (the box represents the 25-50-75% percentile
values and the limits of the dashed lines represent the 0.7 and 99.3% points in each
data distribution). This shows that the average demand varies by ¢.30% between the

lowest and highest deciles. Considering employment probability deciles specifically,
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there is a similar pattern as shown by Figure 1.5(b). However, the relationship is more
complex with the minimum demand levels rising then falling as employment increases,
suggesting that employment also drives longer and more frequent absences from the
dwelling. Figure 1.5(c) highlights that larger households drive typically higher demand
(see best-fit line) as would be expected. The influence of household age profile is more
complex and is reviewed further in Chapter 2.

Graphical representations of UK census data (based on areas of 50 households on
average) from Datashine Scotland [49], shown in Figure 1.6 for a high population den-
sity, city centre area of c.4 miles by 3 miles, demonstrates that these factors can be
highly variable over small areas. This demonstrates both why there is considerable
demand variation between adjacent districts, and that, as the scale is reduced, there
is an increase in potential for localised populations to deviate significantly from the
national average. This indicates that demand prediction at the district scale (<1000
households is used as the definition for this project) requires an understanding of the
area socio-economic characteristics and their potential influence.

As for scale-driven uncertainty, the influence of area characteristics on temporal
demand is also complex. Time-dependency of demand is strongly linked to occupancy
([50], [51]) and therefore the variations in employment probability in particular are

likely to influence relative demand timing.

1.5.3 Known Household Data Uncertainty

During the design phase, the level of known data about the households will vary. For
new-build schemes, the level of data that can be assumed is reduced. Beyond the socio-
economics of the location, and the tenure and size of the house, no other information
may be available. In contrast, for retro-fit schemes for existing housing, a significant
level of information, including measured demand, may be available. However, little
work has been done to determine the degree to which demand can be predicted from
known information and the additional demand uncertainty that needs to be considered

for increasing levels of unknown information.
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1.6 Small-Scale Energy System Analysis

There are several different types of energy system analysis where the influence of indi-
vidual household and small area demand patterns need to be considered. One principal
example is the assessment and design of ‘Distributed Generation’ systems, the concept
and potential of which was outlined in 1.3.1. In addition, planning for future demand
patterns, demand management potential, and detailed building thermal performance

simulation all require high resolution, small-scale demand prediction.

1.6.1 Distributed Generation

As outlined, unlike large-scale power plants or household-scale instantaneous generation
systems (e.g. boilers), distributed generation (DG) technologies often do not produce
energy consistently and at times that consistently match natural (i.e. prior to any in-
centivised demand shifting) domestic demand patterns [52]. As shown in 1.5, demand
is itself highly variable both day-to-day within households and between different house-
holds. This overall variability and the on-demand expectation from consumers makes
the design and implementation of certain types of DG systems challenging [16].
Where distributed generation is connected to a capacity-constrained section of the
national grid, is designed to primarily supply a designated area with minimised wider
grid interaction, or, in extreme cases, designed to be integrated within an independent
small-area grid, several design issues must be addressed. The primary concern being
supply and demand optimisation in the absence of effective storage technology ([53],
[54], [55], and others). Five key assessment areas to address for systems that aim for
a degree of grid independence (‘microgrids’) as identified by Abu-Sharkh et al [16] are

as follows:

e Sizing and Balance - Understanding the balance of supply and demand at different
time scales is important. At short time scales (milliseconds to hours) for control
design and circuit sizing and at longer time scales (days to years) for economic
analysis. In addition, the sizing of the generation equipment and any connected

storage (see below) is also determined by detailed, time-dependent analysis.

e Grid Connection - Where national grid connection is feasible, which is primarily

11
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driven by location, it needs to be determined whether the connection is required.
This will depend on the potential for supply shortfalls, the feasibility of exporting
to the grid during periods of over-supply, and the associated economic analysis,
including connection costs. This is primarily an issue for electricity grids but can
also apply to district heating and cooling systems supplied from non-standard
sources (e.g. industrial waste heat). For electricity grids, the impact of the

import and export dynamics on grid voltage stability also must be considered.

e Storage - The ability to store excess supply at times when it exceeds demand,
and to supply the stored energy at times of high demand, is a key component of

any energy system.

e Demand Management - Shifting demand from periods of low supply or high de-

mand to improve matching and reduce storage requirements.

e Seasonal Matching - Energy demand varies throughout the year, particularly for
heating and cooling demand. Supply from renewable sources can also vary by

season. The impact on system dynamics needs to be understood.

Energy system optimisation tools analyse the interaction between energy supply
systems, distribution grids, and the consumers. This can include supply and demand
matching, grid sizing and operation, and economic performance.

Existing optimisation software, such as Homer, Retscreen, and Merit, allow sophis-
ticated representations of supplied-side equipment and environmental conditions to be
simulated. However, they require either the user’s own occupancy and demand data or
the use of simplistic integrated archetypal schedules.

As the scale of the system for analysis reduces, the influence of individual consumer
behaviour increases. There is evidence, however, that current design methods have not
adequately accounted for the increasing uncertainty introduced at smaller scales, with
an overreliance on inflexible generic design rules.

As an example, one of the principal design criteria in the design of any multi-
consumer DG system, particularly those that seek to be largely independent of the
national grid, is estimation of peak demand. The diversity of peak demand for multiple

dwelling systems is often expressed as a coincidence or simultaneity factor in terms of
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the proportion of the total connected load [56] or as a contribution per household ([57],
[58]). This type of factor acknowledges that as the size of the system grows the number
of consumers using the system at any time as a proportion of the total number falls.
Accurate prediction of this factor impacts all five of the areas identified above.

For district heating networks, hot water diversity prediction is a key requirement
for distribution pipe sizing. Several studies of hot water use diversity have been under-
taken, particularly in Scandinavia and Germany where high historical use of district
heating has driven the development of a significant body of standards and design tools.
Figure 1.7 shows the diversity distributions from a number of sources, with CIBSE in
the UK [63] recently endorsing the Danish DS439 standard [56] to replace the conser-
vative BS6700 basis [59]. Even though the distributions range upwards from very small
numbers of households, they do not account for any influence of the type of house-
holds included in the network or acknowledge any degree of uncertainty. Similar fixed
design rules are also often used for electricity distribution and heating system sizing
([64], [65]). What are effectively ‘rules-of-thumb’ are therefore being used for signifi-
cant design decisions without acknowledgement of the degree of uncertainty or range
of applicability.

More generally, there is evidence that a lack of detailed demand prediction models
for each of the three main overall demands (electricity, hot water, and space heating),
and therefore an inability to accurately address the five design issues identified above
and specific determinations like diversity, limits the potential for distributed generation

in the UK [66].

1.6.2 Future Planning and Demand Management

A key function of energy system modelling is to understand the potential influence
of future changes in specific demands and behaviours, and to investigate if the time
dependency of certain demands can be altered to improve the balance between supply
and demand (i.e. demand management).

An example of both future planning and demand management potential investiga-
tion is the integration of electric car charging while the vehicle is parked at the dwelling.

Increasing use of electric cars will drive a significant increase in domestic electricity de-
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mand. In addition, the expected predominance of off-peak, overnight car charging,
and potential to use the car battery as a flexible, short-duration energy store for the
household, offers the potential for demand management. This requires both a detailed
assessment of existing demands and predicted car charging patterns.

Other relevant areas where further detailed analysis at the grid sub-system scale is
required include a number of the impacts identified in 1.4.2, including: the increasing
use of electric heat pumps; changing building fabric standards on dwelling heat gains;

and, changing working patterns, including further increases in homeworking.

1.6.3 Building Performance Simulation

Building performance simulation covers a range of typically computer-based methods
to predict how specified building designs perform under different environmental and
operating conditions. These can include energy performance assessment for the speci-
fied building, incorporating behavioural sub-models for energy use, and the assessment
of thermal comfort over time as a result of external and internal heat gains.

Building performance simulation packages, such as Energy-Plus and Esp-r, are char-
acterised by highly detailed representations of the building physics, thermal perfor-
mance, and building systems (e.g. HVAC, blinds, etc.), but significantly less realistic
representations of how the building is populated and used by the occupants [67].

The lack of detailed domestic occupancy behaviour and energy demand input data
for thermal models also impacts other aspects of building performance simulation.
As an example, the development of low-carbon building design, which typically drive
buildings to be both air-tight and highly insulated, requires a careful assessment of
the impact of occupant-driven heat gains, both casual and from appliance use, that

potentially lead to overheating under certain conditions.

1.7 High Resolution Domestic Demand Modelling

1.7.1 Current Status

Building occupancy and occupant behaviour are acknowledged as key determinants of

energy demand level and timing. Occupancy behaviour in both domestic and non-

14



Chapter 1. Introduction

domestic buildings is currently the subject of the IEA EBC Annex 66 project [67],
which has the aim of defining both the current state-of-the-art and the future research
direction.

The identified link between building occupancy and demand drives the need for oc-
cupant behaviour simulation for demand modelling to comprise either separate building
occupancy and demand behaviour sub-models or a single integrated occupancy-driven
model. It is a subject area with few existing commercial or open-source examples.

The stochastic and country-specific nature of occupant behaviours makes this a chal-
lenging element to model. Domestic occupant behaviour and behavioural uncertainty
prediction is a key problem area for which the overall impact on demand and system
performance at the sub-1000 household scale is poorly understood and simulated, as
recognised by the Annex 66 initiative.

Much of the key recent work in this area has been achieved by a variety of research
teams, in particular [68], [69], [70] and [71]. However, the applicability of existing meth-
ods and overall models to comprehensively model occupancy-driven demand, allowing
demand for small-scale systems to be assessed probabilistically, and with sufficient ac-
curacy and differentiation to address the identified uncertainties driven by scale, house-
hold type, and level of known information, has yet to be fully assessed. This is required
to allow the use of high resolution energy models to be extended from the production
of generic, short-duration outputs to longer duration analysis that captures individ-
ual household behaviours, and is therefore more appropriate for detailed distributed

generation, future planning, and building performance assessments.

1.7.2 Research Gaps and Aims

The most significant research gap with respect to accurate demand prediction analysis
of small-scale domestic energy systems is the understanding of occupant behaviour, its
influence on patterns of demand, and the resultant uncertainty. Whilst the influence
of household characteristics and behaviours on energy demand is acknowledged, lim-
ited work has been done to quantify the influence and integrate it within a predictive
demand model. The focus of this research project was therefore to review and utilise

existing approaches where shown to be effective in capturing the occupant behaviour
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influence on demand, and the development of new or improved data analysis methods
and simulation tools to address identified limitations.

The primary focus was to understand both the influence of the types of households
supplied and energy system scale on system demand. Rather than take a deterministic
approach, the aim was to utilise or develop probabilistic methods that would generate
similarly probabilistic results, allowing the uncertainty in the predicted demand to be
quantified. This should allow for improved design decisions by encouraging ‘stress-
testing’ over a range of potential operating scenarios and reduce any poor performance
that might be caused by households or communities that deviate significantly from
average behaviours.

Supply and demand matching, in particular, requires high time resolution input
data to be accurate with a sub-hourly resolution required as a minimum [72], and sig-
nificant benefit of using at least 1-minute resolution data [73] to capture high frequency
supply and demand variations. Sub-minute data is rare, however there is some evidence
that energy systems analysis improves when sub-minute models are used, with specific
benefits for wind and PV optimisation [74], and peak demand analysis [75]. The highest
resolution for existing models is typically a 1-minute resolution ([69], [70]). The aim
was to incorporate this level of time resolution as a minimum, with higher resolutions
considered within the limitations of the available calibration data.

To enhance the probabilistic assessment of peak demand, and also to allow seasonal
variations to be analysed, extended periods models of at least six months’ duration were
also a specific aim, although the twin aims of high resolution and extended period mod-
elling required further review with the parallel requirement of effective computational
speed for community-scale analysis.

To mirror the globally consistent goals of Annex 66, prioritisation was given the
development of a flexible, bottom-up approach using commonly available data to allow
the developed methods to be applicable to a wide variety of energy design problems
and only country-specific in relation to the examples used. This would also ensure
that elements of the overall model could be updated on the release of updated or more
comprehensive UK data in the future, or to account for the expected behaviour changes
associated with significant penetration of disruptive technologies, such as smart meters

and electric cars.
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1.7.3 Project Aims Summary

In summary, the aims of the project were as follows:

e Development of a domestic energy demand model:

— Review existing methods and incorporate where shown to be effective to
allow focus on areas with the highest potential for improved method devel-

opment.

— Capture individual household variation based on characteristics and be-
haviours, including time-dependent occupancy-driven variations, probabilis-

tically and at the appliance-level.

— Model time resolution basis to be highest possible using the available cali-

bration data.

— Extended period model basis, with target of a minimum of six-month dura-
tion simulations to allow seasonal influences to be analysed and to generate

data suitable for probabilistic analysis, such as peak demand prediction.

— Computation speed that allows practical modelling of community-scale (min.

100-200 households) energy systems.

e Use the developed model to quantify demand uncertainty for different scales and

types of communities.

e Analyse potential impact of the identified demand uncertainty on performance
of a distributed generation system, with specific focus on connections to either

constrained grid sub-systems or independent ‘microgrids’.

The presented analysis has been limited to electricity and hot water demand mod-
elling. The lack of detailed heating data for calibration and validation has not allowed

this element to be investigated fully at this time.
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1.8 Chapter Summary

This chapter detailed the overall themes, research gaps to be targeted, and the specific
aims of the work. The chapter highlights are as follows:

e Distributed generation has significant potential as a solution to the energy supply
needs and challenges for the UK and globally. Although there is also significant

uncertainty in the degree of future development.

e Overall domestic energy demand, and its time dependency, will continue to evolve,
driven by influences such as the integration of electric cars, demand management,

and incremental technology change.

e Variation and uncertainty in energy demand in small-scale (<1000 households)
energy systems is a complex interaction of the type of households included in the
system, the scale of the system, and the degree to which the household character-
istics are known in advance. Occupancy and occupant behaviour differences are a
significant factor in determining variations in energy demand between households,

as acknowledged by the ongoing ITEA Annex 66 project.

e Distributed generation integration requires a detailed understanding of both de-
mand and supply to allow effective matching, estimation of the degree, timing and
impact of national grid importing and exporting, and accurate prediction of peak
supply periods for system sizing. In addition, detailed domestic demand analysis
is required for future planning, demand management, and building performance

assessments.

e The key research aim was to utilise and develop methods to predict energy demand
at the small-scale and with high time resolution. By incorporating the influence
of both household characteristics and random behaviours within a probabilistic
modelling framework, the target was a similarly probabilistic model output, al-
lowing the degree of uncertainty in the results to be assessed and robust energy

system design decisions to be made in response.
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Chapter 2

Household Characteristics,

Occupancy, and Energy Demand

2.1 Chapter Overview

In Chapter 1, it was shown that energy demand varies significantly between areas with
different socio-economic characteristics and that average demand between randomly
selected groups of households can also vary significantly. This chapter reviews in detail
the relationship between household characteristics and both occupancy and demand,
identifying those which have a strong influence and therefore must be incorporated in
any high-resolution demand model. Further to this, the influence of behavioural varia-
tions on demand differences between households with similar identifiable characteristics,

and its impact on potential demand prediction accuracy, is also explored.

2.2 Energy Demand Prediction Background

To account for the observed variations in household and district energy demand shown
in Chapter 1, various household characteristics have been identified that are correlated
with domestic energy consumption. Studies by Kreutzer and Knight [76], Yohanis et
al [77], McLoughlin et al [78], Haldi and Robinson [79], and Kelly et al [80] have shown
that these include, but are not limited to; household size, number of children, floor area,
bedroom number, occupant age, income, employment status, tenure, and location (i.e.
urban/suburban/rural etc.).

What is less clear is whether the influence of these characteristics is direct or indi-

rect, and, therefore, whether they are effective in predicting demand. For example, is
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the apparent correlation between bedroom number and demand, a direct result of the
number of rooms and therefore increased floor area, a result of the relationship between
number of bedrooms and household size, or a complex interaction with both direct and
indirect effects?

The degree of influence also varies with the time resolution of analysis and, increas-
ingly with higher resolution, the extent to which the characteristics predict occupancy
patterns. For example, working-age and retired single-person households have similar
average electricity demand but differences in the timing (see Figure 2.6(a) and (b)).

Most electrical appliance initiation and lighting use, almost all hot water use (if
not necessarily when it is heated), and when a house is most likely to be heated, are
all driven by occupant presence. Of the identified characteristics, the influence of age,
employment status, and household size on energy demand would be expected to be at
least partially driven by the resultant occupancy variations. Specific consideration of
occupancy duration is therefore of importance for all demand models, with variations
in occupancy timing relevant to models with a resolution of less than a day.

Existing research has demonstrated that only a proportion of the differences in
energy demand between households can be attributed to household characteristics.
The remaining element that determines household energy demand is a less tangible
behavioural element. Gill et al [81] have shown that part of the residual variation can
be attributed to attitudes to energy use, energy efficiency, environmental concerns, and
spending prioritisation. They measured this potential attitude-driven variation to be
37% for electricity, 51% for heating, and 11% for hot water.

Haldi and Robinson [79] investigated the need to move beyond deterministic mod-
elling of occupant behaviours to stochastic models that capture both the extremes and
distribution of likely behaviours. They applied this specifically to window and blind
use, and found that repeated probabilistic simulation was required to capture real be-
haviours. From their review of existing work and their own simulation analysis they
concluded that occupant behaviour has a significant impact on overall demand, at least
by a factor of two, and significantly in excess of this for extreme behaviours.

A key research question is therefore to determine to what extent energy demand
can be predicted directly by household characteristics, by household occupancy pat-

terns that result from the household characteristics, and what residual uncertainty
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remains from occupant behaviours, and how the relative influence of each element can
be captured effectively.

In addition, as outlined in Chapter 1, the degree to which household characteristics
are known when the simulation is undertaken will vary depending on the type of analy-
sis, from feasibility analysis and research to detailed evaluation of schemes for existing
households. The impact of this additional potential uncertainty on modelling accuracy

also needs to be better understood.

2.3 Occupancy and Demand Datasets

Occupancy and demand modelling is limited to a significant degree by available data.
Calibration of high-resolution models requires equivalent high-resolution input data to
be effective. The following section identifies the UK datasets that are available for
different aspects of high-resolution modelling, from low-resolution data that allows an
overall assessment of the influence of individual household characteristics, to household
and appliance-level monitoring data that allows specific actions to be isolated and

converted to statistical representations for detailed modelling.

2.3.1 Occupancy Data - Time-Use Surveys

A significant proportion of occupancy- and demand-related analytical studies and mod-
elling methods use time-use survey data ([82], [51]). They represent the only open-
source occupancy datasets which include large-scale and representative data for the
country surveyed.

Time-use data typically comprises self-compiled, single day diaries for individuals
that captures both location and activity detail at a 10-15 minute resolution. The 2000
UK Time-Use Survey (TUS) dataset [83], for example, defines 146 separate activities
that consolidate all potential occupant activities into appropriately linked groups at a
10-minute resolution. These include ‘Sleep’, ‘Work’, ‘Laundry’, and ‘Food Preparation’
which consolidates all cooking and meal preparation activities. The activities have also
been used by some existing demand models ([70], [69], [71]) to infer appliance use (e.g.
cooker use is inferred when the ‘Food Preparation’ activity is predicted).

Many country-specific time-use surveys follow similar basic guidelines allowing meth-
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ods developed using data from one country to be transferable. The Multinational
Time-Use Survey (MTUS) project [84] was initiated in the 1970s and now includes 60
surveys from 25 countries that have a common basic structure for activities and time
resolution. Recent major European studies have been compiled according to a common
guideline, ‘Harmonised European time-use surveys’ (Hetus) [85]. Fifteen countries have
contributed Hetus-compliant studies at time of writing, all of which are also compliant
with the MTUS requirements.

The 2000 survey is the most recent full UK survey for which data is currently
available. This includes one weekday and one weekend day activity diary completed
by 10490 individuals from 2490 households. A smaller, less detailed UK study was
completed in 2005 [86], with 4941 single-day diaries from one person per household. A
new, as yet unpublished, full UK survey was completed in 2015.

Few time-use surveys include diaries of longer periods than 24 hours, which is
a significant limitation to determining the consistency of individual and household
occupancy patterns. One exception is the Dutch ‘Tijdsbestedingsonderzoek (TBO)’
time-use survey, which includes 1-week diaries and has been completed at approximately
5 year intervals since 1990. The 2005 TBO TUS dataset [87] is the latest that has open
access and includes 15428 diaries from one person per household.

Longer term occupancy studies are typically restricted to a small number of house-
holds that are unlikely to represent the full range of potential occupancy patterns and

are typically not open-source.

2.3.2 Demand Data

At the lowest resolution applicable to small area analysis, total annual electricity and
gas demand data is published annually by the UK Government for two area sizes for
England and Wales (Medium-layer Super Output Areas (MSOAs) with between 2000
and 6000 households and Lower-layer Super Output Areas (LSOAs) with between 400
and 1200 households), and one area size for Scotland (Intermediate Government Zones
(IGZs) with between 1000 and 2500 households [88]). The LSOA-level data allows
assessment of the influence of different differentiating characteristics (e.g. income, age,

household size, etc.) on average demand to be assessed without distortion from any
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Figure 2.1. Data used in domestic electricity demand models by number of citations.
Reprinted from [51]. (Image reproduced with permission of the rights holder, Elsevier.)
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individual household behavioural influences.

Monitoring campaigns of sub-hourly energy usage, either for total or specific de-
mands, in individual households represents the most detailed available data. For UK
electricity use, the Government-commissioned Household Electricity Survey (HES) [89]
includes detailed usage data of at least one-month duration for individual appliances in
251 UK households and corresponding household characteristics data. Smaller open-
source datasets compiled by research teams include: the 22-household total electricity
demand study by Richardson et al [69] with a 1-minute resolution over a two-year pe-
riod; and the REFIT study [45] of total electricity and 6-8 specific appliance demands
from 21 households over 1-year with a 6-second resolution. Both smaller studies have
limited household characteristics data.

Other intermediate resolution dataset types include annual total demand from in-
dividual households (e.g. EFUS [43]). This level of data is primarily useful for model
validation. (During the validation phase of this work the EFUS household characteris-
tics data was not available and it was therefore not used, however, access to household
detail can now be applied for.)

For UK hot water use the most comprehensive recent study was undertaken by the
Energy Savings Trust (EST) in 2006/07, with 10-minute resolution total volume and
temperature data for 107 households [90] for a 1-year duration, which is available on

request to researchers.

2.4 Household Characteristics and Demand

As outlined in 2.2, the following characteristics have been identified by a number of
authors ([76], [77], [78], [79], [80]) as being influential on energy consumption; household
size, floor area, bedroom number, occupant age, income, children, employment status
and tenure.

Analysis by Torriti [51] of the frequency that different types of differentiating data
have been used by electricity demand models is reproduced in Figure 2.1. As Torriti
states, the frequency may not reflect effectiveness but the model type and the spe-
cific data availability, however, it does give an indication of potentially useful model

calibrating factors.
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Of the factors identified few are completely independent and the interdependen-
cies can be complex. For example, income varies with age, employment status, and
household size and type, and itself influences appliance ownership and potentially also
frequency and duration of appliance use.

The analysis by Yohanis et al [77] reviewed each potential factor in turn but did not
consider their independence. Whilst this is useful to indicate some level of correlation,
it does not allow specific judgements to be made or indicate if and how each factor
should be incorporated in a demand model.

The calculation steps for any model will also be determined by the level of household
data that is available. The level of input data will be variable, from simple location
information to detailed socio-economic data per household. Consequently, a demand
model that aims to capture household-level variation and uncertainty should be flexible
enough to accept different levels of known characteristics, and to provide a means to
probabilistically generate realistic values for unknown variables (e.g. predicting income
from household type and employment status).

It is therefore necessary to review each potential model-calibrating characteristic
factor, how they both influence and are influenced by other factors, and the degree to
which they directly influence demand. This will indicate the necessary calculations steps
required within a model to step from known characteristics to a demand prediction.
For the review, it was assumed that the location and number of households was the
minimum level of known information for any analysis.

With consideration of both presumed and identified influence on other factors, an
increasing likelihood of being a direct influence on energy demand, and a decreasing
likelihood of being a known input prior to any modelling exercise. The determined
calculation sequence was: location; house tenure, type and size; household composition
and age; employment; income; floor area; appliance ownership; energy ratings and
power; occupancy and time-use; occupant behaviour; and specific demand use frequency
and duration. The following section reviews each potential characteristic factor in turn,
except for occupancy and time-use, and occupant behaviour, which are reviewed in 2.5
and 2.6 respectively.

The review of each potential characteristic factor presented includes data taken

directly from sources and further analysis of census and housing survey data by the
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Figure 2.2. Variation by location type of key energy use determining household character-
istics for Scotland. Reprinted from [91].

25-A



Chapter 2. Household Characteristics, Occupancy, and Energy Demand

author where suitable data was not directly available. For clarity, data from both types

of sources are presented together, with data compiled from further analysis identified.

2.4.1 Demand-Influencing Area and Household Characteristics
2.4.1.1 Location

As shown by Figure 1.6, location drives the probabilities for several of the identified
influencing characteristics, such as age, employment, and household size.

A number of different criteria can be used to classify a location. The Rural/Urban
classification, which in Scotland covers six area types from ‘Remote Rural’ to ‘Large
Urban’ areas, defines proximity to large population centres and population density.
In the UK, the socio-economic status of an area is defined by an Index of Multiple
Deprivation (IMD), which is based on analysis of 38 indicators in 7 areas: income;
employment; health; education, skills and training; housing; geographic access; and
crime. The area of analysis for IMD typically covers 400 to 1200 households, and areas
are typically grouped into IMD (deprivation) deciles.

Analysis of the Scottish 2011 Census data [91] confirmed that location, as defined
by both classification (urban, rural etc.) and deprivation decile, has an influence on the
population age range, the proportions of each household type and size, and the distri-
bution of dwelling tenure, type (house/flat) and size (bedrooms). For example, urban
populations have smaller and younger households (see Figure 2.2(a)) and a larger pro-
portion of tenant households (both social and private) (see Figure 2.2(b)). An increas-
ing (less deprived) area deprivation decile reduces the proportion of rental households
(see Figure 2.2(c)).

Figure 1.6 showed that employment status is strongly correlated with location and
Figure 2.3 demonstrates the link between employment and area deprivation decile using
Scottish Household Survey data [92].

Analysis of the census data shows that while location alone cannot be used to
directly predict all household characteristics and therefore energy demand, it is a sig-
nificant determinant of many of the more directly influencing characteristic factors

identified.
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Figure 2.4. Household type by tenure for Scotland. Reprinted from [91].
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2.4.1.2 House Tenure/Type/Size

The energy system location determines the mix of tenures (private, rented, social hous-
ing), house types (flats or houses), and house sizes (typically defined by number of
bedrooms). This type of data can be derived from census data, by direct survey for
existing housing, or from project plans for new-build schemes.

Tenure is strongly linked to household composition and age [91] (see Figure 2.4),
and employment/education status [94]. In terms of energy use, potentially the most
significant impact of tenure on household composition is the degree to which a house is
under- or over-occupied, as measured by people per available bedroom space (allowing
for reasonable sharing). According to the 2014 Scottish Housing Survey (SHS) [95], 74%
of privately owned households had one or more spare bedrooms with 2% being classified
as over-occupied, compared to 43% and 5% respectively for social-rented households.
The values for England were similar [96].

In addition, tenure is a strong influence on employment probability. In Scotland,
82.1% of private, 33.5% of social-rented, and 64.0% of private-rented, working age
householders are in employment [92].

Kreutzer and Knight [76] compared electricity demand in 69 social-rented houses to
the UK average and determined that the demand was ¢.5-8% lower on average, and over
10% lower during the winter period, driven principally by lower ownership of higher-
demand appliances. This is consistent with Figure 2.2(c), as social-rented housing is
predominantly in lower deprivation (IMD) decile areas.

House type, and principally whether a house or flat, has a significant influence on
the household type. From analysis of the 2014 SHS data [95], the relative proportion
of younger occupants is higher in flats than in houses. For example, the probability
that a 1-bed flat has a single occupant of working age is 14% higher than the average
for all house types, while for a 1-bed house the probability is 35% lower. House type
also impacts floor area, which influences heating and lighting demand, with flats being
typically smaller than houses with the same number of rooms, especially for new-build
homes [97].

House size, in terms of number of rooms, has a direct influence on number and

type of occupants. Number of bedrooms, for example, as a minimum, places a limit
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on the maximum number of people that would be typically expected, but as discussed
above, household space utilisation can vary from significant underuse to overcrowding.
Housing survey analysis highlights that number of rooms also has a significant influence
on floor area ([95], [96]).

Detailed analysis of the SHS data [95] shows that tenure, house type, and size,
particularly when combined, have a significant impact on the probability of a household
having particular composition, age, income, and employment characteristics, and for
determining the house floor area. However, as with location, while they influence
probabilities for characteristics, in most cases they do not limit the potential options.
They are therefore important intermediate factors in determining energy use potential,

but not directly predictive for high-resolution modelling.

2.4.1.3 Household Composition/Age

Household composition and age profile has a significant influence on a number of other
household characteristics: employment/education probability; income; floor area; ap-
pliance ownership; appliance energy rating and power; occupancy; and specific demand
use frequency and duration. The influence of household composition and age on occu-
pancy characteristics is reviewed in detail in 2.5. Both were found to directly influence
active occupancy potential.

Age defines the likelihood that an occupant is at school, is in higher education, is
employed, or is retired. More detailed analysis of 2008 SHS data [92] also confirmed that
within the working age group, employment probability reduced with age. For example,
for single-person households, 73% of 18-33 year olds were in full-time employment,
falling to 65%, 62%, 57%, and 45% for the 33-40, 41-47, 48-55, and 56-65 age ranges
respectively. This, however, conflicts slightly with more recent UK-wide data for all
types of employment, including part-time. For people of working age, employment
probability peaks for the 25-49 age group (81.7% for 25-34 and 83.7% for 35-49) and
is lower for both the 16-24 age group (75.4% for those not in full-time education) and
the older 50-64 age group (70%) [98]. The indicates that the influence of age is both
complex and closely linked with prevailing economic conditions.

Data provided by the UK Office of National Statistics (ONS) [99] also provides the

proportion of each common household composition in each household income decile.

27



-
(0]

16 ——1-Person, Retired
— 1-Person, Working-Age

% 14 | |~ Couple, Retired
(@] ——2/3-Person Adult
S 12 3/4-Person Family
o — 5/6-Person Family
)
© 10
S
O 8
(O]
g 6
G>)
< 4

2

0

Low Household (Ranked) High

Figure 2.5. Ranked per-household distribution of average number of daily kettle cycles
(use events) by household composition type. Data for analysis from the HES dataset [89].

28-A



Chapter 2. Household Characteristics, Occupancy, and Energy Demand

As outlined below, this is strongly linked to employment potential per occupant.

Additional ONS data [100] shows that household composition and age profile in-
fluences ownership potential for key high power appliances, such as dishwashers and
tumble dryers. For example, dishwasher ownership in 2014 ranged from 17% for re-
tired single-person households to 59% for households with two adults and two children.
Ownership analysis of the Household Electricity Survey (HES) dataset [89] also showed
that there was a strong link between household size and the number of televisions and
cold appliances owned. For example, the average number of cold appliances is 1.51 for
single-person households, 1.94 for 2-person, 2.03 for 3-person and 2.22 for all larger
households.

In addition to simple ownership probability, analysis of the HES dataset by Palmer
et al [101] determined that the age of appliances was correlated with household com-
position and age profile. In general, appliance age increases and energy efficiency de-
creases with increasing age of the main householder, decreasing income, and decreasing
household size.

Linking absolute power capacity or size of appliances with household composition
and age profile is more difficult due to lack of data and conflicting influences (unit
age, type etc.). Specific data can be discerned from analysis of the HES dataset,
such as the relationship between both cold appliance volume and television power, and
household composition (increases with increasing household size), but this cannot be
easily replicated for most appliances.

UK 2011 Census data shows that number of rooms, and by extension floor area, is
influenced by household occupant number [102], age profile, and overall composition
[103]. Potential distortions, as outlined above, include underoccupied households, such
as older people remaining in what was the family home once their children have left
[104].

Analysis of the frequency and duration of specific demands differentiated by house-
hold composition and age profile determined that there was a strong influence on aver-
age use and also that there was significant variation within each household composition
group. For example, the distribution of average kettle cycles per day for each house-

hold composition type (extrapolated to equal length distributions) is shown in Figure
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2.5. Data for other appliances shows similar characteristics. (A ‘cycle’ is defined as a
distinct use event)

Demand data is not available with the same depth and household characteristics
detail as occupancy data. However, it remains possible to assess differences in demand
between different household composition types. For initial analysis of the HES dataset
the households were divided into eight specific types of single-person, multi-adult, and
family households, with the average electricity demand profile for each type shown in
Figure 2.6.

Whilst there are clear differences in average power use for each distinct household
composition type, the variation within each type (see Figure 2.7) suggests that compo-
sition and age alone are not sufficient to determine overall or specific demands with any
accuracy as also shown by Figure 2.5. Similar analysis for hot water use again shows
that the number of occupants influences the average demand but that the variation
within each occupant number group exceeds the variation between groups.

The overall conclusion that can be drawn, therefore, is that household composition
and age profile is a key determinant of several potential energy use characteristics and
sets a baseline average energy use per appliance and per household, but is only directly

correlated with average rather than individual household demand.

2.4.1.4 Employment

Employment has a direct influence on household income. As shown by Jenkins [105],
equivalised income (i.e. factored for number of people in the household to normalise
spending power (see below)) ranges from c.£250/week for households where the main
householder is unemployed to c.£590/week for single-person and couple households all
in full-time employment.

The most significant direct influence of employment on energy demand is the impact
on the occupancy profile for individuals and the overall household (see Figure 2.14(b)),
and consequently the relative timing of energy demand. This is reviewed in detail in

2.5.
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2.4.1.5 Income

Income influences appliance ownership [100], household floor area (per person and over-
all) [106], appliance age (i.e. older, less energy efficient appliances vs. newer) [101], and
both appliance-level and overall use behaviours [107]. Income is therefore an important
direct and indirect influence on household energy use.

The overall relationship to energy demand is complex. White et al [107] identified
households with high energy use despite low incomes. This was partly attributable
to influences such as lower dwelling thermal efficiency but also suggests significant
variations in energy spending prioritisation between households. Whilst there are highly
variable behaviours for households with similar income characteristics, there is a clear
influence of income on average behaviour. Jamasb and Meier [108] have calculated the
income-specific elasticity in energy demand to be 0.06 (log of energy expenditure per
log of income).

The household income effect is also dependent on the number and type of occupants.
To determine a comparative spending power multiplier to account for household size,
an approach has been developed by the OECD [109] and widely used. Person 1 is
assigned a factor of 0.58, Person 2 and subsequent adults are each assigned a factor of
0.42, and each child is assigned an additional factor of 0.3. Household income is divided

by the sum of occupant OECD factors to give an equivalised income for the household.

2.4.1.6 Floor Area

Floor area is a more accurate representation of the size of a house than number of
rooms, particularly for heating and lighting demand prediction. However, as this data
is more difficult to obtain, number of habitable rooms or bedrooms is often used as a
proxy [110]. Floor area is used as a specific input for the BREDEM low resolution,
housing-stock demand model [111] (the other input is occupant number), and as a unit
of analysis for the UK National Energy Efficiency Data-Framework reporting [112].
Analysis of the HES dataset shown in Figure 2.8(a) indicates there is a relationship
between floor area and demand, but it is relatively weak with high variation from
the best-fit line shown. Figure 2.8(b) shows that there is also a weak relationship

between floor area and the number of owned appliances. Floor area also potentially
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by household floor area. Data for analysis from the HES dataset [89].
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impacts on the size, and therefore power use, of individual appliances, but there is
insufficient data to allow this to be determined accurately. In addition, analysis by
Yohanis et al [77] showed that demand per bedroom (used as a proxy for floor area)
fell more significantly as the number of bedrooms increases than the increase in area
would predict. The lighting analysis of the HES dataset by Terry et al [113] shows a
clear relationship between lighting demand and floor area, although the strength of the
relationship is difficult to quantify due to differences in monitoring periods and bulb
efficiencies. The weaker overall correlations suggest that floor area is unlikely to be an
effective defining characteristic for overall electricity demand, but a partial correlation

with lighting demand is assumed.

2.4.1.7 Appliance Ownership

The number of appliances owned by a household is correlated with final energy demand.
This was demonstrated by Jones and Firth [114], by Kreutzer and Knight [76] in relation
to tenure-related demand differences, and by direct analysis of the HES dataset (see
Figure 2.9). The relationship is complex with ownership only determining a potential
for additional demand but not frequency of use or total energy used.

The types of appliances owned can also have a significant influence on energy use,
particularly for households connected to the gas network. For these households, two
of the key energy use appliances, cookers and showers, can be either electricity or gas-
supplied, with cookers further complicated by the potential to have mixed units with gas
hobs and an electric oven. Analysis of the EFUS dataset [43] determined that 42.6% of
households with mains gas have an electric shower and 50.3% for those without. From
the same dataset, 34.1% of households with mains gas have an all-electric cooker and

30.3% have an electric oven with gas hobs.

2.4.1.8 Energy Rating/Power

There is significant variation in power used by units within the same appliance type.
This is driven by size and age of the appliances. Newer appliances tend to be more
energy efficient, driven by technology improvements and energy efficiency legislation.

The improvement can be gradual through incremental but cumulatively significant
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improvements of existing technologies (e.g. water use reduction in washing machines),
or more immediately significant where a new technology rapidly replaces an existing
design (e.g. flat-screen televisions replacing CRT units using approximately one-third
of the power in use [115]).

Analysis of the HES dataset determined that for each appliance type, there was a
significant range of maximum and average power values. For example, the peak power
for the main household television varied from 24W to 1584W, with an average of 151W.

In Europe, several of the major power consuming household appliances (ovens,
washing machines, dishwashers, cold appliances, televisions, and tumble dryers) and
lightbulbs are defined by an energy rating. This is a Kuropean Union initiative to
grade appliances based on relative energy efficiency. For example, washing machines
are rated from A++4 to D, in descending order of efficiency, with each higher grade
representing an average 10-15% decrease in total energy required for the same type of
use [116].

The specific impact of the energy rating is difficult to discern for some appliances
due to multiple potential operating cycles, particularly for laundry appliances and
dishwashers. As detailed further in 5.7.3.1, for these appliances individual appliances
cycles must be analysed. Televisions are the most frequently used constant power ap-
pliance, and the relationship between maximum unit power and average daily demand
in kWh/day is shown in Figure 2.10. Whilst there is clearly a correlation between unit
power and demand, it is relatively weak. However, in combination with the ‘Use Fre-
quency’ factor introduced below, unit power is a primary characteristic in determining

energy demand in a household.

2.4.1.9 Use Frequency

The frequency with which each specific demand is used is a primary factor is determin-
ing energy demand and, as outlined above, is impacted by household composition and
age profile, income, occupancy, and also the random behavioural element detailed in
2.6.

The direct influence of this factor on demand is use-specific. HES dataset analysis,
specifically for electrical appliances, identified that demand for appliances with limited

duration use cycles, such as kettles and microwaves, have a close correlation between
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daily cycle number and energy consumption, as shown by Figure 2.11(a) for kettle use.
For appliances with fixed or typical cycle power profiles, such as washing machines
and dishwashers, there is a degree of correlation but this is complicated by different
cycle types and durations, and different appliance energy ratings. This is shown by
Figure 2.11(b) for washing machine use which shows a less distinct correlation than for
kettle use. Appliances with extended use cycles only limited by user behaviour, such as
TVs, computers, dryers, and cookers, have a more complex relationship between cycles
and consumption, with cycle frequency, duration, and unit power to be considered.
Figure 2.11(c) for TV use, for example, shows only a weak correlation between daily
cycle number and energy consumption. For hot water use, overall demand is similarly
characterised by both use frequency and volume per use.

The appliance-specific relationships between use frequency, duration, and unit power
are analysed further in Chapter 5, with distinct modelling methods developed to ac-

count for the different relationships demonstrated in Figure 2.11.

2.4.1.10 Demand Factors Summary

The analysis of the contribution of each identified household characteristic to demand
prediction highlights that individually each one has only a weak correlation with de-
mand, and therefore predicting demand requires the combined and relative influence of
all characteristics and their inter-relationships to be accounted for.

Time-specific household demand is determined directly by frequency of use (‘Use
Frequency’ factor), the power characteristics of the appliance (‘Energy Ratings/Power’),
and occupancy (‘Occupancy/Time-Use’), with floor area also an important determinant
specifically for lighting use. The determined sequence of inter-relationships between all
identified household characteristics and these directly influencing factors, and therefore
the required calculations steps to predict household demand from often limited house-
hold information, such as only location, and house type and size, is shown in Table
2.1.

Depending on the level of known household information at the time of analysis,
several probabilistic assessments may be required to predict a number of demand-
influencing household characteristics, such as age and employment status, prior to a

prediction of the directly influencing factors and demand itself. The model development
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Table 2.1
Relationships between identified energy demand-influencing household characteristics.

Characteristic

Influenced By

Has Impact On

Location

House Tenure/Type/Size
Household Composition/Age
Employment/Education

House Tenure/Type/Size

Location

Household Composition/Age
Employment/Education
Floor Area

Household Composition/Age

Location

House Tenure/Type/Size

Employment/Education
Income

Appliance Ownership
Energy Ratings/Power
Occupancy/Time-Use

Use Frequency

Location
. Income
Employment/Education House Tenure/Type/Size
Occupancy/Time-Use
Household Composition/Age
Floor Area
Household Composition/Age  Appliance Ownership
Income
Employment/Education Energy Ratings/Power
Use Frequency
Appliance Ownership
House Tenure/Type/Size
Floor Area Energy Ratings/Power
Income
Demand

Appliance Ownership

Household Composition/Age
Income

Floor Area

Use Frequency

Energy Ratings/Power

Household Composition/Age
Income

Floor Area

Demand

Occupant Behaviour

Use Frequency

Occupancy/Time-Use

Household Composition/Age

Use Frequency

Employment/Education Demand
Household Composition/Age
Income

Use Frequency Appliance Ownership Demand

Occupant Behaviour

Occupancy/Time-Use

Demand

Floor Area
Energy Ratings/Power
Occupancy/Time-Use

Use Frequency
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to account for the defined calculation steps is outlined in 4.2 and is detailed in Chapters

4, 5, and 6.

2.5 Occupancy and Demand

2.5.1 Background

The specific influence of occupancy on temporal demand for households has been well
documented. Yao and Steemers [50] concluded that “both behavioural determinants
and physical determinants related energy-consumption are more or less influenced by
peoples occupancy pattern”, and that employment related daytime absences were the
most significant occupancy effect.

The influence of occupancy on domestic demand modelling can be determined from
the review of demand models undertaken by Grandjean et al [82]. Over half the iden-
tified models, and 6 of the 9 detailed bottom-up models ([117], [118], [119], [120], [70],
and [69]), incorporate standalone occupancy sub-models calibrated from time-use sur-
vey data. The output is used to directly influence when certain demands occur.

The relationship between occupancy and demand, and the variety of household
characteristics that influence either or both, is complex. As an example, a higher
income household potentially has lower than average occupancy (higher employment
potential), but additionally, higher appliance ownership, larger appliances, more energy
efficient appliances, and a tendency for higher usage behaviours. Understanding and

accurately capturing the inter-relationships is critical for high-resolution modelling.

2.5.1.1 Electricity Demand

For electrical appliance demand, the overall household demand is an aggregate of a
number of both continuous and occupant-initiated elements. Analysis of the HES
dataset shows that the proportion of electricity used for typically user-initiated appli-
ances is 78%, which would strongly indicate a strong correlation between occupancy
and demand.

A review of the literature linking time-use behaviour and electricity demand was

performed by Torriti [121], stating that “residential electricity demand profiles are
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Figure 2.12. Average time-dependent electricity demand and demand relative to average
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demand data for analysis from [89] and occupancy data for analysis from [83].
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highly correlated with timing of active occupancy, i.e. when consumers are at home
and awake”. The relationship can be demonstrated by analysis of the HES dataset.
When the average demand profile for a particular household composition type (see
Figure 2.12(a)) is divided by the average occupancy probability profile derived from
the equivalent UK 2000 TUS population, the factored relative profiles for the daytime
period have a broadly linear shape (see Figure 2.12(b)), suggesting a strong correla-
tion. (Smaller households are shown but the relationship is similar for all households.).
However, there is also evidence of time-specific activities, such as cooking, showering
etc., and the variable relative impact of continuously powered appliances, principally
cold appliances, which increases during periods of lower active occupancy probability.

The relationship between occupancy and electricity demand is further complicated
by the degree to which occupancy determines frequency of use. For example, the
need to use appliances such as washing machines and irons is not strongly influenced
by occupancy duration, and therefore occupancy will primarily drive when they are
used not how frequently. Conversely, use frequency of smaller cooking appliances, such
as kettles and microwaves, are likely to be much more closely correlated with total
occupancy duration. The degree to which occupancy is related to both frequency and
timing of use therefore needs to be understood for each specific demand, although this
is currently limited by the lack of datasets which capture both occupancy and demand.

Evidence of Demand Management The link between occupancy and demand
for occupant-initiated appliances is potentially complicated by demand management
initiatives. As detailed in 1.4.2.1, demand management is where a user is incentivised
to shift demand to a higher supply or lower demand period to help balance the network.
In the UK, the principal current mechanisms are the ‘Economy’ tariffs (principally ‘7’
which offers a single lower nighttime tariff, and also ‘10’ which has three lower tariff
periods throughout the day, both of which are predominantly focused on households
with electric storage heating systems).

Analysis of the HES dataset demonstrates that only dishwashers exhibit any usage
patterns that can be directly attributed to unattended, tariff-driven use (i.e. nightime
period use at fixed times). Timer use probability can be indirectly assessed by the
distribution of cycle (use event) start times. Assuming that most timers would be set

for specific ‘rounded’ times (i.e. x:00, x:30 etc.), extensive timer use would result in
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cycle start time distributions that are skewed. This can be shown for heating use, but
there is no such evidence from the HES data for any appliances except dishwashers. For
most electrical appliances, therefore, an occupant-initiated cycle start can be assumed.

Whilst use of timers for heating systems are relatively common (c.60% of households
[80]), timers for electrical appliances are less so. Only 13.6% of UK households currently
have time-of-use tariffs [122], which may at least partially explain the low prevalence
of shifting behaviour. There is also some evidence of a specific reluctance for people to
allow electrical appliance to run unattended, due to fear of fires, or specific concerns
such as, for example, water leaks or damp clothing issues associated with washing
machine use [123].

The conclusion that can be drawn is that the current level of demand shifting is
low. The implications for any electricity demand models calibrated using existing data
of future behavioural changes caused by the use of remotely-activated appliances and
more widespread use of demand shifting tariffs will need to be monitored and updated
as required. Current data can, however, be considered a direct reflection of when
appliances are likely to be used without forced behaviours, and used as a baseline for

analysis of future demand shifting potential and impact.

2.5.1.2 Hot Water Demand

For hot water use, a high overall correlation with occupancy would be expected, partic-
ularly as most hot water-driven appliances that could potentially be timer-controlled
(i.e. washing machines, dishwashers) are typically cold water supplied. All main hot
water use activities, such as showers, baths, manual dishwashing, and handwashing, all
require active occupant presence.

The average point-of-use demand across all households in the Energy Savings Trust
(EST) dataset (see 2.3) shows two distinct peaks, one at 7.30am, and the other at
7.30pm (see Figure 2.13(a)). Whilst it can be assumed that most hot water cycles are
occupant-driven, the relationship with overall active occupancy is less distinct than for
electricity use (see Figure 2.13(b)). This suggests that there are strong time-dependent
activity drivers beyond basic occupancy (e.g. morning bathing, post-dinner dishwash-

ing), particularly for higher volume hot water cycles.
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Figure 2.14. Average active occupancy profiles from the UK 2000 TUS dataset [83] by
age for non-working days and working hours’ ranges.
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2.5.2 Occupancy Data Analysis

The analysis in 2.4 concluded that several of the household characteristics that in-
fluenced demand did so indirectly because of their influence on occupancy patterns,
namely; household composition, age, and employment/education status. Further re-
view is therefore required to determine how significantly each potential factor influences
occupancy.

UK 2000 TUS occupancy data was analysed in three ways to evaluate the relative
significance of a variety of potential differentiating occupant characteristics. Firstly,
the influence of individual factors, such as age, gender, and employment status, was
assessed. Secondly, different household composition types were analysed separately
to determine if distinct patterns were observable. Finally, the degree of individual
household variation within groups with similar basic characteristics was assessed. This
was required to determine the most effective way to use existing data to develop a
statistically robust, occupant-differentiated occupancy model.

Table 2.2
Results of regression analysis for occupant characteristic correlation with average active occupancy.

Correlation Characteristic

Working Hours (p=2.47x10~47)

Strong
Age (p=1.96x10—35)
Employment Status (p=0.016)
Weak Income (p=0.026)
Day Type (p=0.048)
Location (p=0.632)
None Tenure (p=0.647)

Gender (p=0.798)

2.5.2.1 Relative Influence of Occupant Characteristics on Occupancy

As outlined in 2.3.1, TUS data provides single-day occupancy data for a large number
of individuals and, in some cases, overall households. The typical single-day diary is a
limitation to understanding behavioural consistency, although the depth of data does
allow an overall assessment of the influence on occupancy for a number of occupant

characteristics.
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An initial regression analysis of the UK 2000 TUS dataset for average occupancy in-
cluded the following potential factors; day type (weekday/Sat/Sun), diary day working
hours, employment status (yes/no), age, gender, tenure (own/rent), income (10 bands),
and location population density (as a proxy for location type (i.e. urban/rural etc.)).
Regression was used to allow the relative influence of each factor to be evaluated, and
as it was expected that the factors selected were not independent and could not be ef-
fectively analysed individually. The analysis was limited to the single-person household
population to remove potentially distorting interactions with other occupants. The re-
gression results for correlation with average occupancy are shown in Table 2.2, ranked
by degree of correlation.

Age and working hours on diary day were by far the strongest correlated charac-
teristics with occupancy with very low p-values. This is further confirmed by Figure
2.14, which shows the average occupancy profiles for, (a) non-working weekdays by age
range, and (b) for all working age people on weekdays by working hours’ range.

The results for both gender and day type were less significant than expected. Analy-
sis of the dataset split by gender shows a significant average occupancy difference (male
- 29.1% vs. female - 34.3%), but this is primarily driven by higher levels of diary day
employment and worked hours in the male dataset. Once working days are removed,
the difference is much less significant (42.4% vs. 43.6%).

The time dependency of day type on occupancy is more significant than the in-
fluence on average occupancy, therefore differentiation by day type requires further
consideration. As shown in Figure 2.15, however, the day type influence reduces with
age for non-working days, with the variation reducing for each successive age range

analysed.

2.5.2.2 Household Composition Occupancy Characteristics

Further analysis was undertaken to determine the time-dependent variations in overall
occupancy (i.e. periods with at least one person present and awake) between differ-
ent household composition types. The households have been broadly characterised as
single-person, couple, family, and multi-adult.

Figure 2.16 shows the time-dependent average active occupancy for a variety of

different households, based only on whether at least one person is present. The results
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highlight some key characteristics:

e Average timing of waking and sleeping are very similar on an average basis.
Distinct differences only become evident when differentiated by diary day working

status.

e Age remains a key differentiator for multi-adult households. For example, average

active occupancy for a retired couple household is the highest of all identified

types.

e Family households with school age children on school days have a short period of

high occupancy probability in the early morning period.

e Family households show an earlier and more consistent late afternoon occupancy

increase than non-child households with similarly aged adult occupants.

More detailed analysis highlighted that the significant differences detailed for single-
person households above, driven by age and employment, are also shown for the other
multi-person household types. This analysis was focused on basic active occupancy (i.e.
at least one person present and awake) rather than number of occupants. The main
conclusions, based on a minimum of 100 couples/parent-pairs per identified population,

were as follows:

e Figure 2.17(a) shows that age remains a key factor, particularly for households
without children. (Data is based on 2-person households on non-working days to

remove employment-specific influences.)

e Figure 2.17(b) shows the significant influence of different working combinations
on couple and parent combined occupancy, with markedly lower occupancy where

both work on diary day.

e Figure 2.18 shows that youngest child age is a more significant determinant of
parent occupancy than parent average age, particularly in the daytime period
(based on family households with one non-working parent to reduce multiple
occupant effects). Youngest child age was also shown to be a better differentiator
than other potential factors, including youngest and oldest parent age, and oldest

child age.

40



Average Occupancy Probability

| —Yngst 0-2 |
0.2 ——Yngst 3-4
——Yngst 5-9
—Yngst 10-15
0 Il 1 | Il
04:00 08:00 12:00 16:00 20:00 00:00 04:00
Time of Day

(a) Youngest child age

1 T T T T T

Average Occupancy Probability

04 .
<=30
02r 3137 I
—38-45
. | | i — e
0400  08:00  12:00  16:00  20:00  00:00  04:00

Time of Day

(b) Parent average age

Figure 2.18. Combined average active occupancy profiles for parents by two age parameters
for days with one parent working. Data from the UK 2000 TUS dataset [83].

41-A



Chapter 2. Household Characteristics, Occupancy, and Energy Demand

There are two main overall conclusions from the analysis of the relative influence of
occupancy-determining characteristics. One is that there are three primary differenti-
ating occupancy profile characteristics that are evident at the household composition
type level and have the potential to influence demand patterns significantly; daytime
and evening occupancy probability, and the timing of the late afternoon occupancy
increase. The other is that distinct differences in occupancy related to age and employ-
ment characteristics are at least as significant as differences between the basic household
composition types (single-person, couple, family, multi-adult). Therefore, multiple dif-
ferentiating occupant characteristics will be required for more realistic modelling of
occupancy variations between households. The development of an occupancy model

with significant differentiation by occupant and day types is detailed in Chapter 4.

2.5.2.3 Household-Specific Occupancy Variations

Analysis of individual diaries within distinct populations (based on household composi-
tion type, age profile, employment, and day type) shows that there remains significant
in-group variability. Figure 2.19 shows the distribution of the identified waking and
sleep timing for each individual in the 28-56 years old age range, single-person house-
hold working and non-working populations on weekdays [83]. Similar results are seen
for all equivalently differentiated populations.

The European standard practice of single day diaries for time-use surveys [85], fol-
lowed by the UK 2000 TUS survey used as the primary reference for this project, signif-
icantly restricts both the calibration and validation of multi-day occupancy models as it
is impossible to discern occupancy consistency over time. One open-source exception is
the Dutch 2005 TBO TUS dataset [87] which has one week diaries. Whilst specific occu-
pancy characteristics may differ from the UK population, it is assumed that the dataset
can at least provide information on the relative occupancy variations between identical
occupant types and consistency for individual occupants, that is broadly applicable.
Unfortunately, this dataset does not include multiple people within the same house-
hold, which does not allow the consistency of occupancy interactions within households
to be analysed.

Analysis of this dataset for both mean and standard deviation of wake time, sleep

time, and sleep duration, for both working and non-working days for individuals with
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at least four qualifying entries, shows significant variation in both measures. There is a
wide range of behaviours from early to late and consistent to erratic (from low to high
standard deviation).

The standard deviations for the wake and sleep times shown in Figure 2.19 for the
UK single-person population groups were 75 and 64 minutes for the working population
and 81 and 83 minutes for the non-working population. The equivalent Dutch 2005
TBO TUS population data (see Figure 2.20) shows that the variance for individuals is
typically lower, much so in the case of working people with an average wake and sleep
time standard deviation of 28.0 and 20.6 minutes respectively. Therefore, calibration
data based on population behaviour remains significantly more variable than would be
expected for individuals.

Sleep and waking times were chosen for analysis as they typically occur daily for
most people and within a clearly defined time range. Similar analysis for other key, but
less time-specific, occupancy transitions, such as ‘first leave’ and ‘last return’ timing,
show similar, if less distinct, characteristics.

The conclusion that can be drawn is that while there are broad household composi-
tion type characteristics for occupancy, individual variations both between and within
households are potentially significant for either individual household or smaller district
demand analysis. It is necessary to capture this influence to meet the stated aims of the
developed demand model. The specific influence of individual occupancy behaviours,
and modelling methods to capture the within-type variation, are reviewed in Chapter

7.

2.6 Occupant Behaviour Uncertainty and Demand

2.6.1 Background

Uncertainty analysis in building simulation is a broad subject area that addresses po-
tential modelling inaccuracy in different areas. Uncertainty analysis was originally
defined as the potential variation in model output that results from expected variation
in input parameters [124]. Input parameter variations have a variety of sources, from

errors in physical properties to the accuracy of the algorithm used. More recently, the
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Data for analysis from [87].
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term has been used to address many aspects of modelling output inaccuracy, including
the impact of user behaviour ([125], [126], [127]).

For models that seek to capture the influence of occupants, such as demand mod-
elling, user behavioural variation is a significant source of output uncertainty and is,
arguably, the least well understood and simulated. The user influence on building
energy use is significant, and current modelling methods, in general, poorly address
the complex relationship between occupants and energy demand. The degree to which
this uncertainty needs to be considered and captured probabilistically is model-specific,
dependent on both scale (e.g. national, district, household) and time resolution.

As addressed by Mahdevi and Tahmesbi [128], for occupancy modelling as an input
to building simulation models, there is no single modelling method that is applicable for
all scales and resolutions. They determined that at a low time resolution (e.g. monthly
or annual demand assessment), non-probabilistic approaches can be appropriate and
model accuracy is more strongly associated with the baseline calibration accuracy than
probabilistic variations. At higher time resolutions (e.g. hourly or less) using tem-
porally differentiated models, probabilistic approaches become more appropriate. By
extension it would also be expected that the same logic applies to all aspects of demand
modelling, not merely occupancy influences. Decreasing the system scale and increas-
ing the time resolution of analysis would require an increase in the degree to which the
stochastic nature of specific energy consumption behaviours is captured.

Leytens and Kurvers [129] introduced the concept of robustness in building design.
A robust building design is defined as one that has low sensitivity to errors in design
assumptions and which meets the overall operating criteria under the full range of
conditions. Hoes et al [130] extended this principle to include expected variability in
user behaviour and changes that can be expected over time (e.g. cultural changes,
household turnover etc.), and anticipate that the integration of more detailed user
behaviour models into the design process will aid this.

In relation to demand prediction for constrained and small-scale energy schemes,
a robust analysis would be one that considers the full range of potential demand sce-
narios, with the predicted range capturing both the stochastic impact of behavioural
uncertainty and predictable variations resulting from household characteristics. Simi-

larly, a robust system design would be one that can accommodate the predicted range
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of scenarios. Currently this has not been addressed in a way that can directly influence

the design process.

2.6.2 Demand Modelling Uncertainty

As outlined in 2.2, while a degree of household demand can be predicted from known
household characteristics, there is a residual uncertainty that results from unknown
household characteristics and from behavioural variation that is either independent or
only weakly correlated with characteristics.

There are two distinct elements of occupant behaviour uncertainty for high time
resolution models. The first (‘Baseline Behaviour’), addresses differences in average
energy use behaviour between households with the same characteristics, as driven by
both overall attitudes towards energy use (i.e. climate concerns, spending prioritisa-
tion) and appliance-specific behaviours. The second (‘Temporal Behaviour’), addresses
variations in occupancy and appliance use behaviours in relation to the timing and the
degree to which behaviour within households is consistent day-to-day. In essence, the
first addresses if energy is likely to used and the second when.

The potential impact of unknown characteristics and these two identified behavioural

elements are discussed below.

2.6.2.1 Unknown Characteristics

That typical energy use per household is determined by a complex sequence of inter-
dependent household characteristic relationships was introduced in 2.4. The analysis
demonstrated that for each element that is unknown, there is a probabilistic relationship
with the known characteristics. Therefore, the degree of uncertainty between known
and actual household characteristics, and by extension the ability to predict baseline
energy use for the household, is determined by the number of unknown elements.

As an example, the design of an energy system for a new-build housing scheme
will have a lower level of known household characteristics (typically only location,
tenure, house type and size) compared to a system design for existing households where
significant details are available for current residents. Robust system design should be

able to account for this uncertainty.
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holds. Data for analysis from the HES dataset [89].
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2.6.2.2 ‘Baseline’ Behaviour Uncertainty

Existing research has demonstrated that only a proportion of the differences in energy
demand between households can be attributed to household characteristics and occu-
pancy. As outlined in 2.2, Gill et al [81] evaluated the residual variation, that can be
attributed to attitudes to energy use, energy efficiency, environmental concerns, and
spending prioritisation, to be 37% for electricity, 51% for heating, and 11% for hot
water.

In addition to this overall behavioural element, there is also appliance-level use
variation within specific household composition type groups. Analysis of the HES
dataset has shown that there is no clear overall correlation between the relative use of
each owned appliance per household, beyond that which would be predicted by the Gill
et al overall use variation. This suggests that specific demand use frequency cannot be

easily characterised by overall household energy use characteristics.

2.6.2.3 ‘Temporal’ Behaviour Uncertainty

Comparison of the average intra-day demand profiles for individual households relative
to the household type equivalent average profile allows the relative timing of the key
demand transition periods (i.e. waking, evening return, sleep) and peak use periods to
be captured. Significant variation is seen for households with similar characteristics.
For example, Figure 2.21 shows the distribution of times when the average 10-minute
timestep electricity demand for each working age single-person household exceeds the
overall household average for the first and last time in a 24-hour period from 4am. The
variation is significant and similar to that shown for wake and sleep times in Figure 2.20.
Whilst the lack of comparative occupancy and demand data does not allow a direct
link to be inferred, the similarity indicates at least a partial link between the observed
occupancy variations outlined in 2.5 and similar variation in key demand transitions.
For specific demands, significant behavioural differences in terms of use timing are
observed for each household. For some, use timing is habitual with little day-to-day
variation, others use appliances typically earlier or later than average but with a degree
of variation, and for the remainder use is effectively random. This can be demonstrated

by the mean and standard deviation of the timing of washing machine use per HES
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Figure 2.22. Variation in mean and standard deviation of per-household cycle start time
cdf equivalent values for washing machines and >30 litre hot water cycles. Data for analysis
from the HES dataset [89].
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dataset household shown in Figure 2.22, where a significant variation in use behaviour
is observed (for further definition of the relationship between the cdf value and timing
see 5.9.1). Significant variation in the mean from 0.5 shows use that is earlier or later
than average, and the lower the standard deviation the more consistent, and therefore
habitual, the timing of use. The size of the circle is proportional to the number of use
events in the HES dataset (maximum=173), and indicates that significant variation
remains even for households with a high number of monitored events.

The overall conclusion that can be drawn is that the time dependency of individ-
ual household demand is a complex combination of occupancy and usage behaviours,
although, as stated, the relative impact is difficult to assess due to the lack of compar-
ative occupancy and demand data. The analysis strongly suggests that a bottom-up
approach, capturing specific demand behaviours and their probabilistic distribution
across all households, should be considered for increasingly realistic, high-resolution

demand modelling.

2.6.3 Implications of Uncertainty for Small-Scale Modelling

Analysis of occupancy and energy demand for individual occupants and households
demonstrates that at a high level of detail each is unique. However, distinct patterns
exist that apply at the household composition type level and broader patterns can be
observed for the majority of households; low nightime use, morning increase on waking,
daytime use linked to occupancy probability, evening increase, tapering demand until
retiring.

Calibration data, programming, and computational speed constraints, determine to
what degree any energy demand model captures specific behaviours or is a composite of
averaged behaviours. A degree of behavioural averaging in any model used to predict
occupancy and demand is not necessarily of limited use [128], particularly when applied
to integrated energy systems with multiple connected households.

Demand prediction for small districts should therefore permit for a degree of be-
haviour averaging, with the tolerance increasing as the size increases. Even for individ-
ual household analysis, this type of model output will provide useful baseline demand

profiles, which can be used for feasibility or typical performance analysis. However, it
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is not currently well understood how accurately existing modelling methods represent
reality, how this varies for different scales and types of analysis, and whether results
are sufficiently accurate and comprehensive to ensure a robust energy system design.

This is reviewed in Chapter 3.

2.7 Characteristics, Occupancy, and Demand Analysis

Summary

The analysis presented in 2.4 and 2.5 has shown that there are distinct occupancy and
demand patterns associated with different types of occupants and households. The
conclusion that can be drawn from this is that, as a minimum, significant household
composition differentiation is required for accurate modelling of occupancy and demand.

A number of household characteristics have been identified that have the potential
to either directly or indirectly influence both total and time-dependent demand. In
addition, the characteristics have been assessed for the degree to which they are inter-
related and also likely to be known. The degree of demand prediction uncertainty is
therefore dependent on the level of known information compared to that which must
be predicted.

What is currently not well understood is at what scale of system detailed knowledge
of the household characteristics is sufficient to allow deterministic demand prediction
and how significant the influence of individual household behaviours (see 2.6) becomes
as the scale is reduced. At the individual household level, confirmation is required of
the assessment of Haldi and Robinson [79] that the level of behavioural variation equals
or exceeds a factor of two, and the implications this has for small-scale system design
determined, including for individual household energy systems.

The link between occupancy and demand has been clearly demonstrated by the
work presented and by others. Prediction of occupancy and identification of occu-
pancy variations between households is therefore a necessary precursor to improve the

accuracy of demand modelling.
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2.8 Chapter Summary

This chapter reviewed the influence of different household characteristics on other key
characteristics and ultimately on occupancy and demand. This review allowed the
most effective sequence of calculation steps required for a determination of probabilis-
tic household characteristics to be identified. The impact of household behavioural
variations that cannot be directly predicted from household characteristics was also

explored. The chapter highlights are as follows:

e In order of decreasing likelihood of being known and increasing direct influence on
energy demand, the following were identified as the key household characteristics
for determining energy demand: location; house tenure, type, and size; household
composition and age profile; employment and education status; income; floor area;
appliance ownership; appliance energy ratings and power; occupant behaviour;

occupancy and time-use; and use frequency.

e Occupancy was shown to be a key determinant for both overall and the time
dependency of demand. Occupant type, age, and day-specific working hours,

were shown to strongly influence occupancy behaviour.

e Whilst distinct average occupancy patterns can be shown for different occupant
and day types, significant additional variation in the timing of key occupancy

transitions (i.e. waking, sleep, first leave, last return) is also evident within each

type group.

e Uncertainty in demand modelling results from variations in total energy use, and
from the timing of individual uses between different households, that cannot be
predicted from knowledge of household characteristics. Additional uncertainty
stems from situations where household characteristics are unknown, requiring
a probabilistic assessment of the unknown characteristics. Robust small-scale
energy system design requires that all these identified uncertainties are accounted

for in the system design process.
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Chapter 3

Domestic Occupancy and

Demand Modelling Methods

3.1 Chapter Overview

In Chapter 2, it was shown that occupancy was a key determinant of household en-
ergy consumption, and, in particular, its timing. Household type, occupant age(s), and
working hours were determined to be the most significant influences on relative occu-
pancy. The following chapter includes a critical assessment of current occupancy and
demand modelling methods and potential areas for improvement for high-resolution
modelling.

For occupancy modelling, existing models are primarily based on the first-order
Markov chain method. Limitations of these existing models are shown to include, (1)
weaker occupancy state duration prediction as an inherent feature of first-order models,
(2) inaccurate replication of occupancy interactions between couples, and parents and
children, using models that treat each occupant independently, (3) little of no differ-
entiation based on age, employment or day type to account for distinct differences in
occupancy behaviour, and (4) over-use of time-use activities within the primary occu-
pancy model, which are shown to be both weak predictors of appliance use and therefore
energy demand, and a significant limitation to additional occupant differentiation as a
result of the increased calibration data required.

The review of existing, high-resolution, bottom-up demand models, identified as the
type most relevant to the stated aims of the project, identified that virtually all split
electrical appliances into various sub-groups with distinct modelling methods for each

group. The main conclusions drawn were, in addition to the weak correlation between
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time-use survey activities and demand demonstrated in this chapter, that insufficient
factoring was incorporated to allow for overall and appliance-specific variations in use
between similar households, and that the per-timestep probability methods used by the

majority of existing demand models generate unrealistic use patterns.

3.2 Basic Model Types

Energy demand models can be characterised by several descriptive, and often inter-
related, binary terms; top-down or bottom-up, deterministic or probabilistic, system
or agent-based, time or event-based, high or low resolution. Given the complexity of
detailed energy models, an overall model may not be purely one type but located on a
continuum between both options.

The following section describes each type in relation to domestic demand modelling;:

e Top-Down/Bottom-Up - ‘Top-Down’ models take the final target variable for
the model, and use analytical methods, such as regression, to determine the in-
dividual factors that influence the final variable and the degree to which they do
so. ‘Bottom-Up’ models aggregate results from multiple sub-models of individual
elements to determine the overall result. The elements can range from individual
households to specific demands in each household. ‘Bottom-Up’ models typically
allow for higher time resolution, greater household differentiation, and a more re-
fined assessment of the probabilistic variation, but have greater calibration data

requirements and computational complexity.

e Deterministic/Probabilistic - ‘Deterministic’ models assume that the action
or output can be directly and fully predicted by the input conditions. ‘Proba-
bilistic’ models reflect the likelihood of a particular action or output based on the
same input conditions. The likelihood can be a fixed probability, have time de-
pendency, or be based on the preceding state(s) using techniques such as Markov

chains.

Human behaviour is inherently probabilistic, with tendencies towards different,
distinct behaviours within populations evident [131]. While probabilistic models

are most effective for capturing detailed occupant behaviours, they are signif-
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icantly more complex to develop and calibrate. Computing speed, data, and
development time constraints potentially limit the ability of probabilistic models
to capture individual occupant or household behaviours at a high time resolu-
tion. For example, calibration data for the probability model may be based on
the composite behaviour of a large, undifferentiated population, resulting in an
output that reflects that average behaviour of the overall group and not distinct

behaviours within the population.

e System/Agent - There is no accepted general definition for system and agent
models, but in this case it defines the extent to which individual behaviours are
identified. ‘System’ models attempt to define complex systems using overarch-
ing rules or equations, and are therefore typically top-down and deterministic in
nature. ‘Agent’ models are a specific example of a bottom-up model, where indi-
vidual actors are modelled separately with unique behaviours and aggregated to
represent the overall population. They vary by the degree of agent differentiation
and accuracy of the individual behaviours modelled. ‘Agents’ can be modelled
using individual behaviour calibration, but, as a result of data and computational
limitations, more typically by composites of multiple individual behaviours, with

each composite group differentiated by agent type.

e Time/Event - Discrete-time models step sequentially by the model-defined
timestep to determine if a change of state occurs. Discrete-event models de-
termine, as a single calculation, either the timing of each state change directly
or duration between such events sequentially, and the type of change if there
are multiple options [132]. The decision whether to use discrete-time or -event
models is dependent on several factors [133]. Event models are typically more
computationally efficient, particularly for models with significant periods of no
change. Time-based models are typically simpler to understand and calibrate,

and allow any time-dependency to be captured explicitly.

e High/Low Resolution - Existing demand models vary in the resolution of the
results. The lowest resolution predict demand at the monthly to annual level.
These are typically used for housing stock assessments, and include BREDEM in

the UK [111]. At the opposite extreme, models exist that aim to capture sub-
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hourly variations in demand, with the highest resolution being in the 1-5 minute
range. These are typically used to model elements such as peak demand or
supply and demand matching, where the resolution is critical to capture natural

variability [73].

In general, however, models can be split into two broad types: ‘baseline’ models,
which have a resolution of greater than a day, focus on average demand, and do not
consider time-of-day influences, and which are typically top-down, deterministic, time-
based, system-based, and, by definition, low-resolution; and ‘temporal’ models, which
also aim to account for inter-day variations at least at the hourly level, and which
are typically bottom-up, probabilistic, either time- or event-based, agent-based, and
high-resolution.

The aim of this project to account for household behaviour-driven demand varia-
tions at a resolution applicable for constrained and small-scale system analysis, strongly
suggested the use or development of ‘temporal’-type methods. The focus for the re-

mainder of the review of existing models is therefore this type.

3.3 Existing Occupancy and Activity Models

Energy demand models can also be defined by how the occupant presence influence is
captured. Occupancy variation can either be inferred by factoring within the demand
model or can be modelled as a separate sub-model and the results integrated with
the demand model. The existing ‘temporal’ type models typically model occupancy
separately, with each ‘agent’, either occupant or overall household, modelled separately.

For individual ‘agent’ occupancy models, a variety of statistical techniques have
been developed to translate occupancy data (typically from time-use surveys) to prob-
ability data that is used for model calibration. These can be broadly categorised as
being either discrete-time or -event based, and then by the time resolution and degree
of agent differentiation.

The extensive use of time-use data, which includes significant detail on the specific
activities being undertaken, allows for both modelling of basic occupancy states or more
detailed modelling of specific activities using the same methods. Models therefore vary

by the level of detail to which occupancy is defined from simple occupied/unoccupied
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models to tracking multiple occupancy-related activities (i.e. sleeping, eating, cooking,

laundry etc. plus absence).

3.3.1 Discrete-Time Based Methods

A major subset of recent high-resolution occupancy and activity models, all calibrated
using time-use data ([134], [135], [70], [136], [137], and [138]), use the Discrete-Time
Markov chain (DTMC) method to produce sequences of occupancy-related states. The
DTMC approach is a commonly used method for modelling stochastic processes [139].

DTMC models allow the occupancy state at a timestep, ¢, to be determined based on
the state at the previous timestep, t-At. The basis for any DTMC model is transition
matrices (see Figure 3.1). These hold the probability of transition from one state a
to another state b (py—p). The size of this matrix is determined by the number of
independent states to be modelled. For a model with n states, an n x n matrix is
required. A row in this matrix therefore contains the probabilities of a transition from
some state i to all n possible states (including no change from state i) and all entries
per row should sum to 1.

To calculate a sequence of states over several timesteps, a random number R be-
tween 0 and 1 is generated for each modelled timestep and the new state is determined
by systematically comparing the generated random number with the cumulative prob-
abilities in the appropriate row i of the matrix. For example, if a state ¢ persists
at timestep t-At then k, the next state at time ¢, is the first cumulative probability

gzlf Pi—; that exceeds R.

For a first-order DTMC model, only the state at the preceding timestep is consid-
ered. A second-order model considers the two preceding states, third-order three states,
etc. Higher-order models consider the duration of the existing state at each modelled
timestep. First-order models assume that the system being modelled has the Markov
property, which requires that the system state at time t+At is only dependent on the
state at time ¢ and not the sequence of preceding states or the duration of the current
state. All existing DTMC models are first-order.

Richardson et al [134] developed a two-state (active-inactive) model to define the

number of occupants present using separate modules differentiated by total number
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of occupants per household. Widen et al [135] first used a DTMC method to define a
three-state (active-inactive-absent) occupancy model for lighting use, and subsequently
Widen and Wackelgard [70] refined the process to incorporate nine occupant activities
(absent, sleeping, six core time-use survey (TUS) activities plus ‘Other’). Both devel-
oped models simulated occupancy patterns for individuals, which were then combined
for multi-person households with no interaction assumed. None of the three models
differentiated between different types of occupant.

Others have used variations on the same first-order DTMC method. These include:
Muratori et al [136] using a method similar to Widen and Wackelgard [70] with 9 activity
and location related states, with five archetypal occupants considered (working/non-
working male and female plus children); Meidani and Ghanem [137] reviewed the multi-
activity Markov method performance, including incorporation of additional random
transition factoring; Collin et al [140] developed an eleven activity model similar to
[70], which included a method for identification of shared activities.

A variation of the basic Markov chain method was proposed by Baptista et al [138]
to incorporate interaction effects between individuals in a household. This approach
simplifies the general interactive Markov chain approach proposed by Conlisk [141],
which determines individual transition probabilities from the distribution of all agent
states. This simplification is achieved by randomly fixing one individual as the ‘leader’
agent, using a standard first-order Markov chain model for that individual, and then
determining appropriate first-order transition matrices of other agents based on the
determined state of the ‘leader’ agent.

Examples of non-Markov chain discrete-time models are rare. One example is from
Baptista et al [142] using a ‘Nearest Neighbour’ approach. This aims to find the clos-
est match in the TUS data to the current modelled activity profile of the household
and then to determine the next transition based on the observed transition from the
closest TUS match. Whilst the method was shown to have similar performance to
the first-order DTMC approach, it is also significantly more complex to calibrate and

computationally intensive to model.
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3.3.2 Discrete-Event Based Methods

The first example of a high-resolution model using time-use data was developed by
Tanimoto [68]. Rather than a sequential model, activities are placed within the day
based on the probability of an activity taking place at a particular timestep, and with
a duration based on the mean and standard deviation of the actual durations from the
time-use data converted to a logarithmic Gaussian distribution. Thirty-three distinct
activities were identified, which is a level of detail that would not be practical with a
Markov chain model.

This method is limited by the need to define each individual activity and therefore
does not effectively replicate activities which happen either multiple times in a day or
with a daily probability of significantly less than one. It also needs to be run multiple
times to achieve one realistic profile, as results which are not between 23 and 25 hours
in total duration are discarded. Further analysis and development of this basic method
by Yamaguchi et al [143] compared it with the Markov chain method and concluded
that, while it could be useful in situations where data was too limited for Markov chains
to be used and could be set up to stop unrealistic activity repetitions, it was not as
accurate as the DTMC method for either number of transitions or activity durations.
The number of transitions is higher than for the measured data confirming that forcing
daily occurrences of behaviours leads to unrealistic models.

Wilke et al [71] used a similar approach to Tanimoto but using a sequential method
that identifies the type of state transition and duration of the subsequent state prob-
abilistically. The Markov property assumption is incorporated for the state transition
as each subsequent state is only dependent on the preceding state, although in this
case a higher-order basis for state duration prediction is achieved by direct probabilis-
tic determination at each transition. The primary motivation for this approach was
to improve on the ability of first-order Markov chain methods to capture the duration
distribution of each occupancy-related activity state. An additional benefit is that is it
significantly more computationally efficient, with two calculations per transition (new
state plus duration) required rather than a single calculation per timestep.

Wilke et al generated probability data for 24 distinct occupant parameters by us-

ing differentiators for age, day, level of education, income, employment /education sta-
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tus, gender, location (urban/rural), etc. The model then uses a statistical approach
(multinomial logit) to combine the relevant parameters for each modelled individual
to capture the combined influence on occupancy. Twenty different occupancy-related
states and activities were identified in the occupancy model. The model was shown to
perform well for simulation of the overall population but with some discrepancies for
analysed sub-populations. The authors suggested that this may have been caused by
an excessive number of modelled activities or incorporating too many differentiating
parameters.

This method has also been used by Aerts et al [144] with differentiation based on
different clusters of similar behaviours. This method is restricted by the need to identify
clusters from highly variable data with the inherent level of subjectivity involved, and
that it is not easy to determine from existing single-day or one-week diary data the

sequences of day types that are appropriate for specific individuals or occupant types.

3.3.3 Existing Occupancy Model Evaluation

Validation performed on existing discrete-time and -event based methods have shown
that they perform well in achieving occupancy and activity sequences that simulate
the average behaviours of each calibration population used. It is less clear from the
presented analysis how well the developed methods represent individual occupants and
households, and the within calibration population variation.

For all the methods outlined, there are a variety of model structure decisions that
were taken, either implicitly or explicitly, including; number of occupancy or activity
states, occupant differentiation, state sequence or duration ‘memory’, and occupant
interactions, and, in addition, inherent limitations that need to be either accepted or

accounted for. The following section reviews each element in turn.

3.3.3.1 Number of Occupancy States / TUS Activity Model Evaluation

The activity level detail in time-use surveys has resulted in models that vary from
simple two-state occupancy models [69] to 20+ occupancy and activity state models
([68], [71]). There has been little discussion regarding the most appropriate number or

selection of states, particularly when the goal is household energy demand or heat gain
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prediction. For demand prediction, modelling of states can only be useful where there
is a good correlation between an activity and energy demand. Torriti [51] states that
this is dependent on “how appliance-specific the diary entry is”, with clear inferences
possible for the “T'V’ activity but much less so for ‘Household Upkeep’, for example.
For Markov chain models there is also a limit on the number of states (n) that are
practical for the creation of n? time-dependent transition matrices with sufficient depth
of calibration data for effective modelling.

The availability of detailed appliance-level demand data [89] allows the relationship
between TUS activities and appliance use to be determined, and, if weak, potentially
allows the occupancy sub-model to be restricted to basic occupancy states, with as-
sociated demand determined from a separate sub-model directly calibrated from the
demand data. For the key activities of ‘Food Prep.’, ‘Laundry’ and ‘T'V’, the corre-
lation between TUS Activity and appliance demand was investigated. The analysis
assumes that the HES dataset is sufficiently large and representative to capture typical
UK appliance use timing with good accuracy.

Figure 3.2 shows the comparison between the 'Food Prep.” activity from the UK
2000 TUS dataset [83] and the start-time distributions for four relevant appliances for
all 1-person households. Whilst there is some consistency between activity and start
time, particularly for the mid-day and early evening peak periods for both microwaves
and cookers, there are significant discrepancies resulting in weak overall correlation at
the appliance-level. For example, kettle use is generally poorly represented with an
underestimation in the morning period and no clear correlation between use and the
main meal-times captured by the TUS activity. For both microwave and cooker use,
the potential for use is overestimated in the morning period and underestimated in the
mid-evening period. Oven use is primarily in the early evening period, a behaviour
that is not captured by the activity.

For cooker and oven use, in particular, it would be expected that the activity peaks
would be later than the start time peaks if there was a strong correlation as the cooking
activity has the potential to be an extended activity with appliance starts occurring
early in the activity. For both appliances in the evening period the opposite occurs
suggesting the relationship between the activity and the use of the appliance is more

complex. This discrepancy and the general lag between the activity and microwave use
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suggests that the ‘Food Prep’ activity includes significant non-appliance use elements,
such as ingredient preparation, that have the potential to distort the results if a direct
relationship between activity and appliance use is assumed. Except for kettle use, the
activity-based model predicts earlier appliance use than seen in the HES dataset (see
Figure 3.4 below), suggesting that the probability that the broadly defined ‘Food Prep.’
activity involves the use of a powered appliance is not consistent throughout the day.

Similar analysis for the TUS ‘Laundry’ activity with respect to the use of washing
machines and dryers in the HES dataset is shown in Figure 3.3. The correlation between
washing machine use and the ‘Laundry’ activity is generally consistent, with some
specific periods of weaker correlation. For example, use in the late morning period
is overestimated, which suggests that a proportion of the occupants undertaking this
activity in this period are completing rather than starting the activity (e.g. removing
washing and hanging to dry). Dryer use has no clear correlation with the activity.

The presented analysis, and equivalent analysis for other activity-appliance com-
binations, shows that while there are variations in the degree of correlation between
activity and appliances, with some (e.g. washing machines) significantly stronger than
others (e.g. kettles, ovens), using this relationship for all intermittently-used appli-
ances is likely to only weakly predict actual use timing. Only for “TV’ use can a direct
relationship be inferred, which is reviewed in 5.10.

Further analysis was undertaken of the output from a TUS-activity based demand
model to confirm the potential for weak prediction accuracy. Individual appliance cycle
start time prediction using the same model basis as Richardson et al [69], calibrated
by linking UK 2000 TUS activity data to specific appliance use, determined that the
average and range of predicted cycle start times varied significantly from start time
distributions in the HES dataset for most appliances. The evaluation was undertaken
by generating appliance start time cumulative probability distributions from the HES
data and then determining the appropriate cumulative distribution function (cdf) value
for each modelled cycle start time.

Figure 3.4(a) shows the results for the four main ‘cooking’ appliances, where the
dotted line represents the linear distribution of cdf results from the HES dataset and
the model results are the ranked distribution of HES-equivalent cdf values for each

modelled cycle. For all but the kettle distribution, the average modelled cycle start
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time is significantly earlier (lower cdf value) than for the measured data, and the oven
and microwave distributions, in particular, indicate a poor overall match between model
and measured data. Similar results are showing for the washing appliances in Figure
3.4(b), with only the washing machine model output showing good correlation with
the measured data. In all cases the results are consistent with the direct comparison
between activity and use time detailed above, and the relative probabilities shown in
Figures 3.2 and 3.3. This confirms that the identified weak correlation between TUS
activities and specific appliance use limits demand model accuracy where the activity
is used directly to predict appliance use.

The conclusion is that TUS activities are, in general, a weak proxy for time-
dependent appliance use and therefore for high resolution demand prediction. If al-
ternative, appliance-specific, data is available it should either be used directly, or used
to calibrate the TUS activities for variances in the per-timestep ratio between power
and activity probability. As this analysis was based solely on UK data, it would need

to be determined if the lack of correlation holds for other countries.

3.3.3.2 Occupant Differentiation

Existing models have incorporated a variety of methods to distinguish between individ-
ual occupancy patterns. Few have presented a logic for the differentiation, other than
the base assumption that different occupant types will have distinct occupancy traits.
The models also vary in the extent to which they are comprehensive, that is allowing
the majority of all occupants and households to be simulated.

Of the existing methods, only the Richardson et al model [134] both incorporates an
element of differentiation (household size) and allows most households to be modelled.
However, distinguishing based solely on number of occupants does not capture the
potential differences based on factors such as age and employment status.

The models that use specific but limited occupant and household archetypes ([68],
[136]) are suitable for investigating the potential for differences between dissimilar
households but do not allow for comprehensive modelling. Selecting representative
archetypes from existing short duration diary datasets is also difficult. Aerts et al [144]
has attempted to solve this by first identifying archetypal behaviours then linking them

proportionally to occupant types, which can then be combined to produce more realistic

59



© o o o o
(@)} (o] ~ oo (o]
T T T T

N
SN
T

Average Occupancy Probability

031 e Al 1-Person ]
Workfng <44

02f mhbi v :
Retired >75

01 B = = = Retired <75 u

Male <65
= = = Female <65 |
0 I 1 I T L =
04:00 08:00 12:00 16:00 20:00 00:00 04:00

Time of Day

Figure 3.5. Average weekday active occupancy probability for different single-person house-
holder types. Data for analysis from the UK 2000 TUS dataset [83].

60-A



Chapter 3. Domestic Occupancy and Demand Modelling Methods

profiles. In this case, the model can be comprehensive but, as stated, difficulties stem
both from identifying useful archetypes from clustering analysis of well distributed data
and allocating realistic sequences of archetypal days to individuals.

Yamaguchi et al [143] and Wilke et al [71] present the most comprehensive models
in terms of the variety of different occupant types used. Yamaguchi et al split the
dataset into 25 different occupant types, aided by the large size of the Japanese TUS
dataset. As outlined, Wilke et al attempted to isolate the impact of each individual
occupant trait and day type, and combine the influence statistically for each modelled
individual.

Figure 3.5 shows the impact of the basic differentiators of age, employment, and
gender on single-person householder average occupancy. From this, and the analysis of
[143] and [71], it can be concluded that a significant level of differentiation is appropriate
to capture the fundamental differences.

There is an obvious balance to be struck between differentiation for specific occu-
pancy states and maintaining statistical robustness with an effective depth of proba-
bility data from larger calibration populations. It needs to be determined therefore
what the minimum population size is for the selected method and which particular

differentiators are most significant.

3.3.3.3 ‘Memory’

As stated, a process with the Markov property is defined as one in which the state
at time t+At, is only dependent on the state at time, . The concept of ‘memory’
in time-dependent probability modelling is the degree to which the prior sequence of
states or duration of the current state influences the transition probabilities. The extent
to which any model requires ‘memory’ is therefore dependent on whether the Markov
property can be safely assumed.

For domestic occupancy or occupancy-activity models this property has been im-
plicitly assumed to be correct by a number of first-order models ([134], [135], [136]).
The event-based models ([68], [71]) are higher-order only for state duration and as-
sumed to be Markov property-compliant with respect to the state transition, which
remains a first-order process.

For models which focus solely on basic occupancy parameters (i.e. sleep/active/out)
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([134], [135]), this assumption is largely acceptable for the type of transition as tran-
sition to ‘sleep’ and ‘out’ states are typically from the ‘active’ state. The assumption
cannot be made generally for the prediction of state duration for all models and specif-
ically for models which include multiple TUS activities as detailed below. That state
duration is not Markov compliant was shown by Wilke and was a primary driver for
the higher-order ‘event’ method used for the multiple activity model.

Whether the Markov property assumption can lead to poor prediction of state dura-
tions in a three-state model can be shown with reference to the ‘sleep’ and ‘out’ states.
Analysis of the UK 2000 TUS dataset (see Figure 3.6) shows that both have distinct
duration distributions; ‘sleep’ with a high proportion in the 6-9 hour range and ‘out’
on working days with a distribution where both short (<3 hours) and longer duration
(>8 hours) absences predominate. Using a first-order Markov chain model calibrated
from the same populations as the TUS data, each simulated duration distribution is
less distinct than the equivalent TUS distribution (see Figure 3.6), although the broad
characteristics of the distribution are maintained.

The reason for this weak replication can be explained with reference to the signifi-
cant range of sleep and waking times, and sleep durations, for a specific population (see
Figure 2.20). When combined in a first-order Markov chain model, there is no means
to account for the significant differences in both timing and duration. The modelled
waking time only being driven by the independent probability of a waking event at a
particular timestep.

Further analysis is required to determine if a higher-order model can be developed
that significantly improves the replication of the TUS dataset duration distributions
and whether the degree of improvement with regard to overall modelling accuracy
justifies the increase in calibration data complexity.

For multi-activity models, typically based on TUS activities, while the next activity
is not strongly correlated with the preceding activity, the probability of a specific ac-
tivity is strongly dependent with whether it has occurred within the preceding waking
period. Comparison of the UK 2000 TUS dataset and output from a first-order eleven
activity model similar to that used by [70], based on all one-person households, shows
that the model underestimates the probability of an activity non-occurrence during a

particular day by 10% and also overestimates the number of 6+ occurrence by over
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114%. As with the occupancy duration analysis, the activity repetition for the first-
order activity model tends towards the average per-timestep behaviour, which can lead
to unrealistic activity sequences if calibrated from multiple individuals with conflicting
patterns.

Analysis of the dispersion of activities throughout the day shows that, where specific
patterns are observed, the first-order model fails to capture this detail. For example, the
model underestimates by over 140% the tendency for people to return to watching TV
as the next+1 activity and overestimates by 80% the probability of ‘food preparation’
reoccurring within four transitions.

The overall conclusion is therefore that the use of a first-order basis for multiple TUS
activity models is not sufficiently accurate primarily as the result of weak replication
of intra-day activity frequencies and requires additional assessment for use in basic

occupancy state models to determine if weaker state duration replication is significant.

3.3.3.4 Occupant Interactions

Only the work by Richardson et al [134], Baptista et al [138], and Collin et al [140]
have attempted to capture occupancy or activity-related interactions between different
members of the same household. Other models have assumed that each occupant can
be modelled independently. As stated by Yamaguchi and Shimoda [145], the unit of
high-resolution energy simulation is the household not specific individuals, therefore
ignoring interaction effects has the potential to result in poor occupancy prediction.

Using number of active occupants as the model occupancy state basis, the Richard-
son et al model [134] captures the changing probability of multiple occupancy at dif-
ferent times of day. Baptista et al [138] focused on mealtime and bathing interactions,
with the timing and interaction for all occupants driven by an identified primary oc-
cupant, with the activity state for other individuals determined probabilistically based
on the state of the primary occupant. Collin et al [140] used a standard individual
occupant first-order Markov chain approach but determined the probability of shared
appliance use by analysing the UK 2000 TUS data for the proportion of time where
occupants shared an activity and location. This is of particular relevance to the ‘TV’
activity, where a single unit per location can be assumed.

These three methods identify distinct ways that interactions can be simulated. By
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direct model calibration with the interaction term built in, by targeted manipulation
when a specific state is identified for one or more occupants, or by a further statistical
manipulation when a particular scenario is predicted.

Modelling occupancy interactions adds significant additional complexity, therefore
it needs to be determined whether interaction effects are sufficient to warrant inclusion.
A variety of different potential occupancy interactions were reviewed for relevance and
sufficient data availability using the UK 2000 TUS dataset:

Couples - Co-habiting couple households account for 26.3% (1305) of the UK 2000
TUS dataset households. Analysis of a variety of couple sub-populations, differenti-
ated based on age and working status, showed that if modelled as individuals there
would be an underestimate of double occupancy and, therefore, also an overestimate
of both overall and single occupancy in all cases. (Double occupancy probability for
the individual model basis is determined from the square of the individual occupancy
probability). Figure 3.7 shows the weekday analysis for couples with an average age
of less than 44-years old with both working and retired couples with an average age of
over-68 years old, and confirms that occupancy interactions within couple households
are significant.

Parents - Family households with two parents account for 25.4% (1258) of UK
2000 TUS dataset households. The results were similar to the couple sub-populations,
showing significant occupancy interaction and potential for prediction errors if each
parent is modelled separately. Typical parent occupancy patterns differ from equiv-
alently aged couples without children, particularly in the waking and late afternoon
periods, and therefore must be considered separately.

Children - The same interaction influence can also be shown for parents and chil-
dren. Assuming no interaction underestimates the periods of child occupancy with
both one and both parents present (see Figure 3.8). This is consistent across all child
ages and for different day types (school-term/non-term, weekday/weekend). The same
effect can also be shown for single parent families.

Others - Couple and family households represent the most numerous types for
which a degree of occupancy interaction could be expected. Other multi-person house-
hold types are less common. For example, there are only 43 households with two

unrelated or multigenerational related adults with a variety of age combinations, and
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fewer for equivalent larger households. Therefore, other potential multi-adult household

interactions have not been considered at this stage due to lack of data.

3.3.3.5 Model Evaluation Analysis Summary

To achieve the aim of a high-resolution, occupancy-driven, demand model that captures
specific household behaviours, the following conclusions were drawn from the analysis
of existing methods. The identified problems with first-order occupancy-activity mod-
els, of low correlation between TUS activities and specific appliance use, and unrealistic
repetition and sequencing of activities, render them less effective for demand modelling
where appliance-level demand data is available. With access to appliance-level demand
data from the Household Electricity Survey (HES) [89] dataset, restricting the num-
ber of states to basic occupancy elements, and using alternative means for demand
prediction, was considered appropriate.

In addition, using higher-order methods to capture more realistic occupancy state
durations, and capturing the occupancy interactions inherent in couple and family
households, was also considered to be a fundamental requirement for any model devel-

oped to achieve the project aims.

3.4 Existing Bottom-Up Demand Models

3.4.1 Demand Model Types

A review of “bottom-up” demand modelling methods by Swan and Ugursal [146] identi-
fied two broad types; statistical and engineering. The ‘statistical’ type takes a top-down
approach for individual households or specific demands which are then aggregated. The
‘engineering’ type “explicitly account for the energy consumption of end-uses based on
power ratings and use of equipment and systems and/or heat transfer and thermody-
namic relationships”. Only the engineering type accounts for occupancy influence and
individual behaviours directly, with the specific ‘archetype’ and ‘sample’ sub-methods
applicable for individual household or small area analysis.

‘Archetype’ models identify common household reference types and generate models

reflecting the average behaviour of the type. The number of archetypes is typically
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limited, and this method is therefore not used for comprehensive models. They are
most appropriate as a means of comparing broad differences between household types
or the impact of specific behaviours for a single type. The ‘sample’ approach extends
the archetype concept to divide all households into multiple different types that reflect
distinct behaviours. The method requires higher levels of calibration data and model

complexity but offers the most comprehensive and realistic approach.

3.4.2 Existing Demand Models

Grandjean et al [82] performed a detailed review of demand models and, in particular,
the ability of different methods and specific models to capture demand diversity. The
highest level of performance was attributed to the set of models with individual be-
haviour factoring defined as ‘scripted probability’, analogous to the ‘sample’ approach
defined above, all of which were calibrated using time-use data.

The ‘scripted probability’ models were developed by Walker and Pokoski [117],
Capasso [118], Armstrong et al [119], Widen and Wackelgard [70], and Richardson et
al [69]. As modelling demand diversity is a key aim of this project the following review
focuses on this type of model as the current ‘state-of-the-art’. Aspects of other models
are included where applicable, in particular the methods developed by Stokes [147] and
Wilke [71]. Unless otherwise stated, the detail provided in the work of Walker and

Pokoski, and Capasso was insufficient to discern how the model was constructed.

3.4.3 Appliance-Specific Methods

Analysis of the existing bottom-up, high-resolution models identified similarities in the
structure and methods used. High consumption appliances, in terms of both ownership
and power used, are modelled separately, using different techniques appropriate to
their specific characteristics. Remaining low ownership appliances are either ignored or
treated as a single element. The different techniques are summarised below, followed

by a more detailed review of how they were applied in the existing models:

e Cyclic - The majority of specific household energy demands are characterised by
intermittent cycles of use that are largely occupant initiated and therefore highly

dependent on occupancy. The use cycles may have significant time dependence
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and highly variable behaviours between individual households. This designation
applies to most high ownership and usage appliances (except for cold appliances),
including washing machines, cookers, TVs, etc., and to hot water use. (A ‘cycle’

is defined as a distinct use event.)

e Constant - ‘Constant’ demands are largely independent of occupancy. The
demand may be typically constant (e.g. alarms, telephones, pond pumps) or
have a cyclic power demand which is time and/or condition dependent (e.g. cold

appliance pumps cycling on and off based on temperature).

e Conditional Loads - Heating, cooling, and lighting use is driven by a complex
set of factors. Primary factors are occupancy and the relevant environmental
condition (external and internal lighting levels, temperature, etc.). Fixed timing

patterns based on average or typical need may also be used.

e Standby - ‘Standby’ power is demand associated with appliances that are not
fully switched off while not in use. This is primarily from cooking, audio-visual

(e.g. TVs), and IT appliances.

e Miscellaneous - Appliances with low ownership probability and/or low total
consumption are typically not possible or necessary to model individually. Most
bottom-up models therefore need a method to capture statistically both the own-

ership and power demand potential for this group of appliances.

3.4.3.1 Cyclic Demands

Walker and Pokoski [117] combine an availability (occupancy) sub-model based on
a normal routine with probabilistic variations in key transition times, with activity-
specific proclivity functions (i.e. mealtime, laundry, etc.), to determine a per-timestep
probability of a specific appliance use. This was applied in the same manner to both
electrical appliance and hot water loads. The work of Capasso [118] was based on the
same method.

Armstrong et al [119] used an approach which did not consider occupancy directly
but based potential appliance use on analysed time-of-use potential per appliance. For

each appliance per household, an annual target for power consumption was allocated
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from measured data and a use probability per timestep determined to achieve this
overall consumption. A sequential per-timestep model then determined when a use
occurred using a Monte-Carlo method. Fixed power draws and cycle durations are
set per appliance. The method was only applied to electrical loads, but it was stated
that it could also have been used for hot water use if the equivalent demand data was
available.

Richardson et al [69] used a similar per-timestep probability approach to Armstrong
et al but with appliance use first predicted by occupant presence using the output of
the occupancy sub-model reviewed in 3.3.1. Per timestep use probability is determined
based on occupancy, TUS activity probability, and a fixed number of annual cycles. The
same sequential per-timestep probability method as Armstrong et al then determines
specific cycle times. This work only considered electric shower cycles and not overall
hot water demand.

Widen and Wackelgard [70] linked electrical appliance demand directly to the TUS
activity prediction sub-model detailed in 3.3.1. Cyclic loads are characterised by three
basic configurations, (1) a constant demand for the activity durations (e.g. for cooking),
(2) a variable power cycle commencing at the end of the activity to reflect a pre-use
preparation period followed by the appliance start (e.g. for laundry, dishwashing), and
(3) as for (1) but with an additional standby load when not ‘in-use’ (e.g. for TVs and
computers). Hot water demand was not considered.

A hot-water specific demand model (‘DHWcalc’) [148] has been developed by Jor-
dan and Vajen as part of the IEA-SHC Task 26 project [149], and is open-source. The
model is focused on identifying demand timing based on user-specified average daily
demand (in litres) and overall timing characteristics. The model allows the propor-
tion of total demand in six user-defined periods, and four distinct demand types with
different flowrates and durations, to be specified. Alternatively, built-in probability
distributions based on analysis by the authors can be used. Per-cycle variation is al-
lowed for by setting both a mean and standard deviation for cycle flowrate. The model
also incorporates a sinusoidal seasonal variation element and an allowance for extended

absences.
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3.4.3.2 Constant Loads

The nature of constant loads allows them to be modelled using relatively simple meth-
ods. However, for some applicable demands there are intra-day (diurnal) and seasonal
variations to be captured.

Richardson et al [69] included cold appliances as constant loads. They were treated
in the same manner as cyclic loads with a fixed cycle time, minimum time between
cycles, and number of annual cycles. The probability of a cycle start per timestep is
constant, is independent of occupancy, and has no additional factoring for diurnal or
seasonal variations. Widen and Wackelgard [70] applied a fixed power per cycle for
fridges and freezers. Cycle on and off durations and timing was fixed per household
and allocated probabilistically based on analysis of measured data. Armstrong et al
[119] used a fixed 70-minute cycle based on measured data from a single unit, that is
then scaled to the target annual consumption with no diurnal or seasonal factoring.

Analysis of the cold appliance demand in the HES dataset by Zimmermann et al
[150] highlighted a significant seasonal influence of approximately +£15-20% as a result
of room temperature variations. Stokes [147] used a sinusoidal function to capture
the same effect relative to an annual average power level based on analysis of demand
data. This is a common method used to track seasonal variations caused by either tem-
perature or average daily solar levels. Wilke [71] explicitly did not consider seasonal
influences but did incorporate a per-timestep intra-day function for each modelled ap-
pliance, including cold appliances. Intra-day variations for cold appliances are expected
because of the variable probability of door opening resulting from the time dependency

of active occupancy.

3.4.3.3 Lighting

Lighting use is driven primarily by a combination of occupancy and external solar levels.
Additional factors such as non-occupancy driven uses for security and safety, and the
potential for poorly daylit rooms, also need to be considered.

Richardson et al [151] combined the output of an occupancy sub-model with mea-
sured external solar levels to determine if there is a lighting demand. The method

determines lighting power per timestep based on a probabilistic allocation of individual
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bulb wattages and an empirical model based on observation data to determine the use
probability per bulb and duration of each lighting use.

Widen et al [135] used a similar method to combine occupancy and external solar
level. The lighting power level is set based on the difference between the external solar
level and a target, with the lighting level assumed to be controllable in a series of
defined steps between a minimum and maximum wattage level.

Armstrong et al [119] used three seasonal use probability profiles (winter, summer,
shoulder) and five lighting levels. Lighting events were allowed to occur randomly
during occupied periods with durations of between 5 and 120 minutes, and cycles could
overlap.

As part of a detailed analysis of lighting use in the HES dataset, Terry et al [113]
developed a method that used TUS activities to probabilistically place occupants in
specific rooms, HES data to determine room lighting characteristics and unoccupied
use potential, and external solar data to determine if lighting is required.

As outlined by Robinson et al [152], there is a lack of lighting models based on
comprehensive observations of real behaviours, which remains a valid conclusion as
all the methods outlined require a degree of extrapolation from indirect data sources
to define lighting use. Unfortunately, the lighting data provided by the HES dataset,
which is primarily measured at central distribution boxes, does not provide a clear

indication of specific room-level lighting behaviours.

3.4.3.4 Standby Loads

Standby power use for appliances is consumption for units that are left powered while
not in active use. In particular, televisions, microwaves, and computers are often left
in this state [153]. Analysis of the HES data [153] determined that this accounted for
5.1% of electricity used on average, but varied significantly per household.

Armstrong et al [119] applied a constant standby load of 65W based on the average
for Canadian households. Richardson et al [69] applied standby power use as a fixed
quantity per appliance when not in use for a range of appliances, including TVs, set-top
boxes, microwaves, and ovens. Widen and Wackelgard [70] applied a fixed standby load
for TVs, stereos, and computers.

As outlined below, Widen and Wackelgard, and Wilke [71], both applied an addi-
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tional load to account for residual consumption not accounted for by the appliance-

specific sub-models, which also included an element of standby power.

3.4.3.5 Miscellaneous Loads

One key limitation of bottom-up models is the need to account for all sources of demand
separately. Where an existing model has aimed to account for all demand rather than
only to introduce a method for activity-linked or cyclic demands, a variety of techniques
have been used to account for low ownership or low total consumption appliances
without the necessity to model each individually.

Armstrong et al [119] identified 27 smaller appliances (including TV’s, computers,
kettles, microwaves etc.) that were allowed to operate randomly based on an overall
time-use curve calibrated for a target proportion of ‘on’ time per appliance. As for
lighting, cycles were set randomly at between 5 and 120 minutes, with the potential
for use of different appliances to overlap. Duration and power rating were also factored
based on a relative energy use distribution determined from measured data.

Widen and Wackelgard [70] primarily focused on TUS activity-linked demands and
incorporated a single additional factor to account for undefined loads. The added value
was constant and differentiated solely by the number of occupants based on measured
data analysis. Wilke [71] subtracted specifically modelled demands from the total and
found, for the residual consumption, limited time dependence and a significant range
of values per household (0-600W with a mean of ¢.120W). It is not explicitly stated
how this is applied within the overall model.

An alternative approach to capture the stochastic nature of total household elec-
tricity demand using a Markov chain model was developed by McLoughlin et al [78].
Measured data was used to calibrate a single transition matrix without any time depen-
dency for each of five households. The Markov chain matrix ‘states’ were 24 equal sized
ranges of measured power levels. This was then used to generate synthetic profiles. The
results show that the model was able to replicate the overall characteristics (i.e. mean,
variance, etc.) of the measured data but did not capture time-specific details. The
lack of any time dependency and equal size ranges are likely causes of the poor detailed
performance. Whilst the model may not be suitable to model the overall demand for

a household as published, it could potentially be used to account for a proportion of
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the demand (e.g. miscellaneous appliances) as a single element, with the addition of

time-dependent Markov chain calibration if a time dependency can be shown.

3.4.4 Existing Method Evaluation

In addition to the weak correlation between time-use survey activities and appliance-
specific demand timing demonstrated in 3.3.3.1, which impacts performance for models
that use the activities to determine appliance use timing directly, two further potential

areas of weak demand modelling performance have been identified.

3.4.4.1 Household Characteristics Factoring

The identified existing modelling methods have either limited or no factoring of either
total or specific demands per household that accounts for differences in household
characteristics or energy-use behaviours.

Armstrong et al [119] set total annual demand targets for three distinct household
archetypes (low, medium, high) and used the model to determine per-timestep demand
profiles. Widen and Wackelgard [70] used fixed power levels linked to the identified
TUS activities. The method captures a degree of temporal demand diversity but not
diversity in baseline power, which they state could further refine the method. Richard-
son et al [69] only used undifferentiated appliance ownership probabilities to distinguish
households, with a fixed number of cycles per appliance and a fixed power level per
appliance, regardless of the number of occupants or other characteristics.

The analysis presented in 2.4 demonstrated that household characteristics and in-
dividual household behaviours have a significant influence on overall demand, and for
each specific demand. The influence can be shown for a diverse range of factors, from
appliance age and size to number of daily cycles and use duration. Ignoring these vari-
ations, which can typically be characterised by probability distributions, is likely to

result in poor prediction of the range of potential demand profiles in any model output.

3.4.4.2 Realistic Cycle Sequencing

Similar to the Markov property assumption for occupancy modelling (see 3.3.3.3), ex-

isting first-order, per-timestep appliance cycle models also have an inherent assumption
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that future cycle start times are independent of previous sequences or time since the
last cycle. As for occupant activities, this assumption ignores distinct use behaviours
for certain appliances. For appliances where both daily use and multiple daily cycle
probabilities are high, such as kettles and microwaves, the potential is for both the
modelled number of cycles per day and the intra-day cycle sequences to be unrealistic
if the preceding sequences are ignored.

Kettle data for each of the single-person households in the HES dataset, and the
results for a first-order, per-timestep probability model, similar to that used by [69]
and [70] and averaged over 20 annual duration runs, were compared for the average
absolute difference per day between the actual and average number of cycles relative to
the average number of cycles. The average value for each household gives a measure of
the typical household daily use variation. For the HES dataset the average is 0.387 and
the equivalent for the first-order model was 0.608. This suggests that the first-order
method generates excessive day-to-day variability. Similar results were observed for the
other high use appliances.

Intra-day cycle sequence performance can be determined by comparing the standard
deviation of cycle start times per household from the HES dataset to the same first-
order model. This is achieved by converting all cycle start times to minutes after 04.00
(e.g. 08.30=270) and then determining the standard deviation of the converted cycle
start times for each day. For a 6-cycle kettle use day, the HES dataset average cycle
start time standard deviation is 285 minutes, with most households varying linearly
from 200 to 375 minutes. The first-order model output has an average of 346 minutes
with an equivalent range from 100 to 600 minutes, suggesting distributions of daily
cycle start times that vary significantly from actual behaviours.

For lower use appliances with use patterns that are likely to extend over several
days, such as washing machines and dishwashers, the modelling challenge is realistic
sequences of use and non-use days, rather than cycle sequencing. For some appliances
of this type, the probability of a cycle will also increase with time since the previous
cycle as the need (e.g. quantity of clothes or dishes requiring cleaning) accumulates.
The sequential per-timestep probability models ([119], [69], [70]) do not reflect this.

For washing machine use, the HES dataset and the first-order, per-timestep use

probability model results for three key statistics have been compared based on daily
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Figure 3.9. Comparison of three key use pattern defining statistics by daily cycle probability
for washing machine use from analysis of the HES dataset [89] and a first-order, per-timestep
use probability model.
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cycle probability as shown in Figure 3.9. Next-day use probability is the probability of
use on the day following a cycle, and the first order model has a narrower distribution
and higher average than the HES data. For the maximum number of days between cy-
cles, the first-order model shows a significantly higher basis than the data, suggesting
that the per-timestep approach, with very low use probability per timestep, overesti-
mates this potential. Finally, the average cycles per day is lower for the first-order
model, suggesting that there are multiple-use behaviours not captured by a first-order
model. Deeper analysis of the data shows that distribution of days between cycles is
more random for the first-order model than the HES dataset, with the first-order model
failing to capture need-driven use behaviours.

In contrast to the per-timestep approach, the hot water timing model developed
by Jordan and Vajen [149] uses an event-based approach, where timing is determined
probabilistically based on overall daily use characteristics that are defined separately.
This provides a means to control both the total use per day and relative timing that is
not possible with a per-timestep method as shown.

In general, as a means to determine realistic appliance use patterns, and therefore
overall demand profiles using a bottom-up approach, current published methods are

ineffective for household or small-scale energy system modelling.

3.5 Model Development Options

The selection of the most appropriate modelling methods is dependent on a number
of factors; calibration data availability, scale of analysis, computational power, and
desired outputs. Bottom-up, probabilistic, agent-based, and high-resolution discrete-
time models have the potential to generate the greatest level of detail, but can be
inefficient if not justified by the limitations and requirements imposed by each of the
four listed factors.

As defined in 2.6, occupancy and demand patterns within all households can be
characterised as being highly stochastic with time dependency. Whilst the potential
states and values are finite, and broad patterns and individual drivers influence be-
haviour at a daily, weekly and seasonal level; there is a significant inherent, or at least

apparent, randomness in occupancy state or energy demand at any specific time, which

73



Chapter 3. Domestic Occupancy and Demand Modelling Methods

increases with increasing time resolution.

The stated aim is to capture the influence of individual household and household-
type behaviours, and apply the model to time sensitive analysis such as solar energy
matching and diversity. As identified in 3.2 and confirmed in the remainder of this
chapter, this strongly suggests any such model should be, in general terms, bottom-
up, probabilistic, agent-based, and high-resolution, with consideration for any limits
imposed by calibration data availability and resolution, and computational limitations.

The principal model development decisions were therefore; the degree of differenti-
ation of occupant (agent) behaviour, the model time resolution, whether to use a time
or event-based method for occupancy and demand timing evaluation, and how to incor-
porate the influence of occupancy within the overall demand model. The conclusions

are detailed in Chapters 4 to 7.
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3.6 Chapter Summary

This chapter reviewed the basis and performance of existing high-resolution occupancy

and demand models. The chapter highlights are as follows:

e Existing occupancy models can be broadly characterised as either discrete-time,
requiring a probability calculation for each timestep, or discrete-event, requiring
a single probability calculation to determine each state and its duration. The
majority of existing models are discrete-time models using the first-order Markov

chain method.

e The use of time-use survey activities in existing occupancy sub-models to deter-
mine when specific appliances are used within an associated demand model was
shown to be less effective. The time-use activities are not sufficiently specific to
allow the use of appliances to be directly inferred and there was shown to be a

weak correlation between associated activity and appliance use timing.

e Existing occupancy models are limited by one or more of the following: a lack of
differentiation for occupant type, age, and employment status; by weak prediction
of occupancy state durations as a result of the first-order methods used; and by

ignoring occupant interactions in both couple and family households.

e Existing demand models primarily use a first-order, per-timestep use probability
model that can be shown to poorly replicate actual sequences of use within each

day and over several days.

e Existing demand models do not account for behavioural variations in total energy
or appliance-specific use between household types or between individual house-
holds of the same type. This limits their use for high time resolution analysis of
the range of potential demands for individual households or small-scale energy

systems.
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Chapter 4

Model Structure, Characteristics
and Occupancy Sub-Model

Development

4.1 Chapter Overview

In Chapter 2 it was shown that a number of occupant and household characteristics
influence occupancy probability. In particular, age and working hours were shown to
be highly correlated. In Chapter 3 several potential improvements to existing occu-
pancy modelling methods were identified, including improving occupant differentiation
to capture the age and day type influence. In addition, improved methods were sought
to account for occupant interaction effects and occupancy state duration prediction
accuracy.

The following chapter first details the development of a sub-model for the prediction
of household characteristics based on location and house type. This is used for situations
where these are unknown or where a representative population is sufficient.

The development of an enhanced occupancy model is also described. The spe-
cific enhancements are as follows: (1) combining couple and parents as single entities
within the sub-model to account for occupancy interactions, and linking child occu-
pancy directly to the parent occupancy, (2) improving state duration prediction using
a higher-order Markov chain approach based on ranges of duration, (3) significant dif-
ferentiation based on household type, age, and working hours based on an assessment
of the optimal number of sets of individual single-day occupancy data required for

effective modelling, and (4) secondary models developed to run in parallel with the
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primary three-state occupancy model to account for homeworking and sleeping away
potential, and TV use. The developed model limits the number of occupancy states
in the primary analysis to the three base states (sleep, active, and out), to account for
the weaker demand prediction performance and increased calibration data requirement
of models that incorporate multiple time-use activities for the active periods, and the
availability of appliance-level demand data.

This chapter also outlines the overall structure of the full occupancy and demand
model in the first section. The development of the demand-specific elements is covered

in Chapter 5 for electricity and in Chapter 6 for hot water consumption.

4.2 Overall Model Structure

As detailed in 2.4, household demand is a complex interaction of a variety of inter-
dependent factors, including household type and size, income, occupancy, employment
and education status, and unique behaviours. Analysis of the relationships presented in
Table 2.1, defines a sequence of steps required to transition from the minimum required
level of household information to a prediction of energy consumption. This sequence
is outlined in Table 4.1 and has been split into three distinct sub-models; Household
Characteristics (Steps 1-4), Occupancy (Steps 5-6), and Demand (Steps 7-11). This
has been used to structure the overall model which is shown graphically in Figure 4.1,
including a summary of the principal calibration datasets, differentiating filters, and
outputs.

The developed method assumes basic location, tenure, and house size and type
information is available as a minimum. Analysis of specific projects will also vary in
the extent to which the overall community and individual household characteristics
are known. At each stage known information can replace modelled characteristics, if
available.

All modelling work presented was implemented in MATLAB.
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Table 4.1
Overall demand model calculation sequence.
Step Calculated Factor Input Factors
1 Household Composition Location, House Tenure/Type/Size
2 Ages Location, House Tenure, Household Composition
3 Income Location, Household Composition, Ages
4 Employment / Education Location, House Tenure, Ages, Income
5 Work Weeks / Calendar Ages, Employment/Education
6 Occupanc Household Composition, Ages, Employment / Education,
pancy Work Weeks / Calendar
7 Appliance Ownership Household Composition, Ages, Income
3 Cycles/Use Household Compos1't10n, Ages, Incgme, Occupancy,
Appliance Ownership
9 Energy Ratings / Appliance Power Household Composition, Ages, Appliance Ownership
- Cycles/Use, Energy Ratings / Appliance Power,
10 Electricity Demand House Tenure/Type/Size, Random Behaviour
11 Hot Water Demand Cycles/Use, Random Behaviour

4.3 Household Characteristics Sub-Model Development

4.3.1 Minimum Input Data

Location within the sub-model is defined by the deprivation index decile and area
classification (urban, town, and rural). As shown in 2.4.1.1, they define the basic socio-
economic characteristics of an area, which has a direct influence on potential household
composition, income, and employment/education status.

Tenure is defined as private-owned, social-rented (Housing Associations in the UK),
and private-rented. This also has a direct influence on the potential household compo-
sition per house type and size, and employment status.

House size detail is restricted to number of bedrooms, which has a strong influence
on household composition. Other indicators such as floor area or number of habitable

rooms could be used but this information is typically harder to acquire in the UK.

4.3.2 Household Composition and Ages

To determine household composition (type and size) and age profile, the sub-model has

been calibrated using household survey data. The 2008 Scottish Housing Survey (SHS)
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data [92] has been used (the English Housing Survey provides the same data and would
also be applicable). (The 2008 SHS data was the most recent available at the time
the calibration activities were undertaken but has since been superseded by data from
2012-2014).

Analysis of the SHS dataset determined the household composition probability for
each house size based on the Index of Multiple Deprivation (IMD) decile and tenure.
Further separate probability multipliers were determined based on area classification
(urban, town, rural) and house type (flat or house), and combined to further manipulate
the size-driven probability as there is insufficient data to allow all factors to be captured
in a single level of analysis. Table 4.2 shows an example for a 2-bedroom social-rented
house in an urban area with a deprivation (IMD) decile of 3.

Adult ages are determined probabilistically based on the generated household com-
position and the area deprivation decile. Child ages are linked to the parent age(s).
Both derived from SHS analysis.

Table 4.2

Household composition probability for a 2-bedroom social-rented house in an urban area with a
deprivation (IMD) decile of 3. Data for analysis from the 2008 Scottish Housing Survey [92].
(A=Adult, R=Retired, C=Child, P=Person)

1A 1R 2A 2R 1A1C 2A1C 1A2C 3A 2A2C 1A3C 2A3C 3A2C 6P+
0.154 0190 0.113 0.163 0.095 0.080 0.034 0.065 0.062 0.019 0.010 0 0

4.3.3 Income and Employment/Education Status

The calculation sequence to determine both the household income decile (relative to all
households) and employment status of each individual is arbitrary as they are closely
correlated. The sub-model first determines household income decile based on household
composition, deprivation decile, and tenure from analysis of the SHS dataset, and then
employment status. Table 4.3 shows an example of the income decile probability of a
working age, single-person household in an area with a deprivation decile of 2.

Table 4.3
Income decile probability for a working age, single-person householder in an area with a deprivation
decile of 2. Data for analysis from the 2008 Scottish Housing Survey [92].

Income Decile 1 2 3 4 5 6 7 8 9 10
Probability 0.271 0.243 0.236 0.130 0.074 0.028 0.011 0.007 0 0
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Employment status is determined based on the household composition and income
decile. In couple and parent households, the employment status of both adults is
combined and dependent on the overall household income. Adults between 16 and 24
years old in family households are treated independently and assessed for employment
and full-time education potential based on age and household income decile. Table 4.4
shows an example of the employment status probability for a single-person householder
aged between 49 and 54 years old by income decile. Table 4.5 shows an example of the
combined employment status probability for a co-habiting couple with an average age
of less than 35 years old by income decile.

Table 4.4
Employment probability for a single-person householder aged between 49 and 54 years old by income
decile. Data for analysis from the 2008 Scottish Housing Survey [92].

Income Decile 1 2 3 4 5 6 7 8 9 10
Full-time 0.045 0.134 0.468 0.602 0.706 0.833 0.803 0.720 0.789 0.647
Part-time 0.223 0.128 0.160 0.094 0.144 0.087 0.155 0.260 0.132 0.235

Non-working 0.732 0.738 0.372 0.304 0.150 0.080 0.042 0.020 0.079 0.118

Table 4.5

Combined employment probability for a co-habiting couple with an average age of less than 35 years
old by income decile. Data for analysis from the 2008 Scottish Housing Survey [92]. (FT=Full-time,
PT=Part-time, NW=Non-working)

Income Decile 1 2 3 4 5 6 7 8 9 10
FT/FT 0.111 0 0.074 0.054 0176 0455 0.686 0.798 0.819 0.838
FT/PT 0 0.111 0.074 0.243 0.485 0.348 0.232 0.157 0.146 0.107
FT/NW 0 0.389 0.481 0.243 0191 0.116 0.041 0.030 0.017 0.028
PT/PT 0.056 0.222 0.185 0.216 0.103 0.071 0.041 0.015 0.017 0.028
PT/NW 0.222 0.056 0.037 0.081 0.029 0 0 0 0 0
NW/NW 0.611 0.222 0.148 0.162 0.015 0.009 0 0 0 0

4.4 Occupancy Model Validation Metrics

Comparison between occupancy model output and actual data is required to allow
performance to be assessed and methods compared. Validation of existing occupancy
models have used a variety of visual (i.e. charts, graphs) and statistical representations
to compare a number of different factors. Table 4.6 summarises the methods used for
published models and the validation resolution, and indicates that there is no clear

consensus on the best method(s) except for visual assessment of average occupancy
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profiles.

Table 4.6
Validation factors, resolution, and representation basis used for existing occupancy models.

Factor Resolution Visual Statistical
Household Daily Profile Per-Timestep [135]
Household Average Profile Per-Timestep [%(‘3385]]: [[115’ g]]’
Number of Specific Transitions Per-Timestep [134]
Number of All Transitions Avg., Max., Std. Dev. [138]
Number of Occupancy Patterns Avg., Max., Std. Dev. [138]
Daily Probability Average [68] [138]
Duration Avg. & Std. Dev. [68]
Error Per-Timestep - Averaged [68], [71]
Edit Distance Per-Timestep - Averaged [144]
Number of Correct Predictions Per-Timestep [71]

Visual methods have the benefit of both simplicity and a lower risk of being mis-
interpreted due to unrepresentative but statistically distorting outlier results, being
typically used to compare model outputs with equivalent data. Statistical methods
allow different methods and applications to be directly compared, as per Baptista et al
[138] for the comparison of alternative models. Therefore, where possible, visual repre-
sentations are used for model-to-data comparisons, but the following three statistical
metrics have been used to assess relative method performance.

Average Occupancy Metric — determines the average per-timestep error between
the time-use survey (TUS) input data and model output for each occupancy state -
quantifying the quality of model calibration. Equation 4.1 is based on 144 data points
per day (10 minute timesteps). This is equivalent to the ‘Error’ used by Tanimoto et al

[68] and Wilke et al [71], and is a frequently used method for comparing distributions.

2| Prpod (t) — Pl (t)]

state

AOstate = Z a (4 1)
= 144

where, AQOgte is the Average Occupancy Metric for state, state, 75&%(‘5) is the

average modelled active occupancy probability for state, state, at timestep, t, and

Pts (t) is the average active occupancy probability for state, state, at timestep, t,
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derived from the input time-use survey data.

Two means of analysis are possible with this metric:

e First, it can be used to calculate the prediction error for the average per timestep
results of multiple profiles generated using an occupancy model. This determines
how effectively the model converges to the calibration population average (here-

after referred to as AO_Conv).

e Second, it can be used to calculate the prediction error for each individual profile.
The mean of this error can be used to determine how closely individual profiles

replicate the input data (hereafter referred to as AO_Var).

Over multiple profiles, a refined Markov chain model should be consistent with the
input data. The two AO measures provide a means to assess individual run variation
against the overall convergence performance. Within real populations individual occu-
pants will deviate from the population average occupancy, therefore individual profiles
should also demonstrate a degree of deviation. A model that tracks broad occupancy
characteristics but with some variation about the average behaviour is therefore ac-
ceptable within limits.

State Duration Distribution Metric — (hereafter referred to as DurDist) is
used to assess the ability of a model to generate a realistic range of occupancy state
durations. It compares the difference in the cumulative probability function (cdf) values
at each 10-minute duration range for the analysed histograms for an occupancy model
output and equivalent TUS data in order to determine if the generated occupancy
profile replicates the occupancy state durations seen in the TUS data using Equation
4.2. The DurDist is the sum of the absolute difference between an occupancy model
and TUS data cdf values at each duration value for each modelled occupancy state.

This metric is commonly known as the Earth Mover’s Distance: a commonly used
quantitative histogram similarity measure where the bin values are not independent

and cross-bin analysis is required [154].

144 | d d
DurDistgae = » | > Pieit(d) = Phts (d) (4.2)
d=1ld=1 d=1
where, P9 (d) is the probability of a modelled state duration of d for state, state
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and P%5 (d) is the probability of a state duration of d for state, state, derived for the
input time-use survey data.

Occupancy Profile Similarity Metric — the process used is generally known as
the Levenshtein Edit Distance (LED) method for character string similarity analysis,
which is used to compare individual occupancy profiles and is similar to the method
used by Aerts et al [144] for clustering analysis. The derived metric is hereafter referred
to as ProfSim.

The LED method is used to quantify the dissimilarity between two strings by quan-
tifying the measures needed to transform one into the other. A ’cost’ of 1 is assigned for
each edit (insertions, deletions, and replacements) required in the transformation. For
example, transforming 110111 to 001011 would require a minimum edit of a replace-
ment of the first digit, insertion of the second, and deletion of the last digit - a total
cost (ProfSim metric) of 3. The approach can therefore be applied when comparing
two numerical profiles. When two profiles are compared, for clarity, the ProfSim metric
is converted from a per-timestep to an hour equivalent by dividing the result by the
number of timesteps per hour (i.e. six).

The metric can be used in two ways.

e First, it can be used to compare occupancy model output profiles with the input
TUS dataset. The smallest ProfSim metric per profile, representative of the
closest match, is determined, and an average calculated across all modelled days.
This is a measure of the average similarity between generated profiles and the

closest real profile.

e Second, each profile in either the input dataset or model output dataset can be
compared with other profiles in the same dataset quantifying the behavioural

similarity within and between each dataset.

There is no clear definition of when an input dataset, in terms of occupancy be-
haviour, is either overly similar or contains an unrepresentative population. Similarly,
there is no clear delineation of the point at which the output results change from
overly random to realistic or from realistic to narrowly replicating the input data. The

ProfSim metric does, however, allow a relative assessment to be made.
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4.5 Occupancy Sub-Model Development

The review of existing occupancy models in 3.3.3, determined that there were four main
potential areas for improvement: optimising the number of occupancy states modelled;
prediction of occupancy state durations; capturing couple, parent, and child occupancy
interactions; and differentiation based on identified occupant and day type factors cor-

related with specific occupancy behaviours. Each are reviewed in the following sections.

4.5.1 Modelled States

The availability of appliance-level demand data for separate appliance-use calibration
and the identified weak correlation between time-use survey activities and appliance
use (see 3.3.3.3), determined that including time-use activities within the occupancy
model, as is the case with several existing models ([120], [71]), would be less effec-
tive. To allow significant occupant differentiation also requires limiting the number of
modelled occupancy states, to maximise the degree to which the dataset can be split
while retaining the necessary depth to calibrate a statistically robust and representative
occupancy model.

Models that distinguish between active occupancy and passive occupancy associated
with sleeping periods, such as [135], allow for better assessment of occupant heat gains,
standby power use, and the use of lighting while people sleep. Therefore, a three-state
(sleep-active-out) occupancy model was deemed to be the simplest effective option for

integration with a demand model calibrated directly using demand data.

4.5.2 Duration Prediction / Higher-Order Method Development

The fundamentals of Markov chain models and the concept of first- and higher-order
methods were reviewed in 3.3. A key aim was to incorporate a higher-order approach
if it could be shown to perform better than the basic first-order method, particularly
for occupancy state duration prediction. As detailed by Wilke [71], Aerts et al [144],
and McKenna and Thomson [155], first-order methods do not predict state durations
accurately where the duration probability does not decay exponentially. As shown,

sleep and working-day absence duration probabilities have complex distributions (see
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Figure 4.2. Transition from a first-order to a higher-order Markov chain model (‘sleep’
state example).
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Figure 3.6).

First-order Markov chain methods have been the most commonly used for recent
high-resolution occupancy and activity model development ([134], [120]). A first-order
occupancy model has been developed for comparison purposes based on the standard
method as defined in 3.3.1. This also incorporates the interaction and differentiation
developments detailed in 4.5.3 and 4.5.4, and is hereafter referred to as the ‘FOM’
method.

Two higher-order methods have also been developed and their performance com-
pared. One is an enhanced higher-order version of the Markov chain approach which
includes probability data differentiated by ranges of current state duration. The other
is similar to the discrete-event method developed by Wilke [71] that identifies the type
of state transition and duration of the new state as single calculations, repeating this
sequentially for the total required duration. Both are detailed in the following sections,

followed by a performance comparison for the three defined methods.

4.5.2.1 Higher-Order Markov Chain (‘HOM?’) Method

A new higher-order Markov chain method was developed where transition probability
matrices (TPMs) have been generated according to the duration of the existing state
within fixed ranges. This addresses the fundamental problem with first-order models
in capturing occupancy states with complex duration probability distributions. This is
hereafter referred to as the ‘ HOM’ method.

In this case, each first-order transition probability matrix is replaced with matrices
corresponding to, for example, sleep durations of 0-2, 2-4, 4-6, 6-8, and 8+ hours. So,
if an occupant has been asleep for 3 hours then the 2-4 hour sleep duration transition
probability matrix would be used to determine the next occupancy state. This approach
captures the changes in relative probability of waking having slept for different lengths
of time.

The difference in the per-timestep transition matrices for the first and higher-order
approaches is shown in Figure 4.2. Each row of the first-order matrix transforms into a
multi-row matrix. (P’ is the probability of a particular transition, 'S’ refers to ’sleep’,

A’ is ’active’ and 'O’ is ’out’). For example, the matrix element on the third row
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and second column represents the probability that someone who has been asleep for
between 4 and 6 hours at a specific timestep will transition to the ’active’ state.
Optimum duration ranges vary per day type and state transition based on specific
behaviours, and, in particular, those related to sleep and work-related absences. Ranges
were defined by examining the duration distribution for each transition and setting the
ranges such that significant changes in behaviour are captured separately. For example,
working days are characterised by a high probability of shorter (<3 hours) and longer
(8-12 hours) absences, with two broad exponentially decaying curves, one from 0-8
hours and one from 8-14 hours (see Figure 3.6), and further distinct behaviours for
specific ranges. The upper range bounds selected were 1, 2, 3, 5, 8, 12 and 24 hours to

account for both the overarching and distinct absence duration behaviours.

4.5.2.2 Higher-Order Discrete Event (‘HDE’) Method

The event-based methods developed by Tanimoto et al [68] and Wilke [71] (see 3.3.2)
provide an alternative approach that aims to capture state durations based on the
analysed distributions from measured data. The Tanimoto et al method was discounted
based on the performance issues identified in 3.3.2 and as it is also not clear how it
could be developed for a three-state model given that it requires each state/activity
period to be defined individually. However, the Wilke basis can be easily converted for
any number of modelled states and a similar method was developed to allow method
comparison. This is hereafter referred to as the ‘HDE’ method.

The developed HDE approach is similar but not identical to the Wilke occupancy
model. Differentiation is achieved by creating separate probability matrices for each
defined person type rather than combining regression factors for each occupant and
day type characteristic (age, employment, day of week, etc.). This was done to ensure
the approach was consistent with the FOM and HOM methods and due to uncertainty
about the effectiveness of the statistical method used by Wilke for a three-state model.
Instead of creating Weibull equivalent duration distributions as per Wilke, the actual
distributions of durations were used both for statistical simplicity and to prevent ex-
cessive smoothing of the data. Apart from these changes, the method follows the basic
logic of predicting each change of state and the duration of the subsequent state.

The UK 2000 Time-Use Survey (TUS) dataset [83] was used to derive probabilities
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at each 10-minute timestep for each potential occupancy state transition and the du-
ration of each new occupancy state to the nearest hour. The sparseness of transition
data requires that probabilities are averaged over a number of 10-minute timesteps.
Therefore, data for each specific timestep is based on the average for that timestep and
the three preceding and subsequent timesteps.

As an example of the method, Figure 4.3 shows the transition and duration matrices
for an ’active’ period that ends at 11.10pm. The HDE algorithm will first generate a
random number (RN1) between 0 and 1 to determine if the transition is to ’sleep’ or
‘out’ states. The duration in hours of the new state is determined in the same manner
using the duration probability matrix for the new state if starting at 11.10pm. A third
random number (RN3) determines with equal probability the exact 10-minute timestep
on which the next transition occurs. The same process is repeated for this identified
next event. Using this approach, a sequence of occupancy states and their durations

with a 10-minute resolution are calculated.

Table 4.7
Occupancy model validation metric comparison for two single-person householder sub-populations
on weekdays using different occupancy model methods.

Single thd Model AO_Conv AO_Var DurDist DurDist DurDist
Populations x E-3) x E-3) Sleep Active Out
‘Working 18-37 FOM 0.6 14 2.26 0.79 2.87
‘Working 18-37 HOM 55 14 1.42 0.47 1.43
‘Working 18-37’ HDE 41.6 45 3.17 0.87 2.87
‘Over 76’ FOM 0.5 17 1.64 1.63 1.10
‘Over 76’ HOM 5.0 18 1.26 1.15 1.03
‘Over 76’ HDE 44.4 47 1.49 1.26 141

4.5.2.3 Occupancy Method Comparison

The performance of each of the three defined methods was compared using the vali-
dation metrics introduced in 4.4. Initial comparison was completed for single-person
householders and the results for two sub-populations on weekdays are shown in Table
4.7. The “‘Working 18-37’ sub-population represents those between 18 and 37 years old
working full-time and the ‘Over 76’ sub-population those over 76 years old.

The results show that the statistically simpler first-order method (FOM) converges

more closely to the overall calibration data average (AO_Conv metric) in comparison
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with the higher-order method (HOM), which has additional statistical complexity re-
sulting from the introduction of duration ranges. However, the weaker convergence of
the HOM approach is not statistically significant, particularly when considered against
the potential for variation between the TUS calibration data and real population oc-
cupancy characteristics (see Figure 4.10 and Table 4.14 for variation between the UK
2000 and 2005 [86] TUS datasets for equivalent populations). The AO_Var results,
which only allow a comparative not absolute assessment of individual run consistency,
do not show any significant increase for the HOM method, showing that individual
annual FOM and HOM method outputs vary to a similar degree. Further analysis with
extended period occupancy data is required to determine if this variance is realistic.

The HDE method shows significantly poorer performance for both AO measures,
with an order of magnitude difference for AO_Conv compared to the HOM approach.
That the AO_Conv and AO_Var metrics are similar magnitudes is a specific demon-
stration of poor performance, indicating a method that is generally poorly replicating
the calibration dataset. Using metric DurDist, the HOM method shows better perfor-
mance, suggesting it is better able to replicate actual distributions of occupancy state
durations than either the HDE or FOM methods.

The occupancy profile similarity metric (ProfSim) was used for single-day profile
analysis to determine the closest match between each TUS profile and the equivalent
model output. This is a measure of how closely the range of actual profiles are repli-
cated. For the "Working 18-37" sub-population the average minimum ProfSim result
for the HDE method was 1.98 hours, which compares poorly with 1.53 and 1.75 hours
for the HOM and FOM methods respectively. The equivalent values for the ‘Over
76’ sub-population are 2.21(HDE), 1.92(HOM), and 1.98(FOM) hours, confirming the
weaker performance of the HDE method, and indicating that the benefit of the HOM
method is greater for populations with more distinct behaviours.

To indicate why the HDE method is less effective, Figure 4.4 shows the histogram
distribution of edit distances when each profile is compared to the other profiles in
the same dataset. Method performance can be gauged by how closely each method
matches the TUS dataset distribution. Overall profile similarity is lower for the HDE
method in comparison to both FOM and HOM methods. This can be inferred from

the greater rightward shift from the TUS-derived target distribution, indicating higher
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overall ProfSim values (and lower similarity).

That the HOM method performed better than the FOM method for duration pre-
diction and individual profile replication but not for overall convergence was expected
but the poor performance of the HDE method in comparison to both Markov chain
approaches was not. Further investigation of this result was required.

Per-timestep AO_Var results were compared to determine if the source of the poor
HDE method performance could be attributed to specific periods. Figure 4.5 shows the
average AO_Var error calculated from 1000 annual model runs for the three methods for
the "Working 18-37’ single-householder sub-population, with the majority of the error
for all models concentrated in the morning and early evening periods. Both periods
correspond to significant transitions in occupancy probability, which the HDE approach
fails to capture as effectively as demonstrated by larger error peaks.

Comparative analysis was undertaken with the HDE method to determine if the
weaker performance was a result of the number of adjacent timesteps or the duration
ranges selected. Analysis with five and seven adjacent timesteps, and 20 and 30-minute
duration ranges, showed no significant change, therefore the poor performance is inher-
ent to the basic method.

One possible explanation for these results is that the HDE method does not have
the self-correcting nature of a per-timestep probability model. The balance of this
method is too focused on state duration prediction at the expense of time-specific
state probability. Furthermore, not effectively tracking time-specific behaviour also
compromises the duration prediction as demonstrated by poor duration (DurDist) and
occupancy profile similarity (ProfSim) metric results. This is also illustrated by a
detailed visual review of occupancy model outputs, which show an increased tendency
for the HDE method to produce unusual behaviours (e.g. no daily sleep period, less
distinct work-related absences, etc.).

Following this assessment, the HDE method was no longer considered and the fol-
lowing sections reviewing occupant interactions and differentiation only consider the

performance of the FOM and HOM methods.
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4.5.3 Occupant Interactions

As shown in 3.3.3.4, there are occupancy interactions between household occupants
that are not properly captured by methods that combine two or more independent
individual occupancy model outputs. A method was therefore required to account for
this to avoid overestimating occupied period duration while underestimating multiple
occupancy probability. This was focused on interactions within couple and family
households due to the lack of data for other multi-person household types.

The Richardson et al occupancy model [134], which is based on number of occu-
pants, broadly captures interactions but is not differentiated enough to capture specific
relationships. The Baptista et al [138] model, using an interactive Markov chain ap-
proach, requires that a primary occupant be defined and modelled using a standard
Markov chain model, with the transition probabilities for the second person determined
by the state of the primary occupant. The problem with this approach is that it is dif-
ficult to define who the primary occupant is at each timestep and it does not consider
whether the primary occupant has changed state which would impact the probability

of a change of state of the secondary occupant.

4.5.3.1 Couples and Parents

A new method has been developed specifically for co-habiting couples (with and without
children) that models each couple as a single entity, having a single combined occu-
pancy state derived from both individual states. To minimise the data requirement,
and assuming, as gender was not highly correlated with occupancy (see 2.5.2.1), that
tracking specific individuals is not critical, the individual states are unassigned (e.g.
sleep/active combines sleep/active and active/sleep etc.).

For couples without resident children, the average age of the couple was used as the
age parameter as it was shown by analysis of the UK 2000 TUS dataset to be a better
differentiator for occupancy than youngest or oldest individual age. Days with both
individuals, one individual, and neither working were modelled separately.

This combined method was also applied separately to parents with resident children
as they have distinct, child-influenced occupancy characteristics. It was also determined

that the age of the youngest child was the strongest determinant of parent occupancy
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by comparing the relative influence of a variety of factors (average parent age, age of
oldest parent, age of youngest parent, average child age, age of eldest child) on overall

occupancy probability.

4.5.3.2 Children

The outlined primacy problem with the primary/secondary interactive Markov chain
approach of Baptista et al for adult couple interactions does not hold for the parent-
child relationship. Parent occupancy can be the primary element and the child model
can be simplified and linked to the parent model output. The developed child model
is Markov chain based, but is first-order and only tracks whether the child is active or
inactive. For a child, sleep and out distinctions for the inactive state can be inferred
based on time-of-day as children generally have highly consistent diurnal wake-sleep
patterns.

Table 4.8
Relationship between adult and child occupancy transitions. Data for analysis from the UK 2000
TUS dataset [83].

Child Age/Day Data All Adult All Child Adult & Child Linked
Type Timesteps Transitions Transitions Transitions Transition (%)

All/All 183372 8251 6742 1402 20.8
8-11/Non-Term 13080 559 437 109 24.9
8-11/Term 48725 2248 1832 477 26.0
10-13 / Non-Term 14948 656 497 102 20.5
10-13 / Term 48824 2193 1837 372 20.3
12-15/ Non-Term 14192 633 491 72 14.7
12-15/ Term 43603 1962 1646 270 16.4

The method is similar to that defined by Baptista et al but the secondary (child)
model transition probability is based on the parent state transition at the timestep
rather than the updated parent state. Data analysis shows that there is a strong
correlation between a parent occupancy transition and a simultaneous child transition,
with a decreasing likelihood as the child age increases and evidence of an increased
probability during school-term days (see Table 4.8). Overall, 20.8% of child occupancy
transitions are linked to an adult transition which is higher than would be expected if
random.

The ‘primary’ parent occupancy model is run first to determine the parent state

at the next timestep. Then if, for example, at timestep, t-At, parent occupancy is
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active/inactive and the child is inactive and, at timestep, t, parent occupancy becomes
both active, the selected transition probability matrix (TPM) for the child model is the
one that determines whether the child remains inactive or becomes active if a second
parent becomes active. Similar TPMs are available for all potential parent occupancy

transitions (including no change), for both potential t-At child states (active/inactive).

4.5.3.3 Interaction Method Performance

Couple Households

Output from the combined couple occupancy model was compared to that from two
individual couple householder models with the same characteristics. As an example,
Figure 4.6 shows the evening period results for the 18-43 years old average age range
population if both are working. The combined model average output was significantly
closer to the equivalent TUS dataset results for combined occupancy. Similar results can
be shown for the prediction of periods where one person is active and in the dwelling,
and for other sub-populations. The results shown are based on the proven FOM basis,
however, the HOM method results show equivalent performance.

Table 4.9

Average active occupancy prediction and occupancy profile analysis (ProfSim) comparison between
combined and multiple individual model options for the 18-43 years old average age couple population
with both individuals working.

AO_Conv (x E-3) AO_Conv (x E-3)

Model (Any Occ) (Oce Num) ProfSim (Hours)
2 x Individual First-Order 47.3 105.8 3.88
2 x Individual Higher-Order 42.2 994 3.38
’Combined’ First-Order 14.2 18.6 3.28
’Combined’ Higher-Order 15.3 24.1 2.89

Analysis with the average occupancy prediction (AO) metrics (see 4.4) is less
straightforward for multi-person models as either simple active occupancy (Any Occ)
or the specific occupant number (Occ Num) can be analysed. Table 4.9 shows the
results for the average active occupancy variation metric (AO_Conv) analysis, consid-
ering both options, for working couples with an average age up to 43 years old. For the
specific occupant number, the total error is the sum of the errors for single and double
occupancy prediction compared to the input TUS dataset.

The results demonstrate both the improvement switching from independent to com-
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Table 4.10

State duration analysis (DurDist) comparison between combined and multiple individual models for
the 18-43 years old average age population with both individuals working. ('S'=Sleep, 'A’=Active,
'0'=0ut)

Model S-S S-A S-0 A-A A-O 0-0

2 x Individual First-Order 3.53 1.33 0.85 1.54 1.44 2.97
2 x Individual Higher-Order 2.59 1.45 0.75 1.84 0.88 2.12
’Combined’ First-Order 0.99 0.37 0.84 0.65 0.30 1.67
’Combined’ Higher-Order 0.97 0.29 0.88 0.50 0.30 1.36

bined occupancy models for related adults, and, as also shown for the single-person
householder models, that the HOM approach has weaker overall convergence to the
dataset population average occupancy in comparison with the FOM approach. How-
ever, in this case the convergence performance difference is significantly smaller and
again unlikely to be statistically significant.

The status duration comparison metric (DurDist) for the "Working Couple 18-43’
model (see Table 4.10) also shows a significant improvement using the combined model
approach, and a more limited additional benefit from using the HOM method. In Table
4.9 results for occupancy profile similarity analysis (ProfSim) of the same population
show similar relative performance.

Considering all results, both quantitative and visual representations, the combined,
higher-order approach provides an improved method for predicting active occupancy for
co-habiting couple households. The higher-order method performs better than the first-
order for both duration prediction and similarity measures, and, as outlined, the weaker
overall convergence to the average population behaviour is not statistically significant
in relation to overall occupancy model accuracy.

Family Households

As outlined, the two-parent family occupancy model combines the method for co-
habiting couples with a simple child model linking child occupancy directly with parent
occupancy. The parent model exhibits similar metric performance as shown for couple
models. Figure 4.7 shows that the parent model tracks the average total occupancy in
all one-child households with good accuracy, with similar performance seen for other
family sizes. As also shown, the child model tracks the input data reasonably well with
some short periods of relatively weaker agreement (late afternoon, mid-evening). For

single parent families, a specific individual occupancy model is used for the parent, and

93



N
(o))

Parents: TUS Data

= = =Parents: Higher-Order Combined Model
— Child: TUS Data
= = =Child: Parent-Linked Model

—
N
T

—
N
T

—
T

o
(o))
T

Average Total Occupancy
R o

o
N
T

0 1 1 1 1 P
04:00 08:00 12:00 16:00 20:00 00:00 04:00

Time of Day

Figure 4.7. TUS data and higher-order combined model output comparison of average
parent and child total active occupancy for all one-child households. TUS data for analysis
from the UK 2000 TUS dataset [83].
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the child model is linked to parent occupancy in the same manner as for two-parent

families.

4.5.4 Differentiation

As reviewed in 3.3.3.2, existing occupancy models vary in the extent to which they
differentiate between occupant and day types; with the majority incorporating only
very limited differentiation. With little discussion and no consensus on the optimum
approach, and the degree of effective differentiation being related both to the size of the
calibration dataset and country-specific cultural influences, a review of the UK 2000
Time-Use Survey dataset [83] was undertaken as detailed in 2.5.2.1. To summarise:
diary day working hours and age had a strong correlation with occupancy; employment
status on non-working days, income and day type were weakly correlated; and location
(population density), tenure, and gender showed no correlation.

Diary day working hours, age, and day type were selected for further review as
primary differentiating factors. Whilst the day type correlation for average occupancy
was weaker than expected, there are time-dependent differences which the average
occupancy analysis did not capture. For example, in younger, single-person householder
populations, non-working Saturday evening and Sunday daytime occupancy is lower
than the equivalent periods on non-working weekdays (see Figure 2.15(a)).

Several other occupancy-related lifestyle characteristics were also identified as po-
tential differentiators: significant variation in work weeks and working hours per work
day in the TUS work-week diaries; extended absences, primarily due to vacations; sleep-
ing away from home on TUS diary day; unusual work and sleep timing for a minority
of TUS respondents; and that a significant number of people work from home on some
or all working days [10].

Determination of the most effective level of differentiation required a series of as-
sessments to determine the optimum group size to isolate occupancy behaviours while
retaining sufficient data depth for calibration. Firstly, each highly correlated charac-
teristic (occupant type, day type, working hours and age) and lifestyle characteristic
(work-weeks, extended absences, home-working, and sleeping away) were reviewed in

turn. Then, occupancy model performance using different levels of differentiation was
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compared. Finally, an assessment of the minimum population size for effective calibra-

tion and modelling was performed.

4.5.4.1 Occupant Type

The outlined occupant interaction method requires that couples, parents, and chil-
dren be analysed and modelled separately. Single parents have different occupancy
characteristics to equivalently aged single-person householders and were also modelled
separately with the same linked child method as for dual-parent/child households (see
4.5.3). Within family households there is also a distinct population of older children
between 16 and 24, either in education, working or non-working, that have occupancy
patterns that are not closely linked to the parent occupancy. This population is there-
fore modelled separately as individuals within the overall family occupancy model.

Most of the remaining TUS diaries are for single-person householders, with the
others associated with multi-adult households comprising unrelated adults or multi-
generational family members. With too few of the multi-adult type for effective mod-
elling, all adults in single-person and multi-adult households were modelled indepen-
dently using the single-person householder population occupancy model basis.

Most individuals in the TUS dataset have normal diurnal waking patterns but there
is a small subset with significant variations, particularly those with working hours in the
evening and night period. These occupants must be differentiated within the occupancy
model, primarily to avoid distorting the calibration of typical behaviour groups.

There is a range of different behaviours within this ‘nightworker’ group but only
330 diaries that fit the criteria, preventing this group from being further split. This
group are assumed to be a mix of consistent nightworkers and those that work nights
as part of a shift pattern. Based on analysis by Weston [156], 22% of men and 14% of
women work shifts “most of the time”. Of these, approximately 40% incorporate some
element of night work ([157] and [156]). Four distinct night shift patterns have been
identified as being most common; all nights (24.9%), nights every third week (28.4%),
nights randomly 50% of time (39.8%), and nights 3-4 times in a two-week period (6.9%)
[157]. There is also both an income and age correlation with nightworking probability,
with lower values in both cases increasing the likelihood [156]. These working pattern

and relationships were incorporated within the occupancy model.
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Figure 4.8. Variation of average active occupancy with occupant age for all single-person
householders. Data for analysis from the UK 2000 TUS dataset [83].
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4.5.4.2 Age

Figure 4.8 shows the relationship between average occupancy and age for all single-
person householders on non-working days. It demonstrates that there is a consistent

increase in average occupancy with age and also more variation in younger populations.

4.5.4.3 Day Types

The influence of working hours on occupancy shown in 2.5.2.1 determined that day
types should, as a minimum, be split by diary day employment status. The overall
and time-dependent effects associated with specific days of the week also need to be
considered.

The extent to which existing occupancy models differentiate for day types varies.
Widen et al [135] and Richardson et al [69] used separate models for weekdays and
weekend days. Wilke et al [71] identified each day separately within the regression
based factoring for occupant and day type variances, while acknowledging that this
could be simplified.

The potential options for differentiating by day type are also driven by the UK 2000
TUS dataset basis. With one weekday and one weekend diary per person, the data is
not evenly distributed. Analysis showed no meaningful variation in occupancy between
Monday and Thursday. Friday evening has a different characteristic to other weekday
evenings but there is insufficient data to capture this behaviour separately. All weekday
data is therefore combined. Saturday and Sunday both have distinct overall patterns
and due to the proportionally greater number of diaries can be modelled separately for

non-working occupants.

4.5.4.4 Working Hours

Given the range of employment durations it is not straightforward to differentiate by
working hours. Demarcation using terms such as ‘full-time’ and ‘part-time’ is overly
simplistic. Therefore, average active occupancy for all working-age single-person house-
holders was compared with working hours to determine if there was either a clear
correlation or step changes in active occupancy associated with specific durations.

Figure 4.9 shows that people with greater than zero and up to 6 hours working
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Figure 4.9. Diary day active occupancy distribution by number of working hours for all
working age, single-person householders. Data for analysis from the UK 2000 TUS dataset
[83].
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time are relatively rare, active occupancy falls most markedly between 0 and 4 worked
hours, and is relatively consistent as working hours increase beyond 4 hours. Only
days with greater than 5 working hours are therefore defined within the developed
occupancy model as ‘working days’. Days with fewer working hours are defined as ‘non-
working’ as this has a limited influence on occupancy probability, and there are too
many conflicting working patterns and too few relevant diaries for effective modelling of
specific behaviours. There is therefore a distinction made between ‘part-time’ workers
that work a small number of >5 hour days and those that work a small number of hours
on most days. The former are modelled as ‘working’ on each >5 hour working day,
the latter as ‘non-working’ on each <5 hour working day. The probability of the two
part-time options was determined from analysis of the TUS work diaries as detailed in
the following section.

For each adult, the occupancy model determines if they work full-time, part-time,
or are non-working on each modelled day. ‘Full-time’ is defined as a minimum of 4
‘working’ days per week and ‘part-time’ as 1-3 ‘working’ days. For couples and parents,
all possible two-person combinations of the three employment options are incorporated

as shown in Table 4.5. Work weeks are then defined probabilistically for each individual.

4.5.4.5 Work Weeks

The UK 2000/1 Time-Use Survey includes one-week duration working diaries for each
applicable individual which include the number of hours worked per day. This has
allowed the distribution of typical working weeks to be determined and probabilistically
allocated to each modelled occupant.

As outlined, ‘full-time’ workers are defined as having a minimum of 4 working days
with a minimum of 5 hours worked on each ‘working’ day, and for workers designated as
‘part-time’, only those days with more than 5 hours worked are modelled as ‘working’
days. Fewer than 10% of part-time workers in the TUS dataset did not have at least
one ‘working’ day. The overall distribution of working weeks for full-time workers is
shown in Table 4.11, with similar data for part-time workers for days with at least 5

hours worked also compiled.
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Table 4.11
Full-time (minimum of 4 worked days) work week probabilities in the UK 2000 TUS dataset work-
week diaries. Data for analysis from the UK 2000 TUS dataset [83].

Work Week Probability(%) Work Week Probability(%)
4 Weekdays 9.4 4 Weekdays + Sat 4.5
5 Weekdays 46.2 4 Weekdays + Sun 2.7
5 Weekdays + Sat 13.2 4 Weekdays + Sat/Sun 4.3
5 Weekdays + Sun 4.3 3 Weekdays + Sat 1.5
All Days 9.5 3 Weekdays + Sun 0.8
3 Weekdays + Sat/Sun 3.5

4.5.4.6 Extended Absences

The single-day diary basis of time-use surveys do not allow them to be used to determine
the frequency and duration of extended absences. The majority of extended absences
are assumed to be related to vacations, with employment related absences potentially
significant in single-person households. Data on the latter is scarce, therefore the
occupancy model is only currently calibrated for vacation absences.

The probability of taking a vacation is determined based on regression factors gener-
ated by Mergoupis and Steuer [158] for UK-specific behaviour as part of a Europe-wide
study. A vacation in this study is defined as being an absence of at least four days.
The factors account for adult and child ages, number of occupants, relationships, edu-
cation, and income. The study does not identify the potential for multiple vacations per
household, therefore the model currently assumes only one annual vacation per house-
hold, which potentially underestimates total absences in some households. In addition,
the lack of data prevents the frequency of shorter absences than four days from being
simulated, which is also likely to contribute to an overestimate of total occupancy for
extended period models.

The timing (4-periods: Dec-Feb, Mar-May, June-Aug, Sep-Nov) and duration of the
vacation-related absences was determined from the BDRC 2014 Holiday Trends report
[159]. As an example, for family households, there is a 54.9% probability that the main
vacation is in the June-August period and a 23% probability it is between 11 and 14

nights.
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4.5.4.7 Homeworking

The number of homeworkers in the UK increased from 2.9 million in 1998 to 4.2 million
in 2014 [10]. TUS diaries do not explicitly state working location but it can potentially
be determined from the location in adjacent time periods. Where occupants transition
directly from home-based activities to work and vice versa, they can be assumed to
be working at home. However, as the number of identified homeworkers is low, they
cannot be modelled as a separate population. Homeworking probability is therefore
assigned based on UK government statistics.

UK Population Survey data [160] identifies homeworkers, and whether the home is
the main working location or used as an occasional base. From this data it was deter-
mined that 4.9% of workers work mainly from home (of which 3.2% are self-employed
and 1.7% are employees) and 8.8% are based at home but work in different locations.
In addition, it has been determined that an additional 8.3% of people occasionally work
from home [161].

Within the model the homeworking probability and type per individual is assigned
on the above basis with further manipulation based on income decile using data from
Bloom et al [162]. The probability that a working day is spent at home has been set
arbitrarily per group, with the self-employed group set randomly between 60 and 100%,
the employee group between 40 and 80%, the ‘base’ group between 0 and 40%, and
the occasional group between 0 and 30%, based on assumed typical patterns. More
detailed homeworking behaviour data would be useful to improve the calibration of
this element.

The homeworking element is incorporated as a secondary model as detailed in 4.7.3.
On designated homeworking days, the occupancy model converts any ‘out’ periods
immediately pre- and post-working periods to ‘active’ periods. Whilst it would be
expected that homeworking would impact the use potential of certain appliances (e.g.

computers), this cannot be determined from existing data.

4.5.4.8 Sleeping Away

The TUS dataset includes individuals that transition directly from an ‘out’ state to

‘sleep’. A proportion are assumed to be sleeping away from home. McKenna et al [163]
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identified this potential and modelled ‘sleeping away’ as a primary state in a four-state
Markov chain occupancy model.

As for work periods, the location of the ‘sleep’ activity is not explicit in the TUS
data. A similar location determination is therefore required based on the location
in adjacent periods. As per McKenna et al, for each individual an assessment was
made based on the final pre-sleep activity. For example, ‘travelling’ was assumed to be
returning to home and an indoor activity at another location was assumed to reflect
someone sleeping away. From this analysis, a probability is determined for whether a
direct ‘out’ to ‘sleep’ transition reflected sleeping away rather than simply going directly
to sleep on returning home.

Unlike McKenna et al, the developed model incorporates this element as a secondary
function to the primary three-state model. Sleep location is assumed not to change
during a sleep period and a single probability determination is therefore sufficient. The
potential for sleeping away is included as a fixed probability per differentiated occupant
and day type. Whilst it is assumed that the potential for ‘sleeping away’ will vary within
each occupant type group, there is currently insufficient data to factor the potential at

this level.

4.5.4.9 Differentiation Performance Comparison

To analyse the impact of using smaller, differentiated occupant populations for occu-
pancy model calibration, an overall single-person householder occupant model (repre-
sentative of the models developed by Richardson et al [134] and Widen and Wackelgard
[70]) is compared to a model calibrated using two smaller, single-person householder
sub-populations from the TUS dataset: "Working 18-37" — working individuals between
18 and 37 years of age, and 'Over 76’ — retired individuals over 76 years of age. A first-
order Markov chain method was used, with 100 1-year duration, 10-minute timestep
occupancy state sequences generated for each case. The first-order method was chosen
as it is both a proven method and allows direct comparison with the equivalent existing
models.

The results were analysed using the metrics identified in 4.4. The average ac-
tive occupancy variation metrics (AO_-Conv and AO_Var) were used to determine the

overall and per-sequence convergence by comparing the mean error between the pre-
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Table 4.12
Active occupancy and state duration (DurDist) metric analysis for different first-order model cali-
bration and validation populations.

AO_Conv AO_Var DurDist DurDist DurDist

Calibration Pop. Validation Pop. (x E-3) x E-3) Sleep Active Out
All single-person "Working 18-37 222.8 223.9 8.20 9.72 22.43
All single-person "Over 76’ 133.3 1344 4.13 7.11 8.93
All single-person All single-person 0.52 20.0 1.73 1.13 4.04
"Working 18-37 "Working 18-37 0.36 14.3 2.26 0.79 2.87

"Over 76’ ’Over 76’ 0.57 17.2 1.64 1.63 1.10

dicted active occupancy per modelled annual sequence and that found in the input
dataset (see Table 4.12). They confirm that the first-order Markov chain model, cali-
brated using the smaller, differentiated datasets, produces occupancy behaviour that is
more representative of those sub-groups, as opposed to the models calibrated using the
wider population datasets. For the differentiated datasets, the per-sequence measure
(AO_Var) is significantly higher than the overall measure (AO_Conv), indicative of a
method that produces some variation between individual runs but convergence overall.
Where the wider datasets are used, both metrics are significantly higher and a similar
magnitude, indicative of a method where neither individual runs nor the overall average
output are representative of smaller groups within the population.

The state duration prediction comparison (DurDist) between the models calibrated
using the same populations is also shown in Table 4.12. Significant improvements are
again demonstrated where both the occupancy model input data and comparison TUS
data are from the same population. There is also a further general improvement in this
metric for the differentiated populations. More importantly, the results show that the
overall single-person householder population significantly fails to properly replicate the
range of durations for the two smaller sub-populations.

The ProfSim metric was used to identify the closest match (lowest edit distance)
for each day in the model output from the differentiated and wider population models
in the input TUS data. This allows an assessment of the model’s ability to generate
realistic profiles. The average minimum edit distance (expressed as a time) for the "All
single-person’ model compared to the "Working 18-37’ TUS dataset is 4.35 hours. The
result when the "Working 18-37" specific model is used is 1.75 hours. The equivalent

improvement for the ’Over 76’ sub-population was from 2.71 to 1.98 hours. This sug-
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gests that the expected improvement from differentiation reduces for populations with
less distinct behaviour patterns, but is significant in all cases.

Overall, there is a significant improvement in the first-order Markov chain model’s
ability to replicate observed behaviour using smaller sub-populations. The degree of
improvement is dependent on the deviation of each sub-population from the overall
population average. Similar analysis for the higher-order (HOM) method confirmed

similar benefits resulting from increased differentiation of the calibration populations.

4.5.4.10 Minimum Population Size

Prior to determining the final basis for occupant differentiation, it is necessary to de-
termine the minimum size of population necessary for effective model calibration and
then to compare this with the typical population sizes resulting from differentiation by
the identified occupancy-correlated factors. Age is the main differentiator that is not
driven by other elements of the occupancy model development and is uniquely not a
simple binary determinant, therefore the analysis focuses on performance in relation to
age range selection.

A variety of methods were used to attempt to identify the minimum population
size required to produce a robust statistical model. The higher-order Markov chain
(HOM) method described in 4.5.2.1 was used for the analysis as it is the most sensitive
to population size due to the incorporation of multiple duration ranges for each state.

Two single-person householder sub-populations were selected from the UK 2000
TUS dataset for analysis (ranked by age with youngest first); the working age popula-
tion on non-working days and the retired population. Datasets of 5, 20, 50, 100, 150,
200, and 400 were selected from the top of the ranked list (i.e. 1-5, 1-20, 1-50 etc.).
For the working age population, the final person in each dataset was 19, 19, 21, 23, 29,
37, and 60 years old, and for the retired population was 65, 65, 66, 68, 70, 72, and 78
years old, respectively.

Edit distance (ProfSim) analysis allows individual results within datasets to be com-
pared for similarity. The expectation was that very small calibration datasets would
result in overfitting to the input data and that as dataset size increases improved per-
formance from increasing probability data depth would gradually be offset by the age-

related differences in behaviour shown in Figure 4.8. The analysis was completed for
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each of the age-ranked TUS datasets using occupancy models calibrated with the rele-
vant dataset. In this case, each dataset and model output profile was analysed against
profiles in the same set of data, with performance assessed based on the similarity in
the distribution of results for each dataset and associated model output.

For both populations, up to the 50-person dataset, the model output generates
a significantly higher number of closely matched profiles (to within three 10-minute
timesteps) than the actual data. Above 50-person groups, the performance for each
population diverges. For the retired households, the closest match between dataset and
model characteristics is for the 150-person model, although the performance remains
broadly consistent between 150 and 400. For the working age population, there is a
close match for 100 persons and a better result for 400 persons, but the overall results
are more erratic. As shown by Figure 4.8, there is significantly more variation in active
occupancy by age for the working age than the retired population, and also a wider
range of ages per ranked group, therefore more consistent results for the retired groups
would be expected.

The results indicate that with a minimum of 100 input TUS diaries, the model
output is broadly consistent with the input data without overfitting. Optimum size
on this measure may, however, be population dependent, with a minimum size of 100-
150 diaries required to ensure no overfitting, but with larger datasets being preferred
for populations with less consistent behaviour as the benefits of capturing the overall
behaviour range outweighs any age-specific behaviours captured from smaller popula-
tions. Further assessment when the UK 2015 TUS survey is released will allow this to
be further investigated.

Two further assessments were used to determine the potential for producing sta-
tistically robust models. One was to review the number of elements in the generated
Transition Probability Matrices (TPMs) (see 3.3.1) with a fractional value. A zero
value indicates that there was no individual with that specific state transition and a
value of one is typically associated with the behaviour of one person (and is therefore
not necessarily representative of wider behaviour). A fractional value requires multiple
people to be represented and the number of such elements can be used as a proxy for
probability data quality, and it is assumed, by extension, model stability.

The other was to review the number of times an annual higher-order model had a

103



Chapter 4. Model Structure, Characteristics and Occupancy Sub-Model Development

state and duration range that did not have associated probability data and required a
recovery function to be used. This can occur due to the use of duration ranges rather
than specific durations in the model calibration resulting in scenarios not seen in the
input data. This is also an indirect measure of data quality as reducing the use of the
recovery function requires an increasing likelihood of probability data for transitions in
adjacent duration ranges. Example results for both measures for the same working age
population as above are shown in Table 4.13.

Table 4.13
Fractional TPM elements and recovery function use frequency for different transition probability
input datasets sizes (working age, single-person householders on non-working days).

Households in Fractional TPM Probability Timesteps Recovery Function
Dataset Elements (out of 9072)* Required (x10~3 %)
50 531 1.81
100 834 0.93
150 1084 0.64
200 1394 0.42
400 1891 0.31
* There are a large number of unlikely transitions therefore the number is low compared to total
elements.

For both measures there is a diminishing performance improvement as the number
of input diaries is increased, with the most significant improvement up to c. 200-300
diaries. The target number of diaries per calibration population was therefore set at 200-
300 diaries, with a minimum of 150 where justified by distinct behaviour differences, as
these performance benefits outweigh the potential loss of specific behaviour replication
and given that the results of the ProfSim analysis for larger calibration groups did
not indicate a significant loss of replication performance. The potential for larger
population sizes, covering wider age ranges, to generate overly similar output is partially
addressed by using overlapping age ranges to increase the number of distinct calibration
populations as detailed in the following section. The residual influence of the selected
population size on model convergence to average behaviours is further discussed in 4.6.3

and Chapter 7.
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4.5.5 Occupancy Sub-Model Structure Summary
4.5.5.1 Occupant and Day Type Modules

The developed model integrates the three basic modules; individual, couple/parent,
and child, outlined in the preceding sections, with further differentiation first by day
type (working/non-working) and then by age range.

To make effective use of the available data in achieving optimum calibration popula-
tion sizes of 200-300 diaries, the UK 2000 TUS dataset was further split into overlapping
age ranges for all modules. For working single-person households, for example, the 18-
37 years old range TUS population was used for the 18-33 year old range model data,
the 28-44 population for the 34-40 model, etc. This increases the number of diaries per
population group, while also allowing for a larger number of specific age ranges to cap-
ture different average behaviours within the constraints of the 200-300 diary target. It
also recognises that the age-related behaviour changes are gradual (see Figure 4.8) and
single day diaries may not adequately capture the range of behaviours within groups.

The individual module is used for single-person householders, and for individuals
in multiple unrelated adult households or households with related adults of different
generations (e.g. adult children). It has seven age ranges from 18-33 to 80+ and two
further modules for young adults living in a family household; 16-18 year olds in edu-
cation and a general 16-24 age group, with both working/term and non-working/term
day models.

The couple/parent module has separate probability data for couples and parents.
The couple dataset has seven age ranges based on average age. The parent dataset has
four ranges based on the youngest child’s age. The child module has five age ranges
(5-7, 8-9, 10-11, 12-13, and 14-15) and also differentiates for school-term and non-term
days. Under 5’s are not modelled due to the lack of TUS data for infants, with infant
occupancy assumed to track that of the parents.

Different module combinations can be used to replicate actual household types. For
example, a family household with one adult child and one under-16 child requires a
parent module, an ‘individual’ module for the adult child, and a child module linked
to the parent module output.

Separate transition probability matrices (TPMs) have been generated for each de-
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fined occupant type, age range, for each day type (weekday, Saturday and Sunday), and
whether the occupant is working or non-working. For couples and parents, there are
three options; both working, one working and neither working. As weekend working is
less common, both Saturday and Sunday data for multiple age ranges were combined
to generate sufficiently sized calibration populations.

For a full list of all modelled populations and the associated calibration populations

used, see Appendix B.

4.5.5.2 Occupant Calendars

Calendars are defined for each modelled individual, couple/parent, and child to reflect
the sequence of day types through the modelling period. The model selects the ap-
propriate TPM for the required day type as determined by the calendar. Workers are
allocated typical working weeks as detailed in 4.5.4.5. For school-age children the occu-
pancy model includes typical term dates. The model can therefore clearly distinguish
different characteristic occupancy behaviours for each occupant type (full-time workers,
stay-at-home parents, students, school children etc.), that is a key precursor to demand

prediction for each household type.

4.5.5.3 Time Resolution

The UK 2000 TUS dataset diaries are completed for each 10-minute period. This
dataset resolution restricts the model calibration resolution to the same 10-minute
basis. In order to allow a l-minute resolution for the overall demand model to be
achieved, the occupancy model output is converted to a 1-minute basis by assuming
that the start and end of an occupancy state occurs randomly within the identified
10-minute period. As the HES dataset demand data does not show any significant
correlation between appliance use and each 2-minute segment per 10-minute period,
the assumption of random transitions in the occupancy model does not significantly
influence the demand model accuracy. The decision to limit the demand model to a

1-minute resolution is detailed in 5.2.3.
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4.6 Final Method Selection

4.6.1 Independent Dataset Performance Comparison

For further comparison and validation of the first- (FOM) and higher-order Markov
(HOM) methods (see 4.5.2), the results were compared with occupancy profiles from the
smaller UK 2005 TUS survey [86]. This dataset also captures the required occupancy
data at a 10-minute resolution, with 4941 diaries compared to 20981 for the UK 2000
TUS survey.

For validation purposes, both TUS datasets should capture similar occupancy be-
haviour. Figure 4.10 demonstrates that the average weekday profile for the overall
single-person householder population and two smaller sub-populations (under 37 years
old on working days and over 80 years old) are broadly consistent. This confirms that
there are occupancy traits that are inherent to the TUS sub-populations, which was
also confirmed for other occupant and household types.

If the developed occupant modules are representative of both the calibration dataset
and overall occupant behaviour, then there should not be a significant difference in
performance, as measured by the identified metrics (see 4.4), between the results for
the model output when compared to each TUS dataset and the equivalent metrics for
the comparison between the two TUS datasets.

Table 4.14

Occupancy model validation metric results for the UK 2000 TUS dataset [83] and Markov
chain model methods compared to the UK 2005 TUS dataset [86]. (FOM=First-Order Markov,
HOM=Higher-Order Markov)

ProfSim DurDist DurDist DurDist

Population Dataset 1 Dataset 2 AO_Var (Hours) Sleep Active Out
"Working 18-37 TUS 2000 TUS 2005 4.69 11.9 2.55 1.27 4.20
"Working 18-37 FOM TUS 2005 4.75 12.1 2.67 1.23 3.25
"Working 18-37’ HOM TUS 2005 5.15 11.7 2.17 1.23 4.19

’Over 76 TUS 2000 TUS 2005 415 124 4.50 3.44 3.76
’Over 76’ FOM TUS 2005 5.21 12.3 4.40 3.35 3.49
"Over 76’ HOM TUS 2005 491 12.3 4.72 3.58 3.83

The results in Table 4.14 show analysis of the average active occupancy (AO0),
duration prediction (DurDist), and profile similarity (ProfSim) metrics. The results

for both the first- and higher-order methods compared to the UK 2005 TUS dataset
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Figure 4.11. Example one-week individual occupancy state profiles for various modelled
single-person householders.
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are broadly consistent with the results between the two TUS datasets. This demon-
strates that the developed occupancy model is, as a minimum, no worse at predicting
occupancy for independent datasets than the UK 2000 TUS dataset.

The results are less conclusive regarding the performance of the higher-order method
relative to the first-order approach when compared with the 2005 dataset. Both meth-
ods perform slightly better on some measures, and worse on others. The 2000 dataset
may be too small to produce wholly representative data for the sub-populations. Alter-
natively, there may be an inherent weakness in the metrics used to differentiate relative
performance at this level of similarity. Further analysis with the larger 2015 TUS
dataset will be required for a better judgement of the higher-order model benefit rela-
tive to real occupancy variations rather than merely for replication of the calibration

data.

4.6.2 Method Performance Analysis Summary
4.6.2.1 Markov Chain Method Performance

The overall benefits of the higher-order method (HOM) model compared to the first-
order method (FOM) are not yet conclusive. There is a measurable improvement in
the metrics for duration prediction and similarity to actual TUS profiles, especially
for groups with consistent patterns of behaviour (e.g. workers). In comparison with
the independent TUS dataset the results were less clear. However, there is sufficient
justification to use the higher-order method for further development as there is evidence
that the residual issues are related to current data availability rather than the basic

method.

4.6.2.2 Differentiated Model Performance

The primary output from the developed occupancy model is a per-timestep sequence
of occupant states. Whilst the validation metrics used allow the differences between
profiles to be quantified, visual analysis of actual profiles can also demonstrate model
effectiveness.

Figure 4.11 shows results from randomly selected occupancy model runs. The results

compare a Mon-Sun sequence for a single-person householder using an undifferentiated
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first-order Markov chain approach (similar to Richardson et al [134]), a first-order
approach for a younger working householder, and a younger working and an older retired
single-person householder using the developed higher-order Markov chain method. The
smaller populations were deliberately selected for a strong likelihood of longer ‘out’ and
‘active’ periods respectively.

The undifferentiated, larger population model shows no overall consistency between
modelled days. This gives credence to the assertion that this type of model generates
profiles that are an unrepresentative composite of multiple, conflicting behaviours. The
developed differentiated higher-order model more consistently models sleep durations
within the most likely duration range, shows daily ‘out’ periods consistent with a work-
ing person, and long ‘active’ periods consistent with an older retired person. The
differentiated first-order model shows the more consistent occupancy pattern associ-
ated with a working person, but there is evidence of more erratic sleep durations and

very short duration absences under close inspection.

4.6.3 Applications and Limitations

Any TUS-based model has inherent limitations as a result of the typical single-day
per individual basis of the diaries used for calibration. Over multiple annual model
runs, the developed higher-order Markov chain method does provide some degree of
variability in overall average active occupancy (e.g. +/- ¢.10% for working, single-
person householder models). However, the degree of variation is likely to be less than
in reality because of the tendency for probabilistic models to converge to the calibration
data average. This is shown in Figure 4.12, where the variation in average occupancy
per individual is compared between the Dutch 2005 TBO TUS dataset [87] with 1-
week duration occupant diaries, and the equivalent 1-week and 1-year duration model
output, for each single-person householder model population. The model output, for
the equivalent 1-week timescale, shows significantly less variation, and over a 1-year
timescale, extreme convergence in some cases.

What cannot yet be determined is to what extent the 1-year behaviour of real people
converges from the presumably more erratic nature of 1-week data. However, the model

convergence is especially marked for the retired populations and it would be expected
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that real behaviour is significantly more varied than shown. This also highlights that
the variation in working age households is predominantly the result of different day
types and work weeks, with the convergence of each retired population the result of all
occupants being modelled with the same set of day types. Further analysis has shown
that the convergence for each working age day type model is similar to that shown for
the retired households.

The analysis presented here, and by others ([144], [71]), has clearly demonstrated
that there are broad occupancy patterns related to identifiable occupant types. Existing
models have generally taken a cautious approach to differentiation with calibration data
depth for model stability taking precedence over identifying specific occupant traits.
Reviewing model performance for different sizes of calibration populations has shown
that more aggressive differentiation does not result in significant reduction in model
stability. Whilst Figure 4.12 shows a residual underestimation of in-group variation as
a result of convergence to average behaviour within each occupant type module, it does
show that the developed model tracks the between-group variation that is absent from
most existing undifferentiated population occupancy models. This is highlighted by the
Richardson et al model result (‘Rich’) based on annual output from the undifferentiated
single-person householder module which shows tight convergence to the overall average
for all such occupants.

The occupancy model has been developed primarily to generate input occupancy
data for a high time resolution, occupancy-driven energy demand model, with the aim
to identify specific demand patterns for homogenous communities (e.g. retirement, so-
cial housing, commuter). For multi-household systems, the impact of averaging and
inaccuracies associated with individual profiles will be reduced. For analysis of individ-
ual households, the group-calibrated model has some applicability but with significant
qualification as addressed by further occupancy model development addressed in Chap-

ter 7 and recommended further work detailed in Chapter 9.

4.7 Secondary Activity Models

The majority of existing methods incorporating Markov chain models for occupancy

assessment use a single-level of probability calculation to capture all occupancy and

110



06 T T T T

T T T T
— Eating
Wash&Dress
05r ——Food Prep ]
> — Dishwashing
E —— Household Upkeep
o 04 Laundry 7
© —TV
O
o
D_ 03 [ —_—— _
>
e
= 02f
O
<
0.1 —_— 7
—_—
0 — Il I I | | | I I
10 20 30 40 50 60 70 80 90 100

Minutes from Waking

(a) Waking period

07 T T T T T T T T
0.6 4
> ,
=05 Eating .
o) Wash&Dress
@® Food Prep
'8 0.4 - —— Dishwashing
D!: —— Household Upkeep
| Laundry
:';‘0'3 —TV
=
)
©o02r 1
<
01 .
0 | + i [\l I l\—+;
100 90 80 70 60 50 40 30 20 10

Minutes Prior to Sleep Transition

(b) Pre-sleep period

Figure 4.13. TUS activity probability per-timestep from waking and prior to sleep. Data

for analysis from the UK 2000 TUS dataset [83].

111-A



Chapter 4. Model Structure, Characteristics and Occupancy Sub-Model Development

activity states. Where only fundamental occupancy states (i.e. sleep, active, out)
are captured, the single matrix approach is effective, but when one or more of these
fundamental states is further split into more detailed activities (e.g. the active period
is defined by multiple TUS activities), the increase in probability data required for each
additional ‘state’ is significant.

An alternative approach to determine specific sub-states of each fundamental state
is to incorporate conditional secondary probability functions linked to the three-state
primary occupancy model. This can be achieved in different ways depending on the
type of secondary detail analysed: (1) a one-time probability function to determine
secondary state j based on a previously determined primary state i that continues
unchanged until a change in the primary state; (2) assigning a Markov chain transition
matrix for a secondary state j based on a previously determined primary state i; (3)
assigning a Markov chain transition matrix for a secondary state j based on previously
determined primary state i transition at the current timestep.

The use of secondary activity models was considered for three elements; TV use

and homeworking as detailed below, and for sleeping away as detailed in 4.5.4.8.

4.7.1 State, Transition, and Activity Correlation

How accurate a secondary model approach is for specific sub-states is dependent on the
degree with which the sub-states are correlated with specific primary state transitions.
For example, analysis of UK 2000 Time-Use Survey data [83] for activities immediately
following a transition to and from the ‘active’ state shows that for some specific energy-
linked activities the probability changes with proximity.

For example, Figure 4.13(a) shows that, for all single-person householders, on wak-
ing ‘Wash&Dress’ and ‘Food Prep’ predominate, ‘Eating’ increases and then falls, and
the ‘Household Upkeep’, ‘Laundry’, ‘Dishwashing’, and ‘“T'V’ activity probability in-
creases steadily with time since waking based on continuous occupancy. Similar pat-
terns can be seen for return from a daytime absence for all except ‘Wash&Dress’ (low,
flat probability) and ‘Household Upkeep’ (high, flat probability), and for all other pop-
ulations.

In the final period before the transition to ‘Sleep’, most people are watching TV
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at the start of the period with the number falling sharply as the transition approaches
with a parallel rise in the ‘Wash&Dress’ activity and relatively low levels of other
energy-related activities (see Figure 4.13(b)).

Similar behaviour is observed for the equivalent ‘active-out’ transitions associated

with leaving and returning to the dwelling.

4.7.2 Secondary TV Activity Model

Capturing activities within the primary model is more likely to capture the specific
transition influenced behaviours shown above. However, given the weak correlation be-
tween the majority of TUS activities and the use of associated appliances (see 3.3.3.1),
there is limited benefit in modelling specific activities and therefore from this increased
accuracy in most cases. However, TV use can be directly attributed from TUS activ-
ities, which was the method selected for final demand model development (see 5.10),
and a decision was therefore required whether TV use was included as a fourth state
in the primary model or could be modelled using a secondary model with the inherent
benefits of fewer primary states.

The secondary model option determines whether a person is either ‘generally ac-
tive’ or watching TV if the primary occupancy model predicts ‘active’ occupancy. For
the first ‘active’ timestep, the initial secondary state is determined using a simple
time-dependent probability function. For continuing ‘active’ occupancy, the TV-use
probability is dependent on the secondary state at the previous timestep.

Using equivalent models for both options (‘integrated’ (four-state) and ‘secondary’
(three-state plus secondary)), a direct performance comparison was made between the
model output for 100 representative single-person householders of all ages and the TV
activity probability from the equivalent TUS population. The results show that the
secondary model performs better than the integrated model for ‘post-4pm’ return tran-
sitions (see Figure 4.14(a)). This is to be expected as the secondary model includes
a probability term to determine the starting state based on directly assessed proba-
bility data rather than indirectly via the transition probability, and following the first
timestep after a transition neither model is directly influenced by the transition. The

secondary model, however, does not replicate the significant reduction in TV use prior
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to the sleep transition (see Figure 4.14(b)). Use of the secondary model will therefore
generate unrealistic patterns in the immediate pre-sleep period, with higher than actual
TV use predicted. Similar performance was seen in periods immediately prior to an
‘active-out’ transition.

The overall performance for average TV use is similar in both cases (see Figure
4.15). The integrated model slightly overestimates TV use for an equivalent population
while the secondary model approach slightly underestimates. The underestimation and
relative performance is the result of the lower secondary model probability of a direct
transition from TV-use to either sleep or out states in comparison with the non-TV
active state in the integrated model.

The conclusion from this analysis was that the use of the three-state primary model
plus secondary activity model for TV use provided significant benefits in terms of proba-
bility data requirements and the ability to use smaller, more differentiated populations,
and that the specific performance benefits of the four-state primary model (i.e. in close
proximity to transitions from the active to inactive states) were only apparent at levels
of detail that did not reflect the overall accuracy or uses of the overall demand model.
The four-state model would be appropriate only for models where TV use was the

specific subject of interest.

4.7.3 Secondary Homeworking Model

A similar method to that used for TV use is used to determine whether a person is
working when they are in the ‘out’ state. UK 2000 TUS data does not distinguish a
location for working periods, therefore all working periods are set as ‘out’ periods for
the initial calibration. The ‘work’ state is used solely for the ‘homeworker’ module to
determine when working periods are predicted, and therefore whether these periods,
and a number of preceding and subsequent ‘out’ periods to account for unnecessary
travel periods, need to be reset to active occupancy.

A comparison of the secondary model performance to a four-state primary model
incorporating ‘work’ as a separate state was performed in the same manner as the TV-
use model. Similar conclusions were drawn, with some minor discrepancies identified

close to ‘out-active’ transitions, but generally good replication of ‘work’ state behaviour.
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4.8 Chapter Summary

This chapter detailed the development process for the sub-models used to define house-
hold characteristics and simulate occupancy for different types of occupants and house-
holds, for integration in an overall energy demand model. The chapter highlights are

as follows:

e The overall demand model structure and calculation sequence has been defined.

e Housing survey data has been used to define the household composition, income,
and employment status probabilities for households based on location and house
type. This has been used to develop a household characteristics sub-model to

allow undefined household data to be predicted probabilistically.

e An assessment of two existing occupancy modelling methods (first-order Markov
chain and high-order discrete-event) with a newly developed higher-order Markov
chain method, determined that the higher-order Markov chain method performed
better overall, with the discrete-event approach performing less effectively in
terms of both active occupancy and state duration prediction. A basic three-state
(sleep, active, out) occupancy model has been used as it was shown in Chapter 3

that incorporating additional time-use survey activities was less effective.

e The occupancy characteristics of related individuals (couples, parents, and chil-
dren) were shown to have significantly more periods of combined occupancy and
simultaneous occupancy transitions than if each individual were considered inde-
pendently. Two modelling improvements were developed: the first treats couples
(and parents) as single, combined entities within the Markov chain model; and
the second links child occupancy directly to the parent occupancy transition at

the equivalent timestep using a simple, first-order Markov chain approach.

e Assessment of the occupancy characteristics of different types of households has
been limited by a lack of occupant differentiation in existing models. The op-
timum calibration population size to retain sufficiently robust and varied input
data but allow distinct occupancy characteristics to be captured was determined

to be 200-300 time-use diaries. Each identified occupancy model population type
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(single-person (including unrelated adults in multi-person households), couples,
parents, and children) was further split by age range and day type (working/non-
working, school-term/non-term) to generate the differentiated groups for occu-

pancy model calibration.

e Additional occupancy model improvements included statistically representative
secondary probability models linked to the main three-state occupancy model to
account for sleeping away and homeworking potential, and TV use, and extended

vacation absences, based on survey data.
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Chapter 5

Electricity Demand Sub-Model

Development

5.1 Chapter Overview

In Chapter 1, two main aims for the developed overall demand model were stated.
To effectively capture individual household demand variations for detailed analysis
of small (<1000 household) energy systems, and to be sufficiently differentiated and
probabilistic to allow demand uncertainty for different types and sizes of energy system
to be determined.

In Chapter 2, a number of household characteristics were shown to both directly in-
fluence overall demand and have an indirect effect on both overall and time-dependent
demand by changing occupancy patterns. In addition, it was shown that a significant
proportion of the demand differences between households cannot be accounted for by
characteristics alone. To achieve the stated aims, therefore, the influence of character-
istics, occupancy, and behavioural differences must all be captured.

The review of existing demand modelling methods identified several potential areas
for improvement, particularly in relation to intermittently used appliances (e.g. kettles,
cookers, washing machines), including differentiation by household characteristics and
individual behaviours, and realistic sequencing of demand events. The review also
determined that models calibrated using the activities identified in time-use surveys to
determine appliance use timing would lead to poor demand prediction.

New discrete-event type methods were developed for modelling the use of the in-
termittently used appliances and enhanced versions of existing methods developed for

TV-use, lighting, constantly-used appliances (e.g. fridges, freezers), and other mis-
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Electricity Demand Sub-Model

Occupant-Initiated (‘Cyclic') Appliance Modules

'Simple’ Module 'Fixed' Module 'Flexible' Module
Kettle, Microwave, Washing Machine, Cooker, Oven, Dryer,
Toaster, Hair Dryer Dishwasher, Vacuum Computer (see 5.8)
(see 5.6) Cleaner, Iron (see 5.7)

4 y y
Cycle Start Time Identification Module
(see 5.9)

E

Audio-Visual Appliance Module
Television, DVD Player, Set-Top Box, Games Console (see 5.10)

3

‘Continuous’ Appliance Module
Cold Appliances, Telephone, Alarm, Aquarium, Pond Pump, etc. (see 5.11)

+

Lighting Module
(see 5.12)

+

Miscellaneous Appliance Module

Low Ownership/Power Cooking, Entertainment and 'Other' Appliances plus
Unacknowledged Appliance use (see 5.13)

Final Output
1-min Resolution Total Electricuty Demand Profile

Figure 5.1. Electricity demand sub-model module structure.
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cellaneous low-ownership or low-power appliances. To account for the influence of
occupancy, the output of the occupancy sub-model detailed in Chapter 4 has been
integrated as an input to the electricity demand sub-model. The primary source of
calibration data for the demand sub-model development was the Household Electricity
Survey (HES) [89] described in detail in 2.3.

The overall demand model output has been validated against both the calibration
and independent datasets. The range of results generated has been analysed to confirm
the effectiveness of the differentiated and probabilistic elements, and a newly developed
similarity assessment method derived from existing edit distance techniques has also
been used to determine if realistic individual household demand profiles are generated.
Appliance-level analysis has also shown that the model is broadly effective at this
resolution.

The overall conclusion from the validation was that the integrated model showed
good performance relative to existing methods and good replication of both calibration
and independent datasets. However, a degree of convergence to the average behaviours
of the calibration groups used for both the occupancy and appliance use timing sub-
models was identified, which limits the demand model use at the individual household

level. Further model development to account for this is detailed in Chapter 7.

5.2 Sub-Model Structure

Table 4.1 detailed the demand sub-model calculation sequence required to translate
the output from the household characteristics and occupancy sub-models into demand
prediction. Figure 4.1 shows how the electricity demand sub-model is integrated within
the overall demand module and Figure 5.1 shows the overall modular structure of
the sub-model. The following section outlines the development of each module that

comprises the electricity demand sub-model.

5.2.1 Appliance and Specific Demand Sub-Groups

The review of existing models detailed in 3.4 determined that, for bottom-up models
that simulated demands individually, a smaller number of distinct modules were used

for demands with similar characteristics. These were typically; ‘cyclic’, for appliances
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that are used intermittently and generally occupant-driven; ‘continuous’, for demands
that are usually left in a powered state at all times; ‘conditional’, for demands such
as lighting where use potential is a combination of external drivers, occupancy, and
behaviours; ‘standby’, demand for ‘cyclic’ appliances that are left in a low-power mode
when not in use; and ‘miscellaneous’, for remaining loads typically associated with
low-power and low ownership appliances not captured separately.

Analysis of the HES demand data for specific demands confirmed that, while each
has unique patterns of use related to frequency, timing, and duration, broad groups with
similar use characteristics that could be modelled in the same manner were discernible.

The specific groups identified were as follows.

5.2.1.1 ‘Cyclic’ Appliances

There are fourteen primary occupant-initiated, intermittent use (‘cyclic’) electrical ap-
pliances that are commonly owned and for which a significant depth of cycle (use
event) data is available in the HES dataset, justifying separate analysis and modelling;
kettles, microwaves, toasters, cookers, ovens, washing machines, dryers, dishwashers,
laptop computers, desktop computers, irons, vacuum cleaners, hair dryers, and tele-
visions. Remaining ‘cyclic’ appliances were modelled using three separate grouped
‘miscellaneous’ modules as detailed below and in 5.13.

Detailed analysis of the fourteen primary ‘cyclic’ appliances determined that they
could be grouped into distinct sub-type groups based on similar use characteristics and
potential for being modelled using the same approach. The four identified sub-types

are:

e Simple - ‘Simple’ appliances have a high daily usage probability, usage that is
generally independent of use on previous days, and a limited range of potential
cycle durations. This definition is applied to kettles, microwaves, toasters, and

hair dryers. (see 5.6)

o Fized - ‘Fixed’ appliances have a low multiple use per day potential, a use prob-
ability that is related to time since the previous use, and a typical range of fixed
or limited cycle durations. This definition is applied to washing machines, dish-

washers, irons, and vacuum cleaners. (see 5.7)
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e Flexible - ‘Flexible’ appliances have significant variation in daily use probability
and frequency, and duration if used, and therefore require more complex prob-
abilistic analysis than either ‘Simple’ or ‘Fixed’ appliances. This definition is

applied to dryers, cookers, ovens, and home computers. (see 5.8)

o Audio-Visual(AV) - The ‘AV’ sub-type applies primarily to TV use. Use of other
appliances that typically require a TV, such as DVD players, set-top-boxes, and
games consoles, are also linked to TV use. TV use is distinguished from other
‘cyclic’ appliance use as it is explicitly captured by time-use survey activity di-
aries. In addition, T'V-use cycles have highly variable durations and are therefore

difficult to capture using other methods. (see 5.10)

To capture individual appliance characteristics, standby use has been defined for
each applicable appliance, rather than the approach taken by existing models of setting
a fixed demand for this element (see 3.4.3.4).

5.2.1.2 Other Demand Types

Of the remaining types of demands identified by existing models, a similar set of distinct

modules has been developed, as follows:

e Continuous - ‘Continuous’ appliances are those that are typically always on and
for which there is only a small occupant-driven influence on power use. This
definition mainly applies to cold appliances, such as fridges and freezers, but also

includes items such as alarms, doorbells, and pond pumps. (see 5.11)

e Lighting - Lighting use is driven primarily by external lighting intensity, occu-

pancy, specific occupant location, and house size. (see 5.12)

e Miscellaneous - As outlined, in addition to the identified principal appliances and
demands, most households also have additional lower ownership or low power ap-
pliances. In the HES dataset, these include items such as bread makers, tabletop
grills, and radios. For these appliances, there is either insufficient data or impact
on overall power consumption to justify modelling separately. Three separate
grouped demand modules for cooking, entertainment, and other miscellaneous

appliances were therefore developed. (see 5.13)
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5.2.2 ‘Cyclic’ Module Structure

The development of enhanced occupancy modelling methods and access to detailed
appliance-level data in the HES dataset allowed for significant focus on the modelling
of intermittently used (‘cyclic’) appliances that are typically occupant initiated. As
outlined, the AV appliances will be modelled using TUS activity prediction within the
occupancy model, the following therefore applies only to the identified ‘Simple’, ‘Fixed’,
and ‘Flexible’ appliances.

Based on dataset analysis, the required calculation sequence for a differentiated,
probabilistic, bottom-up electricity demand sub-model for the identified key occupant-

initiated appliances was determined. Five distinct sequential elements were identified:

e Household Occupancy and Behaviour Factors - To account for the observed intra-
household-type total demand variation detailed in 2.4.1, in addition to appliance-
ownership which is captured separately, the following were identified as potential
causes of household-level demand behaviour differences; income-driven behaviour,
relative active occupancy probability (particularly as a result of employment),
and random energy-use behaviour variations that cannot be directly attributed
to household characteristics. The sub-model incorporates the influence of each as

a combined multiplier as detailed in 5.3.1.

o Appliance Ownership - An initial determination is required to identify if a house-
hold owns a particular appliance. This can either be user-specified or determined

probabilistically from national survey data based on household type and income.

o Appliance-Level Variance Factors - To reflect the significant variation in individ-
ual appliance use frequency between similar households, and only a weak correla-
tion between overall household demand and individual appliance use behaviour,
use of each appliance per household is independently allocated a relative use mul-
tiplier based on HES dataset analysis. The relative likelihood of use based on
occupancy duration and timing is also captured. These elements are detailed in

5.5.1.

e Daily Use Determination - A discrete-event based approach has been employed

to separate the determination of the number of appliance cycles per day and the
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timing. A cycle is defined as a separate demand event for appliances that are
not in constant use. Average daily number of cycles per household is determined,
and then cycle number on individual days based on the average with factoring
for occupancy and random variation. The average use is also manipulated by
both the household- and appliance-level behaviour factors identified. The basis
for each of the three appliance sub-types identified in 5.2.1.1 is described in 5.6,
5.7, and 5.8.

e Cycle Timing Determination - The start time of each individual use (cycle) is de-
termined based on the identified occupied periods and the probability distribution
of start times for a specific cycle (i.e. #z of total y). This differs from existing
models which tend to incorporate a single per-timestep probability calculation
sequence calibrated to achieve an average use frequency. The new method was
developed primarily to address the problems of unrealistic cycle sequencing and
timing (see 3.4.4.2), where previously developed approaches have not addressed
the link between the number of cycles in a day and their timing, and is described
in 5.9.2. A performance comparison of the per-timestep and newly developed

discrete-event method is detailed in 5.14.1.

5.2.3 Time Resolution

The stated aim of the project was for a model with the highest possible time resolution
that could be justified by both calibration data availability and computational speed.
As detailed in 4.5.5.3, the occupancy model converts an initial 10-minute resolution
output, based on the 10-minute calibration data resolution, to a 1-minute output based
on the assumption that state transitions occur randomly within each 10-minute period.
This assumption was made as there was no clear correlation between demand timing for
intermittently-used appliances and specific 2-minute segments within each 10-minute
period in the HES dataset and for each 6-second segment in the smaller, but higher
resolution REFIT dataset [45].

An initial 1-minute basis was also assumed for the demand model pending final
confirmation of computational speed. The 1-minute basis was achieved from the 2-

minute resolution calibration data by assuming an equal probability or level of use
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within each 2-minute period. The lack of any clear timing behaviours at the sub-10-
minute level for most appliances suggests that this random within-timestep use timing
assumption could be extended to sub-1-minute analysis without introducing significant
additional inaccuracy.

Cycle durations can be estimated to a better than 2-minute accuracy for most ap-
pliances based on total energy used divided by a nominal baseline power for appliances
with relatively constant power use and by statistical analysis of the first and last 2-
minute timestep of a use cycle for those with more variable power profiles. In the
future, the latter could be extended to sub-2-minute start time analysis if this level of
accuracy is considered necessary.

Following completion of the model development, the computation speed for a 1-
minute model basis was reviewed and deemed acceptable at ¢.10 households per minute
for a complete annual occupancy, electricity, and hot water analysis on a standard 2013
Quadcore desktop computer. Higher resolution analysis could be implemented with
the same developed methods in the future and the relative performance of different

resolutions analysed.

5.3 Household Occupancy and Behavioural Factors

5.3.1 Household Behaviour Factor

As outlined, differences in overall household demand behaviour for households with
similar characteristics are assumed to be at least partially accounted for by variations
in income, occupancy, and attitudes to energy use. A single household behaviour fac-
tor (FHBF) is determined by combining an income (EIBF'), overall relative occupancy
(OROF), and random energy-use behaviour (FERBF') factor as shown in Equation 5.1.
(OccUse_H and OccUse_T are appliance-specific factors for each household (H) and
household-type (7') combining both occupancy and relative appliance use timing prob-
ability as defined in 5.5.1.1). This factor is applied either to daily cycle (use) number,
cycle probability, or total daily usage duration as a single multiplier depending on the
appliance sub-type (see 5.5.1.2). The following sections outline how each factor was

identified and is determined for each modelled household.
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EHBF = EIBF x ERBF x (OccUse_H/OccUseT)° RO (5.1)

5.3.2 Effect of Income on Electricity Demand: Income Behaviour

Factor

Analysis of the specific behavioural effect of income on energy use is rare. Jamasb and
Meier [108] and White et al [107] determined the overall income effect on electricity
demand. However, it is not solely behavioural but also influenced by household type
and size, occupancy, and appliance ownership, which are modelled separately. The plot
of electricity demand against “equivalised” income (defined below) shown in Figure 5.2
indicates that there is a general increase in demand with income; however, there are
clearly one or more additional factors that influence demand, particularly at higher
income levels. A regression analysis was therefore undertaken that allowed these other
income-related factors to be accounted for separately and the residual behavioural effect
of income on electricity demand determined.

Published UK 2011 Census data has been separated into different sizes of area for
comparative analysis. Area annual electricity demand data [46] is available down to the
Lower Layer Super Output Area (LSOA) level for England; this corresponds to areas
of typically between 600 and 1000 households. This is assumed to be sufficiently small
that each area has distinct characteristics for comparative analysis but is large enough
to ensure that any random household-level behavioural effects are negated.

All London boroughs were removed from the analysis as there was clearly a different
cost of living basis and relationship between several factors (particularly income) and
energy usage that distorted the results for the rest of the country. For example, the
London boroughs have an average annual electricity demand to “equivalised” income
of 0.117 kWh/£, with the remainder of England having a value of 0.147. The number
of LSOAs included in the analysis was 28,203.

Using UK 2011 Census data various factors were determined for each LSOA to
represent factors modelled separately. The following were found to generate the most

accurate regression model based on F-Stat and RMSE analysis:
o “Bquivalised” Income — Average gross income (2011 basis) factored by house-
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hold size, with a reducing marginal impact of additional people on spending
power based on the OECD method [109] (1st Person=0.58, 2nd Person=0.42, 3rd
Person+=0.3). This was shown to be better correlated with demand than the

unfactored gross income.

e SAP-Factored Occupant Number — Number of people factored using the SAP
NO4714 hasis for demand relative to the household size (V) [111]. This was shown

to be better correlated with demand than the unfactored occupant number.

e Rooms per Person — Average number of habitable rooms per person. Habitable
rooms are living rooms, kitchens, bedrooms etc., but not toilets and hallways.

This was shown to be better correlated with demand than room number.

o Ouwned Appliance Power (Relative) — Estimate of relative power use related to

ownership level of appliances based on LSOA household type and income mix.

e Occupancy (Relative) — Estimated average active occupancy for the LSOA based

on household type mix.

The RMSE was minimised with the “equivalised” income term (IncE) raised to
a power of 4.2 (with all other factors set to a power of 1 to reflect the model basis).
This demonstrates that electricity demand increases rapidly and disproportionally with
increasing disposable income.

Substituting average values for the non-income factors and rebasing the regression
output to the LSOA average demand of 3863.3kWh/yr reduces the regression output
to Equation 5.2 to express the income-behaviour impact (based on 2011 “equivalised”

income (IncE) values) as a relative Income Behaviour Factor (FIBF).

EIBF = 0.9852 4+ (0.440/3863.3) x (IncE/10000)*2 (5.2)

This factor is used as a multiplier, first incorporated in an overall household be-
haviour factor (see 5.3.1), and then used to manipulate the appliance-specific primary
demand parameter (daily cycle number, probability or total duration) used for each
modelled appliance (see 5.5.1.2). The HES dataset does not include sufficient income

data or include enough households to allow the relative income effect for each potential
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use to be determined, it is therefore applied to all appliances and demands equally. In
reality, the income behaviour influence may be greater for higher demand, lower-use

appliances.

5.3.3 Effect of Occupancy on Electricity Demand: Relative

Occupancy Factor

A limitation of the HES dataset is that it does not include occupancy data. Without
integrated occupancy and appliance usage data an explicit assessment of the impact
of occupancy duration and timing on appliance usage is difficult. Model calibration,
however, requires two relative occupancy manipulations; first, that average usage is
determined for each household type and then adjusted for each modelled household
based on household occupancy relative to the household type average (OROF'); and
second, that the determined average usage per-household is further adjusted for daily
occupancy relative to the household average occupancy (DROF'). Here, occupancy is
defined as the proportion of time the house is actively occupied (i.e. not including
sleep) by at least one person, further investigation is required to determine if there are
more complex relationships linked to number of occupants present.

To overcome the integrated data problem, the relative impact of occupancy on
appliance usage has been determined from analysis of usage differences between retired
and working age households in the HES dataset. These populations show a marked
difference in active occupancy characteristics, which can be extracted from UK 2000
Time-Use Survey (TUS) data [83].

The relationship between the ratio of individual household to household type av-
erage occupancy and appliance use is assumed to be a power law (see Equation 5.1),
with an exponent between 0 and 1. A value of 1 would represent an appliance with a
usage that was directly proportional to active occupancy. In reality, the value is much
lower than 1 for all appliances. The exponents are determined by comparing the ratios
of average number of uses and average active occupancy for the working age and re-
tired populations as shown in Equation 5.3. The exponent quantifies the proportional
impact on relative appliance use frequency of a change in relative occupancy based on

the average appliance use behaviours of the two populations with distinctly different
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average active occupancy levels.

ROF = log(OCCret/Occwork:)/log<cycret/cycwork) (5.3)

For higher use appliances (i.e. kettle, microwave, toaster, computer), a single factor
is used for both the overall household relative occupancy factor (OROF') and daily oc-
cupancy adjustment (DROF') as use is assumed to be highly correlated with occupancy.

For less frequently used appliances (i.e. washing machine, dryer, dishwasher, cooker,
and oven), the influence of relative average occupancy on the probability of use is
expected to be stronger with regard to daily use probability (DROF') than overall use
probability (OROF), as overall use is driven by other factors, including basic need.
For these appliances, a separate value for daily occupancy impact (DROF') has been
estimated prior to combined occupancy and use data becoming available. The ‘Overall’
factor (OROF') was determined in the same manner as for the higher use appliances.

Table 5.1 shows the overall (OROF') and daily (DROF) relative occupancy factors

used.
Table 5.1
Overall (OROF) and daily (DROF) relative occupancy factors for different appliances.
Kettle Microwave Toaster Computers
Overall/Daily 0.3 0.1 0.05 0.5
Washing Machine Dryer Dishwasher Cooker/Oven
Overall 0 0 0.5 0.1
Daily 0.3 0.5 0.67 0.2

To reflect the fact that appliance use is assumed to be impacted by the timing of
the occupied period relative to when specific appliances are typically used in addition
to basic occupancy duration, the factors are applied to a modified occupancy-use factor

as detailed in 5.5.1.1.

5.3.3.1 Effect of Behaviour on Electricity Demand: Random Energy-Use

Behaviour Factor

Gill et al [81] determined that 37% of total household electricity use can be attributed
to behaviour independent of identifiable household characteristics related primarily

to attitudes to and prioritisation of energy use. While the Gill et al analysis is a
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small-scale study of 11 households, it represents the only study that has attempted to
quantify purely behavioural differences between households under UK conditions. An
additional 'random behaviour’ factor (ERBF) is therefore applied; selected randomly
between 0.77 and 1.23 (equivalent to a 37% variation). Assuming both the wider
applicability of the small-scale Gill et al analysis and a linear distribution are likely to
be over-simplifications, however, this basis represents a reasonable initial assessment of
household-level behavioural variations pending better data.

As with the Income Behaviour Factor, the Random Behaviour Factor (ERBF') is
first incorporated in an overall household behaviour factor (see 5.3.1), and then used

to manipulate relative appliance demand per household (see 5.5.1.2).

5.4 Appliance Ownership

The literature review by McLoughlin et al [164] determined that appliance ownership
was the second most cited influence on electricity demand. Figure 2.9 showed the
significant relationship between the number of appliances owned and electricity demand
in the HES dataset. As defined in 2.4.1.7, ownership is primarily driven by household
composition and income.

The UK Office of National Statistics (ONS) Family Spending survey [100] provides
annually updated ownership data for several key appliances (washing machines, dryers,
microwaves, computers, and dishwashers). Ownership data is provided separately by
household composition and income decile. A separate dataset in the same survey
provides the proportion of each household type and size within each income decile.
Combining the data allows ownership probability to be determined for each household
based on composition and income decile. This analysis, for example, determined that
dishwasher ownership ranged from 9% in both working-age and retired single-person
households in the lowest income decile to 90% in family households and near universal
ownership in larger multi-adult households in the highest income decile.

TVs and cold appliances are characterised by near universal ownership and a sig-
nificant potential for multiple units per household. The HES ownership data was used
as the source for the model with probability data for the number of units per house-

hold differentiated by number of occupants. Cooker ownership is also very high and
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assumed to be universal. The main cooker variable is the fuel source used for each
element. Analysis of the EFUS dataset [43] determined that for houses with mains gas
there was 34.1% probability of a gas hob and electric oven and 30.3% probability of
a fully electric cooker. Ownership probability of the remaining key appliances, irons,

vacuum cleaners, and hair dryers, was taken from the HES dataset based on household

type.

5.4.1 Appliance Energy Ratings

For a number of appliances, the typical power use can be inferred by an assigned energy
rating. This applies in particular to cold appliances, washing machines, dishwashers and
dryers. In the European Union, ratings are assigned based on EU Directive 2010/30/EU
[165].

In the HES dataset, appliance ownership data also includes the unit EU energy
rating in some cases. UK ONS data is available detailing the numbers of each appliance
per energy rating owned in the UK [166]. As defined in the relevant demand module
sections below, in some cases the demand and energy rating data has been combined

to define power profiles for modelled appliances.

5.5 ‘Cyclic’ Appliance Modules

Separate modules have been developed for the four sub-types of ‘cyclic’ appliances iden-
tified in 5.2.1.1. A similar discrete-event based approach with distinct characteristics
per sub-type, calibrated directly using demand data as detailed below, has been em-
ployed for the ‘Simple’ (see 5.6), ‘Fixed’ (see 5.7), and ‘Flexible’ (see 5.8) sub-types to
first determine the average number of use cycles per day for each modelled household.
An identical method is then used to determine the cycle timing within each modelled
day (see 5.9). As addressed in 5.2.1.1, this type of method is employed to address
identified areas of poor performance for existing discrete-time models. A performance
comparison between the existing and developed approaches is detailed in 5.14.1. As
outlined, TV and other AV appliance use is modelled with a different approach based
on the relevant time-use survey activity (see 5.10).

Each developed module incorporates the output of the occupancy model to deter-
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mine use potential. This is achieved directly for the AV model, using the secondary
model described in 4.7.2, and for the other modules by limiting when appliances can
be used. The household-level behavioural factors identified in 5.3, and additional
appliance-level use factors also need to be applied to each module as outlined in the

following section.

5.5.1 Appliance-Level Variance Factors
5.5.1.1 Occupancy-Timing-to-Appliance Use Relationship

The relative occupancy factors defined in 5.3.3 are not applied directly to occupancy
but to a modified occupancy factor that also reflects relative appliance use probability
during the occupied period(s) if the dwelling is occupied. In order to do this, a probabil-
ity density function (pdf) distribution for cycle start time probability was generated for
each appliance and household type from identified start times in the HES dataset. This
distribution was then modified to remove the occupancy-driven influence on timing by
dividing each timestep pdf value by the occupancy probability at the timestep for the
household type and then rebased to an average value of 1 for clarity. The updated rel-
ative value per timestep is the element 7pey.(t) in Equation 5.4. As an example, Figure
5.3 shows the 7pgy.(t) distribution for kettle use in retired single-person households.
A combined factor (OccUse) reflecting both occupancy and use probability summed
for each timestep was then generated (see Equation 5.4). The term p,..(t), the occu-
pancy probability at timestep, ¢, can be either population average, household average,

or specific day (0 or 1 per timestep) based depending on the analysis required.

OccUse = Z;ﬁ Doce(t) X TDeye(t) (5.4)

The average OccUse value for a household (OccUse-H) compared to the population
average (OccUse_T) gives a basis for determining the potential occupancy-driven varia-
tion in average appliance use. Comparing the value for each modelled day (OccUse_D)
to the household average also gives a basis for the occupancy-driven variation in daily
use. The determined ratios are factored by either the overall (OROF) or daily (DROF)

relative occupancy factors as defined in 5.3.3.
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5.5.1.2 Appliance Use Factor

For each appliance, there is significant variation in the primary use defining parameter
(‘Simple’ - number of daily cycles (uses), ‘Fixed’ - daily cycle probability, or ‘Flexible’ -
daily use duration) for each household relative to the household type mean (see Figure
5.4 for examples).

For each of the appliances the ratio-to-mean distributions for each household type
are similar (see Figure 5.5(a) for kettle example), particularly for the larger populations,
and with sparse data for the smaller populations. To ensure representative ratio-to-
mean distributions for all populations, the data could therefore be consolidated to the
single combined distribution of the overall range of ratios to the household type mean
shown in Figure 5.4. An example comparison of the average cycle number distributions
for kettle use generated from actual data (‘actual’) with those generated using the
consolidated distribution (‘consolidated’) is shown in Figure 5.5(b) and exhibits close
replication.

Whilst the observed use variation is partially attributable to household characteris-
tics and occupancy, a significant influence on the distribution is assumed to be random
behavioural differences between similar households at the appliance level.

For each modelled appliance, an ‘Appliance Use Factor’ (AUF) is randomly se-
lected from the appliance-specific ratio-to-mean distribution (see Figure 5.4). This is
a multiplier that is combined with the mean value of the appliance primary use defin-
ing parameter (see above) for the household type and the household behaviour factor
(EHBF) (see 5.3.1), as per Equation 5.5, to determine the parameter for each modelled
household incorporating all behavioural factoring.

Analysis determined that there was no discernible relationship between the relative
ranking in the ratio-to-mean distribution for each appliance per household beyond that
which would be predicted by the application of the household-level factoring introduced
in 5.3. This suggests that any per-household appliance-specific factoring could be al-
located randomly and independently using the generated ratio-to-mean distributions,
with additional modification using the EHBF to account for relative household-level

behaviours.
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5.5.2 Cycle Data Analysis

The ‘Simple’, ‘Fixed’, and, ‘Flexible’ modules are calibrated using demand data from
the HES dataset. Despite only comprising private households, the range of household
types and social classes is nationally consistent. It was therefore assumed that the HES
dataset was broadly representative of appliance use for UK households.

The data analysis first required that the data was filtered to allow each separate use
cycle to be identified as described below. Once the number of distinct cycles for each
household were determined, they could then be further analysed for frequency, timing,
and duration, and any inter-relationship between these elements. The module specific

results of the analysis are detailed in 5.6, 5.7, and 5.8.

5.5.2.1 Cycle Identification

The HES time-series power data was analysed to identify individual appliance cycles.
The same basic method was used for each appliance with additional appliance-specific
analysis as detailed.

For some appliances there is a constant or regular low level power draw that is not
indicative of a distinct cycle but standby use. The data was therefore first filtered of all
periods below a minimum power demand (between 0.2 and 1W depending on appliance
minimum in-use power characteristics). The residual low power element was analysed
separately to determine if significant enough to be modelled as a fixed constant demand
for some households.

From the filtered data, demand in adjacent timesteps is analysed to determine the
start and finish time, and total energy use per cycle. For some appliances there are
short periods of low or no power that are not necessarily indicative of a separate use
but a temporary delay or an appliance in-use characteristic. Uses separated by less
than a defined period, typically 10 minutes, are therefore combined in a single ‘cycle’.
In order that the cycle number results are not distorted by significant numbers of short,
negligible energy use cycles, the cycles are further filtered by a minimum cycle energy
requirement. For all appliances, a suitable value could be set that removed a significant
number of unrepresentative uses but with a less than 1% reduction in overall energy

use.
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5.6 ‘Simple’ Module Development

The ‘Simple’ appliance demand module is applied to kettles, microwaves, toasters, and
hair dryers. The overall structure of the module and principal defining elements are

shown in Figure 5.6.

5.6.1 Dataset Cycle Identification

Kettle data is characterised by short duration, constant, high power cycles (typically
¢.2kW) and a low probability of standby power use. There is also the possibility of short
‘reboil’ cycles when the water is reheated shortly after initial boiling. Data analysis
shows that 12.5% of cycles occur within 10 minutes of a preceding cycle and that short
‘reboil” cycles are significantly more common than multiple full cycles within a 10-
minute period (on average the second cycle uses 48.7% of power of the first and the
median value is 31.5% with 69% of second cycles below 50%). Combining cycles that
are separated by less than 10 minutes results in ‘reboil’ cycles being combined with the
initial cycle which ensures that they do not distort cycle number counts. Kettle cycles
are therefore nominal cycles based on use within a short period following an initial use.

Similarly microwave use is frequently characterised by multiple short cycles within
a short period. As for kettles, for both simplicity and to avoid cycle numbers per day
being distorted by sequences of short uses in close proximity, these were consolidated
with separate cycles distinguished by periods of at least 10 minutes between individual
uses.

For toasters and hair dryers, the basic method defined in 5.5.2 was used.

5.6.2 Daily Use Determination

5.6.2.1 Dataset Analysis

For each ‘Simple’ appliance, the average number of cycles per day was identified for

each household type (see Table 5.2).
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Table 5.2
Average daily cycle number by household type ( TypeCyc) for all ‘Simple’ appliances (combined data
due to low ownership is identified with a (*)). Data for analysis from the HES dataset [89].

Household Type Kettle Microwave Toaster Hair Dryer
Single, working age 3.37 0.86 0.55 0.48%*
Single, retired 3.98 0.84 0.50 0.48*
Couple, working age 4.59 1.34 0.92 0.30
Couple, retired 6.10 1.34 0.99 0.39
Three-Adult 6.50 2.14 0.92% 0.74%
3-Person Family 4.94% 1.81 0.92% 0.74%
4-Person Family 4.94% 2.45 1.35% 0.82%*
5+-Person Family 6.22 3.09 1.35% 0.82%

5.6.2.2 Module Calculation Sequence

The ‘Simple’ module assumes the probability of use per day is high and independent
of use on preceding and following days. The primary parameter used to define use per
household is the average daily cycle number. The steps required to determine this value

and use on individual modelled days are as follows:

e Step 1 - The ‘Appliance Use Factor’ (AUF) is determined by randomly selecting

a value from the appliance-specific ratio-to-mean distribution (see Figure 5.4(a)).

e Step 2 - The occupancy model output is converted to the combined factor that
assesses both occupancy and time-dependent appliance use likelihood (OccUse)
(see 5.5.1.1) for each individual day to be modelled (OccUse_D) and an overall

household average (OccUse_H) for all modelled days.

e Step 3 - The average number of daily use cycles for the appliance (HhldCyc) is
determined from the following equation based on the average number of cycles
for the household type (TypeCyc) (see Table 5.2) and the defined behavioural
factors.

HhldCyc = TypeCyc x EHBF x AUF (5.5)

e Step 4 - For each modelled day, the household average number of daily cycles is
used to determine a baseline number accounting for the ratio of the day-specific
OccUse factor (OccUse_D) to the household average (OccUse_H ), as shown by the

following equation. The baseline cycle number is the average predicted number
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based on the day-specific occupancy characteristics.

CycBase = HhldCyc x (OccUse_D /Occl se_H)PROF (5.6)

e Step 5 - The predicted number of cycles for each modelled day is determined using
a binomial probability distribution (see below) with the baseline cycle number
(CycBase) as the average output and a random number generated between 0 and

1 to identify the actual cycle number from the discrete probability distribution.

5.6.2.3 Binomial Cycle Number Probability Method

As outlined in Step 5 above, a binomial probability determination is used to predict
the actual number of cycles in relation to the average predicted number of cycles for
a specific day. This further manipulation assumes that there is a natural variation in
cycle number about the mean predicted value due to random differences in occupant
behaviours and external factors, such as weather. Without combined occupancy and use
data the extent of this variation is difficult to predict accurately but the binomial basis
was shown to replicate day-to-day cycle number variations in the HES dataset better
than if not further manipulated and in comparison with other probability distributions,
such as Poisson. Future work with a combined source of occupancy and demand data
would allow the assumed relationship to be confirmed.

Binomial distributions are characterised by a number of tests, N, and the proba-
bility of a success per test, p. In this case, N is the maximum daily cycle number for
the household (probabilistically allocated from HES dataset analysis of the relationship
between average and maximum daily cycle number values per appliance), and, p, the
daily baseline cycle number, CycBase, divided by N. An example predicted cycle num-
ber distribution for a daily baseline of 3 cycles and a household maximum of 6 cycles

is shown in Table 5.3.

Table 5.3
Binomial distribution probabilities for a daily cycle number baseline of 3 and household maximum
daily number of cycles of 6.

Predicted Cycle Number 0 1 2 3 4 5 6
Probability (%) 1.6 9.3 23.5 31.1 23.4 9.5 1.5
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5.6.3 Cycle Power and Duration

Each ‘Simple’ appliance is characterised by short cycle durations, typical appliance
power levels, and constant power profiles. As it is difficult to determine exact cycle
durations from the 2-minute resolution data and relative appliance performance is un-
known, the dataset analysis was simplified to identifying the total energy per cycle,
allowing household usage to be compared on an equivalent basis.

Three sets of calibration data were generated from the HES dataset; the average
cycle energy per household type; the overall ratio-to-mean distribution of household
mean cycle energy to the household type mean (‘Household’); and the overall distri-
bution of individual cycle energy to the household mean (‘Cycle’). The range of peak
unit power values per household was also determined.

Fach household is randomly allocated a unit power per owned appliance from the
determined range, and an average total energy per cycle based on the household type
mean and a randomly selected value from the ‘Household’ ratio-to-mean distribution.
Each individual cycle energy is determined from the household mean value multiplied by
a randomly selected value from the ‘Cycle’ ratio-to-mean distribution. Cycle duration
is determined from total cycle energy divided by the allocated unit power.

For microwaves, the process is the same as the other appliances except that there
is a defined relationship between average daily cycles and total energy per day that
is used to determine the average energy per cycle. The Kernel Density method (see
Appendix A) is used to simulate this relationship, with the average daily total energy

determined for each household based on the simulated average daily cycle number.

5.7 ‘Fixed’ Module Development

The ‘Fixed’” appliance cycle module is used for washing machines, dishwashers, vacuum
cleaners, and irons. The overall structure of the module and principal defining elements
as applied to both washing machine and dishwasher use are shown in Figure 5.7. A

simplified version is applied to vacuum cleaners and irons.
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5.7.1 Dataset Cycle Identification

Most washing machine cycles are characterised by an initial high power period of be-
tween 10 and 30 minutes, a longer lower power period of between 40 and 80 minutes,
and a medium power period of between 5 and 10 minutes. Although there is significant
variation in total cycle energy, analysis of the data determined that full wash cycles
typically ranged from 0.5kWh to 1.5kWh. Below 0.5kWh was associated with simpler
cycles (rinse/spin etc.) and above 1.5kWh indicative of two adjacent cycles.

The data was initially filtered of all ‘standby’ periods of less than 1W. This value
was selected using trial and error to minimise very high cycle power events that are
indicative of two adjacent full cycles while remaining below minimum in-use power.
Power use in adjacent periods, including gaps of less than 10 minutes to account for
idle periods mid-cycle, are combined. The data is further filtered of low power use cycles
(<0.25 kWh) to ensure a realistic number of full cycles are captured. This method was
also used for dishwashers that have a similar characteristic cycle.

For vacuum cleaners and irons the basic method defined in 5.5.2 was used.

Table 5.4
Average daily cycle number by household type for all ‘Fixed" appliances (combined data due to low
ownership is identified with a (*)). Data for analysis from the HES dataset [89].

Household Type ﬁzzﬁiﬁi Dishwasher Iron X?::g;}
Single, working age 0.299 0.428 0.258* 0.213
Single, retired 0.275 0.439 0.258%* 0.206
Couple, working age 0.598 0.537 0.342% 0.393
Couple, retired 0.397 0.462 0.404 0.324
Three-Adult 0.829% 0.722% 0.342% 0.591
3-Person Family 0.829* 0.722% 0.578* 0.416
4-Person Family 0.829% 0.722% 0.578* 0.392%
5+-Person Family 0.968 0.693* 0.578* 0.392%

5.7.2 Daily Use Determination
5.7.2.1 Dataset Analysis

‘Fixed’ appliances have a lower typical daily use probability than the ‘Simple’ appli-
ances, and are characterised by an increasing need with time. The data analysis focused

on determining the average number of cycles per day per household, the relationship
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between this value and the daily use probability, and the sequences of number of days
between cycles. The average daily cycle number per household type is shown in Table
5.4.

The sequences of days with cycles varied significantly, particularly for households
with a low daily cycle probability. The sequence is therefore assumed to be highly
household specific with multiple associated factors, including occupancy and distinct
household behaviours. However, there was distinct relationships between the daily cycle
probability and both the ‘next-day’ use probability (use on the day following a cycle)

and the maximum time between cycles (see Figure 5.8 for washing machine examples).

5.7.2.2 Module Calculation Sequence

The primary parameter used to define household use of this type of appliance is daily
cycle probability. The steps required to determine this value and use on individual

modelled days are as follows:

e Steps 1-3 - Identical to Steps 1-3 for the ‘Simple’ module except daily cycle prob-
ability (HhldPrb) replaces average daily cycle number (HhldCyc) as the output
from Step 3 based on the household type average daily cycle probability.

e Step 4 - The ‘next-day’ cycle probability and maximum number of days between
cycles are determined from the identified relationship to the daily cycle proba-
bility (see Figure 5.8). The Kernel Density method (see Appendix A) has been
used to convert the relationships to a probability function to allow the ‘next-day’
use probability and maximum time between cycles to be probabilistically allo-
cated to each modelled household based on the previously determined daily cycle

probability.

e Step 5 - To determine the number of days until the next cycle, for each house-
hold the module generates a cumulative probability function for the number of
days until the next cycle randomly but constrained by the ‘next-day’ probability,
identified average, and maximum time between cycles. These probabilities are

further factored using the relative OccUse factor for each day (see 5.5.1.1).
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e Step 6 - The days in which the appliance is used are identified by using the
cumulative probability distribution to determine the sequence of days between

cycles for the simulated duration.

e Step 7 - The number of cycles in a ‘use’ day is determined from a simple prob-
ability determination based on HES dataset analysis of the distribution of cycle
numbers per ‘use’ day for each household type. Household type differentiation is

used as multiple cycles are more common for family and multi-adult households.

5.7.3 Cycle Power and Duration
5.7.3.1 Washing Machines and Dishwashers

As outlined, washing machine and dishwasher cycles have broadly similar power profiles
associated with distinct processes (e.g. water heating, rinsing etc.), but with variable
power levels and durations that are both unit and selected wash type specific, and
will also vary with incoming water temperature. This is highlighted by the smooth
distribution of observed cycle energy values from the HES dataset and inconsistent
energy used per cycle for individual households.

Energy used and cycle durations are strongly influenced by appliance energy rating
(see 5.4.1). In 2014, over 80% of both appliance types owned had one of two energy
ratings (for washing machines 27.9% A+ and 56.1% A, for dishwashers 79.0% A and
7.5% B) [166]. The data analysis and model calibration was therefore restricted to
these ratings.

HES appliance diaries logged cycle type (wash, rinse, spin) and wash temperature
over a 1-week period for some households. The HES dataset also provides specific appli-
ance model information that in some cases also identifies the energy rating. Therefore,
for each analysed energy rating, three typical full wash cycles (representing a low,
medium and high temperature setting) plus a shorter typical spin/rinse cycle were
identified for both power profile and duration, and used as the basis for all modelled
cycles. Each household was probabilistically assigned an appliance energy rating, and
one of the four typical cycles per modelled cycle.

For washing machines, analysis of the data determined that the distribution of full

wash cycles was approximately 16% high (>60°C), 56% medium (50-60°C), and 28%
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low temperature (<=50°C). Approximately 25% of cycles in the HES dataset have a
total cycle power of <0.5kWh, which were assumed to be associated with additional
rinse, spin, and very short, low temperature wash cycles. For dishwashers, the equiv-
alent analysis determined that full cycles were approximately 35% high (>60°C), 32%
medium (50-60°C), and 33% low temperature (<=50°C), and that 16% of cycles were
low power rinse cycles.

There is insufficient washing machine cycle diary data to determine specifically how
the probability of each cycle type varies per household. The identified base probabilities
for full wash cycles are therefore further factored for each household type to account
for observed average cycle power variations and a further +20% variability is used
arbitrarily to at least partially capture the expected cycle type behavioural differences
per household. This value was selected based on the observed impact on the overall
distribution of average power use per modelled household compared to the calibration
data. The probability of ‘spin/rinse’ cycles is assumed from analysis of the cycle diaries
to be at least partially related to the number of daily cycles. To achieve the 25% overall
probability, this has been arbitrarily set at 50% of second and subsequent daily cycles
(approx. 34% of all cycles) and 15% of first cycles.

For each household the module probabilistically sets a multiplier of between 0.85
and 1.15 to account for the range of cycle powers allowed within each energy rating,
which is used to manipulate the base power values for the appropriate archetypal cycle.

For dishwashers, a similar basis for cycle type and power allocation was developed

using equivalent data.

5.7.3.2 Irons and Vacuum Cleaners

Durations for iron and vacuum cleaner cycles are difficult to clearly distinguish as they
are characterised by intermittent power draws typically at a fixed power level. The HES
dataset was therefore analysed to determine a peak power equivalent duration (‘peak-
equivalent’) for each identified cycle based on the total cycle energy divided by the
maximum observed power value for the specific appliance. For each cycle a load factor
was also determined based on the ratio of peak-equivalent to actual duration. This
provides a standardised method for comparing cycles within and between households.

Each modelled household is probabilistically assigned a peak unit power and an
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average cycle load factor. An average daily peak-equivalent cycle duration is determined
probabilistically from the daily use probability using the Kernel Density method (see
Appendix A) to define the relationship from analysis of the HES dataset, and from this
an average cycle peak-equivalent duration is determined from the average number of
daily cycles.

Individual cycle peak-equivalent durations are determined probabilistically from the
HES-analysed distribution of individual cycle durations to the household average, and
individual cycle load factors determined randomly between 60 and 140% of the house-
hold average load factor based on typical variations. To reflect the inherent randomness
of the power cycles, the cycle starts with a fixed full power period of 2 minutes and
then each subsequent minute can be set probabilistically at either zero power or a power
value between 0 and the peak power to achieve the required load factor for the overall

cycle duration.

5.8 ‘Flexible’ Module Development

The ‘Flexible’ appliance cycle module is applied to cookers, ovens, dryers, and comput-
ers. The overall structure of the module and principal defining elements as applied to
cooker, oven, and computer use are shown in Figure 5.9. A modified version is applied

to dryers based on the identified link to washing machine use as detailed in 5.8.1.2.

5.8.1 Daily Use Determination
5.8.1.1 Dataset Analysis

‘Flexible’ appliances have a complex relationship between number of cycles and the
daily use duration. The length of each cycle has a significantly wider range than for
the ‘Simple’ and ‘Fixed’ appliances and for that reason total duration rather than
number of cycles is a more effective determinant of total energy used. Total daily use
duration was therefore selected as the primary calibration parameter.

The mean daily use duration for each household type (see Table 5.5) and the overall
range of ratios to the type mean were determined. The relationship between total daily

duration and number of daily cycles is complex for each appliance with significant
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variations in behaviour from few long cycles to multiple short cycles (see Figure 5.10
for cooker example).

As detailed below, some desktop computers in the HES dataset are powered con-
tinuously (c.14%) and others continuously powered during waking hours (¢.7%). These
units have been removed from the detailed cycle analysis and treated as constant loads.
The remainder were analysed using the defined method, with the data in Table 5.5 for
the units not identified as constant loads.

Table 5.5
Average daily use duration (in hours) by household type for all ‘Flexible’ appliances (combined data
due to low ownership is identified with a (*)). Data for analysis from the HES dataset [89].

Household Type Cooker Oven Laptop Desktop Dryers
Single, working age 0.75 0.24 1.50 3.60 0.27
Single, retired 0.48 0.23 0.90 2.60 0.27
Couple, working age 0.82 0.61 3.20 5.80 0.96
Couple, retired 1.01 0.41 1.70 4.30 0.59
Three-Adult 0.93 0.694 4.00 6.50 0.82%*
3-Person Family 1.12 0.86* 3.00 4.10 0.82%
4-Person Family 1.03* 0.86%* 4.40 7.30 1.32%
5+-Person Family 1.03* 0.86* 6.50 5.30 1.32%

5.8.1.2 Dryer/Washing Machine Use Relationship

Analysis of the cycle data for washing machines and dryers confirmed that their use was
linked, with a high proportion of dryer cycles closely following washing machine cycles.
On a per-household basis there was an average of a 64% probability that dryer cycles
would occur on the same day following a washing machine cycle and a 28% probability
within 2 hours. On a per-cycle basis, the equivalent values are 77.4% and 31.3%.
Within the module, washing machine use is treated as the primary variable. The
relationship between the washing machine and dryer daily use probabilities are modelled
using the Kernel Density method (see Appendix A), which is used to probabilistically
determine the dryer use probability based on the washing machine probability. The
same method is then used to define the proportion of dryer cycles that follow washing
machine cycles based on the ratio of dryer and washing machine daily use. Except for
several households with low washing machine use probability and higher dryer use, this

relationship is broadly consistent (see Figure 5.11).
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There is some evidence of other linked appliances, in particular cooker and dish-
washer use, but the connection is less distinct than for the laundry appliances. Future
work in this area is required to determine if there is sufficient correlation to justify

inclusion in the model.

5.8.1.3 Module Calculation Sequence

As defined, the primary parameter used to define use per household for ‘Flexible’ ap-
pliances is average total daily duration of use. The steps required to determine this

value and use on individual modelled days are as follows:

e Steps 1-3 - Identical to Steps 1-3 for the ‘Simple’ module (see 5.6) except that
average daily cycle duration (HhldDur) replaces average daily cycle number ( Hhld-

Cyc) as the output from Step 3 based on the household type average duration
(see Table 5.5).

e Step 4 - Using the Kernel Density method (see Appendix A), the probabilistic
relationship between average daily duration and average daily cycle number is
converted to a cumulative probability matrix. The average number of daily cycles
(HhldCyc) is determined probabilistically from the distribution appropriate for

the determined average daily use duration (HhldDur).

e Step 5 - The average individual cycle duration (CycDur) is determined by dividing
the average daily use duration (HhldDur) by the average daily number of cycles
(HhldCyc).

CycDur = HhldDur/HhldCyc (5.7)

e Step 6 - For each individual day to be modelled a multiplier (DMR) is determined
from the day-specific OccUse factor (OccUse_D) compared to the overall average

(OccUse_H) as shown by the following equation. The relative occupancy factor,

DROF, is defined in 5.3.3.

DMR = (OccUse_D/OccUse_H)PEOF (5.8)
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e Step 7 - The HES data does not allow the relative impact of occupancy on number
of cycles and cycle duration to be determined. An equal impact is therefore
assumed with the daily baseline number of cycles (HhldCyc) and cycle duration
(CycDur) both being multiplied by the square root of DMR.

o Steps 8-9 - The baseline number of daily uses (CycBase) and predicted actual
number of cycles for a specific day is determined in the same manner as the

‘Simple’ module (see 5.6).

5.8.2 Cycle Power and Duration
5.8.2.1 Cooker and Ovens

For cooker and oven cycles, the power is typically applied in sequential periods of full
and zero power which are timer or thermostat-controlled. Ovens typically allow the
temperature to be set across a wide range (60 to 240°C) and electric hobs will have
5-6 different settings. Use therefore has a significant additional variability as a result
of user intervention in the settings and the number of elements (hob, oven, grill) used
if a fully electric cooker.

The HES dataset power data for electric cookers is logged as a single value so
distinguishing specific elements is difficult from the raw data. However, the HES dataset
includes 1-week cooker use diaries for 44 households which allows an assessment of
typical element use. The majority could be distinguished as oven only, hob only, grill
only, and oven and hob combined use. Further analysis determined that the type of
cycle was duration dependent, with short cycles more likely to be either hob or grill
only use. The results of the analysis are shown in Table 5.6.

Table 5.6
Overall duration ranges and element use probability per duration range for cooker use. Data for
analysis from the HES dataset [89].

D(Lr‘z f‘l';ls‘;n 0-10  10-20  20-30  30-40  40-50  50-60  60-90  90-120 120+

Overall 0.331  0.154 0127 0101 0081 0.051 0078  0.032  0.045
HobsOnly  0.650  0.750  0.620  0.400  0.400  0.300 0120  0.120 0.05
GrillOnly 0204  0.146 0 0 0 0 0 0 0
OvenOnly 0146 0100 0350 0.365 0400 0400 0450 0450  0.408
Hobs+Oven 0 0.004  0.030 0.235 0200 0300 0.430 0430  0.542
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The diaries also identified the number of individual hobs used, which allowed the
probability to be assessed. The data showed that there was a 64.3% probability of
single hob use, 25.3% for two hobs, 8.3% for three, and 2.1% for four. Proportionally
this is consistent with the analysis performed by Mansouri et al [167]. The duration of
use for each hob was based on the per-ring data of Mansouri et al, also used by Stokes
[147].

Analysis of the HES dataset did not clearly identify consistent profiles as a result of
the 2-minute resolution, impact of user manipulation, and difficulty in distinguishing
the elements used and their settings. Most cooker and oven cycles start with a period
of several minutes of steady power demand as the initial element(s) warm, followed by
highly variable power use. This is demonstrated by Figure 5.13, which shows two typical
oven cycle power profiles on a 2-minute average basis from two separate households in
the HES dataset.

To allow the overall impact on household power use to be adequately captured
within a practical model, each identified cycle in the HES dataset was analysed for
duration and a load factor, which is the average cycle energy divided by the observed
overall appliance peak power (see Figure 5.12(a)). For each HES household the average
load factor was determined and the relationship to the average daily use duration
assessed (see Figure 5.12(b)).

Each modelled household is probabilistically assigned a peak power value and av-
erage daily duration. The baseline cycle load factor is determined using the Kernel
Density (KD) probability method (see Appendix A) developed from the relationship
shown in Figure 5.12(b) based on the assigned average daily duration. A relative-to-
mean load factor multiplier for each modelled cycle is determined based on the duration
using a KD probability distribution developed from the relationship shown in Figure
5.12(a), with the per-cycle load factor determined from this multiplier and the house-
hold baseline load factor.

There is insufficient data to determine if there is a strong relationship between
the number of elements used and the load factor. However, multi-element cycles are
predominantly longer cycles (see Table 5.6), therefore this should be partially captured
by the modelled relationship between cycle duration and load factor.

Cycles are modelled with two phases; a short duration continuous peak power pe-
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riod, with the duration set between 2 and 10 minutes proportional to the cycle load
factor; and then cycles of between 1 and 2 minutes of peak power use sequenced to
achieve the target overall cycle load factor over the remaining cycle period. This aims
to broadly replicate the typical power profile shown in Figure 5.13.

Where the module predicts the use of multiple elements, the module assumes a
fixed residual load factor for all elements once the initial periods at maximum power
are accounted for. This mimics the typical on-off control method used by this type of
appliance, if not necessarily specific unit characteristics, to achieve a representative dis-
tribution of power demand during a cooker/oven cycle, which is considered sufficiently
accurate for an overall demand model.

To reflect the observation that average power use tends to fall during the intermit-
tent power phase, the module allows for this by setting a residual load factor multiplier
that falls linearly during this phase. The multiplier is set arbitrarily and randomly in
a range with a maximum variation of 1.5 to 0.5 and a minimum of 1 to 1.

An example is shown in Figure 5.14 for a 40-minute oven cycle with peak power
rating of 2448W, cycle load factor of 0.450, and residual load factor multiplier range
of 1.25 to 0.75. A continuous period at full power of 6 minutes is followed by an
intermittent phase that has an average load factor of 0.353. The residual load factor
starts at 0.441 (0.353 x 1.25), which is effectively modelled with a 3-minute cycle
comprising one minute at zero power, one at 32% (representing a 19s period of full
power within the 1-minute resolution basis), and one at full power. At the end of the

cycle the residual has fallen to 0.264 (0.353 x 0.75).

5.8.2.2 Computers and IT Equipment

The use patterns of IT equipment, and in particular desktop computers and routers,
can be simplified to units that are always on, use indicative of units consistently on
during waking or occupied hours, and units that exhibit similar cyclic use to other in-
termittently used appliances. (IT equipment is defined as computers, routers, monitors,
and printers for the purposes of the presented analysis)

For desktop computers, 21% were powered for at least 75% of the monitored period
and 14% for over 90%. Of these half had low level standby level power use for the

majority of the powered periods and peak use with the same characteristics as the
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intermittently used machines. The remainder exhibited high power use during most or
all powered periods but with typically higher daytime levels. The desktop computer
module assumes 10.5% are in constant use with a high minimum power use compared
to the average and a further 10.5% are in constant use but with low minimum power
use associated with periods of standby power. In contrast, no laptop computers were
powered continuously reflecting different patterns of both use and charging for portable,
battery-powered units.

All laptop and the remaining desktop computers are characterised by the same
occupancy-driven use patterns as other appliances and are treated in the same manner.
This also applies to active cycles for the constant use desktop units with low minimum
power. Based on the HES dataset analysis, each household is probabilistically allocated
a peak unit power from the overall distribution and an average cycle load factor (LF')
based on total duration of use. Peak power from desktop units typically vary linearly
from 50 to 170W with a small number of extreme outliers and laptops from 25 to 45W.
Cycle periods are not limited by active occupancy, however, the LF is arbitrarily set
higher for periods with active occupancy to reflect a higher probability of active use.

Average cycle duration is determined using the outlined calculation sequence. Du-
rations for specific cycles are then determined based on a randomly selected value from
the overall HES population distribution of the ratio of each cycle duration to the specific
household average.

Routers are commonly left on for long periods and therefore, despite a typically
small power requirement (<15W), can represent a significant base load for a household.
Therefore, a simple model is used based on the range of observed power values and four
identified typical use patterns (constant use (73%), waking hours (8%), occupied periods
(8%), and during computer use (11%)) from HES dataset analysis. For ‘constant use’
a fixed power value is used for all timesteps, for ‘waking hours’ the unit is on while
at least one person is awake (even if out), for ‘occupied periods’ the unit is on while
at least one person is active in the dwelling, and for the remainder use is assumed for
all periods of active computer use. Use variations were observed and the use pattern
probabilities adjusted for specific household types, with, for example, single-person
households having a significantly lower likelihood of longer periods of use. Routers

typically draw a steady power with no variation with duration used and are modelled

146



Chapter 5. Electricity Demand Sub-Model Development

as fixed loads when in use.

Use of additional IT equipment, such as monitors and printers, can be assessed
by comparing the probability of overlapping use. The probability of monitor use with
laptop use per-household varies linearly from <1% to 95% with an average of 46%.
Monitor use with desktop use is harder to define as in most cases monitor power is
not separated and is therefore assumed for all periods of active use. The relationship
between computer and printer use is less distinct with only an average of 6% overlapping
use for laptops and 9% for desktops and is modelled as arbitrary short periods of
additional power use during active computer use periods based on the per-household

probability distribution.

5.8.2.3 Dryers

Unlike the other ‘Flexible’ appliances, dryer use is not primarily characterised by daily
average duration as a result of the identified relationship between washing machine and
dryer use (see 5.8.1.2). The average daily duration is therefore determined based on the
average number of daily cycles in a reverse of the relationship used for cookers, ovens
and IT equipment. Specific cycle durations are then determined based on the household
average and a randomly selected value from the overall distribution of household cycle
durations to the household average value.

Dryer cycles are characterised by periods at constant power with occasional short
periods of zero power but with a restart within 10 minutes. Each household with a
dryer is probabilistically assigned a fixed unit power and average cycle load factor based
on HES dataset analysis. There was no discernible correlation between the two values
and they are therefore assigned randomly. The relationship between cycle load factor
and duration is similarly random and therefore no relationship is assumed.

The load factor and duration are converted to a representative power profile by first
determining the number of heat periods within the cycle randomly with an arbitrary
upper limit set by total duration. The durations and start times for each heat period
within the overall cycle are randomly assigned, but restricted to achieve the overall

load factor.
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Figure 5.15. ‘Cycle Start Time' module structure.
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5.9 Cycle Start Time Identification Module

The three ‘cyclic’ appliance modules (‘Simple’, ‘Fixed’, and ‘Flexible’) use the same
method to convert the occupancy model output and the determined number of cycles
per day into cycle start times. The method is described below. The overall structure

of the module and principal defining elements are shown in Figure 5.15.

5.9.1 Cycle Start Time Probability Distributions

Existing models have used either time-use survey activities or fixed per-timestep prob-
abilities to define appliance use potential, but neither accurately captures both the
time-dependency of the use of each specific appliance or how multiple cycles are dis-
tributed.

The HES dataset analysis to identify individual use cycles included identification
of the start time for each appliance cycle. The overall distribution of these start times
gives a probabilistic assessment of when a particular appliance is used. This provides
both a simple and more direct means of modelling appliance cycle start times. Analysis
of the distribution of cycle start times per appliance showed that timing was dependent
on household type, occupancy, number of cycles per day, and time-specific drivers (e.g.
meal times).

Separate cycle start time probability distributions were generated for each primary
appliance based on household type, total number of daily cycles, and for each specific
cycle number. As outlined in 5.2.3, the 2-minute HES dataset resolution was converted
to a 1-minute probability distribution resolution by assuming an equal probability of a
cycle start within each 2-minute period.

Furthermore, to allow these distributions to be used with the occupancy model out-
put, the occupancy influence on each distribution must be removed. This is achieved by
dividing the unmodified cycle start time probability density function (pdf,q.) at each
timestep by the relative occupancy probability for the household type from time-use sur-
vey data (see Equation 5.9) and generating cumulative probability distributions based

on the modified pdf values (see Figure 5.16 for unmodified and occupancy-modified
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distribution examples).
pdfmod(t) - pdfraw (t)/(pocc(t)/pocc) (5.9)

Each household type has unique use cycle patterns beyond what would be predicted
by differences in occupancy. Examples include; higher relative use of several appliances
in family households in the 8pm-12pm period suggesting that child presence earlier in
the day can restrict appliance use by parents; earlier relative use of laundry appliances
in older households; higher relative evening use of cooking appliances in working age
single-person households and lower use in retired single-person households.

To account for differences in cycle timing based on household type and insufficient
cycle data to allow this to be captured for each cycle specific distribution, the overall
cycle start time distribution for each household type was determined, and modified for
type-specific occupancy using the same method as described above. The same process
was also undertaken to generate a single distribution for all households. The probability
density function (pdf) value at each timestep for the household type distribution was
then divided by the equivalent ‘all household’ pdf value, with the resultant relative
use per timestep distribution used to factor the specific cycle distributions for each
household type to reflect distinct behavioural patterns. These modified distributions
are used as the basis for linking occupancy with appliance use probability as described

in the following section.

Table 5.7
Daily event matrix example - microwave - cycle #1 of 3.
Time 07.50 09.05 10.53 13.16 19.10 20.29 22.09 23.55
Occupants 1 0 1 0 1 2 1 0
Availability 1 1 1 1 1 1 1 1

Cumulative Probability 0.438 0.563 0.725 0.844 0.988 0.997 0.999 1.000

5.9.2 Cycle Start Time Identification Method

For each modelled household, the appliance cycle start times are determined based
on the active occupancy periods generated by the occupancy model (see Chapter 4),
the generated daily cycle number for each appliance (see 5.6, 5.7, and 5.8), and the

occupancy-modified cumulative probability curves identified from the HES dataset for
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each appliance (see Figure 5.16 for example).

For each modelled day, the occupancy model output is converted into an event ma-
trix that tracks occupancy transitions and appliance availability changes (see Table 5.7).
Potential cycle periods require both active occupancy and appliance availability at the
start of the period to be greater than zero. Appliance availability tracks whether the
appliance is already being used within the defined period.

The appliance cycle start time cumulative probability function values at the start
and end of each ’available’ period are determined from the appropriate occupancy-
modified curve (see Figure 5.16). A generated random number, limited to values within
the ’available’ periods, is then used to determine the cycle start time (see Figure 5.17).
Cycle events are therefore more likely during periods with higher use probability relative
to occupancy to accurately reflect realistic appliance-specific behaviours.

For subsequent cycles, the event matrix is updated, with the previously identified
cycle periods (including an arbitrary short dead period pre- and post-cycle to ensure
adequate cycle separation) set as appliance unavailable (see Table 5.8). The next cycle
start time is determined in the same manner using the next cycle start time probability
distribution until the total number of daily cycles is reached.

Table 5.8
Updated daily event matrix example for cycle #2 of 3 following a 4-minute microwave cycle at
08.07.

Timestep 07.50 08.04 08.14 09.05 10.53 13.16 19.10 ; 23.55
Occupants 1 1 1 0 1 0 1 : 0
Availability 1 0 1 1 1 1 1 I 1
Cumulative Probability 0.059 0.062 0.066 0.093 0.175 0.354 0.807 j 0.941
0 T

5.10 Audio-Visual Appliance Module

As defined in 4.7.2, TV use is predicted per-occupant by a secondary Markov chain
model linked to any active period identified by the primary occupancy model. In
addition, the following needs to be determined; whether other TV-linked appliances
are being used (i.e. DVD/Blu-ray players, set-top boxes, and games consoles), the

base power level for each appliance, whether there is shared use, and any standby
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Figure 5.18. ‘Audio-Visual’ appliance module structure.
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power demand. The overall structure of the module and principal defining elements

are shown in Figure 5.18.

5.10.1 Dataset Analysis
5.10.1.1 Linked Appliances

The HES dataset was analysed to determine the per-household probability of a sec-
ondary AV device (DVD/Blu-ray players, set-top boxes, and games consoles) being
used at the same time as a TV. No obvious correlation with either household type or
number of owned televisions was discernible, therefore the probability was set randomly
for each household based on the overall distribution.

Based on the assigned probability per-household, the probability of linked AV appli-
ance use is determined at each timestep with a change in the number of people watching
TV. The simultaneous use of a DVD/Blu-ray player and games consoles linked to the

same TV unit is not allowed.

5.10.1.2 Power

All AV appliances have a relatively constant power demand and can be assigned a single
value. For each TV in the HES dataset, the average power demand during ‘on’ periods
were determined, and for multiple unit households, the units ranked in descending
order. The highest power unit was assigned as ‘T'V1’ and the demand compared for
all households. There is a distinct difference in average unit power based on household
type, therefore the data was further differentiated on this basis. Each household is
assigned a ‘T'V1’ power probabilistically from the household type distribution. This
process was repeated for the 2nd, 3rd, all other TV units, DVD /Blu-ray players, set-top

boxes, and games consoles, if owned.

5.10.1.3 Shared Use

Modelling TV use in a multi-unit, multi-person household by determining use per-
occupant is complicated by the possibility of a single unit being used by more than
one person. Collin et al [140] used the UK 2000 TUS survey [83] to determine the

shared use probability. The TUS data includes a diary element where it is logged
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whether the activity was undertaken alone or together with another person. This
allows determination on a per-timestep basis of the probability that the activity and
location is shared (i.e. a single TV unit is used by more than one person) rather than
happening concurrently but with the occupants in different locations.

The work presented by Collin et al is focused on two-person households and does not
reflect the different relationships between adults and children or variations in sharing
potential based on the size of the house and number of people watching television at
a specific time. Each potential adult and child combination for two, three, four, and
five-plus person households was therefore differentiated.

There are two main residual issues with this analysis. One is that when four or
more people are watching television it is not clear if this is two or more sets of multiple
people together or all people sharing an activity and location. However, this situation
is extremely rare and is therefore assumed to reflect all people together for simplicity.

The second, more significant issue, is that in larger households some will be unit
number constrained but also that in those households the potential for watching tele-
vision may be lower overall. The UK 2000 TUS dataset includes whether one or more-
than-one television is owned by a household. This allows all households with a single
unit to be removed from the analysis. Beyond this, however, any potential for the
model to underestimate use based on overestimation of sharing from unit-constrained
households cannot be accurately determined from the currently available activity and
demand data.

The results of the analysis show that sharing potential falls with increasing house-
hold size, as would be expected given the increased potential for additional units and
rooms. For example, the probability of two adults sharing falls linearly from 77.2%
in a two-person household to 51.3% in a five-plus person household. There is also ev-
idence of a lower probability of sharing when children are involved. To illustrate, in
a four-person household there is a 62.2% probability of sharing when two adults are
watching but only a 20.2% chance of sharing for an adult and child. It should be noted,
however, that the probabilities for children sharing TV units is significantly lower than
for adults. It is suspected that there may be an under-reporting of location sharing
for children in TUS diaries completed by their parents. The overall impact on energy

use if child TV-sharing is underestimated is small, therefore the analysed data is used
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directly. Full sharing probability results are presented in Appendix C.

The potential for time dependence in TV sharing must also be determined. Data has
been split between weekday and weekends. There is insufficient data to allow 10-minute
timesteps to be used for the analysis, therefore the probabilities have been generated
on an hourly basis. Given that television viewing is predominantly an evening activity
and some of the modelled situations are rare, only time-specific data with more than
20 examples of the particular base scenario (e.g. two adults watching in a three-person
household between 7pm and 8pm) are identified separately to ensure only statistically
significant data was used. For time periods with fewer data elements the overall average
for the scenario was used.

The analysis of the hourly data does not show any distinct time-dependent patterns,
although there is some evidence of lower shared use in the early evening which increases
during peak viewing hours (8pm to 10pm). The use of the hourly data has been retained
but in most cases the overall average values (see Appendix C) could be used without
significant error.

The potential for TV sharing can be modelled in two ways; absolute probability
or transitional probability. For the absolute probability approach, the number of units
watched is assumed to remain constant if no change in people watching. If a change
occurs, the new situation is determined only by the relative probability of all potential
new situations. The only influence of the previous state is that the new potential states
are limited by the assumption that only the person(s) changing impact the number of
units watched.

For example, if, in a 3-person household, 2 adults are watching one unit and a child
starts watching television, it is assumed that the new situation can only be one or two
units on. For this situation, overall there is a 57.8% probability of 2 units and 26.6%
of one unit being watched, which is converted to a 68.5% probability for 2 units and
31.5% for one unit in this particular situation.

The transitional probability method uses a Markov chain approach to incorporate
the change probability directly. This has the potential to accurately reflect real tran-
sition events and to allow transitions in units watched without a change in people
watching to be captured. From direct TUS data analysis, the probabilities for the
above example transition were 68.75% (11 of 16) and 31.25%, therefore a Markov chain
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model for the transition to an additional child watching produces similar results.
Analysis of other high frequency transitions showed a similar correlation between
probabilities for the two methods. Examples of changes in units watched but not people
watching were also very rare. The sparseness of the transition data requires significant
consolidation to allow effective Markov chain models to be developed and does not allow
any time dependency to be captured. Given the performance similarity between the
two methods and the simpler calibration and computational requirement, the absolute

probability method has been used.

5.10.2 AV Module Calculation Sequence
The following outlines the sequence of steps for the ‘AV’ appliance module:

e Step 1 - For each owned appliance identified by the appliance ownership module,

a power value is assigned probabilistically from the HES-calibrated distribution.

e Step 2 - Total number of adults and children watching TV per 1-minute timestep

is determined from the occupancy model output.

e Step 8 - Each change in the number of adults and children watching TV is iden-
tified.

o Step 4 - The shared use module determines the number of units on at each
identified change event and the unit identifier(s), if more than one unit is owned,

to determine the assigned power value and location.

e Step 5 - At each change event the use of linked appliances (DVD player, set-
top box, games console) is also determined from the assigned probability per

household.

5.10.3 AV Standby Power

AV equipment is one of the main consumers of standby power. Standby use behaviour
varies significantly between households and typical patterns within households are in-
consistent. In line with the overall demand model aims, the standby use was assessed
statistically and probabilistically rather than attempting to simulate individual unit or

occupant behaviours using a more agent-orientated approach.
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Figure 5.19. ‘Continuous’ module structure.
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Total AV power use was analysed in each household in three periods,” Day’ (11.30-
13.30), ‘Peak’ (20.00-00.00) and ‘Night’ (02.00-04.00). The 75th percentile of the non-
zero ‘Peak’ period power values was set as a baseline for normal use (selected as it
captures a typical power level for most households but ignores outlier events). For both
the ‘Day’ and ‘Night’ periods, the percentile values of the individual measurements were
calculated and the ratio to the normal-use baseline determined.

Analysis of the resulting ‘Day’ and ‘Night’ percentile distributions shows that for
most households there is a significant proportion of the distribution below 0.35 with
typically distinct increases between this low level ‘standby’ demand and values close
to and exceeding one (indicative of an ‘on’ period). The percentile distributions were
therefore recalculated only for periods with ratios up to 0.35. The standby power use
probability and level during periods with no ‘on’ cycles were then modelled from these
distributions.

‘Day’ and ‘Night’ standby distributions for each household are generated proba-
bilistically from the range of distributions for the relevant household type. The per-
centile distributions are converted to eight probability ranges (1=0, 2=0-0.05, 3=0.05-
0.1....8=0.3-0.35). This data is then used to calibrate a Markov chain model to de-
termine percentile probability distributions for modelled households by assessing the
probability range at each percentile based on the previous percentile value.

For each modelled household, the 75th percentile of the non-zero AV power demand
in the ‘Peak’ period is calculated as the baseline by running the main AV module first.
The ratio of AV standby power to this baseline in relevant ‘Day’ and ‘Night’ non-cycle
periods is determined by selecting a value probabilistically from the household specific
standby distribution generated using the Markov chain model. In the ‘Day’ period, the
value is assumed to be constant between ‘on’ cycles and, in the ‘Night’, the value is

constant between the last cycle before sleep and the first cycle after waking.

5.11 ‘Continuous’ Appliance Module

A subset of appliances in a household are continuously left in a powered state. This
section specifically addresses appliances that are typically always on with relatively

small changes in power profile under normal operating conditions. Where continuous
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use is related to a standby condition or extreme behaviour for a particular appliance
(e.g. computers) this has been addressed within the appliance-specific module. The
most significant contribution to overall consumption from this type of appliance is from
cold appliances. Other applicable appliances include telephones, alarms, aquariums,
and pond pumps. The overall structure of the module and principal defining elements

are shown in Figure 5.19.

5.11.1 Cold Appliances
5.11.1.1 Dataset Analysis

There are four types of cold appliances commonly owned by households; fridges, upright
freezers, fridge-freezers, and chest freezers. The HES dataset includes per-household
ownership information such as type, model, volume, and energy rating (see 5.4.1). This
allowed ownership, volume per appliance and household type, and typical power cycles
per appliance and volume range to be determined.

Energy rating ownership data for the UK is taken from DECC ECUK data tables
[29]. The majority of cold appliances owned in the UK have one of four energy ratings
(A+, A-C). For example, for fridge freezers the proportions were 18% A+, 52% A, 7%
B, and 3% C in 2014. The HES data was therefore differentiated based on these four
grades.

Cold appliances typically cycle between periods of zero and full power which are
either timer or temperature controlled. Analysis of the HES dataset shows a wide
variation in demand patterns with cycles ranging linearly from 25 to 90 minutes. Newer,
more efficient appliances tend to cycle more frequently with a lower ‘on’ power and

overall energy consumption.

5.11.1.2 Module Development

The module requires five sequential assessments; number of cold appliances owned,
type(s) owned based on number, energy rating for each appliance, volume of each
appliance based on appliance and household type, and the specific power cycle based
on appliance type, volume, and energy rating.

Number of appliances owned is determined based on the number of occupants,
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and the type(s) of appliances owned determined based on the appliance number from
HES ownership analysis (e.g. one owned appliance is typically a fridge-freezer, the
probability of a separate upright or chest freezer increases with number owned, etc.).
Energy ratings are set based on the proportions for each appliance from the ECUK
dataset, restricted to the four grades with highest ownership.

The relationship between unit type, energy rating, and volume to the average
(AvgP) and peak power (PeakP) requirement, assessed from the HES dataset, is ex-
pressed in Equations 5.10 and 5.11, with a fixed and unit volume-dependent (in litres)
factor as shown in Table 5.9 for fridge-freezers. These factors were determined by

regression.

AvgP = C1+ C2 x Vol (5.10)
PeakP = C3+C4 x Vol (5.11)

Table 5.9
Cold appliance average and peak power factors by energy rating - fridge-freezer example. Data for
analysis from the HES dataset [89].

A+ A B C
C1 0.504 0.700 0.909 1.189
C2 0.123 0.170 0.221 0.289
C3 80.6 89.2 110.6 121.4
C4 0.075 0.083 0.052 0.056

Based on the typical variation within the dataset from the regression-generated
average result, the average was further varied by a factor between 75 and 125% and the
peak power by a factor between 50 and 150%. The peak power varies more significantly
as it is linked to the power cycle characteristics where the relationship between peak
power and proportion of the overall on/off (duty) cycle when power is drawn can vary
significantly. A simple linear representation of the variation is used rather than a more
detailed probabilistic model as a result of the limited number of units in the HES
dataset.

There is insufficient data to accurately set the duty cycle duration ranges per energy
rating, therefore nominal ranges of 25-45 minutes for A+, 35-65 for A, 55-85 for B, and

70-90 minutes for C have been used based on analysis of several applicable units per
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Figure 5.20. ‘Lighting’ module structure.
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type and the typical reduction in duty cycle duration with more efficient appliances.

The time that the appliance is on within the cycle is adjusted for both seasonal and
diurnal variations based on HES dataset analysis. The seasonal function is applied to
all cold appliance types as type-specific assessments were not possible due to the short
duration of analysis (typically 1-month), however, the diurnal function is appliance type
specific. The overall seasonal adjustment equation and the appliance-specific time-of-

day adjustment equation for fridge-freezers are as follows:

SeaAdj = 0.9748 + 0.1715 x cos (0.0154 x DayNum — 2.990) (5.12)

DayAdj =14 0.117 x sin ((7 x (MinuteNum — 752.37)) /719.26) (5.13)

5.11.2 Other Continuously Powered Appliances

The other continuously powered appliances with either high ownership or high overall
consumption identified in the HES dataset were cordless telephones, door bells, burglar
alarms, pond pumps, aquariums, vivariums, and hot tubs. Each has been modelled as
a constant load based on HES dataset analysis of power use, and ownership is based

either on national survey data or, if unavailable, HES ownership probability.

5.12 Lighting Module

The HES dataset has lighting power data from the main distribution boards (typically
one per floor) and for individual socket-connected units. Also included are percentages
of low energy bulbs per-house and average installed lighting power per room. However,
there is no per timestep room-level power data, which limits the potential modelling
methods. Analysis of the overall data also highlights considerable variation in both
timing and typical power levels. The HES survey was carried out in the 2010-11 period
during which the bulb types used for domestic lighting were rapidly changing to low
energy variants, but at different rates for individual households.

A lighting module has therefore been developed based on identifying occupant lo-
cation and using this and the external solar level to determine lighting need. The HES

data was used for low-energy bulb proportion and for validation. The overall structure
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of the module and principal defining elements are shown in Figure 5.20.

5.12.1 Occupant Activity and Location Module

To ensure a degree of consistency between the appliance and lighting models, the occu-
pant location module is first populated based on the identified appliance cycle periods.
Appliance use is attributed randomly to active occupants with no previously allocated
location. UK 2000 TUS activity probabilities are used to determine the location for
any remaining unallocated occupied periods. The concept is similar to that used by
Terry et al [113]. This is primarily a means to simulate the influence of multiple occu-
pants, location sharing and transition likelihood, and therefore realistic lighting levels
and level changes. The aim is not a highly realistic agent-based lighting model, but a
model that is sufficiently statistically representative for an overall demand model.

For some appliances it is assumed that the occupant is present for the full cycle (e.g.
kettle, microwave, toaster, hair dryer) and for others (e.g. cooker, washing machine,
dishwasher, computers) only presence in the appliance location for a short duration at
the start and end of the cycle period is assumed. The TV module accounts for shared
use potential and different locations for specific units.

The TUS activity module that is used to populate the ‘active’ occupancy time
periods which were not determined from appliance use was developed from analysis of
TUS activity sequences and durations in six key periods associated with the starting
and ending of active occupancy sequences (active period start: waking, return pre-4pm,
return post-4pm; active period end: leave pre-4pm, leave post-4pm, pre-sleep).

The TUS activities are filtered to include only the thirteen most common ‘active’
activities (eating, wash&dress, food prep., dishwashing, housework, laundry/ironing,
pet care, receiving visitors, telephone use, resting, reading, watching television, and
listening to the radio) to simplify the analysis. The probability that a specific activity
is the 1st, 2nd, 3rd, etc. activity undertaken following or preceding a specific occupancy
transition is determined. This is then used to determine the sequence of occupant
activities. The analysis also determined the distribution of activity durations for each
of the thirteen activities, which is used to probabilistically allocate a duration per

identified activity. The sequence of activity and duration assessments is repeated until
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the total duration exceeds the length of the occupied period.

For each individual in each of the five primary identified household types in the
TUS dataset (working age single-person; retired single-person, retired couple, family,
multi-adult), the sequence of TUS activities was determined from the start of each
active period until six 10-minute timesteps from an active period ending. Active periods
shorter than six timesteps were ignored. For the pre-sleep and leave periods only a fixed
period of six timesteps is considered as there was a clear influence of the transition in the
types of activities in this timeframe but not for periods further from the transition. As
the model already captures a proportion of activities through appliance and hot water
cycle identification, the probabilities for the associated activities have been reduced
to account for this (e.g. ‘Laundry’ reduced by 75% to account for identified washing
machine and dryer cycles, ‘T'V’ reduced to zero as all cycles are assumed to be captured
by the AV module).

Figure 5.21 shows example activity and cumulative duration probability distribu-
tions for a retired couple householder for a return to the dwelling in the pre-4pm period
(only the six highest probability of the thirteen potential activities are shown for clar-
ity). For this case, for example, there is a 10.5% probability that the third activity
from returning to the dwelling before 4pm is ‘Food Prep’ and a 47.7% probability that
it lasts for a single 10-minute timestep. The location for each activity is assigned using
a simple set of common sense assumptions (e.g. for eating there is a 50% probability

of the designated occupant being located in the kitchen or living/dining room area).

5.12.2 Lighting Demand Module
5.12.2.1 Installed Lighting

The installed lighting in the house is determined based on the floor area and the per-
centage of low-energy bulbs installed. Each room has a target average illumination
level (in lux) as per Table 5.10 based on industry standard target levels [168]. Specific
household values are randomly varied by between 75 and 125% to allow for a degree of
variation.

Living rooms, kitchens and bedrooms have two lighting levels, ‘main’ and ’task’,

that can be used separately or together. ‘Task’ lighting represents high intensity sources
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Table 5.10

‘Main’ and ‘Task’ target lighting levels (in lux) per room type.
Room Kitchen Bathroom Living Room Bedrooms  Hall/Stairs
‘Main’ 300 150 300 200 100
‘Task’ 150 n/a 150 100 n/a

(e.g. lamps) used to illuminate small areas of the rooms for specific tasks (e.g. reading
lamps). The lighting intensity (main, task, or both) is dependent on the modelled

occupant activity (see 5.12.1).

Table 5.11
Proportion of floor area allocated to each room type by number of bedrooms.
Room Kitchen Bathroom Living Main Other Hall/Stairs
Room Bedroom Bedrooms

1-Bedroom 0.2 0.15 0.3 0.25 n/a 0.1
2-Bedrooms 0.15 0.12 0.28 0.2 0.15 0.1
3-Bedrooms 0.15 0.1 0.25 0.16 0.12 0.1
4-Bedrooms 0.15 0.1 0.2 0.15 0.1 0.1

Specific room area is determined from the overall floor area using the representative
proportions in Table 5.11. Installed lighting per room in lumens is determined by an
approximation based on the allocated target illumination (in lux) multiplied by room
floor area (m?). The proportion of installed lighting used by occupants is selected ran-
domly between 50 and 100%, which allows for variable external lighting level influence,
use of dimmer devices, and different behaviours.

Table 5.12
Low energy lighting percentages from HES dataset by household type (2011 basis). Data from the
HES dataset [89].

Low Energy Lighting (%)
Hhld Type 0-20 20-40 40-60 60-80 80-100
Single, working age 0.345 0.345 0.069 0.207 0.034
Single, retired 0.303 0.152 0.212 0.091 0.242
Couple, retired 0.28 0.24 0.36 0.04 0.08
Family 0.306 0.222 0.208 0.181 0.083
Multi-Adult 0.232 0.333 0.247 0.130 0.058

Based on analysis of the installed lighting carried out by others using the HES
dataset households [150], the percentage of low-energy bulbs installed per-household is
assessed probabilistically (see Table 5.12). This is primarily to allow the current basis
to be validated with both the HES dataset and other datasets observed in the same

period. The final model basis will be reconfigured to reflect that the percentage of
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low-energy bulbs per household has changed significantly since 2011 and will need to
be frequently updated for changes in installed technologies.

Based on the assigned percentages each household light source is first defined as
being low or high energy and then the specific technology is assigned based on this
assessment and the proportion of each technology in each room type [150]. There are six
options defined (High Energy - incandescent(12), halogen(14), low-voltage halogen(25);
Low Energy - compact fluor.(60), fluorescent(90), and LED(60)). Each has a different
lumens/watt value (shown in brackets), based on 2010 data from [169] for the HES-

comparison calibration basis.

5.12.2.2 Conditional Lighting Demand

Determination of lighting demand also requires that external lighting levels are as-
sessed. The range of threshold solar levels for switching events was determined by
comparing the timing of the main lighting use transitions in the morning and after-
noon from the HES data households with average England-wide solar levels. Without
occupancy and detailed location data, detailed analysis is difficult as occupancy-driven
lighting use cannot be distinguished from solar-driven use and exact sunrise and sunset
times are unknown. For most households, the morning decrease and afternoon increase
are consistent with external light levels between 20 and 50 W/m. Allowing for some
occupancy-driven use that distorts the analysis, baseline lighting use thresholds are set
randomly between 30 and 70 W/m for each household. This is a similar basis to the
60 W/m average and 10 W/m standard deviation used by Richardson et al [69].

The HES-population equivalent model specifically uses 1-minute resolution syn-
thetic external light level data from the solar model developed by Bright et al [170].
Nottingham location data is used, which is assumed to be close to the average for the
HES population. The same solar model can be used for any UK location by setting
latitude, longitude, and height above sea level.

Whether a lighting event (switch on/off, location change, intensity change) occurs
is predicted using a set of assumed rules. These are as follows:

Lighting is switched-on if lighting is off and:

e the room is occupied, and external light level is below the lighting use threshold
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for at least 8 minutes of the 9-minute period centred on the current 1-minute

timestep.
e the room becomes occupied and daylighting use is predicted (see below).
Lighting is switched-off if lighting is on and:

e the external light level is above the lighting use threshold for at least 8 minutes

of the 9-minute period centred on the current 1-minute timestep.
e the room is not the living room and the room becomes unoccupied.

e there is a 25% probability of a switch off if the room is the living room, and the

occupant moves to the bathroom or kitchen.

5.12.2.3 Additional Lighting Demands

Terry et al [113] highlighted levels of day and night use in the HES data that could
not be directly attributed to external solar levels and occupancy respectively. These
lighting uses therefore need to be modelled separately.

For the analysis of day and night use in each household in the HES dataset, a
typical peak use lighting level is determined to set a baseline for the overall lighting
use in the household. Percentile analysis of all non-zero lighting periods determined
that the 90th percentile represented a suitable measure as it discounted the typically
small percentage of extreme use periods and captured typical peak usage. This value
is hereafter known as the ‘household baseline’.

Daytime Use - For daytime use of lighting, when external solar levels would not
predict a requirement (i.e. for rooms with restricted or no external lighting, task-
specific lighting, user behaviour), determining household specific behaviour is difficult
as the HES data does not track occupancy. Analysis of demand in the 11.30am-1.30pm
period for households monitored between April to October determined that 25% of
households had no lighting demand. Of the remainder, there was significant variation
but generally characterised by significant periods of zero and low power use (<30%
of the household baseline) and occasional periods of higher level use. There was no
obvious correlation between daytime use and household type beyond that which would

be predicted by occupancy variations.
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The data analysis determined for each HES household the proportion of time during
the 11.30am-1.30pm periods with non-zero lighting use (‘Low’ probability) and the
proportion that it exceeded 30% of the household baseline (‘High’ probability). For
each modelled household, the ‘Low’ probability is determined probabilistically from
the analysed HES household distribution. The ‘High’ probability is then determined
from the analysed relationship between the ‘Low’ and ‘High’ factors using the Kernel
Density approach (see Appendix A). Daytime use is then modelled in three ways to

incorporate each potential driver:

e External solar driven use.

e The ‘Low’ level non-solar driven use is determined from the assigned ‘Low’ prob-
ability. The probability is further manipulated using a skewed beta distribution
random number model based on the household daytime occupancy compared to
the overall average (60.2%). At each occupancy state change it is determined if
there is a low-level lighting demand from the assigned probability and the level
is selected randomly from the observed range up to 30% of the evening use base-
line. ‘Low’ demand can be assigned for both occupied and unoccupied periods to
reflect lighting left on for security etc. and is only assigned for periods with no

other lighting use.

e The ‘High’ level non-solar driven use is determined from the assigned ‘High’ prob-
ability in the same manner as solar-driven demand but with the solar threshold
replaced by a probabilistic determination using the ‘High’ factor at each occu-
pant location transition. Daytime ‘High’ use is restricted to the lower ‘Task’ level
lighting (see 5.12.2.1) based on analysis that average non-zero lighting use in the

daytime period is ¢.60% of the evening period power level.

Night Lighting Use - Data analysis and modelling of night use of lighting is
more straightforward than for day use as occupancy and external solar influences are
less significant. It can also be assumed that lighting does not change between the last
person sleeping and the first person waking.

In a similar manner to day use, the HES dataset lighting use for the 2am-4am

period was analysed to determine the power level distribution relative to the household
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baseline. The distribution was simplified to the probability of lighting demand in five
relative power ranges (0%, 0-10%, 10-25%, 25-50%, 50-75%) with values in excess of
75% ignored on the assumption that those are associated with active occupancy.

To capture the significant range of household behaviours, the data is converted to
residual percentages (e.g. 25% in the 0% range, 25% in the 0-10% range and 50%
in the 50-75% range converts to 75-50-50-0). The Kernel Density probability method
(see Appendix A) was used to develop a method to generate realistic variations per
modelled household. The percentage in each range is determined from the remaining
sum of residuals based on the HES data analysis. Each household is probabilistically
allocated a ‘sum of residuals’ (for the above case the sum is 175), which is then used as
the input to the first KD matrix to determine the percentage of zero use. The process
is repeated for each range using the remaining sum of residuals (100 in the above case
for the 10-25% range calculation) to determine the percentage in the next range.

For each appropriate period, the night-lighting relative range based on the allocated
probabilities is determined, and then the exact level based on the distribution of values
observed in each range from the HES analysis. This determines the fixed lighting level
for each night-time period. The probability of the night-lighting switch on has an equal
probability as each occupant transitions to sleep and similarly the switch off has an

equal probability as each occupant wakes.

5.13 Miscellaneous Appliance Module

The ‘Miscellaneous’ module covers two electricity demand elements. One is related
to appliances that have low ownership or total energy consumption. The other is
unacknowledged appliances in the HES dataset that are identified by the difference
between the socket distribution board power measurements and the total at the same
timestep for all individually monitored appliances. The same basic method is utilised
for both as outlined below. The overall structure of the module and principal defining

elements are shown in Figure 5.22.
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5.13.1 Low Contribution Appliance Data Analysis

The HES dataset includes a number of appliances that have low levels of ownership or
energy consumption. For these appliances there is both insufficient data and contri-
bution to overall demand to justify simulating each separately. These appliances have
therefore been consolidated into three separate groups (‘Cooking’, ‘Entertainment’,
and ‘Others’), with each group treated as a single entity for each household. The three
groups account for only <1%, <1% and 2.5% of total power respectively.

Each household in the HES dataset was analysed for each group of appliances. The
proportion with no applicable appliances was noted and for the remainder the total
demand of each group per timestep was determined. Use per group for each household
was characterised by three factors: average power, peak power, and the proportion of
non-zero timesteps.

Consistent for each appliance group, two distinct patterns of use were observed.
Most households had either intermittent use (<10% non-zero timesteps) that would be
associated with cyclic appliances only or almost continuous demand (>90% non-zero
timesteps) that suggested at least one ‘always-on’ appliance. Each identified miscella-
neous group was therefore further differentiated on this basis.

Similar to the ‘Simple’ appliance analysis (see 5.6), for each miscellaneous appliance
group, the overall distribution of the ratios of each household mean demand to the
household type mean is similar for all household types. The mean power for each
household can therefore again be determined by random selection from the overall
ratio-to-mean distribution multiplied by the household type mean.

There is a partial correlation between overall average miscellaneous group power
and non-zero timesteps, and between the average power for the non-zero timesteps
and the ratio of peak power to this value. The Kernel Density method (see Appendix
A) has been used to capture these relationships probabilistically, allowing both non-
zero timestep percentage and peak power to be modelled from a pre-allocated average
appliance group power.

The dataset analysis therefore allows it to be determined probabilistically per ap-
pliance group if a household owns one or more relevant appliances, average power use,

peak power use, the percentage of time in use, and the average power while in use.
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5.13.2 Unacknowledged Appliances Dataset Analysis

The HES dataset provides both total socket demand monitored at the distribution
box and individual appliance demands. There is a significant discrepancy between the
socket measurement and total appliance demand for many of the households. Overall
this shortfall accounts for ¢.24% of demand (c.100W average). This is presumed to be
either unmeasured appliances or mobile appliances not reliably monitored every time.
85% of HES households had this type of unacknowledged demand.

Comparison of the national appliance ownership data with the measured HES ap-
pliances show that use data for a significant number of expected appliances is not
included. This accounts for 35% of the discrepancy (35W average). The remainder
(65W average) is treated in the same manner as the ‘Low Ownership’ appliances.

For the HES equivalent validation model described in the ’Validation’ section, ap-
pliance ownership is as per the measured data and the full 100W ’unknown’ element
is included in the model. For the final demand model, appliance ownership is based
on national survey data, therefore the 35% ownership-related shortfall is not included,
only the residual 65W element.

Analysis of the per-timestep average ‘unacknowledged’ demand highlighted four
distinct patterns; occupancy correlated (39% of households), continuous plus an oc-
cupancy correlated element (18%), continuous with specific peaks (20%), and specific
peaks only (8%). The module distinguishes between each type.

As for the ‘low contribution’ appliances, average and peak power, and non-zero
timesteps percentage were determined for each household and used to generate proba-

bility models that allow the demand characteristics to be simulated.

5.13.2.1 Module Development

The method selected to simulate the miscellaneous appliance demand is based on a sim-
ilar first-order Markov chain approach used by existing occupancy models (see 3.3.1 for
description). Applied to demand this is similar to the method developed by McLough-
lin et al [78], which they applied to the overall household power demand rather than a
defined portion and without time dependency.

Analysis of the demand patterns both for individual households and averaged for
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each specific appliance group (cooking, entertainment, others, and unacknowledged)
suggests that the demand is highly stochastic at the household and per-day level but,
averaged across all households, follows expected patterns based on occupancy and need
(particularly for the cooking and entertainment groups). This suggests that any efforts
to develop a household-specific model basis would be both mathematically challenging
and potentially unrepresentative when applied to other populations.

In particular, the selected method is limited in that it does not easily allow oc-
cupancy to be incorporated in the demand timing and a significant amount of this
potential household-specific detail is lost. However, it has the benefit of being math-
ematically straightforward, capable of handling combinations of cyclic and continuous
demands, and able to capture the overall demand behaviour impact.

The ‘states’ used by the Markov chain model in this case are ranges of demand
relative to the non-zero average value. The demand per timestep for each household
and appliance group is therefore first converted to a ratio to the non-zero average power
value and then each timestep value is converted to an integer between 0 and 9 based on
the ratio ranges (i.e. ‘0'=0, ‘1’=0-0.2, ‘2’=0.2-0.4, ‘3’=0.4-0.6, ‘4’=0.6-0.8, ‘5’=0.8-1,
‘6'=1-2, ‘7'=2-3, ‘8'=3-4, ‘9'=4+).

A 10-minute timestep calibration is used due to the data depth required for a stable
10-element (10x10) Markov chain model. The average power value for each 10-minute
period is therefore used for the ratio range integer conversion. At each timestep, the
probability for each of the 100 potential transitions is determined to populate the
Markov chain transition matrices.

The Markov chain probabilities at each timestep reflect the average non-zero timestep
probability for the appliance group and pattern (e.g. cyclic vs ‘always-on’ for the ‘low
contribution’ appliances). For example, for the ‘Cooking’ group the values are 6.5%
(‘cyclic’) and 90.0% (‘always-on’). To account for household specific patterns, the zero-
value probability (range ‘0’) is adjusted by a multiplier that accounts for the ratio
between the model allocated non-zero timestep probability and the appliance group
average, and all transition probabilities are rebased in order that they sum to one. The
factor was determined by running the model for a range of adjusting multipliers and
generating equations representing the relationship between the non-zero timestep value

and this factor. For the ‘cyclic’ groups this was best modelled with a power function
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and for the ‘always-on’ groups with a double exponential function.

The first run of the module sets a baseline sequence for the household based on the
ratio ranges calibrated for the average non-zero timestep probability. The deviation
from the target average power as a result of the household-specific non-zero timestep
percentage is determined and all non-zero values less than the maximum power are
rebased in order that the final average power equals the target value for the house-
hold. The Markov chain model therefore provides a representative sequence of relative

changes that are then manipulated to account for the household-specific characteristics.

5.14 Electricity Demand Model Validation

Validation of this type of highly probabilistic and differentiated model requires long-
term, high-resolution (i.e. sub-10 minute) household demand data. This type of data
for UK households is rare. The HES dataset is relatively large at 251 households, but
remains too small to split effectively into separate calibration and validation datasets.
The analysis presented in Chapters 1 and 2 also indicates that the use of small-scale
datasets for validation is potentially misleading given the potential variation from the
nationally representative mean behaviour at this scale.

Additional validation data was therefore taken from two sources; small-scale, high-
resolution data from the Richardson et al [69] and the UK REFIT [45] datasets; and
large-scale, low-resolution data from substation, district, and national demand analysis.
This was required to determine if the model is both nationally representative and
matches distinct demand patterns at smaller scales. (For the analysis: the Richardson
et al data was limited to the 2008 data and two households with significant evidence
of space or water heating were not used; the REFIT data was limited to 14 households
(out of 21) for the same reason.)

Four distinct types of validation of the model have been undertaken.

e A performance comparison of the developed event-based cycle allocation method
with models using the per-timestep and TUS-activity calibration approaches of

existing models.

e Confirmation that both the overall model, and the combined ‘cyclic’ appliance
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modules alone, replicate the average demand profiles from both the HES dataset

and validation datasets.

e Confirmation for each specific demand that the developed model replicates the

HES dataset calibration data.

e Confirmation that the overall model replicates the average demand profiles for
areas with specific characteristics, and replicates national average demand using

a representative set of households.

5.14.1 Cycle Method Performance

The aim of the developed discrete-event method was to improve on appliance cycle
sequence prediction compared to models that use per-timestep probability calculation
methods and the aim of the demand data calibration basis was to improve on existing
models that use time-use survey (TUS) activities as a proxy for appliance use. In
the following sections, the discrete-event approach (‘event’) is compared with a per-
timestep (‘timestep’) method using the same calibration data, and the demand data
calibrated basis is compared with the time-use calibrated approach used by Richardson
et al [69] and others.

The ‘timestep’ method used for comparison is similar to that used by [147], [69], and
[71]. The overall appliance cycle start time distribution is converted from a cumulative
to a probability density function (pdf) distribution. As for the ‘event’ approach, the
occupancy model output is used to determine the periods with a non-zero use proba-
bility. The distribution is then rebased such that the sum of occupied timestep pdfs is
equal to the baseline number of cycles, the baseline identified in the same manner as
the ‘event’ method. For example, a single day pdf distribution for a 6-cycle kettle use
day with four occupied periods is shown in Figure 5.23. The methods were compared

for both cycle number and timing replication performance.

5.14.1.1 Cycle Number Replication Performance

For the ‘event’ method, the predicted daily cycle number is identified using the binomial

distribution method outlined in 5.6.2.3. For the ‘timestep’ method, a degree of variance
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from the average number of cycles to which it has been calibrated is inherent in the

process of sequential independent (low) probability calculations.

The kettle data for each of the single-person households in the HES dataset and the
equivalent model results for both methods averaged over 20 annual model runs were
analysed for the average difference per day between the actual and mean number of
cycles divided by the mean number of cycles for each household, and the average for
all households determined. For the HES dataset the average household value is 0.387.
The equivalent for the ‘timestep’ model was 0.608 and for the ‘event’ model was 0.433.
Similar results were observed for the other ‘Simple’ appliances. This suggests that the
‘event’ method generates daily use number variations that are significantly closer to
reality with the ‘timestep’ method generating excessive variability.

The residual error between the HES data and ‘event’ model output is a consequence
of the lack of linked occupancy and demand data preventing both the occupancy in-
fluence on use and natural variation in use for days with identical occupancy to be
calibrated more accurately than the relative occupancy factor (see 5.3.3) and binomial

method (see 5.6.2.3) currently used.

5.14.1.2 Cycle Start Time Prediction Performance

Both the ‘timestep’ approach and the developed ‘event’ approach, if a single overall
rather than cycle-specific cycle start time distribution is used, are memoryless with
regard to the sequence of cycles within each day. This has the potential to generate
unrealistic sequences. To allow the methods to be compared, the standard deviation
range (in minutes) for the timing of multiple cycles is compared to the measured data.
This is determined by converting each cycle start time to a number of minutes from
4am (e.g. 08.30 = 270) and then determining the standard deviation of each daily start
time sequence.

The standard deviation range for 6-cycle kettle days for all single-person HES
dataset households is shown in Figure 5.24. There are some outliers but most house-
holds are in a range from 200 to 375 minutes with a mean of 285, which is indicative
of a significant separation between cycles (for example, cycles at 08.30, 11.52, 14.10,

17.15, 17.42, and 21.58 have a standard deviation of 285).
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The equivalent model output results (also shown in Figure 5.24) indicate that the
‘event’ method with multiple specific cycle distributions more closely approximates the
distribution of the actual data, although there remains some discrepancy. Compari-
son of the two ‘event’ method options (single and cycle-specific timing distributions)
highlights that the cycle-specific approach better captures the broad characteristics of
the distribution and the mean value (287 for the use-specific approach and 268 for the
single distribution vs. 285 for the HES data). The ‘timestep’ approach has a signifi-
cantly higher average standard deviation of 346 and a more linear distribution. This is
indicative of results where the modelled daily mean cycle time varies excessively from
the mean (c.14.00) because of unrealistic sequencing.

In both cycle number and timing comparisons, the multiple distribution ‘event’
approach shows a significantly better performance in capturing realistic cycle behaviour.
In this case, the residual error is the result of the cycle start time module calibration,
which is based on the combined behaviours of multiple households. Further model
development is required to manipulate the calibration basis for individual households
to account for different behaviours (e.g. typically early or later use) as detailed in

Chapter 7.

5.14.1.3 Comparison with a Time-Use Calibrated Model

To confirm the calibration of the cycle start time allocation method (see 5.9), the
modelled start time results were converted to the associated cumulative distribution
function (cdf) value from the relevant cycle start time probability distribution. The
distributions in this case are the unmodified versions prior to accounting for relative
occupancy probability (see Figure 5.16).

The overall mean of the modelled cdf distribution should be close to 0.5 with a
linear variation from 0 to 1. The results are compared with the method utilised by
Richardson et al [69], which was based on time-use survey activity probabilities. For
the main cooking and washing appliances the mean cdf results for both approaches are
shown in Table 5.13.

The TUS activity linked model results show significant variation from the 0.5 tar-
get, with better performance shown for the demand data calibrated model. Further

analysis also demonstrated that the demand data calibrated approach generated a more
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Table 5.13
Average cycle start time cumulative probability function results by appliance model calibration
method.

A Cycle CDF (T t=0.5
Model Calibration verage Lyce (Targe )

Kettle MwW Toaster Cooker  Oven Washi'ng Dishwasher Dryer

Machine
Time-Use Activity ~ 0.573 0.388 0.648 0.449 0.325 0.531 0.435 0.421
Demand Data 0.521 0.494 0.504 0.499 0.529 0.529 0.515 0.540

consistent, overall range of cdf results from 0 to 1. This confirms the conclusion from
the initial analysis outlined in 3.3.3.1 that broad TUS activities are a weak predictor of
specific appliance use. Residual deviation from the 0.5 target for the demand data cal-
ibration method is a result of occupancy differences between the HES households and
modelled equivalents, and significant variations in the number of cycles per household

used for the calibration.

5.14.2 Average Demand Replication

Further validation was undertaken to show that the model converges to the average
time-dependent electricity demand profiles and replicates the overall range of demand
profiles from the HES dataset, and for the independent ‘Richardson’ [69] and ‘REFIT’
[45] datasets (see 2.3), for an equivalent set of households.

For each household in the HES dataset, 500 model runs were generated for the same
period. Each household model was set up with the household characteristics (age of
respondent, employment status of respondent, appliances owned, etc.) identified by the
HES dataset. Similarly, 250 model runs for the ‘Richardson’ and ‘REFIT’ datasets were
generated in the same manner using the known characteristics. Considering the level
of household-level probabilistic factoring used within the model, a significant number
of runs were undertaken to generate a representative range of potential results.

Three levels of analysis were performed:

e To confirm that the average model output profile is consistent for each identified

HES household type population.

e To confirm that the overall distribution of model results is consistent with the

HES and validation dataset distributions.
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Chapter 5. Electricity Demand Sub-Model Development

e To compare individual household measured and modelled average demand profiles

over a number of model runs to determine the similarity of the closest match.

5.14.2.1 HES Dataset

The average demand results from the 500 runs both for the overall population and
for each of the eight identified household types were analysed to assess if the model
converged to the average power consumption and the average time-dependent demand
profile from the HES dataset.

Figure 5.25 shows the results for all households combined and Figure 5.26 the re-
sults for each of the eight defined household types. Results for the overall model output
and for the combined results of the cyclic appliance modules only are shown separately.
In general, there is a good correlation between the model output and the measured
calibration data for both assessments suggesting that the underpinning methods are
effective. However, there are some discrepancies that need to be further analysed to
determine if they are the result of poor calibration, the impact of unrepresentative out-
liers from the relatively small number of households per household type, or occupancy

differences between the actual and modelled populations.

5.14.2.2 Independent Datasets

The independent validation datasets are small (20 and 14 households) and therefore
the expectation is not that the model results match exactly, particularly given that
the household characteristics data is incomplete, but that the results capture the
characteristics-driven demand behaviour of each dataset, and no consistent under- or
overestimation is observed.

First, the average modelled power values were compared with the equivalent mea-
sured values to indicate if the model predicted power baseline is well calibrated. For the
"Richardson’ dataset, the averaged measured power is 434W and the modelled equiva-
lent is 463W. For the 'REFIT’ dataset, the values were 479W and 491W respectively.

The overestimate of the ‘Richardson’ equivalent model is primarily the result of
significant overestimation for two households and that the ratio of predicted to actual

results for the remainder are dispersed equally about parity (see Figure 5.27). The
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household with the worst predicted result has stated ownership of three cold appliances
but has an average demand of 333W, which strongly suggest appliances that are owned
but unused or a survey error.

There is also a general indication from review of actual and modelled daily aver-
age demand values that another potential source of overestimation is that the model
currently does not capture the frequency of short absences of 1-3 days and of extended
holiday absences seen in the data. Again, the lack of extended duration occupancy
data currently limits the ability to more accurately calibrate this element of the model.

Per-timestep analysis of the 'Richardson’ and 'REFIT’ validation datasets was also
undertaken with the results shown in Figure 5.28(a) and (b). Both the average and
closest model results from 250 annual-duration runs are shown for comparison. The
results show relatively good replication of the measured data overall profile but with
some periods of weaker performance.

Significant discrepancies in the early morning and evening periods are associated
with distinct demand peaks in individual households. However, the cause of the signif-
icantly lower later evening demand and earlier reduction is less clear. The HES model
results indicated a tendency to overestimate evening demand but did not display the
same timing error. With relatively little household data for each independent dataset,
the populations potentially differ significantly from the average predicted by the model.
The conclusion, therefore, is that attempting to validate model time-dependent perfor-
mance with small datasets incorporating limited household data, apart from indicating
that general use patterns are replicated, is inconclusive. This is addressed in 5.14.6
where the model output is compared with overall national use data to confirm average

timing performance.

5.14.2.3 Profile Replication Performance

As shown, while the model is broadly accurate, there remains some areas of less accurate
prediction in certain periods of the day that require further analysis.

For some of the populations analysed, including the independent datasets, the model
has a higher mid-evening peak and later evening reduction. This difference is not driven
by a single type of demand. There could be several reasons for this. Different occu-

pancy patterns between actual and modelled populations due to specific behaviours
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or differences between predicted and actual household characteristics. The occupancy
model also potentially underestimates the variance in sleep transition time, particularly
the variation between weekday and weekends, and between co-habiting individuals. Al-
ternatively, there may be a tendency to use lower power cycles and lighting levels in the
evening period generally that is not currently captured. For the HES dataset analysis,
by contrast, the modelled morning demand increase is significantly more consistent
with the actual data suggesting that the basic method is effective but that further
calibration is required for specific periods.

For both the family and multi-adult households the model tends to underestimate
the difference in demand based on the number of occupants for both overall and cyclic
appliance results. Further analysis of the potential impact of number of occupants on
typical cycle durations and power requirements, and an increased likelihood of owner-
ship of higher power appliances in larger households is, however, currently limited by

data availability.

5.14.3 Demand Variance Replication
5.14.3.1 HES Dataset

The model results were analysed to confirm that the measured average overall and per-
timestep demand for all HES households are evenly distributed relative to the mean
value predicted by the model and that the measured values are typically within the
range of modelled results. This was done by ranking each HES-equivalent household
model output in ascending order (based on 500 runs) and determining the rank of
the closest match to the equivalent measured HES household value. To allow the
performance of the household behaviour factor (see 5.3.1) to be determined, a further
set of 500 runs were generated with the factor set to 1.

For overall average power, Figure 5.29(a) shows a generally linear distribution of
model output ranking per actual data point for models with and without household
behaviour factoring. This indicates that a significant degree of demand variance be-
tween households can be accounted for by differences in appliance ownership, the type
of appliances, and appliance-specific behaviours.

However, the model with household-level factoring shows an improved performance,
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particularly at the lower end of the demand range, with a 51% reduction in the error to
the target distribution. The range of household behaviour factors (FHBFs) generated
for a single HES dataset equivalent model run is shown in Figure 5.30. The overall
influence is to reduce the median demand value (the median EHBF is less than 1) and
to generate a significant increase in use for a small number of households at the upper
end of the range. The impact of this is shown in Figure 5.29(a) where there is an
improvement for the factored model in reducing both the overestimate in the low-to-
mid range (rank below the target line) and the underestimate at the upper mid-range
(rank above the target line).

The results suggest that the 37% random behaviour factor applied as per the anal-
ysis of Gill et al [81] is broadly representative of real behaviours in combination with
the other generated factors for income, occupancy and appliance use. Similar results
are observed when the results for each household type were reviewed, and also when
the ranking distribution based on 10-minute timestep results was analysed (see Figure
5.29(b)).

The residual error for the factored method indicates that the household behaviour
factor as currently modelled is overly simplistic. Simple statistical relationships have
been assumed at this stage due to lack of detailed data, which do not fully capture the
range of demand variation that results from income-, occupancy-, and randomly-driven
behaviours. The results, however, indicate that household-level behaviour factoring is
required to capture the overall demand range, and that reliance on household charac-
teristics (type, size, age profile), appliance ownership, and individual appliance-level
variation to account for this is insufficient. Further work is required to better calibrate
this input.

The inclusion of the household behaviour factor also reduces the number of HES
household demands that are outwith the model output, suggesting that the additional
factors are also required to capture more extreme behaviours. Measured data for 4
(1.6%) of the HES households lies outside the range of modelled results for the factored
model and 8 (3.2%) for the unfactored. For the factored model, all outliers are at the
low end of the range, and, for the unfactored, one outlier is at the upper end.

A significant proportion of the residual error and outlier results are at the lower

end of the demand range. This suggests that there may be other drivers of the weaker
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performance for these households, including; modelled relationships between appliance
power ratings and relative use not currently capturing very low demand households;
underprediction of households with low relative use for all appliances; and overestima-
tion of minimum occupancy potential as a result of the group-calibrated occupancy
model and limited extended absence data. The results, however, suggest that the vari-
ety of probabilistic factors applied at different levels of the model broadly captures the
typical distribution driven by household characteristic and behavioural factors, without

significant under- or overestimation.

5.14.3.2 Independent Datasets

To confirm that the overall range of results generated by the model is consistent with
the measured data, similar analysis to that shown in Figure 5.29 was undertaken for
both independent datasets. The analysis is less meaningful as the number of analysed
households is smaller, however, the distribution of model rankings for the measured
data is broadly consistent in comparison with the target distribution (see Figure 5.31)

and no measured household average demand is outside the model predicted range.

5.14.4 Individual Household Behaviour Replication

Having confirmed that the model captures average household type behaviours and a
representative distribution of average demands, further analysis is required to determine
if the model is able to capture household-specific per-timestep demand profiles. The
following section outlines a method to determine the similarity between the model

output and measured data.

5.14.4.1 Similarity Analysis Method Development

The most commonly used numerical string similarity measure is the Euclidean distance,
which is determined by the square root of the sum of the square of the difference
(‘distance’) per string element. Demand profiles at a 10-minute resolution based on one
month of either measured or modelled data tend to be erratic and overly influenced
by individual high power cycles. Only at longer timescales do the demand profiles

become smoother and more consistent. Euclidean distance analysis when used for
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erratic profiles generates results that do not properly reflect overall similarity and are
too dependent on individual per timestep differences. A method is therefore required
to reduce the time-series to a smoother profile that remains consistent to the overall
profile and household behaviour.

Piecewise Aggregate Approximation (PAA) [171] is a data mining method that
allows a time series to be condensed and simplified to its basic structure, reducing
the influence of individual data points. The simplified time-series’ generated retain
the ability to be compared using Euclidean distance. To allow results for different
households to be compared on an equal basis, the data must be normalised and analysed
based on variance to the time-series mean. For the PAA approach, the time series
is z-normalised (difference between actual and mean result divided by the standard
deviation). The number of segments to be analysed is then reduced by taking the
mean of the 10-minute resolution z-normalised values for each new larger segment.

Further investigation was required to determine the most effective segment size for
analysis. Analysis of 20, 30, 40, and 60-minute segment sizes determined that 20 and
30-minute sizes retained a significant degree of the erratic nature of the 10-minute time-
series while at 60-minutes too much of the detail is lost. 40-minute segments (36 per
24-hour profile) were therefore determined to be the best compromise between retaining
detail and removing the poor performance associated with highly erratic profiles.

Figure 5.32 shows an example conversion from a 10-minute timestep profile to the
equivalent 40-minute segment profile based on the defined PAA ranges. It can be seen
that the basic demand pattern is retained while reducing the significance of individual
peaks and troughs.

To determine the model effectiveness requires two different types of analysis; an
‘overall” and a ‘timing’ comparison. The ’overall’ comparison determines the similarity
between profiles without any further rescaling. One of the profiles is used to set the
mean and standard deviation for the z-normalisation factors used for both measured
and modelled profiles. This is a measure of the similarity of both power level and
timing.

To remove the influence of variable baseline power levels from the analysis to allow
the performance of the cycle start time module to be assessed, a separate ‘timing’

comparison was also undertaken. This is achieved by allowing each set of profiles to be
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z-normalised individually using factors appropriate to each profile in order that they
are rescaled to the same average power basis. In this case, only relative demand timing
is assessed.

Z-normalisation was chosen as the overall normalising method as it is an appropriate
basis for the ‘timing’ comparison. For this analysis, any proportional difference is
variable and highly time-dependent, which is mitigated by incorporation of the standard
deviation in the normalisation. For the ‘overall’ comparison any normalising method
would have been acceptable but using z-normalisation allowed all results to be compared

on an equal basis.

5.14.4.2 Similarity Analysis Assessment Basis

For a 36 time-segment Euclidean Distance comparison of two profiles using the PAA
method (hereafter known as PAA-ED), a score of 1.5 is equivalent to an average z-
normalised PAA value difference of 0.25 per time segment, 3 is equivalent to 0.5 etc.
Whether two profiles can be considered similar is, however, a subjective judgement that
is best determined from direct visual comparison.

Comparison of results shows that a PAA-ED score of 2.5 or less represents a close
overall correlation between the two profiles. A result between 2.5 and 3.5 retains broad
similarity with evidence of either some time-shifted offset or failure to simulate spe-
cific extreme values. Between 3.5 and 4.5, the basic shape of the profile is typically
discernible but the model has not captured specific details. Above 4.5 the model has
not captured a significant proportion of the actual demand detail. Results have been
grouped into these 4 ranges (<2.5, 2.5-3.5, 3.5-4.5, 4.5+ ), and the ranges are titled "High
Similarity’, ’Good Similarity’, ’Some Similarity’, and "Low Similarity’ respectively. Ex-
ample HES dataset and model output PAA range profiles for various PAA-ED scores
are shown in Figure 5.33. For clarity, the profiles are included based on the ‘overall’

comparison PAA-ED score rather than the ‘timing’ comparison score.

5.14.4.3 Similarity Analysis Results

Using the PAA-ED method outlined, measured profiles for the HES and independent

datasets were compared with the model output for equivalent populations. The results
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have been grouped into the four defined similarity ranges.

HES Dataset

Detailed analysis of the data presented in Figure 5.34 allows the lowest cumulative
PAA-ED score for each household after each run to be graded. The most significant
improvement occurs during the first 20 runs and with limited further improvement seen
beyond 100-150 runs. The final results after 500 runs for both ‘timing’ and ‘overall’
value analysis are shown in Table 5.14.

Table 5.14
Model closest cumulative match similarity analysis range results for the 250 HES household equiv-
alent model after 500 model runs.

Similarity "High’ "Good’ ’Some’ "Low’
‘Timing’ 105 (42%) 98 (39%) 31 (12%) 17 (7%)
‘Overall’ 49 (20%) 118 (47%) 53 (21%) 31 (12%)

The ‘timing’ results show that 81% of the results are rated 'Good Similarity’ or
better after 500 runs. The results for the ‘overall’ analysis are lower, as expected, but
67% are within the 'Good Similarity’ or better range after 500 runs. The results suggest
that the model is able to capture a significant degree of the highly variable nature of
demand while producing outputs that are consistent with individual behaviours.

However, there remains a small number of households whose specific demand pat-
terns are not captured by the current model. Further consideration is therefore required
as to how the model is calibrated and for potential sources of inaccuracy, with focus
on the identified areas where the model is calibrated from composite behaviours as
discussed below. Analysis of individual household demand profiles also indicates that
there are a small proportion (<10%) that have highly distinct behaviours that are
probably outwith the scope of probabilistic model calibrated from currently available
data.

To confirm that the overall set of results generated are representative of the actual
range of potential demands, and that the closest matches observed are not simply
the result of randomly generated profiles, the overall distribution of model results was
reviewed.

The overall distribution of PAA-ED scores for the 500 HES-equivalent model runs is

compared to the distribution of PAA-ED scores for the Euclidean Distance comparison

181



35

T
— HES Data - 'Overall' ,'
30 F |~ ~ ~Model - 'Overall' !
—— HES Data - 'Timing' ,'
- = -Model - 'Timing' 1
25

PAA-ED Score

0
Low Household (Ranked)

High

Figure 5.35. Overall PAA-ED score distributions for 500 HES-equivalent model runs and
the equivalent scores for the measured HES data compared to the average model output
for each HES-equivalent household. Data for the ‘HES Data’ distributions from [89].

34

N
o

Households
o

10
B Low
B Some
S [ Good
[_THigh
1 50 100 150 200 250

Run

Figure 5.36. Model closest cumulative match similarity analysis range results for the
‘Richardson’ and ‘REFIT" household equivalent models over 250 runs.

182-A



Chapter 5. Electricity Demand Sub-Model Development

between the measured HES data time-dependent profiles and the average profiles gen-
erated by the HES-household equivalent model (these are assumed to be equivalent to
the expected profile for a household if all behavioural factors are average). If the model
is creating matches probabilistically rather than randomly, the shape of the distribu-
tions should be similar, with an allowable offset due to model inaccuracy. Figure 5.35
shows that the distributions for both ‘timing’ and ‘overall’ results are consistent with
the measured data distributions and that the model is not generating results randomly.

Independent Datasets

The combined results for the independent ‘Richardson’ and REFIT datasets are
shown in Figure 5.36 and highlight that the model is able to capture the specific be-
haviours in each dataset with all but 6 of the 34 household models achieving at least a
’Good’ similarity rating for the closest match. The model performance for this measure
is similar to that shown for the HES dataset for an equivalent number of runs which
demonstrates that the model is able to capture demand behaviours beyond the calibra-
tion dataset. The households that are not captured closely have distinct non-typical

patterns (e.g. significant peaks, high night use).

5.14.5 Specific Demand Analysis

A key aim of the developed model is to predict overall demand using a highly detailed,
bottom-up approach to allow assessment of demand uncertainty. It is therefore nec-
essary to review the output at the level of specific modelled demands to determine if
this has been achieved, and to assess if the model basis is suitable for analysis requir-
ing this resolution, such as the demand management (shifting) potential of individual
appliances.

For appliance use, four main comparisons are required. The range of overall demand
per household, the temporal demand, the overall distribution of cycle start times, and
the distribution of cycle start times per household. This analysis has been undertaken

both for the overall population and each household type.
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average demand profiles in comparison with equivalent HES data. Data for the ‘HES Data’

distributions from [89].
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5.14.5.1 Demand Range

Based on the average results of 500 model runs for the HES-equivalent model, the
comparison of the overall predicted demand distributions compared to the HES dataset
for all significant cyclic appliances is shown in the left column of Figure 5.37. The model
results track the overall distribution of individual household results with good accuracy,
particularly for the lower 90% of users. The increased variation at the high end of the
range is a direct result of the calibration data characteristics (i.e. more dispersed
behaviours), however, further data is required to determine if the output for these
households is realistic. Individual model runs show some variation to the mean result
as would be expected for a probabilistic model that tracks real behavioural variations.

The primary purpose of this analysis is to assess the effectiveness of the combination
of overall and appliance-level factoring. The overall assessment of the results suggests
that there is a slight potential to overestimate demand at the upper end of the range.
A weighting of one for each behavioural factor identified in 5.3 is likely to be overly
simplistic and has the potential to generate overall multipliers that are higher and
lower than reality. However, without demand data that includes detailed occupancy
and income data, further work to identify additional overall or appliance-specific factors
would be ineffective. The results suggest that the approach used is effective with respect
to predicting uncertainty in overall demand but results at the extremes of appliance-

level distributions need to be treated with care.

5.14.5.2 Temporal Demand

From the same 500 model runs, the right column of Figure 5.37 shows the time-
dependent demand profiles in comparison with the HES data. The purpose of this
analysis is to determine the overall effectiveness of the cycle start time and duration
modules.

The replication of appliances modelled with the ‘cyclic’ modules show good ac-
curacy. The most significant discrepancies are related to appliances with significant
time-of-day influences on cycle behaviour and more extreme variations per household
in the calibration dataset, this applies in particular to cookers and ovens. Further

analysis with independent data is required to determine if the discrepancies are the re-
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sult of over-simplistic calibration or if the model is realistically reducing the distorting
influence of the extreme behaviours.

The TUS-activity calibrated ‘AV’ module shows good replication of the HES data
profile with a slightly earlier prediction of the key use transition times. Further analysis
with the updated UK 2015 TUS dataset will be required to determine if TV watching
habits have changed between 2000 (TUS) and 2011 (HES), or if the HES dataset
population has later TV use behaviour than average.

The lighting module tracks the overall profiles with reasonable accuracy but with
overestimation in the waking and mid-evening periods. However, the HES data is char-
acterised by a significant range of lighting power levels and is significantly distorted
by demand from a small number of households. When relative lighting power to the
household mean is considered to partially remove this distortion, the resultant compar-
ison (see Figure 5.38) shows a similar single-peaked evening profile for the HES data,
although the timing is not closely replicated. The conclusion drawn is that the lighting
module is currently adequate for an overall demand model but needs further work to
account for specific time-dependent behaviours, room sharing, and use of lighting per

room.

5.14.5.3 Household-Specific Cycle Timing

The average cycle start time cumulative distribution function (cdf) analysis in 5.14.1
confirmed that the developed method was better than existing alternative approaches
in terms of the average and overall range of cycle start times. A review of the results for
individual households shows that for each appliance the average cycle start time and
the range of times (as measured by the standard deviation) per household converges to
the mean behaviour, and the degree of convergence increases with an increase in the
number of cycles simulated. Figure 5.39 shows a comparison between the HES dataset
and equivalent modelled household cycle start time cdf mean and standard deviation
distributions for washing machine use. The results indicate that the cycle start time
identification method calibration based on the composite data from all HES households
causes significant and unrealistic convergence of modelled household use behaviours.
Additional analysis of this type for other appliances and specific demands and a

proposed method to reduce the unrealistic convergence is detailed in Chapter 7.

185



0.45 | . l |
04r .
c % .
° [ ]
;c_.‘—; 0.35 “® e o, 1
- . @ ° .: .. .. L4
3 03Ff . . o 08 e o |
D o ® 'v'. ° ° ..‘ .$ °
° 0.25r ..: ... ..: ‘-..‘.‘ A ‘ i
B 02} A R I R 1
cC . o @ ° ° ° ‘ | PRY ° hd
m * . . .. . [ ] )
c"fj 0.15+ ° -, R R, -
LL . . L) °
O 0.1f o i
@)
0.05 i
0 1 1 M| 1
0 0.2 0.4 0.6 0.8 1
CDF Mean
(a) Washing Machine - HES Households
0.45 . . - : ;
0.4 i -
c T = .
-c% 0.35 . . 1
- — : °e N
o 03f "s v . —
()] .. .
© 025 r . .-0 i
—
g sl
2 0.2r .
‘9 .
o 015 .
L
A 0.1f .
O
0.05 i
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

CDF Mean
(b) Washing Machine - Model

Figure 5.39. Cycle start time cumulative probability function mean and standard deviation
for washing machine use per household. Data for the ‘HES Households' distribution from
[89].

186-A



Chapter 5. Electricity Demand Sub-Model Development

5.14.6 Area Type Validation

To confirm that the model tracks average differences between areas with different socio-
economic characteristics, three sets of models were generated for populations represen-
tative of both the national average household and social-rented only populations, and
also for an area with the lowest deprivation decile (see 2.4.1.1), and the model results
compared with available demand data.

In addition, a set of model runs was completed for an identical set of house sizes for
each deprivation decile differentiated only by the average tenure per decile. This was
then compared to the average demand for the twenty closest match areas to the model
population characteristics based on Lower Super Output Area (LSOA) demand data.
England is split into 32,844 LSOA areas comprising typically 600 to 1000 households.

Table 5.15
UK national average housing size, type, and tenure. Data from [93] and [96].

1-Bed 2-Bed 3-Bed 4-Bed 1-Bed 2-Bed 3-Bed

House House House House Flat Flat Flat
Private 1 14 28 14 3 7 2
Social-Rent 2 5 5 1 4 6 1
Private-Rent 0 1 1 0 2 2 1

5.14.6.1 National Average

Analysis of Scottish [93] and English Housing Survey [96] data determined that the
data shown in Table 5.15 represented the average household mix for the UK in terms
of size and tenure, rounded to the nearest percent. Elexon publish electricity demand
data that is representative of average UK use [172]. For domestic demand, two sets
of data are provided, one for standard tariff customers and the other for customers on
the Economy 7 tariff with time-dependent charging, typically used by households with
electric storage heating. In this case the standard tariff data is used for comparison.
The Elexon data is provided for five time periods; spring, summer, high summer,
autumn, and winter. As the model does not currently include electric secondary heating
demand, the model was compared with the combined ‘summer’ and "high summer’ data
representing the period from 14th May to 3rd September only. 100 runs for models

based on the national average household tenure and type, with other household factors
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selected probabilistically for each run, were compared to the Elexon data as shown in

Figure 5.40.

The model average demand was 389W compared to 405W for the Elexon data.
Considering the potential for some electric space and water heating that is not yet
captured by the model, this is a good match. Time-specific demand also shows good
accuracy for transition timing but with a specific discrepancy in the later evening
period, the cause of which is not clear. The transition timing consistency indicates that
the identified discrepancies in the small, independent dataset validation (see 5.14.2) are
the result of specific characteristics of those populations, and that the HES-calibration

basis is more generally consistent with national behaviours.

5.14.6.2 Social Housing

As outlined in 2.4.1.2, average electricity demand for social housing has been estimated
to be lower than the national average by between 8 and 10% [76]. The national av-
erage population comprising 69% private, 24% social-rented, and 7% private-rented
households.

100 annual duration model runs each with 100-household representative populations
were run for both the national average set of households and a social-housing only
equivalent. The type and size of houses was identical for both populations, with other
household characteristics determined probabilistically. The average demand predicted
for the national average population was 409W, with a range from 354 to 476W, and for
the social-housing population was 378 W, 8% lower, with a range from 326 to 434W. The
model therefore broadly captures the overall impact of reduced income and appliance

ownership expected for a social-rented population.

5.14.6.3 Ashton Hayes (Deprivation Decile=10)

Ashton Hayes is a village in Cheshire with approximately 372 households. Scottish
Power Energy Networks performed a substation level monitoring campaign [173] for the
village incorporated as part of a wider project to assist the village to become carbon
neutral. One of the substations has 75 households and no commercial connections, and

is therefore suitable for analysis with the developed electricity demand model.
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Ashton Hayes is of specific interest for analysis as it is an area with a deprivation
decile (IMD) of 10 (lowest deprivation) with larger than average houses sizes, and
therefore represents an extreme test of the model’s ability to capture the effects of
house type and size, household type, income, and employment.

The 75 households comprise one 1-bed, seven 2-bed, thirty 3-bed, and thirty-seven
4-bed houses, which is a significantly larger mix than the national average (3.37 vs.
2.56 bedrooms). Typical floor area has been estimated based on publicly available
floorplans from estate agent websites but is a source of potential error. The 2011 UK
Census household data [103] for the larger area of 133 households which includes the
75 monitored households has been used to define the household composition and age
profile.

LSOA-level gas connection data [174] shows that all households have a gas con-
nection and therefore, it is assumed, all have non-electric main space and hot-water
heating. To allow for the possibility of some secondary electric heating, two levels of
analysis have been included. One for a full annual simulation basis and a second for
only the May to September period when the use of any heating systems should be at a
minimum. The latter is the principal performance comparison element.

For the May to September period the average power use for the 75-household area
was 482W per household. The average model result over 50 runs was 471W, with a
range from 363W to 560W. Given the estimated household floor area and possibility of
a small contribution of electric secondary space heating to the measured data, Figure
5.41(a) shows a good correlation between measured and modelled data.

For the full annual period the average power use is 548W with the model predict-
ing 495W. The potential for secondary electric heating use means the results are not
directly comparable but comparison of the time-dependent profiles (see Figure 5.41(b))
highlights good correlation between key transition timings and a relatively consistent

difference during typical waking hours.

5.14.6.4 Further Area Characteristics Modelling

Over a number of runs, a well-calibrated probabilistic model should converge to the
average that would be expected for the chosen input conditions. To further confirm

that the model replicates average demand behaviours, a further set of analysis has been
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performed to determine if the model replicates average electricity demand at the LSOA
level (LSOAs are 600-1000 household UK Census geographic areas) based on known
area characteristics.

The method used was to run the model 50 times for each deprivation (IMD) decile
(see 2.4.1.1) with typical proportions of social housing and house types, with the re-
mainder of the household characteristics determined probabilistically by the developed
sub-model (see 4.3). Based on the model results, the twenty closest LSOA matches
for the model household characteristics were identified and average annual electricity
demand for each LSOA determined from the same LSOA-level electricity dataset [46]
used for the income-behaviour regression analysis in 5.3.2.

A Nearest Neighbour approach based on Euclidean distance is used to identify
the twenty closest matches based on proportion of social housing, gas connectivity,
average number of bedrooms, average number of people per household, average income,
and proportion of retired households. The comparison between the average electricity
demand for the twenty closest matches and the average from the 50 annual model runs
is shown in Figure 5.42.

As the model does not currently capture secondary heating but also potentially
underestimates the prevalence of extended absences, it was expected that the model
output would be slightly lower than the LSOA data. By restricting the analysis to
areas with full gas connectivity it was, however, expected that the secondary heating
influence would be minimised.

The results indicate that the model tracks the average expected differential per area
deprivation (IMD) decile with good accuracy as indicated by the consistency between
best-fit plots, with the expected slightly lower model prediction as outlined. The model
to data underestimate increases with deprivation decile which is also consistent with

an increase in secondary heating use at higher income levels [175].

5.14.7 Validation Analysis Summary

The overall results of the validation exercise show that the model is broadly capable
of replicating general and appliance-specific demand behaviours at the household-type

level, average and time-dependent demand within small independent datasets, and av-
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erage demand variations for areas with different socio-economic characteristics. Within
each household-type group, a significant range of individual household behaviours are
also replicated, and in broadly realistic proportions, after multiple runs of the highly
probabilistic model, but a residual group of approximately 10-20% are not.

The appliance-level analysis indicated that the cycle start time distribution for
each household tends to converge to the calibration population average within a 1-
month model period and that this significantly underestimated variations in timing
per household for several appliances. Visual comparison of per-timestep occupancy
and total demand profiles per household also indicate that the timing of the major
occupancy and demand transitions (i.e. early morning, late afternoon, late evening)
were overly similar in the simulated households in comparison with the measured data.

The model incorporates a number of factors to differentiate occupancy and demand
behaviours. However, the occupancy model basis for each defined occupant and day
type are currently based on the average behaviours for each defined group. Similarly,
the appliance cycle start time module is calibrated using the combined behaviours of
all households, with only minor adjustments for household type behaviours. This use
of composite datasets for model calibration has the potential to result in convergence of

behaviours, particularly for simulations run over extended periods (i.e. 6-12 months).

5.14.7.1 Residual Behaviour Averaging

To confirm quantitatively that these composite factors result in excessive behaviour
averaging, the mean-normalised demand variance per timestep is compared for the
HES measured and modelled data (i.e. based on measurement and model periods of
1-6 months). The results are shown in Figure 5.43.

The results indicate that the electricity demand model variance is significantly lower
than for the measured data in the key transition periods of 6am to 9am, 4pm to 7pm
and 10pm to lam. The lower variance suggests that the model is not fully capturing
individual behaviours in these time periods. Whilst potentially acceptable for larger-
scale district modelling, an improved method or calibration basis would be beneficial to
allow the model to be more applicable for individual households and smaller districts.

Improving replication of individual occupancy and appliance use behaviours is re-

viewed in Chapter 7.
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5.15 Chapter Summary

This chapter detailed the development process for the electrical demand sub-model
and the validation analysis undertaken to assess the model performance. The chapter

highlights are as follows:

e Development of a major electrical appliance ownership model based on national
survey and electricity demand dataset ownership data, including probability ad-

justments for household type and composition.

e Analysis of existing models and the Household Electricity Survey appliance-level
dataset, determined that seven distinct demand sub-groups were required for ef-
fective demand modelling to account for different usage characteristics. As an
improvement on existing models that used a single method for all intermittently
used (‘cyclic’) appliances, three separate sub-groups were identified and differ-
ent methods used. The other sub-groups (‘AV’, ‘Lighting’, ‘Continuous’, and

‘Miscellaneous’) used enhanced versions of existing methods.

e Identification of additional household-level electricity demand influencing factors
to account for income, occupancy, and a further randomly allocated factor asso-

ciated with attitude to energy use.

e Development of a new discrete-event based method for the ‘cyclic’ appliances that
first determines use per day and then the timing of use on each day. The overall
method was shown to reduce the probability of unrealistic cycle sequences com-
pared to the per-timestep probability approaches used by the majority of existing
models. Use per day per household was determined based on the distribution
of average cycles identified for the specific household type with further factoring
based on the identified household-level behaviours and day-specific occupancy,
with a final per-day use determination using a binomial probability approach to

account for natural variability from average behaviour.

e Development of a common method for the prediction of use times for each ‘cyclic’

appliance. Based on the predetermined number of cycles per day, cycle start
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times are allocated within occupied periods based on cumulative probability dis-

tributions unique to each daily total and specific cycle number.

e Validation performed showed that the overall developed model and each appliance-
specific module replicates the calibration data basis with good accuracy. The
highly probabilistic nature of the model, incorporating a significant number of
household- and appliance-level use factors, was shown to replicate the range of
both overall and per-timestep average results per household. Further validation
of the developed electricity demand model showed good performance in repli-
cating detailed independent time-series datasets, and matching overall and time-

dependent average use for a variety of different area types.

e Detailed analysis of model output per household has indicated that the variance
in demand timing is lower than for real populations. Further investigation of the
model calibration, particularly with regard to group-calibrated elements, being

required.
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Chapter 6

Hot Water Demand Sub-Model

Development

6.1 Chapter Overview

In Chapter 3 it was identified that few existing domestic demand models incorporate a
hot water element. As hot water accounts for the same proportion of household energy
use as electricity (c.17%), a value that will increase as heating demand falls, being able
to simulate hot water demand with the same resolution is important. In particular, the
design of district heating systems and CHP-driven energy systems requires the timing
and potential peak consumption of hot water to be well understood.

Occupancy is not a sufficient basis alone to capture the time dependency of hot water
use and multiple TUS activities would be required to capture all uses with uncertainty
over the proportional allocation. As a result, in the same manner as the electricity
demand sub-model development, direct analysis of demand data rather than inferred
use from occupant activities has been employed. The Energy Savings Trust (EST) hot
water dataset [90] (see 2.3) was therefore analysed using the same methods utilised for
individual ‘cyclic’ appliances in the electricity dataset (see 5.5.2), to identify individual
cycle timing and volume.

The available hot water data is more limited than the electricity equivalent in terms
of the number of households, extent of available household characteristics data, and
time resolution (10-minute vs. 2-minute). In general, the hot water demand sub-model
uses the same basis as the ‘Simple’ electricity module (see 5.6) and therefore the focus
of the analysis presented in this Chapter is on areas specific to the hot water demand

sub-model development and to address the impact of the data limitations.
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Figure 6.1. Hot water demand sub-model structure.
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Initial dataset analysis determined that use characteristics varied based on house-
hold size, whether the household had children, and on the volume used per use. These
elements were incorporated in the sub-model using differentiation by household size

and type, and separate calibration for multiple cycle volume ranges.

6.2 Hot Water Model Basis

Table 4.1 detailed the overall demand model calculation sequence required to translate
the outputs from the household characteristics and occupancy sub-models into demand
prediction. The model simulates when hot water is used at the point-of-use. The
dynamics of the hot water generation system, including storage, were not considered.

Final hot water energy use is also dependent on the incoming water temperature.
The developed model uses the monthly temperature adjustment factors from the BRE-
DEM model [111] to adjust final energy use per cycle. As outlined below, the existing
hot water data does not allow detailed assessment of output temperature and therefore
a more detailed basis for incoming temperature would not significantly improve model
effectiveness.

The following sections detail the data analysis, calibration, development, and val-
idation of the hot water demand sub-model. The overall structure of the sub-model

and principal defining elements are shown in Figure 6.1.

6.3 Hot Water Data Analysis

6.3.1 Hot Water Cycle Identification

The EST dataset (see 2.3) used for calibration has 10-minute resolution flow data,
therefore identification of individual cycles and volume per cycle within each timestep
is not possible. In addition, it cannot be determined if flow in adjacent 10-minute
periods was due to a single cycle that overlapped the end of the period or two (or
more) separate events. A series of assumptions listed below was therefore required to

identify effective cycles from the raw data:

e Total volume used in each 10-minute period is from a single event.
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e There is a defined probability that non-zero use in adjacent time periods is due
to a single overlapping cycle. The probability is set arbitrarily at 25% for cycles
of less than 3-litres, 50% if between 3 and 15 litres, and 75% if over 15 litres,
assuming an increasing likelihood with increasing volume. It has been determined
that there is only a small additional error if some individual hot water events in

adjacent periods are erroneously combined.

e Differences in hot water output temperature are ignored. This is primarily due to
the 10-minute resolution of the temperature measurements making any detailed
analysis of energy (volume plus temperature) rather than volume only unreliable.
The average output temperature of the overall dataset is 51.9°C and the range
has a balanced Gaussian distribution with a +10°C range. Therefore, any errors

introduced for individual events should offset.

6.3.2 Hot Water Use Characteristics

The modified dataset based on the defined assumptions comprises approximately 650000
hot water cycles. Analysis of the distribution of cycle volumes highlighted the predom-
inance of low volume cycles by number (50% are less than 3 litres) but that, in terms
of total volume contribution, the full range of cycle volumes are significant.

Further analysis also determined that the time dependency of use varied with cycle
volume. Figure 6.2(a) shows the time-dependent profiles for three selected volume
ranges relative to the average value. Within each volume range different behaviour
patterns are evident. The lower volume ranges show a correlation with occupancy
probability (see Figure 6.2(b)), although there are higher relative use periods before
and after the typical sleep period. As the cycle volume increases, there is an increasingly
distinct dual peak distribution indicating specific time-dependent behaviours.

To capture different behavioural patterns and to distinguish between different typ-
ical uses, the data was split into six cycle volume ranges (0-1, 1-3, 3-7, 7-15, 15-30,
30+ litres). The specific choice of ranges is to an extent arbitrary as the changes in
use behaviour are gradual but those selected can be aligned with different typical uses.
The 0-1 litre range, which accounts for 31% of cycles and 2% of total volume, would be

typically associated with short, handwashing events. The 1-3 litre range (19%/5%) is
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assumed to be longer sink washing events, the 3-7 range (18%/11%) hand dishwashing
and other full sink or bucket uses, and the 7-15 range (16%/19%) covers large volume
dishwashing up to low volume showers. The 15-30 (8%/18%) and 30+ litre (8%/45%)
ranges are assumed to be predominantly baths and showers.

Whilst there may be patterns of behaviour associated with bath and shower use
(i.e. an increasing need with time similar to washing machine and dishwasher use),
the arbitrary volume ranges used and overlapping influence of multiple individuals in
larger households makes this difficult to discern. Analysis of individual household data,
even for one-person households, shows that the use day sequences for the higher volume
cycles are indistinguishable from random patterns and it is therefore assumed that the
influence of any underlying patterns on modelling accuracy are small.

Analysis of the EST dataset by the EST [90] determined that occupant number was
the most significant determinant of hot water use rather than household type or child
presence. Unlike the HES electricity demand dataset, the socio-economic data does
not define occupant ages, restricting the potential for differentiation. Cycle timing
(but not total number) was shown to be influenced by child presence. Figure 6.3(a)
shows a tendency for family households to have lower morning use and an earlier evening
reduction in use potential. In contrast, very high volume cycles in adult-only households
are predominantly in the morning period (see Figure 6.3(b)).

Table 6.1
Average total daily hot water cycles by volume range and household size. Data for analysis from
the EST dataset [90].

1 1 li
Household Size Overall Cycle Volume Range (litres)

0-1 1-3 3-7 7-15 15-30 30+
1-Person 10.56 4.38 2.50 2.15 1.10 0.28 0.15
2-Person 12.75 4.24 2.95 2.36 1.83 0.73 0.64
3-Person 15.06 5.66 3.46 2.75 1.85 0.61 0.65
4-person 16.37 5.64 3.38 2.43 2.17 1.28 1.48
5+person 20.44 6.01 3.97 3.74 3.41 1.83 1.48

6.3.3 Hot Water Cycle Number

The overall number of hot water cycles per household size, determined using the method
defined in 6.3.1, shows a consistent linear increase with occupant number as shown in

Figure 6.4. This allows the relationship to be converted to a simple equation (see

196



N
N
>

Total Cycles Per Day
3 » 8 N
\

AN
\
\
\
AN
\
N

—
N
T

\
\
!

2 3 4 5 6
Number of Occupants

N
o
- r®

Figure 6.4. Average total daily hot water cycles by occupant number. Data for analysis
from the EST dataset [90].

197-A



Chapter 6. Hot Water Demand Sub-Model Development

Equation 6.1). More detailed analysis of each identified volume range for average

number of cycles per day is shown in Table 6.1.

TotalCycles = 7.85 4 2.40 x Occupant Number (6.1)

6.3.4 Hot Water Cycle Timing

The same cycle start time probability distribution method used for the electricity de-
mand model (see 5.9.2) was also used for the hot water model. The 10-minute EST-
derived cycle data was extrapolated to give l-minute resolution calibration data to
allow 1-minute resolution results to be generated. It was therefore assumed, prior to
the availability of higher resolution data, that within each 10-minute period the cycle
start time is effectively random.

The additional household type manipulation to the cycle start time distributions in
the electricity demand model (see 5.9.1) was performed on the hot water distributions
for child and non-child households to account for the different use behaviours identified
in 6.3.2. Separately calibrated manipulations were carried out for each volume range

as the influence was shown to vary by range.

6.4 Hot Water Sub-Model Development

6.4.1 Modelling Basis

Each identified hot water volume range has been modelled in the same manner as a
‘Simple’ electricity appliance (i.e. cycles on each day considered independently based on
an overall average) (see 5.6). Households have been differentiated by occupant number
for cycle number, and by occupant number and whether children are present for cycle
timing, driven both by the inherent socio-economic data limitations of the EST dataset
and the evidence of behavioural differences at this level of differentiation outlined in

6.3.2.
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6.4.1.1 Electric Shower Evaluation

The EST dataset was derived from hot water use measured at the tank or boiler outlet
(depending on the system type), which does not include use of electric showers if owned
and the dataset does not indicate shower type. Analysis of the ‘High’ and ‘Very High’
cycles in the dataset determined there were 0.636 cycles per day per person. The
expectation, assuming 95% of all ‘High’ and ‘Very High’ cycles are either showers or
baths, would be 0.857 based on further analysis by EST [176] and SAP [48]. This would
suggest ¢.35% of EST households had an electric shower compared to a 47% national
average. The 35% figure is consistent with the number of households with very low
levels of measured higher volume water use.

Two separate model versions have therefore been developed: one based on the EST
data directly to allow the overall model output to be validated (‘EST Equivalent’);
and the other with the number of higher volume hot water cycles increased to give a
0.857 cycles per day per person average, and where electric shower ownership can be
defined either as zero for district heating systems, to the national average basis for gas
and non-gas connected households, or on a user-defined basis. The type of shower does
not impact the point-of-use demand assessment but determines how the energy for the
proportion of higher volume cycles defined above is allocated (i.e. to electricity supply
or hot water generation).

The national average electric shower ownership probability was determined from
the Energy Follow Up Study (EFUS) dataset [43], with a 42.3% probability if a house

has mains gas and a 50.3% probability if not.

6.4.2 Hot Water Behavioural Factors

As similar combination of behavioural factors to those determined for the electricity
demand sub-model (see 5.3) (i.e. income, occupancy, and random behaviour) were
incorporated as a single overall behavioural multiplier, the Hot Water Behaviour Factor.

These were determined as follows:
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6.4.2.1 Effect of Income on Gas Demand: Income Behaviour Factor

Similar analysis was carried out for the income influence on gas demand behaviour as
detailed for electricity demand in 5.3.2 using the same set of Lower Super Output geo-
graphic areas (LSOAs) [47]. The plot of LSOA-average gas demand against equivalised
income (Figure 6.5) demonstrates that the impact of this variable is again complex,
with a weaker exponential component than for electricity demand. The same regres-
sion factors were used with the exception that ’Owned Appliance Power’ was replaced

by the following:

o Building Heat Loss(Relative) — This factor is based on the multiplication of two
separate relative (base=1) factors. One related to the mix of house ages in an
area and the other related to the mix of house types. Separate factors are required
due to the lack of a single dataset with both ages and types of dwellings detailed.
The factors are based on the estimated annual heat demand for an average size
dwelling of each age and type based on the original building code and allowing
for typical upgrade levels for older dwellings (double glazing, loft insulation etc.).

These values are then combined proportionally for each LSOA.

The derived equation for the income-specific multiplier on gas demand (GIBF) is
as follows (based on an average demand of 15277kWh from the LSOA analysis, IncF
= Equivalised Income (2011 Basis) as defined in 5.3.2.):

GIBF = 0.8556 + (172.4/15277) x (IncF/10000)*2 (6.2)

In comparison to electricity demand, gas demand has a lower income exponent but a
greater linear variation and a more significant overall income impact as demonstrated by
Figure 6.5. As it is not possible with the available data to distinguish between heating
and hot water use, the multiplier is used for hot water with the acknowledgement that

this may be slightly inaccurate.

Table 6.2
‘Relative Occupancy Factor’ per hot water cycle volume range.
Range Very Low Low Low-Med High-Med High Very High
Relative Occupancy Factor 0.5 0.4 0.33 0.2 0.05 0.05
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6.4.2.2 Effect of Occupancy on Hot Water Demand: Relative Occupancy

Factor

Without age and employment data in the EST dataset, the relative occupancy influence
on hot water use cannot be determined. Equivalent ‘Overall’ and ‘Daily’ occupancy fac-
tors to those used in the electricity sub-model have therefore been estimated as shown
in Table 6.2, with the same value used for both factors per volume range. The ‘Overall’
factor (OROF') determines the relationship between household and calibration popu-
lation average occupancy and cycle number (see Equation 5.3), and the ‘Daily’ factor
(DROF) determines the relationship between household daily and average occupancy
and cycle number.

As for the electricity sub-model, the factors are applied to a modified occupancy
factor that also accounts for variations in use potential based on time of occupancy.
The determination of the HhldOcc and TypeOcc values used in Equation 6.3 is identical
to the method defined in 5.3.1.

6.4.2.3 Effect of Behaviour on Hot Water Demand: Random Energy-Use

Behaviour Factor

The analysis by Gill et al [81] determined that for hot water the random behavioural
demand variation between households based on attitudes to energy use that cannot be
discerned from household characteristics is 11% (compared to 37% for electricity use).
The sub-model captures this variation with a random behavioural multiplier (WRBF')

selected randomly between 0.94 and 1.06 (equivalent to 11%).

6.4.2.4 Household Hot Water Behaviour Factor

The overall behavioural factor (HWBF') applied to each modelled household is deter-
mined by the following equation. How the multiplier is used is defined in the following

section:

HW BF = GIBF x WRBF x (HhldOcc/TypeOcc)°OF (6.3)
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6.4.2.5 Household Relative Use Factor

In the same manner as the ‘Appliance-Use Factor’ determined for each individual elec-
trical appliance (see 5.5.1.2), total hot water cycle number variation within household
size (occupant number) groups is further differentiated by analysis of the overall varia-
tion to the household group mean. Similar to the electricity analysis, the distributions
were found to be consistent for all groups and a single combined ratio-to-mean distribu-
tion was therefore developed based on the results for all households to their respective
group mean values. The overall relationship is shown in Figure 6.6 and the distribution
is used to probabilistically allocate a ‘Household Relative Use’ factor to each modelled

household.

6.4.3 Sub-Model Structure

The analysis of the EST dataset showed that there was significant variation in both the
total number of daily hot water cycles and the proportion in each volume range, both
between each occupant-number differentiated group (see Table 6.1), and also within
each group. A probabilistic method was therefore required to allocate the number of

cycles per volume range to each modelled household. The steps are as follows:

e Step 1 - A total number of daily hot water cycles is allocated per-household using
Equation 6.1 based on the number of occupants with the determined mean value
multiplied both by a randomly selected ‘Household Relative Use’ factor and by
the generated Hot Water Behaviour Factor (HWBF') for the household, both of

which are defined above.

e Step 2 - A series of Kernel Density (KD) relationships (see Appendix A) are
then used to determine the cumulative proportion of cycles in each successive
volume range from ‘Very Low’ to ‘High’. This method ensures that the variation

in behaviours is captured but restricted to realistic relationships.

— Step 2a - First the Household Relative Use factor is used to determine the
proportion of cycles in the ‘Very Low’ range, based on a discernible relation-
ship as shown in Figure 6.7(a). EST data analysis also determined that the

‘Very Low’ cycle proportion was related to the number of people (decreases
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with increasing people) and to account for this the random number genera-
tion for the KD analysis is restricted to the equivalent of the minimum and

maximum proportion values for each occupant number group.

— Step 2b - The determined ‘Very Low’ proportion is then used to calculate the
cumulative proportion of ‘Very Low’ and ‘Low’ cycles. The same KD process
as Step 2a is used with the ‘Very Low’ proportion as the input value. Figure
6.7(b) shows the relationship between ‘Very Low’ and ‘Very Low + Low’
proportions used to calibrate the KD module. This process is repeated for
each subsequent volume range, with the ‘Very High’ proportion determined

by the value that sets the cumulative proportion to 1.

e Step 3 - The average number of daily hot water cycles in each volume range are

determined from the generated total number and proportion in each range.

e Step 4 to end - The remainder of the hot water sub-model is identical to the
‘Simple’ electricity module (see 5.6) and the cycle start time identification module

detailed in 5.9.2.

6.5 Hot Water Validation

The hot water demand model has been validated for overall average demand, average
demand per timestep, distribution of modelled demands, ability to replicate actual
profiles over a significant number of runs, and peak demand prediction (i.e. diversity)
for multiple household systems. As outlined, the EST dataset used for model calibration
is the only large scale UK water use dataset that is freely available. Therefore, validation
is restricted to replication of the input dataset and comparison of diversity prediction

with current standards.

6.5.1 Total Flow Replication

Comparison of the EST dataset average demand with model results based on equivalent
households using known characteristics (number of adults and children) and allowing
the model to probabilistically select undefined inputs (e.g. income, employment, etc.),

shows that the model converges to the dataset per-household average closely but with
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distinct variation between minimum and maximum model runs (see Figure 6.8(a)).
This variation is also highlighted by the range of per-household daily average demand
for each of the 100 runs (see Figure 6.8(b)). This shows that the basic calibration of
the model with regard to linking occupancy and use cycles is effective, but that the
model does not force convergence over a small number of runs. More data is required
to determine if this modelled variation is realistic.

The major discrepancies between model output and data are in the morning peak
period where the model overestimates this peak value and from midnight to 2am where
there is an underestimate. The discrepancies are related to specific volume ranges and

discussed further in the following section.

6.5.2 Volume Range Replication

The average model results for each of the six volume ranges (see Figure 6.9) also shows
generally good replication of the EST dataset averages with some discrepancies. The
overestimate of the total demand in the morning peak period is primarily a result
of the higher volume modules. A potential reason for this would be that occupants
are more time constrained in this period which reduces volume used per baths and
shower use. Further investigation of this time dependence is required. The other
significant discrepancies are for the ‘Very Low’ (<1 litre/cycle) and ‘Low’ volume (1-3
litres/cycle) ranges in the night period. The model underestimates the frequency of
short handwashing events during this period, although the overall impact on model
accuracy is small.

Discrepancies in the sleep transition period (11pm to lam) for the lower volume
ranges are consistent with the results of the electricity demand model. Again, the
reason is not immediately obvious and further review of the occupancy model output is
required to determine if it is unrepresentative in this period or if there are specific time

dependencies for within-range cycle volume per use that are not currently captured.
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Chapter 6. Hot Water Demand Sub-Model Development

6.5.3 Sub-Population Replication
6.5.3.1 Household Size

Beyond the number of daily cycles and the input from the occupancy model, the hot
water sub-model does not make significant differentiation for household size. The small
number of each size in the EST dataset, particularly small and large households, and
the lack of detailed characteristics data, currently limits effective differentiation.

As shown in Figure 6.10, the model output is broadly consistent with the EST input
data for the 2- and 4-person households but there are significant discrepancies for the
other household sizes. The 2- and 4-person households represent the largest available
datasets (34 and 28 households respectively out of 107 in total), and, in the case of
2-person households, are adult-only which removes one potential variable.

Table 6.3 compares the EST dataset and model output volume averages for each
household size with that estimated by the BREDEM/SAP model basis of 36+25N
litres [177], where N is the number of occupants. The 1- and 3-person EST dataset
households, in particular, have a significantly lower actual use than predicted by either
the model or BREDEM basis.

Table 6.3
Average hot water use per household (litres per day) comparison for different methods and datasets.
‘EST Data’' from [90] and ‘BREDEM/SAP Basis' from [177].

Occupant Number 1 2 3 4 5+
EST Data 39.5 88.3 95.3 165.5 156.4
BREDEM/SAP Basis 61 86 111 136 161
Model Output (100 Run Avg.) 60.9 90.3 117.8 138.7 158.2

The average per-cycle volume within each volume range does not vary significantly
per household type and the average number of cycles per household size follows a
broadly linear increase as shown in Figure 6.4. The primary cause of the variation based
on household size is the proportion of each volume range per household. The 1-person
and 3-person households have a significantly lower daily probability of ‘High’ and ‘Very
High’ cycles per person (see Table 6.4), suggesting lower than average use of showers
and baths or higher than average ownership of electric showers that are not identified
in the EST dataset. The model output closely matches the ‘per-person’ impact of
additional people predicted by the BREDEM basis and is therefore potentially more
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Chapter 6. Hot Water Demand Sub-Model Development

representative of overall behaviour than the data for the less numerous EST dataset
sub-populations.

Table 6.4
Total ‘High’ and ‘Very High' volume cycles per day per person by household size from the EST

dataset. Data for the ‘EST Data’ distribution from [90].

Occupant Number 1 2 3 4 5+
Cycles Per Day Per Person 0.41 0.78 0.45 0.72 0.62

6.5.3.2 With and Without Children

As shown in 6.3.2, there are differences in relative timing of use between households
with and without children. Family households show more distinct morning and early
evening peak use, and some evidence of higher use in the mid-afternoon period.
Model results (see Figure 6.11) show that these general patterns are captured, par-
ticularly for the households without children. The family household results show some
variation from the data but given that the age of the children in the EST households

is unknown, some level of timing inaccuracy is expected.

6.5.4 Demand Distribution Analysis

Overall comparison of the range of average daily hot water flow results per household
from the EST data against the per-run model output in Figure 6.12(a) shows high
similarity. The model results are based on the average ranked results from 250 annual
duration simulations. However, as shown in 6.5.1, the range of average flow results per
model run ranges from 90.1 to 125.6 litres/day (see also ‘Min Run’ and ‘Max Run’ on
Figure 6.12(a)) suggesting that convergence is achieved only after a significant number
of households are modelled. As with the overall population analysis in 6.5.1, further
data would be required to assess if the variation at the household-level is realistic.
Using the same method introduced for electricity model analysis in 5.14.3, each EST
household average demand is compared to the ranked results from 250 model runs and
the model output rank of the closest match determined (see Figure 6.12(b)). A bal-
anced distribution of model ranks (the target distribution) is indicative of a model that
captures a representative range of behaviours. The actual distribution is broadly linear

with some discrepancies at the extremes, particularly an inability to predict very low
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Chapter 6. Hot Water Demand Sub-Model Development

demand levels. This confirms the electricity dataset analysis that determined that the
composite nature of some calibration elements, particularly occupancy, underestimates
the potential for very low demand households.

Table 6.5
Model closest cumulative match similarity analysis range results for the EST household equivalent
model after 250 model runs.

Similarity "High’ "Good’ "Some’ "Low’
‘Timing’ 41 (46%) 30 (33%) 11 (12%) 8 (9%)
‘Overall’ 25 (28%) 37 (41%) 19 (21%) 9 (10%)

6.5.5 Similarity Assessment

The PAA-ED method introduced in 5.14.4 was used to determine the similarity between
individual household model outputs and the equivalent households in the EST dataset.
The results shown in Table 6.5 indicate that the model is capable of closely matching
actual average hot water use profiles, particularly the relative timing of use. This is
a stronger measure of the underlying cycle model effectiveness, without the additional
impact on similarity of different average flows captured by the ‘overall’ measure. After
250 runs only a small number of household profiles are not to some extent replicated
by both the ‘timing’ and ‘overall’ distribution measures, confirming that the ‘Simple’
module basis used is effective for all but a small number of outlier households with

distinct behaviours.

6.5.6 Diversity Assessment

For multi-household hot water system design a key assessment is demand diversity. This
is the maximum total demand that can be expected at any time, typically expressed as
a multiple of the maximum demand for a single dwelling. As the number of dwellings
increases, the ratio of diversity to number of dwellings falls. This is principally used
for the sizing of distribution pipework and is therefore required for both the primary
network design and smaller subsets supplied via branch pipework.

As outlined in 1.6.1, a number of different hot water diversity standards have been
developed, all of which are potentially limited by a lack of household characteristics dif-

ferentiation. The principal diversity factor standard currently used for multi-household
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hot water systems is the Danish Standard DS439 [56]. The British Standard BS6700
[59] gives significantly higher values and has been assessed to significantly overestimate
peak usage (Galluzzi, 2011). CIBSE have recently endorsed DS439 in preference to
BS6700 for use in the UK [63]. Other developed standards include those shown in
Figure 1.7, compared to which DS439 is generally more aggressive for smaller numbers
of households and more conservative as the number approaches and exceeds 100.

It is not made clear from the published standards whether the stated diversity value
is the absolute maximum instantaneous value or maximum demand averaged over a
period of time, or whether infrequent short periods at higher flows can be tolerated.
However, it is assumed that the timescale of interest is sub-minute. For this reason,
the diversity analysis of both the EST data and model output is converted to 1-second
resolution data by randomly allocating within-minute start times from the standard
1-minute resolution data. The duration of the cycle is determined based on selecting a
flowrate randomly between 2.5 and 5 litres/min for <3 litre volume uses and between
5 and 12 litres/min for other uses. Data on flow per use is limited ([178], [179]), and
a more accurate representation of flow per specific use would improve the accuracy
of diversity assessment. The analysis then determines diversity values based on the
absolute maximum on a 1-second basis, and the maximum values averaged over a 10-
second and 60-second basis.

The per-household maximum flow basis for the analysis is based on the 37.5kW
maximum demand per household assumption of DS439, which translates to an assumed
maximum instantaneous hot water flow of 14.8 litres/min at the average cold-to-hot
temperature difference of 37°C in the EST dataset.

As outlined, the EST survey measured hot water use at the tank outlet and there-
fore households with electric showers did not have this use measured. Therefore, the
EST dataset cannot be used as a direct comparison for district heating (DH) design.
DH-connected households will typically have all hot water use, including showers, pro-
vided by the DH system. Two sets of diversity analysis are therefore required: one to
compare the EST dataset diversity with the equivalent model basis, with some house-
holds simulated with an unmeasured electric shower, for validation; and the other to
compare the diversity standards and the model output for households where all shower

use is via the main hot water system.
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The 90 households in the EST dataset with consistent extended duration data were
combined as an effective energy system to be used as a validation dataset for the
diversity values predicted by the model. For the analysis the 10-minute EST flow data
is converted to an effective duration in seconds in the same manner as the 1-minute
resolution conversion (see above) and randomly positioned within the 10-minute period.
The diversity is then analysed on a 1-second, and rolling 10-second and 60-second basis
calculated from the total flowrate for all households divided by 14.8 to determine the
overall diversity relative to the nominal single household maximum flow. Different
timescales are used to confirm model performance under different conditions and to
assess the influence of timescale on diversity.

The analysis was carried out for randomly selected sets of 10, 25, 50, and 75 house-
holds, and the full 90-household dataset. For each household set number, the process
was repeated 1000 times and for the larger subsets (50, 75 and 90 households) each
week of data was randomly sequenced within seasonal blocks as the potential house-
hold set variation in these cases is limited. The random selection of households was not
restricted based either on house or household size, therefore the results for both the
EST analysis and model output include a significant range of average house sizes and

occupant numbers to ensure the data is representative of a range of potential scenarios.

Table 6.6
EST dataset and equivalent model output diversity comparison.
Households 10 25 50 75 90
EST Avg. (1s) 3.31 4.65 6.10 7.32 7.87
Model Avg. (1s) 3.49 4.72 6.07 7.22 7.75
EST Max. (1s) 5.10 7.23 8.47 10.03 10.81
Model Max. (1s) 5.09 6.83 8.63 10.47 10.97
EST Avg. (10s) 3.11 4.34 5.69 6.83 7.34
Model Avg. (10s) 3.31 4.46 5.70 6.76 7.25
EST Max. (10s) 4.84 6.74 7.54 9.22 10.45
Model Max. (10s) 4.72 6.76 8.04 9.86 10.03
EST Avg. (60s) 2.54 3.50 4.56 5.46 591
Model Avg. (60s) 2.51 3.44 4.43 5.28 5.70
EST Max. (60s) 3.98 5.69 6.35 7.70 7.86
Model Max. (60s) 4.05 5.10 6.58 7.58 7.99

The developed model was used to generate equivalent results to the EST dataset

(i.e. annual data, identical household sizes). The results are shown in Table 6.6. Re-
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peated 1000-run attempts with a fixed dataset showed that the per-attempt variation
could be +5%, therefore the primary aim of the analysis was no consistent under- or
overestimation as opposed to exact replication. On this basis, the developed model
shows good accuracy is replicating the characteristics of the dataset. The model there-
fore provides a means to test diversity standards against the potential variations in use
based on household characteristics and unique behaviours. The results also show that
the time basis of the analysis is significant.

Equivalent data was then generated for sets of households representing a typical
district heating system, with all hot water, including showers, supplied from the system.
The total number of people per set of households was restricted to £10% of the UK
average basis of 2.3 people per household, therefore the maximum values are for an
average community and do not represent absolute outlier values. The impact of people
number and house size is discussed further in Chapter 8.

Table 6.7
Comparison between the ‘District Heating' equivalent model output and DS439 diversity estimation.
‘DS439’ data from [56].

Households 10 25 50 75 100
DS439 2.37 3.76 5.59 7.17 8.64
Avg. (1s) 3.59 4.93 6.44 7.67 8.52
Max. (1s) 5.28 6.63 8.95 9.92 11.65
Avg. (10s) 3.41 4.66 6.08 7.21 8.01
Max. (10s) 4.80 6.63 8.45 9.74 11.22
Avg. (60s) 2.65 3.65 4.80 5.74 6.43
Max. (60s) 3.94 5.36 6.72 7.76 9.53

The results (see Table 6.7) suggest that the DS439 basis has the potential to un-
derestimate diversity in comparison with the average model output to at least 100
households for both the 1s and 10s average bases, with the maximum predicted values
significantly in excess. For small sets of households, the underestimate is pronounced,
with even the 60s average basis of the model output exceeding the 10-household DS439
prediction. As a minimum the results suggest that the use of DS439 values without
understanding the critical timescales for the dynamics of the proposed system could
result in poor design.

The impact of household characteristics and system dynamics on diversity predic-

tion is reviewed further in Chapter 8.
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6.5.7 Hot Water Validation Analysis Summary

With only 107 households in the dataset and limited household characteristics infor-
mation, the initial assessment was that there was sufficient data to determine when
hot water is typically used but that significant differentiation based on household type
would be not be possible. The primary aim of the validation was therefore to determine
if the probabilistic methods developed for the electricity demand model could be ef-
fectively used for hot water modelling, pending the availability of more comprehensive
data.

The model has been shown to replicate the range of average and time-dependent
demands from the calibration dataset. The model is also able to capture the time
dependency of both use in different ranges of total cycle volume and of overall demand
in households with and without children. Given the lack of high-resolution models for
hot water demand modelling, the model should provide a useful basis for assessment of
larger district heating networks, where any errors associated with limited differentiation
would be reduced. As with the electricity demand model, some household demand

profiles were not closely replicated and this is discussed below.

6.5.7.1 Residual Behaviour Averaging

In a similar manner to 5.14.7 for the electricity model, the hot water demand model
output was analysed to determine if there was evidence of behaviour averaging as
a result of the calibration methods used. Figure 6.13 shows that there is a similar
underestimate of the level of per-timestep variance in demand, potentially again because
of the composite calibration approach for certain aspects of the occupancy and cycle
start time identification sub-models. This is also reviewed further in Chapter 7 for hot

water use.
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6.6 Chapter Summary

This chapter detailed the development process for the hot water demand sub-model
and the validation analysis undertaken to assess the model performance. The chapter

highlights are as follows:

e Similar methods used for hot water cycle modelling to those developed for fre-

quently used (‘Simple’) electrical appliances.

e Six cycle volume ranges (from 0-1 litres to 30+ litres) with distinct use behaviours
identified from dataset analysis, with each range calibrated and modelled sepa-

rately.

e Validation confirmed close replication using the developed model of the overall
and volume range-specific time-dependent demand. Replication at the household
size level was less conclusive but discrepancies could be explained by unrepresen-

tative data for some household sizes.

e Diversity analysis determined that the model output had the same characteristics
as the input EST data. Further assessment of the model output against current
diversity standards identified a potential for underestimation that is investigated

further in Chapter 8.
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Chapter 7

Occupant- and
Household-Specific Behaviour
Modelling

7.1 Chapter Overview

In Chapter 4 for the occupancy sub-model and Chapter 5 and 6 for the demand sub-
models, it was shown that elements of each have a tendency for convergence to the
calibration data average basis and, consequently, poor replication of individual be-
haviours. The convergence is most pronounced for elements that use composite data
from multiple individuals and households for calibration. For the occupancy sub-model,
the convergence is discernible in the output for each occupant-type group, in terms of
both transition timings and average occupancy levels. For the demand sub-models,
the convergence is related to the timing of use events for intermittent demands. In
this chapter, the speed of convergence is shown to be significant for the aims of the
developed overall demand model.

Methods to further differentiate behaviours have been developed and are detailed in
this chapter. For the occupancy sub-model, the time-basis of the Markov chain models
is altered for each individual to account for behaviour variation. For the demand
sub-models, relative use timing for individual appliances and hot water events are
manipulated for each household based on the dispersion of behaviours seen in actual

data. In each case the performance is compared with the unmodified output.
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7.2 Model Output Convergence

The overall conclusion from analysis of the developed electricity and hot water demand
sub-models detailed in Chapters 5 and 6 was that they are effective for analysis of
typical behaviours and for low-resolution average demand analysis but there remains
evidence of lower time-dependent variation between individual households than seen in
the measured data (see Figures 5.43 and 6.13). Weaker model performance in predicting
low energy use households also indicates that the tendency to underestimate the range
of average occupancies within each occupant type module (see Figure 4.12) may also
result in an underestimate of the range of predicted demand levels.

Whilst the overall model has been developed with a number of differentiated cal-
ibration datasets and incorporates probabilistically generated factors to account for
variations due to household characteristics and individual behaviours, two key time-
dependent elements retain calibration data that is a composite of multiple behaviours.

They are:

e Occupancy Sub-Model - Each occupant type-specific Markov chain calibration
module is generated from the single-day diaries of a large number of individuals
(see 4.5.5). The average behaviour for each module output will therefore converge
to the average behaviour of the calibration population; an inherent feature of all
Markov chain models. Significant differentiation to account for the behaviour
differences between occupant types has been incorporated, but each type module
remains a composite. Analysis has shown that each module converges rapidly to
the type average over approximately 200-300 modelled days as shown in Figure
7.1 for selected examples. The result is that for annual duration output there will
be convergence in average occupancy for occupants with similar characteristics.
This was shown in Figure 4.12 to be particularly significant for retired occupants,
who do not have the variable mix of working and non-working days associated
with a large proportion of the working age populations to generate additional

variation.

e Cycle Timing Module - The cycle start time identification module (see 5.9) is cali-

brated using probability distributions generated from the overall population with
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some further manipulation for specific average occupancy variations per house-
hold type. These, however, do not account for any household-specific behaviours

related to the time-dependent use of electrical appliances and hot water.

The developed overall demand model that incorporates these composite calibration
elements is hereafter known as the ‘composite’ model. Further model developments
to capture individual behaviours detailed in this Chapter are identified by the term

‘individualised’.

7.2.1 Occupancy Sub-Model Uniformity

Analysis of the output of the developed ‘composite’ occupancy model (see Chapter 4)
and the Richardson et al model [69] (hereafter known as the 'Richardson’ model), high-
lights the convergence problem with group-calibrated probability models. Figure 7.2
shows the average annual occupancy results for 70 single-person households for both
methods. The ‘composite’ model output is based on a nationally representative set of
single-person household characteristics. The ‘Richardson’ model output is based on 70
runs of the single-person household module.

As outlined, for extended period models, predicted occupancy, and therefore to a
degree any demand prediction using this output as a basis, converges to the calibration
population mean. For the 'Richardson’ model, differentiated only by occupant number,
all one-person households converge to the same basic occupancy pattern over an annual
model run with only minor variation in both average occupancy and transition timings.
For the ‘composite’ model, even with additional differentiation for age and employment
status and a representative set of occupants which partially captures realistic variations
in average occupancy (vertical variation), the average timing of key transition periods
(waking, retiring etc.) (horizontal variation) remains unrealistically consistent.

Analysis of the Dutch 2005 TBO Time-Use Survey (TUS) [87], which includes seven-
day diaries, allows this tendency for convergence to be further assessed. It is probable
that one-week diaries will exhibit more individual variation than would be expected for
longer periods of analysis, but the dataset allows for an initial judgement of individual
behaviour variation and model replication of this behaviour.

Figure 7.3 shows the waking time mean and standard deviation (in minutes) distri-
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bution for retired single-person households from the 15-minute resolution Dutch TBO
TUS data and the equivalent for the 10-minute resolution ‘composite’ model based
on 100 one-week and one-year duration runs. The TUS data shows a range of be-
haviours, including zero standard deviation results. (A zero result implies that the
person transitioned within the same 15-minute period on all monitored days.) The
equivalent occupancy model results show a more random distribution centred on the
average behaviour for the one-week duration model and a highly converged distribution
for the one-year duration model, both with a higher average standard deviation than
the TUS data. This highlights that the ‘composite’ model output is highly variable for
each individual modelled event but highly convergent overall in comparison with real
behaviours. This short-term variation and long-term convergence limits the ability of
the model to capture occupancy behaviours of individual households.

The influence of the ‘composite’ occupancy sub-model convergence on demand pre-
diction was shown in 5.14.7 and 6.5.7, where the demand sub-model per-timestep rela-
tive variance is shown to be significantly lower than for the Household Electricity Survey
(HES) [89] and Energy Savings Trust (EST) hot water [90] datasets respectively. Figure
7.4 shows the same electricity demand analysis as Figure 5.43 for three distinct type
groups (single-working-age, couple-retired, and multi-adult households), with a higher
coefficient of variance indicating a greater divergence in energy use timing. The HES
dataset results for each group type are similar, with distinct peaks in variance in the
waking period (6am to 10am), late afternoon (4am to 8am), and late evening (10pm to
lam) associated with the main transitional periods of electricity demand. In each case
the demand sub-model output again shows a significantly more consistent and lower
level of variance, which would be expected for a model that underestimates the timing

variance in occupancy and appliance-use behaviours in these periods.

7.2.2 Individual Household Demand Behaviours

The cycle start time cumulative probability function (cdf) distributions (see Figure
5.16) used within the cycle start time identification module (see 5.9) do not account for
any strongly habitual usage behaviours or less distinct household-specific tendencies to

use certain appliances or hot water in specific periods. As was shown in Figure 5.39
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for the washing machine module, the start time cdf distributions generated for each
appliance allow an assessment to be made of the range of cycle start time cdf values for
each HES dataset household. The mean and standard deviation of the cdf distribution
per household gives an indication of the relative timing of usage compared to the average
behaviour. For example, a household mean start time cdf value significantly lower than
0.5 indicates use that is typically earlier than average. The lower the standard deviation,
the more consistent the timing of each use.

Analysis of the data has shown that significant use timing differences exist for
most ‘cyclic’ demands. However, in terms of both likelihood and overall impact on
demand, is most significant for the following; kettles, washing machines, dishwashers,
cookers/ovens, and the higher volume (>15 litres) hot water events (i.e. those predom-
inantly indicating bath and shower use). Assuming average behaviour should therefore,
to some degree, impact model accuracy. This was confirmed by comparative analysis
detailed in 7.4.2.1 and 7.5.1.2.

Figure 7.5 (a), (c), and (e) shows the range of household cdf mean and standard
deviation values for dishwasher and cooker cycles for all HES dataset households and
‘Very High’ (30 litres+) hot water cycles for all EST dataset households, indicating a
similar wide range of different behaviours as already shown for washing machine use in
Figure 5.39. For these distributions, each data point is also only weakly correlated with
the number of observed events (indicated by the size of each data point). Figure 7.5 (b),
(d) and (f) show the equivalent distributions for households modelled using the ‘com-
posite’ model, indicating a strong tendency for convergence to the average behaviour.
The results also demonstrate that the convergence tends to increase with the number
of modelled events, as would be expected for a highly probabilistic model exhibiting an
overall tendency to converge. The ‘composite’ model behaviour is consistent for all the
specific demands listed above.

In contrast, sub-1-litre volume hot water cycles, which are likely to be the most
occupancy rather than behaviour driven demand, exhibit a significantly lower dispersion
of timing behaviour as shown in Figure 7.6(a). The ‘composite’ model equivalent output
shown in Figure 7.6(b) is more converged but not as significantly. As will be reviewed
below, a realistic dispersion can be achieved solely with improvements to the occupancy

sub-model, confirming the low behavioural influence on timing for certain demands.
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Chapter 7. Occupant- and Household-Specific Behaviour Modelling

7.3 Individualised Occupancy Sub-Model

Two specific convergence problems with the composite-calibrated occupancy model
basis were identified. One related to the timing of specific occupancy transitions and
the other to the prediction of average occupancy within each calibration group. Each

has been analysed separately.

7.3.1 Transition Timing Prediction

Household demand profiles are characterised by four key occupancy-linked transitions;
waking, morning leaving, afternoon/evening return and sleep. The developed group-
calibrated (‘composite’) occupancy model has been shown in 7.2.1 to tend to produce
overly convergent individual occupancy profiles based on the average behaviour of the
calibration group, and for those critical transitions. Therefore, the previously devel-
oped occupancy model was modified with a focus on those periods to better capture
individual variance from average occupancy behaviour.

The Dutch 2005 TBO TUS dataset, which includes seven-day diaries, has been used
to calibrate the model for individual behaviours relative to the average behaviour for
each defined calibration group. It is assumed that the variability in this dataset, if not
the specific timings, are representative of any developed country population. It is ac-
knowledged, as outlined above, that one-week diaries may not be sufficient to accurately
capture long-term behaviours, and that equivalent UK-specific data over a longer period
(minimum of one month) would significantly enhance the proposed method. However,
the available data does at least allow the method’s potential effectiveness to be assessed.

Analysis of the Dutch TBO TUS data has shown that transition time behaviour
within each household-type varies significantly between respondents. Some have clear
patterns of behaviour; others are more erratic. This was shown for the retired single-
person population in Figure 7.3(a), and Figure 7.7 shows the equivalent waking time
results for each working age, single-person householder on working and non-working
days, which have similarly variable distributions. This variation is replicated across all
populations for both wake and sleep transition timing.

For all populations there are clear increases in waking at each hour and smaller

peaks at the half-hours as indicated in Figure 7.8 for the single-person households in
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the UK and Dutch TBO TUS datasets. This suggests that for a significant proportion
of households the timing of the first person awake is forced by outside means (i.e.
alarms) and is not naturally driven. For occupants with a lower likelihood of a specific
outside driver for waking (retired, non-working), the most prevalent wake time remains
on the hour, suggesting that this is default waking behaviour for a large proportion of
people. Similar, if less distinct, patterns can be seen for the other analysed occupancy
transitions.

To capture this behavioural variation, the ‘composite’ model Markov chain proba-
bility matrices are assumed to provide two levels of behavioural information. Existing
models rely on the time-specific detail to probabilistically generate statistically con-
sistent stochastic models. The proposed method assumes there is also a higher-level
detail inherent in Markov chain occupancy models that captures typical transition
patterns that are period- rather than time-specific, and that, for each individual, the
specific timing can vary. This potentially allows the ‘composite’ model to be further
manipulated without impacting the overall statistical basis or introducing unrealistic
individual occupancy patterns. To this end, the time basis of each occupant type prob-
ability model has been altered to reflect the difference between individual behaviours

and the group-calibrated average.

7.3.1.1 Method Development

The following section outlines the development of each element in the ‘individualised’
occupancy model. Figure 7.9 shows the overall process graphically and the individual
manipulations required.

Wake time — Dutch TUS analysis shows that there is no significant difference in
the average variance per person for wake and sleep times. Wake time was therefore
arbitrarily selected as the anchoring statistic for the revised model. Each individual is
allocated an average wake time based on the probability distribution for the equivalent
UK TUS population. It is assumed that some of the early and late times are outliers for
those individuals and comparison of the one-week Dutch data and single-day UK TUS
data suggests a 5-10% greater range in the single-day UK data, therefore the potential
average times are restricted to those in the middle 90% of the range.

As outlined, wake times, in particular, are proportionally higher in the period fol-
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lowing the hour or half-hour. By allocating an average wake time based on this dis-
tribution, the updated model should broadly maintain this pattern, which has been
confirmed (see Figure 7.12).

Wake period time-shifting — The 'wake period’ is defined as 3am to 10am.
For each group calibration module, the average wake time is determined. For each
individual, the Markov chain module in this time period is then time-shifted (Atsf)
based on the difference between the individual’s determined average wake time and the
relevant group average (Tow and Tpw respectively on Figure 7.9).

Sleep period time-shifting — Analysis of the Dutch TUS data shows an average
waking duration of 17.25hrs (Atws), with the majority of individuals being linearly
distributed by +/- 1hr of this level. This matches closely with the average waking
duration within the unmodified ‘composite’ model. The sleep-transition period Markov
chain module (9pm to 3am) is therefore time-shifted by a randomly selected amount
that is +/- 1hr of the wake period time-shift for the individual (i.e. between T0s,p
and To8pq, in Figure 7.9).

Variance factor — The time-shifted probability modules without further modifi-
cation maintain the overall variance of the composite behaviour, which has been shown
to significantly exceed individual variance for almost all individuals. For example, the
single-person working day group modules have an average waking time standard de-
viation of 60.3 minutes and for the retired single-person modules of 73.6 mins. The
equivalent averages for each individual in the Dutch TUS dataset are 28.0 mins and
20.6 mins respectively, with only 8% and 4% of each population exceeding the group
module variance.

To achieve realistic individual behaviour variance, each modelled individual is prob-
abilistically allocated a standard deviation for each defined transition from the equiva-
lent Dutch TUS dataset occupant-type distribution. The Markov chain module timestep
basis is altered based on the difference between the individual-specific standard devia-
tion and the calibration group average. A minimum standard deviation of 2.5 minutes
is arbitrarily used to ensure some variance per individual over extended periods within
the 10-minute resolution basis (i.e. ¢.4% of transition events will be in the period
preceding or following the assigned average period).

Figure 7.10 demonstrates the rebasing method graphically. The required manipula-
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tion is achieved by first running the time-shifted Markov chain module normally until
a relevant transition is identified. (If no transition is identified the model proceeds
as normal to allow for the probability of uncharacteristic behaviours.) The cumula-
tive distribution function (cdf) value for the transition point (¢1) is determined and
the equivalent cdf value (¢1*) on the individual-specific variance distribution identified
(Figure 7.10 shows an example of an individual with lower variance than the calibration
population). The model timestep is then reset to the closest integer timestep (¢17) to
the identified point ¢1* If ¢17 is before ¢I, the model deletes all modelled timesteps
after ¢17 and resets the model timestep to t1i. If after, the unmodelled timesteps up to
t1i are set to the preceding state and the model continues from 1.

Other Key Transition Periods — The same process is also used for the key
morning leaving and evening returning transitions, if such a transition is predicted
within defined periods (morning leaving - from waking until 2.5 hrs after mean waking
time; evening return - & 1.5hrs of mean return time).

Average occupancy results using the ‘individualised’ model basis shown in Figure
7.11 for the same population as the unmodified ‘composite’ model results shown in
Figure 7.2 shows significantly more occupancy variation in the key transition periods.
The lack of long-term occupancy data does not allow for a direct comparison between
the model output and individual occupant behaviour over an extended period. However,
a statistical comparison between the TUS data and the occupancy model output for

each occupant-type group is possible and is detailed in the following section.

7.3.1.2 TUS Dataset Replication

To be effective the ‘individualised’ occupancy method should replicate the timing be-
haviours of each equivalent TUS population for the identified transitions. Results for
the waking period (see Figure 7.12) for all single-person households shows good correla-
tion between the UK TUS distribution and model results. A smoother distribution is to
be expected for the model results as they include significantly more data points (25550
vs 1159). Similar correlations are observed for other transitions and occupant-type
groups.

The ‘individualised’ model has been calibrated to reflect the average waking times

from the UK TUS dataset, therefore exact replication of the Dutch 2005 TBO TUS

220



120 T T T .

. e © ® Dutch TUS Data
7y ® |ndividualised Model
E 100 - .

E : '

c 80f ° .

iel o

E ® . ° i

q>) 60 oo .o. L o

% °® ..0 ¢ ) o° °

S 40+ cves ® — Ten °

© e o ° 9 o ... % o

% g’ o o..‘ ® % . ° °

+— 20t 0 08, o,.° o0 ° °

Z AN, - U2

A o ® e '] | Jo e0 L o °

0 ® *—o—o L—eo—90—9o—o ® L L
05:00 06:00 07:00 08:00 09:00 10:00

Mean Wake Time

Figure 7.13. Wake time statistical comparison between the Dutch 2005 TBO TUS dataset
[87] and ‘individualised’ occupancy model output for single-person, retired householders.

221-A

11:00



Chapter 7. Occupant- and Household-Specific Behaviour Modelling

distributions shown in Figure 7.7 is not expected. However, the results for 100 annual-
duration retired household models using the ‘individualised’” model shown in Figure
7.13 highlights the improvement in replicating the variance in behaviour compared
to the tight convergence shown in Figure 7.3(c). The model distribution matches the
characteristics of the Dutch TUS data equivalent, with a slightly later average reflecting
the overall behaviour difference shown in Figure 7.8.

Further validation of the ‘individualised” method was undertaken using the metrics
defined in 4.4. This was done for three single-person weekday household model groups
(working 34-40 age range, non-working 34-46 age range, and 70-79 age range). The
results are shown in Table 7.1.

Table 7.1
Occupancy model validation metric comparison for three single-person householder populations for
the ‘composite’ and ‘individualised’ models.

AO_Conv DurDist DurDist DurDist
(x E-3) Sleep Active Out
Working 34-40 - ‘Composite’ 12.7 1.51 0.67 2.39
Working 34-40 - ‘Individualised’ 314 3.84 1.57 5.46
Non-working 34-46 - ‘Composite’ 16.1 1.30 0.86 1.76
Non-working 34-46 - ‘Individualised’ 37.6 3.47 1.54 5.41
Retired 70-79 - ‘Composite’ 3.0 0.98 0.34 3.44
Retired 70-79 - ‘Individualised’ 28.7 3.16 0.47 6.00

For the AO_Conv metric, that measures overall convergence to the calibration
dataset average per-timestep occupancy, the performance is less accurate that the ‘com-
posite’ method. When the ‘error’ per timestep is analysed the most significant period
of weaker replication is in the sleep transition period. This suggests that the simple
correlation between wake and sleep time used requires a more complex statistical basis
for better accuracy. For the DurDist metric, that measures the error in occupancy state
duration distribution replication, the performance is also worse for the ‘individualised’
model by a factor typically of between 2 and 3. This results from the additional forcing
of behaviours.

Further analysis of the impact on the overall demand model output is required to
determine if the loss of performance in terms of TUS dataset replication is outweighed
by an improvement in capturing individual behaviours.

When the distribution of ‘Very Low’ volume hot water cycles per household is anal-
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ysed, which is considered to be the most occupancy-driven and least behaviour-driven
demand, Figure 7.14 indicates the distribution using the time-shifted ‘individualised’
occupancy model is a closer replication of the dispersion of behaviours seen in the EST
dataset than the unshifted ‘composite’ model, indicating the potential for improved

demand prediction performance.

7.3.2 Residual Average Occupancy Convergence

The inclusion of significant occupant and day type differentiation (see 4.5.4 and Ap-
pendix B) and realistic occupant work weeks (see 4.5.4.5) ensures a degree of variation
in average occupancy. However, Figure 4.12 indicates that, while this results in im-
proved performance over existing methods, the occupancy model output remains less
variable than real behaviours. The requirement to maintain minimum calibration pop-
ulation sizes for modelling stability (see 4.5.4.10) forcing convergent average occupancy
behaviour for significantly sized subsets of modelled occupants.

Addressing average occupancy convergence is less straightforward than for transi-
tion timing convergence, as it is an underlying function of the overall probability model
rather than related to specific transitions in distinct time periods. However, the main
determinant of average occupancy is the balance of ‘active’ and ‘out’ periods, with
‘sleep’ duration variability addressed by the transition timing method identified in the
preceding section. This potentially allows the ‘active-out’ transition probabilities to be
manipulated to account for variable in-group behaviours.

A potential improved method identifies periods where an occupant is not asleep and
the next timestep has both a non-zero ‘active’ and ‘out’ probability. The ratio of the
‘active’ and ‘out’ probabilities can be adjusted by a multiplier to increase or decrease
‘active’ occupancy. Figure 7.15 shows the impact on overall active occupancy for 100
annual simulations for the same 60-year old, non-working single householder as the
multiplier is randomly selected between 0.5 and 1.5, in comparison with an unfactored
model. The unfactored model results over 100 simulations vary in a tight band be-
tween 0.4 and 0.45, with the application of the multiplier generating significantly more
variation.

Analysis of the average output from a representative range of multiplier values
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shown in Figure 7.16 indicates that the impact is relatively consistent over the waking
period. Further analysis of individual day occupancy patterns suggests that the method
remains stable with no evidence of an excessive increase in very short or long duration
‘active’ or ‘out’ periods. Extension of the method to the combined couple/parent
occupancy model is more complex but the same ratio manipulation is possible for the
main ‘active-out’ transitions (i.e. SA/SO and AA/AO/OO, where ‘S’=Sleep).

Whilst the identified method allows some basic statistical manipulation, and can
be easily calibrated using the data presented in Figure 7.15 to adjust overall average
occupancy, as stated it does not account for time-dependent variations but varies oc-
cupancy uniformly. For accurate individual behaviour modelling, the multipliers used
would need to be both time-period and day type specific. However, with no long-term
occupancy data currently available, realistic calibration at this resolution is not possi-
ble. Consequently, this method was not developed further at this stage and no average
occupancy adjustment was incorporated in the final ‘individualised’ occupancy model.
However, the method was shown to have potential to solve this convergence problem

with the availability of suitable calibration data.

7.4 Individualised Appliance Behaviour Module

7.4.1 Module Basis

The appliance cycle start time module, calibrated with start time data from the overall
HES population with limited household type adjustments, was shown in 7.2.2 to result
in excessive start time distribution convergence for modelled households (see Figure
7.5). The occupancy sub-model with individual behaviour factoring (see 7.3) generates
additional variation in typical use times, but this does not account for any individual
behavioural traits associated with specific appliances (e.g. typically showering after
waking, using the dishwasher prior to sleep, etc.).

As outlined in 7.2.2, a method to identify individual household behaviours was de-
veloped based on the cycle start time distributions introduced in 5.9. The distributions
used are the ‘raw’ distributions prior to the occupancy normalisation used for the cycle

start time identification module. For each household, cycle start times are converted to
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the cumulative distribution function (cdf) value from the appropriate cycle start time
distribution. The deviation from a mean value of 0.5 indicates whether a household
typically uses the specific demand earlier (<0.5) or later (>0.5) than average. The
lower the standard deviation the more habitual the behaviour. Evidence of distinct in-
dividual behaviours was identified for kettles, washing machines, dishwashers, showers,
cookers/ovens plus ‘High’ (15-30 litres) and ‘Very High’ (30 litres+) volume hot water

cycles.

7.4.2 Individualised Behaviour Module Development

The ‘composite’ demand sub-models defined in Chapters 5 and 6 determine the cycle
start time from daily occupancy and the appliance cycle-specific cycle start time prob-
ability distributions by converting a generated random number to a time based on the
relevant start time distribution (see 5.9.2), with the potential times limited to occu-
pied periods. The updated model basis manipulates the random number generation
to better replicate the realistic distribution of appliance use timing behaviour shown
graphically in Figures 5.39 and 7.5.

The random number manipulation is achieved for each selected appliance and hot
water use by interpolating the range of cycle cdf values for each household into 21
representative quantiles and converting each quantile value into one of ten cdf value
ranges (1=0-0.1, 2=0.1-0.2, etc.). The range transitions between each of the quantiles
were determined for each HES and EST dataset household and used to calibrate a
separate Markov chain model for each specific demand.

The module generates new distributions for each modelled household based on a
probabilistically assigned midpoint (11th) quantile, with the Markov chain model work-
ing in both directions from the midpoint to the minimum (1st) and maximum (21st)
quantile values to allow the midpoint value to be further factored based on household
occupancy timing compared to the average. Within the ‘individualised’ cycle start time
module, a value is selected randomly from the 21-quantile distributions (see Figure 7.17
for examples) and then the actual value used is selected randomly within the range (e.g.
a value of 4 randomly selected from the distribution is converted to a number randomly

selected between 0.3 and 0.4). The determined value replaces the original ‘composite’
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model 0-1 range random number generation used by to determine the cycle start time
(see 5.9.2) to skew the generated start times to reflect individual household behaviours.

The use of a relatively small number of quantiles and ranges ensures that the broad
overall pattern of potential behaviours is captured but that there is sufficient variation
as a result of randomly selecting values within the ranges to ensure that the model is not
forcing close replication of the input data. The method was preferred to other methods
of skewing probability distributions as it allows for multiple and well separated periods
of higher use probability. Figure 7.17 shows examples from the ‘cooker’ module of
four typical resultant distributions for households that exhibit distinct use behaviours
(early/average/late with low variance, and average with high variance).

For the ‘High’ and ‘Very High’ volume hot water cycles, there is assumed to be
an overarching relationship. Midpoint values are first assigned for the ‘High’ module
and then assigned for the ‘Very High’ module using the Kernel Density method (see
Appendix A) based on the statistical relationship between the two midpoint values
identified from the calibration dataset.

A proportion of the observed use timing variation is assumed to be the result of
occupancy variations. Without further data to account for occupancy, the mean value
for each household is modified by the extent to which the average household occupancy
is earlier or later than the average population behaviour. This is a further area where
modelling would be improved by an integrated occupancy and demand dataset that
allowed the relationship between occupancy and cycle timing for individual households
to be better incorporated.

The method as currently implemented does not account for specific daily occupancy
patterns. For the original ‘composite’ method, the potential cycle times are first limited
to the occupied periods and then the specific time is determined based on the generated
value between 0 and 1 which is used to locate it proportionally within the occupied pe-
riod. The same process is used for the ‘individualised’ method, therefore the behaviour
is only skewed based on the household-specific distribution and not forced to specific
times. Further improvement of this method to account for highly distinct use patterns
by linking use to specific time periods is required for better replication of applicable

households.
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Figure 7.18. Cycle start time cumulative distribution function mean and standard deviation
per household. Comparison for measured data and ‘individualised’ model. Data for the ‘EST
households’ distributions from [90].
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7.4.2.1 Results Analysis

Analysis of the cdf mean and standard deviation values from the ‘individualised’ model
results in Figure 7.18 shows an overall distribution that is significant closer to the
measured data than the unmodified ‘composite’ model results shown in Figure 7.5.
The results also indicate that there is no evidence of greater convergence to the mean
behaviour for households with a higher number of use events, which was a critical
performance problem for the ‘composite’ model.

As a statistical measure of the degree to which each sub-model results replicate the
HES and EST dataset characteristics, the average distance of each mean and standard
deviation data point from the average is calculated. Distance is defined by Equation
7.1 for a number of data points (households), H.

H

Distance = Z
h=1

((Cdfmean(h) - Cdfmean)2 + (Cdfsd(h) - Cdfsd)z)&5
H

(7.1)

Analysis of results from 10 model runs for an equivalent set of households in Table
7.2 shows that the Distance measure for the ‘individualised” model basis is significantly
closer to the equivalent measure for the actual data for all relevant specific demands.
However, as indicated visually in Figure 7.18 and from the Distance measure, the dis-
persion of modelled results is lower than the actual data, particularly for the standard
deviation measure. This results from the lack of direct integration between the occu-
pancy and cycle start time sub-models, as outlined above, that does not easily allow
highly habitual (i.e. low standard deviation) behaviour in particular to be closely repli-
cated, and also potentially from the size of the cdf ranges currently used in the Markov
chain model. Further work in this area is required as and when integrated occupancy

and demand data is available.

Table 7.2
Average ‘Distance’ measure for each household from mean cycle start time behaviour for different
specific demands. Dataset data for analysis from [89] and [90].

Cooker Washing Hot Water Hot Water

Machine ‘High’ ‘Very High’
Dataset (HES/EST) 0.153 0.175 0.110 0.139
‘Composite’ Model 0.090 0.102 0.079 0.076
‘Individualised’ Model 0.126 0.155 0.121 0.139
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Whilst the individual cycle start time method can be further improved, it has been
shown to be a significant improvement on the ‘composite’ model basis for each specific
demand. Further analysis is required to determine if the method improves the overall
demand model performance and to determine how applicable it is for energy system

development. This analysis is presented in the following section.

7.5 Individualised Demand Model Performance

Assessment

7.5.1 Individual Household Similarity
7.5.1.1 Electricity Demand

The PAA-ED similarity method introduced in 5.14.4 can be used to compare the elec-
tricity demand sub-model output with and without the defined individualised occu-
pancy and cycle behaviour modifications. The PAA-ED method simplifies each 144-
timestep average demand profile to a 36-time segment approximation based on ranges
of demand, which can be compared using a standard Euclidean distance similarity
measure.

Five hundred HES dataset household equivalent model runs for both ‘composite’ and
‘individualised’ methods were compared. After each run and for each of the households,
the cumulative lowest PAA-ED value for all runs completed is determined and the
overall average for all households calculated. This average value is a simple measure
of the ability of the model to generate demand profiles consistent with the range of
behaviours observed in the measured data and the progression of average results with
runs performed gives an indication of the speed with which each highly probabilistic
method identifies real and representative patterns of behaviour.

The results for the full 250-household HES-equivalent model are inconclusive, with
similar results for both methods. However, for the 26 households which were monitored
for longer than 28 days (between 61 and 249 days with an average of 125 days), the
average for both methods is significantly lower, and there is an improvement in the
‘timing’ value after 500 runs for the ‘individualised’” model with an average of 2.09

compared to 2.25 for the ‘composite’ model (see Figure 7.19(a)). This suggests that the

227



.
1)

(0]
§ = = -='Timing' - Composite Model
(7)) — 'Timing' - Individualised Model
QO 4 = = ='Overall' - Composite Model
LI.J —'Overall' - Individualised Mode
o
=35
2 -
© |\ "~ T T Te—eee L _____
5= | N N
»
(0] 4 N
S = =
S
@)
(0]
g 2.5
©
—
(0]
z

2

50 100 150 200 250
Run

Figure 7.20. Cumulative closest match PAA-ED score average per run comparison be-
tween ‘composite’ and ‘individualised” models for EST dataset-equivalent hot water demand
model.

228-A



Chapter 7. Occupant- and Household-Specific Behaviour Modelling

length of the analysis period is also important, with 28-day profiles being significantly
more erratic than longer duration profiles and therefore more difficult to replicate.
Similar analysis for the Richardson [69] and REFIT [45] datasets (see 2.3), and
equivalent models, which are all of a 1-year duration, show a clear performance im-
provement for the ‘individualised’” method basis (see Figure 7.19(b) and (c)) with ‘in-
dividualised’ and ‘composite’ method results of 2.80 and 3.19, and 2.62 and 2.84 re-
spectively for the ‘timing’ basis, and 3.34 and 3.53, and 3.51 and 3.64 for the ‘overall’

basis.

7.5.1.2 Hot Water Demand

Similar PAA-ED analysis was undertaken for the hot water demand sub-model com-
paring the Energy Savings Trust (EST) dataset (see 2.3) with the dataset-equivalent
model population.

For both the ‘timing’ and ‘overall’ assessments (see Figure 7.20), the ‘individu-
alised” method shows significantly better performance than the ‘composite’ method.
The improvement is also greater and more consistent than for the electricity demand
sub-model. The similarity assessment of individual results also shows a distinct im-
provement in the number of ‘High’ and ‘Low’ similarity results as shown in Table 7.3.

Table 7.3
Hot water model closest cumulative match similarity analysis range results for the ‘composite’ and
‘individualised” EST household equivalent models after 250 model runs.

Similarity "High’ ’Good’ ’Some’ "Low’
‘Timing’ - ‘Individualised’ 62 (62%) 31 (31%) 7 (7%) 0 (0%)
‘Timing’ - ‘Composite’ 46 (46%) 33 (33%) 12 (12%) 9 (9%)
‘Overall’ - ‘Individualised’ 37 (37%) 40 (40%) 21 (21%) 2 (2%)
‘Overall’ - ‘Composite’ 28 (28%) 41 (41%) 21 (21%) 10 (10%)

7.5.1.3 Similarity Analysis Summary

The results of the demand model analysis for the developed individual-calibrated (‘in-
dividualised’) method show that it performs better that the group-calibrated (‘compos-
ite’) method, particularly where annual data is available for comparison. The identified
weaker replication of the group-average occupancy characteristics with the addition of

the individual occupancy transition timing adjustments is therefore outweighed by the
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improvement in capturing individual demand behaviours. Particularly as further im-
provement of the ‘individualised’ occupancy method is possible with an improvement
in the sleep-transition time element which is the main source of the current weaker
performance.

The significant performance improvement seen for the hot water demand sub-model,
with virtually no individual household from the input dataset not replicated to a rea-
sonable degree and a high proportion closely replicated, suggests that the impact of
the individualisation method can be significant. Applied to the ‘High’ and ‘Very High’
cycle volume ranges, the ‘individualised’ method impacts on 63% of hot water use with
a single behaviour adjustment per household. The electricity analysis is more complex,
with multiple appliances with different behaviours and power profiles which account for
a far smaller proportion of overall demand and are monitored for shorter periods. The
benefit of the ‘individualised” method is therefore potentially more significant for in-
dividual appliance behaviour replication than overall demand. The hot water analysis
suggests that this method could be beneficial for demand shifting analysis for indi-
vidual electrical appliances but this is difficult to confirm with the available demand
data, although Figure 7.6 does clearly demonstrate a distinct improvement in start

time distribution replication.

7.5.2 Overall Variance

In 7.2.1 it was shown that the ‘composite’ model basis did not generate the same per-
timestep variance in demand per household seen in the demand datasets (see Figures 7.4
and 6.13). Repeating the analysis for the ‘individualised’ model as shown in Figure 7.21,
demonstrates that it improves on the replication of the typical variance per household,
particularly in the post-waking and pre-sleep periods on which the occupancy model
modification is primarily focused. There remains a significant difference in variance
between the dataset and model in the late afternoon/early evening period which requires

additional analysis that is discussed further in Chapter 9.
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7.5.3 Applicability for Individual Household Modelling

The average demand analysis, both for electricity and hot water consumption, deter-
mined that the developed demand model captures the overall range at this resolution.
The similarity assessment results suggest that there is a small but significant number
of households whose time-dependent demand behaviours, at least for the more com-
plex electricity demand element, are not captured. Analysis of these households shows
highly distinctive use patterns, which are either characterised by unusual overall tim-
ing or very specific and consistent periods of very high demand. Capturing both types
within a probabilistic model is limited both by the uniqueness of the behaviour and the
size of the available calibration datasets.

The conclusion is therefore that the model captures the time-dependent demand
behaviour variation of between 80 and 90% of households for electricity demand (see
Table 5.14) and at a slightly higher level for hot water (see Table 7.3). The majority of
the remainder are likely outwith the scope of a probabilistic model. For these outlier
households, the use of actual data is likely to remain the best method to capture
extreme outlier behaviours. However, the model can be used to capture a significant
range of potential behaviours for a comprehensive range of households, and is therefore

a distinct improvement on existing methods for assessing individual households.

7.5.4 Minimum Number of Households for Comprehensive Analysis

Further analysis was undertaken to determine the number of households required for
the impact of the poorly replicated, outlier households on overall system demand to be
negated. This determines the minimum size of energy system, in terms of number of
households, for which the demand model can be used to comprehensively capture all
potential demand scenarios with sufficient accuracy.

As stated in Chapter 1, sufficient accuracy, that is the degree to which both the
real and modelled time-dependent behaviours of a multi-household population has con-
verged for the purposes of system design, is both subjective and situation-specific.
Accuracy was therefore analysed quantitatively using the same PAA-ED similarity
method introduced in 5.14.4 for the comparison of individual households, but in this

case for overall system demand. The relative timing (‘timing’) analysis was used as
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it is a better measure of model timing prediction without the distorting influence of

variable baseline power levels that the model should account for with sufficient runs.

Table 7.4
Average and maximum per-run combined PAA-ED similarity score for different numbers of house-
holds from the HES dataset and HES-equivalent ‘individualised’ model output.

Households 1 5 10 20 30 50 100
Average 4.10 2.40 1.81 1.46 1.34 1.19 1.08
Maximum 9.38 6.40 4.68 3.25 2.42 2.15 1.64

Comparing the average model output over 500 runs for the HES-equivalent ‘indi-
vidualised’ electricity demand model shows that the worst-case individual household
closest match PAA-ED score is 9.38 with an average of 4.10. Table 7.4 shows the av-
erage and maximum closest match scores from 500 random combinations of the stated
number of households based on similarity analysis of each of the 500 model run results
for each combination. At five households, the average closest match is less than the
‘2.5” threshold for ‘High Similarity’, however, the worst results have poor similarity
with 20% exceeding the ‘3.5’ threshold for ‘Good Similarity’. At between 15 and 20
households, no result exceeds the ‘3.5 threshold, and at around 30 households no re-
sult exceeds the ‘2.5’ threshold. At 100 households, the maximum value approaches
1.5, which indicates that the model is able to closely match relative demand timing in
all cases with a sufficient number of runs. There is an insufficient number of households
(250) to make meaningful conclusions for higher numbers of households.

The conclusion is therefore that the influence of outliers is significantly reduced for
systems in excess of 15-20 households, and that the results can be used with good con-
fidence for 30-household systems and above, with low risk of poor prediction resulting
from the influence of outliers not captured by the model. As outlined, most of the
HES household demand data is of a one-month duration which generates demand pro-
files that are erratic and therefore difficult to predict. The actual minimum number of
households for comprehensive modelling may therefore be less than these figures where

replication of more consistent annual demand profiles is required.

7.5.5 Minimum Number of Runs

In general, the similarity analysis has shown that between 50 and 100 runs, as a mini-

mum, are required for the per-run improvement in matching specific profiles to dimin-
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ish to a steady baseline level for both ‘composite’ and ‘individualised’ options, and is
largely independent of the number of households. Further analysis was required, how-
ever, to determine the minimum number of runs required for the probabilistic models
to generate representative results and sufficiently close matches for real datasets.

Detailed analysis for multi-household combined system results has shown that the
probabilistic nature of the model generates unique results over a high number of runs
(>1000). Detailed statistical analysis of the similarity results per run using measures
such as the Komolgonov-Smirnov, t, and F tests show that subsets of up to 1000 runs
from 10000 runs samples do not converge to a 5% confidence that they are from the
same distribution; therefore, the highly probabilistic model, both for the ‘composite’
and ‘individualised’ versions, continues to generate statistically unique results over a
large number of runs.

For most types of analysis, and to limit the computational time required, a match
that approaches the absolute closest match is sufficient. A value within 25% of the
minimum similarity result for 10000 runs was arbitrarily selected as a measure of a
sufficiently close result. The results were analysed for 1000 combinations of different
numbers of households from the HES dataset, and equivalent model results, to deter-
mine the number of model runs required to achieve this target value. The results from
the 1000 combinations have a long tail and therefore both the median and average
results were determined. The 95% percentile is shown as a measure of how many runs
were required to capture all but low probability outlier results. The results are shown

in Table 7.5.

Table 7.5
Median, average, and 95th percentile number of runs to achieve a combined PAA-ED similarity
result within 25% of the 10000-run minimum value.

Households 10 30 50 100
‘Composite’ - Median 49 89 115 135
‘Individualised’ - Median 57 87 72 65
‘Composite’ - Average 121 182 210 234
‘Individualised’ - Average 122 176 153 157
‘Composite’ - 95th Percentile 532 683 723 792
‘Individualised’ - 95th Percentile 478 699 599 649

The results show that while the ‘composite’ method shows an increase in all values

with number of households, the ‘individualised’ method results are less consistent. This
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indicates that the more distinct output of the ‘individualised’ model requires more runs
that the ‘composite’ model for small numbers of households as the overall variation in
potential results is higher. As the number of households increases beyond 30, the higher
output variation of the ‘individualised’ model reduces, but the benefits of the more
distinct output in finding close matches is retained, driving an increasing performance
improvement as the number of households increase.

The overall conclusion is that for the ‘individualised’ model between 100-200 runs
are required to generate a representative range of results but that an excess of 500 is

required to ensure the vast majority of potential demand patterns are captured.
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7.6 Chapter Summary

This chapter detailed the development process for enhancements to the occupancy and
demand sub-models that allow individual occupant and household behaviours to be

better captured. The chapter highlights are as follows:

e Evidence of convergence in demand prediction as a result of composite group-
calibration of both occupancy and cycle start time identification approaches iden-
tified in Chapter 5 was confirmed for household type groups and for a number of

individual appliances and hot water uses.

e An improvement was proposed to reduce the occupancy model convergence by
time-shifting the group-calibrated probability modules to account for the distri-
bution in sleep, waking, leave and return times for individuals compared to the

group average.

e The assessment of individual household appliance start times in comparison with
the overall average determined that a significant number of households had dis-
tinct relative use behaviours for a number of electrical appliances and for high

volume hot water events.

e To account for individual use behaviours, the cycle start time identification mod-
ule is further manipulated for each household to account for different identified
behaviours. This is achieved by restricting the random number generation for

each household to simulate the different behaviours.

e A performance assessment of the developed ‘individualisation’ modules showed
distinct improvements in comparison with the ‘composite’ group-calibrated model
basis for both individual appliances behaviours and hot water overall demand.
The results were less conclusive for the overall electricity demand model because
of shorter measured data durations, conflicting behaviours between appliances,

and a lower overall contribution from the individualised element.

e Further analysis determined that the overall demand model captured behaviours
associated with 80-90% of individual households and could be used for compre-

hensive analysis for energy systems comprising a minimum of 15-20 households.
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Chapter 8

Model Applications

8.1 Chapter Overview

The purpose of this chapter is to demonstrate that the stated aims of the demand model
development in Chapter 1 have been achieved. These were to address shortcomings in
current methods for analysis of small-scale energy systems. Three applications are used
to illustrate the effectiveness of the developed probabilistic model; the calculation of
average and peak demand, and overall time-dependent optimisation analysis.

For average electricity demand, it is shown that the developed and validated model,
whilst computationally intensive, demonstrates that the BREDEM and SAP models
ignore significant potential socio-economic demand drivers, and confirms existing anal-
ysis that they may overestimate demand in many cases. It is also shown that the
average demand prediction uncertainty for single households exceeds a factor of two
and remains potentially significant in excess of 100 households. Similar conclusions
were also drawn for the hot water demand model, but less categorically as a result of
lower household differentiation and the lack of independent validation data.

For peak electricity demand, the output of the developed model is first validated
with measured demand data with good accuracy. In addition, the simplistic per-
household design ‘rules-of-thumb’ used by electricity companies for distribution sys-
tem sizing were shown to be potentially inaccurate, particularly for sub-100-household
systems.

For peak hot water demand (diversity), the developed model demonstrates that the
current preferred UK design basis of the Danish DS439 standard [63] potentially under-
estimates diversity for systems up to at least 50-75 households. The main conclusion

from the presented analysis was that a more detailed study was required, accounting

235



Chapter 8. Model Applications

for the dynamics of typical district heating systems, to determine if the Danish basis
is applicable for UK conditions. For both electricity and hot water peak demand, the
impact of household characteristics was shown to be relatively small, with number of
households the principal determinant.

For time-dependent optimisation analysis, two methods are introduced for selecting
subsets of multi-run, high-resolution demand data for further analysis. One is a rep-
resentative selection of the potential range of scenarios and the other is limited to the
extreme cases. Using a nationally representative 100-household model, the subsets were
used for two example design problems; generation and storage equipment sizing, and
a full system analysis for generation utilisation and grid balancing requirements. The
overall conclusion was that time-dependent demand uncertainty remains significant to

at least 200 households and that further analysis of more complex systems is required.

8.2 Model Applications Background

Five key elements for the design of distributed generation-supplied grid sub-systems
were identified in 1.6.1; sizing and balance, grid connection, storage, demand manage-
ment, and seasonal matching assessments. Each element requires a detailed under-
standing of the dynamics of the energy system, which on the demand side range from
prediction of peak demand at different timescales to high-resolution time series data for
balancing and matching analysis. This chapter highlights the potential improvement
in analysis for the five identified elements using the developed probabilistic, differenti-
ated, high time resolution demand model, with particular focus on sizing and balance,
storage, and grid connection assessments.

As addressed in 1.5, the degree and impact of prediction variation and uncertainty
on system design analysis is currently poorly understood. The overarching conclusion
of the work presented in the preceding chapters is that at the small-scale (i.e. <500
households) the range of household characteristics can significantly impact the average
demand and relative timing, and, in addition, that the size of the population impacts
the degree of uncertainty for any demand prediction as a result of the proportional
impact of individual household behaviours. Furthermore, some or all of the household

characteristics may not be known in advance of system design and this represents an
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additional prediction uncertainty.

In Chapter 3 it was determined that no existing model combines comprehensive and
differentiated household calibration, a high time resolution, and probabilistic factoring
to account for behavioural variations and associated prediction uncertainty. The devel-
oped electricity and hot water demand model addresses these shortcomings and allows
a detailed assessment of the impact of this overall uncertainty on the five identified key
design elements. In this chapter, the developed demand model applicability and capa-
bility for these assessments is reviewed, with specific reference to performance against
existing modelling methods, where applicable, and residual areas for improvement.

Section 8.3 reviews the impact of overall population characteristics on average de-
mand, and then determines the residual uncertainty from unknown household char-
acteristics and from individual household behaviours. The degree of uncertainty is
quantified for different sizes and types of energy system. Whilst average demand un-
certainty prediction has limited applicability for detailed system design, it does provide
a simple assessment of potential differences that can be expected from more detailed,
time-dependent system analysis. Average demand prediction also allows the perfor-
mance of low-resolution models, such as BREDEM [111] and SAP [48], to be analysed.

Section 8.4 assesses the performance of the developed model for the prediction of
peak demand, an important assessment for network sizing: for electricity demand,
maximum non-coincident demand (i.e. the sum of the peak demand for each individual
household) and after-diversity maximum demand (i.e. the peak total system demand)
are typically used; and for hot water, the diversity or simultaneity factor, which is
equivalent to the after-diversity factor for electricity demand. The impact of different
population types and sizes, and also the effectiveness of existing design standards, was
reviewed.

Finally, 8.5 introduces a method for selecting representative and extreme behaviour
datasets from multiple run analysis for time-dependent optimisation assessment using
either equally probable or worst-case scenarios. Using the selected scenarios, a simple
solar-matching model is used to indicate the potential impact of time-dependent de-
mand uncertainty on prediction of system performance. This type of high-resolution
analysis is critical for both sizing and balance, storage, and grid connection assessments,

and has the potential to be extended to the other design elements (demand management
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and seasonal matching) with further model improvements or more detailed analysis, as
discussed in 8.5.3. In addition, the impact of both demand variation and uncertainty

are analysed for a solar panel plus storage system.

8.3 Average Demand - Variation and Uncertainty

This review of average demand variation and uncertainty uses the ‘individualised’ de-
mand model basis introduced in Chapter 7, based on the core modelling methods
detailed in Chapters 5 and 6. These chapters include validation of both the elec-
tricity and hot water models for average demand prediction performance in relation
to characteristics-driven variations and prediction uncertainty. Therefore, no further

validation is detailed in the following section.

8.3.1 Characteristics-Driven Variation

Assessment of the average predicted (‘baseline’) power use for a household or system
can be used as a basic measure of relative demand or for low-resolution analysis. The
primary existing sources of UK-calibrated average demand prediction are the BREDEM
[111] and related SAP [48] models, that include average annual and monthly assessment
of expected appliance, lighting, cooking, electric shower, and overall hot water demand;
based primarily on number of occupants, and also floor area for appliance and lighting
estimates.

For baseline analysis, the main difference between the developed model and the
BREDEM and SAP methods is that it includes factors that vary depending on the
socio-economic characteristics of a location. The age profile, employment probability,
and income range being influenced by the location as outlined in 2.4 and 4.3. The
predicted demand and impact of the additional factors within the developed model was

therefore assessed against the BREDEM model output.

8.3.1.1 Electricity

The electricity demand model was run for four distinct, archetypal, small-household
community types with 100 households each, where number of bedrooms (60 1-bed and

40 2-bed), number of occupants, and floor area per household were fixed. Modelled
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using BREDEM or SAP, these ‘communities’ would be predicted to have the same
average demand, in this case 340.9W per-household. Two were modelled as 'retirement’
with all over-65 years old occupants. The other two were modelled as 'urban’ with no
over-65 residents, as might be expected for certain city centre locations. Both types
were modelled for the most and least deprived decile location characteristics, with the

results shown in Table 8.1.

Table 8.1
Predicted average per-household electricity demand variance for four extreme small-household ‘com-
munities’ by age and location with identical house types and sizes.

Community "Urban’ ‘Retirement’
Area IMD Decile Least Most Least Most
Average Power (W) 256.4 218.4 204.6 191.5

Similar analysis for the same extreme deprivation decile location cases for a 100-
household nationally representative house type model (see Table 5.15), showed average
demand varied from 396.8W per-household for the most deprived decile to 454.6W for
the least. The BREDEM equivalent prediction in this case is 373.8W for both cases.

The maximum location-driven variance is ¢.£5-8% of the average prediction based
on the extreme deprivation deciles. The results are consistent with the LSOA-level de-
privation decile-based demand prediction validation exercise detailed in 5.14.6.4, which
showed a consistent, and largely predictable, increase in demand with decreasing de-
privation.

Palmer et al [180] compared the Household Electricity Survey (HES) data [89],
used to calibrate the developed model, against both the BREDEM and SAP basis, and
found that the HES demand data was significantly lower. Consistent with this, the
developed model results highlight a tendency for the BREDEM model to significantly
overestimate demand for smaller households and underestimate, but to a lesser degree,

for larger households.

8.3.1.2 Hot Water

Similar to electricity demand, the BREDEM and SAP models estimate annual and
monthly hot water use per-household based on number of occupants and shower type.

Again, no allowance is made for different household types or income levels.
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The income behaviour factoring within the developed model for hot water use dif-
ferentiation (see 6.4.2.1) is a composite factor for all gas demand rather than hot water
use specific. Therefore, any variation due to area socio-economic factors is only indica-
tive that a difference exists. A hot water-specific income factor would be required for
a reliable assessment.

As an indication of potential variation, for the 100-household nationally representa-
tive models based on deprivation decile extremes outlined in the preceding section, the
average hot water use per household varied from 105.5 litres/day for the most deprived
decile to 127.6 litres/day for the least. Again, this indicates that number of occupants
alone is insufficient for detailed analysis. The BREDEM equivalent predicted demand
is 117.5 litres/day, which is consistent with the model output average basis, and to be
expected given that the BREDEM model is also calibrated from the EST hot water
dataset [90].

8.3.1.3 Average Demand Assessment Summary

The primary aim of the developed model is high-resolution analysis and, therefore, not
directly equivalent to the simpler, less computationally intensive approach and monthly
resolution of BREDEM and SAP. The comparison does, however, highlight that simple
baseline estimation requires an accurate assessment of more factors than occupant num-
ber and floor area. It is therefore recommended that consideration is given to updating
the BREDEM/SAP approach to accommodate additional socio-economic factors asso-
ciated with energy use behaviours and household location. The work presented also
confirms the conclusion of analysis by Palmer et al that the BREDEM/SAP electricity
demand calibration basis for number of occupants and floor area is potentially inaccu-

rate.

8.3.2 Average Demand Uncertainty

As addressed in Chapter 3, there are no existing models that accurately address the
demand prediction uncertainty resulting for variations in the following characteris-
tics; appliance ownership and type, occupancy, income, and overall energy-use and

appliance-specific use behaviours. The open-source Richardson et al [69] model, which
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is the current principal source of high-resolution UK domestic demand prediction data,
incorporates a degree of differentiation for occupancy and appliance ownership, but has
limited measured data derived, probabilistic calibration and no socio-economic factor-
ing, that prevents an accurate assessment of uncertainty. For example, the appliance
sub-model within the Richardson et al model, if set with identical appliance ownership
per run, will generate the same total energy use with only time-dependent variation as
a result of the occupancy sub-model. The developed model is therefore the first high
time resolution model that incorporates the influence of all the identified characteristics
to allow the demand uncertainty for small-scale energy systems to be analysed.

For any demand analysis, there are two levels of uncertainty to be determined: the
potential uncertainty due to lack of household information; and the residual uncer-
tainty from random behavioural variations. The following sections review both factors
for electricity and hot water demand, for both a single household and a nationally

representative 100-household ‘community’ (see Table 5.15).

8.3.2.1 Electricity Demand

The developed electricity demand model allows for different levels of input data and will
probabilistically allocate unknown characteristics (see 4.3). Using the 100-household
nationally representative set of households as a basis, the level of known information
was varied to determine the predicted average demand range over 100 model runs. Five

levels of known input data were analysed:

1. Location, house size, and deprivation decile (‘Location’)

2. As 1. plus household type (‘Type’)

3. As 2. plus household composition (‘Composition’)

4. As 3. plus employment and income status (‘Income/Employment’)

5. As 4. plus major appliances owned (‘Major Appliances’)

The results in Table 8.2 show the average per-household results, where the average
household demand per run is assessed relative to the average for all equivalent model
runs. For example, the minimum ‘Location’ result is the average of the lowest model-

predicted relative demand per-household for all 100-households over the 100 ‘Location’
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Table 8.2

Range of predicted average electricity demand for individual households relative to the mean predic-
tion for 100 nationally representative households, over 100 model runs, by level of known household
characteristics.

Location Type Composition Income/Employment Major Appliances
Minimum 0.328 0.436 0.450 0.466 0.499
5th Perc. 0.430 0.544 0.550 0.560 0.593
95th Perc. 1.785 1.650 1.634 1.630 1.591
Maximum 2.651 2.557 2.429 2.363 2.285
Std. Dev. 0.456 0.391 0.373 0.363 0.340

model runs. The distribution of results is broadly normally distributed but left skewed
with an extended tail at higher values, therefore the standard deviation shown is a
comparative measure that is unsuitable for prediction.

The results indicate that the behavioural uncertainty for single households, as in-
dicated by the residual uncertainty for a household where all characteristics including
major appliances are known, is a factor of two on the low side (0.499) and slightly
higher than a factor of 2 (2.285) on the high side. The additional uncertainty, where the
household characteristics are unknown, is approximately one-third of the behavioural
uncertainty. For individual households, therefore, behavioural uncertainty is three times
more significant than the maximum associated with unknown household characteristics
for average demand assessment.

The results presented above were the average for the 100 modelled households. For
the 100 ‘Location” model runs, the lowest value for any household was 0.17 and the
highest was 6.20, confirming the analysis of Haldi and Robinson [79] that behavioural
variation was typically a factor of two but could significantly exceed this in extreme

cases.

Table 8.3
Range of predicted average total electricity demand for 100 nationally representative households
relative to the mean prediction, over 100 model runs, by level of known household characteristics.

Location Type Composition Income/Employment Major Appliances
Minimum 0.900 0.920 0.910 0.919 0.940
5th Percentile 0.916 0.931 0.927 0.936 0.943
95th Percentile 1.081 1.068 1.054 1.052 1.070
Maximum 1.125 1.129 1.105 1.120 1.101
Standard Deviation 0.049 0.041 0.039 0.039 0.037
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Figure 8.1. Percentile range of model predicted average electricity demand relative to the
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Increasing the scale of analysis to the total demand for the 100 households, and
performing the same analysis, generates the results shown in Table 8.3. The relative
contributions of behaviour- and household characteristics-driven uncertainty remains
similar with approximately a three-to-one ratio. This ratio remains consistent up to 400-
household systems, at which point the overall influence of uncertainty has diminished.

Figure 8.1 shows the impact of increasing scale on the distribution of results for the
case where major appliance ownership is known. This analysis is based on 200 runs
of the same 100 nationally representative households, with multiple runs randomly
combined for the 200- and 400-household cases. For the less than 100-household cases,
the sets of households are determined by selecting a fixed and representative sub-group
from the 100-household set.

The results indicate that up to at least 100 households the uncertainty remains
significant with a +10% variation in average demand, which as a minimum would
impact economic assessment of the system. As will be reviewed further in 8.5, this
level of uncertainty translates to significant time-dependent variations in critical design
parameters for distributed generation, such as solar matching and impact on the wider

grid if connected to a constrained low voltage sub-system.

8.3.2.2 Hot Water Demand

The equivalent results to those in the above section for hot water demand are shown

in Tables 8.4 and 8.5.

Table 8.4

Range of predicted average hot water demand for individual households relative to the mean predic-
tion for 100 nationally representative households, over 200 model runs, by level of known household
characteristics.

Location Type/Composition Income/Employment
Minimum 0.175 0.211 0.216
5th Percentile 0.291 0.334 0.341
95th Percentile 2.241 2.058 2.015
Maximum 3.426 3.142 3.099
Standard Deviation 0.638 0.565 0.549

The results show that hot water demand uncertainty is higher than the electricity
demand equivalent. This is to be expected as electricity demand uncertainty is reduced

by the impact of constant-use appliances, and multiple appliances and demands that
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Table 8.5
Range of predicted average total hot water demand for 100 nationally representative households
relative to the mean prediction, over 100 model runs, by level of known household characteristics.

Location Type/Composition Income/Employment
Minimum 0.891 0.868 0.868
Maximum 1.121 1.144 1.145
Standard Deviation 0.052 0.057 0.059

allow for a range of use behaviours. In the most extreme case for single household
demand, with only ‘Location’ information known, the lowest relative value is 0.0721

and the highest is 5.451.

8.3.2.3 Average Demand Uncertainty Assessment Summary

Whilst average demand uncertainty alone does not provide information that can directly
influence design decisions, as opposed to time-dependent demand uncertainty which is
addressed in 8.5. It does provide a clear and quantifiable assessment of the potential
impact at different scales and a justification for further detailed analysis for distinct
system types up to at least 200-300 household systems.

The results also indicate that analysis at the individual household level, that does
not account for at least a factor of two variation in overall energy demand, or the likely
more significant time-dependent variations, risks poor performance resulting from the

more extreme behaviours identified from the data and the model output.

8.4 Peak Demand Prediction

Peak demand assessment for an energy system is a critical element in system design,
driving the sizing of the distribution network. For electricity demand, the primary
sources of design guidelines are currently those used by the individual electricity com-
panies (for example, [64] and [65]), based on experience and ‘rules-of-thumb’. For hot
water demand, as detailed in 1.6.1, several standards have been developed for hot water
peak demand (diversity) prediction in district heating networks. However, the underly-
ing analysis is typically not from UK demand data, and the source is either undefined
or based on relatively small measurement campaigns. In contrast, the developed model

allows a more detailed statistical assessment derived from UK occupancy and demand
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calibration data.

For the electricity demand model, no validation for peak demand replication perfor-
mance was detailed in previous chapters, and is therefore included in this section. For
the hot water demand model, the peak demand prediction performance was compared
to the calibration dataset in 6.5.6, and close replication was shown. Without additional

independent hot water data, no further validation is included in this chapter.

8.4.1 [Electricity

Two factors can be used to assess the peak demand potential for an electricity network.
The sum of the maximum peak demand for each individual household, typically known
as the non-coincident maximum demand (NCMD), and the total instantaneous peak
demand for all households, typically known as the ‘After Diversity Maximum Demand’
(ADMD). The former is a theoretical maximum total demand that is never approached
in reality, and is used here primarily for further model validation, and the latter an
assessment of the maximum total demand that can be expected for a multi-consumer
network, which is a key measure for system sizing.

The HES dataset, with short measurement periods and limited measurement pe-
riod overlap per household, cannot be used for reliable peak demand analysis. The
Richardson et al (2008 data only) [69], REFIT [45], and Ashton Hayes (see 5.14.6)
[173] datasets, with overlapping and longer measurement periods, have therefore been
used for this purpose.

Of the existing models, the Richardson et al model is again the only open-source,
UK data calibrated model that allows this type of analysis. However, as demonstrated
in Chapter 3, the statistical basis of both the occupancy and appliance use models is
insufficiently differentiated and probabilistically calibrated to provide reliable assess-

ments over the extended period models required for peak demand assessment.

8.4.1.1 Non-Coincident Maximum Demand

Dataset Validation
For the 17 (out of 22) households in the Richardson et al dataset with consistent

data and no evidence of secondary or water heating, the NCMD was 190kW. The
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average equivalent for the model output over 250 runs was 196kW, with a range from
177kW to 234kW. Similar analysis for the 14 households (out of 20) in the REFIT
dataset with no evidence of electric heating use, determined a NCMD of 188.4kW for
the dataset and a model output average over 250 model runs of 181.6kW, with a range
of 140.1kW to 217.3kW. There is no indication, therefore, that the model inaccurately
predicts the average maximum demand per household for multi-household systems.

Analysis of the range of individual household maximum demand values from the
same exercise, with the results interpolated into a 17-quantile (‘Richardson’) and 14-
quantile (REFIT) distribution respectively, and compared to the actual maximum de-
mand per household from the two datasets, generated the results shown in Figure 8.2.
The results indicate a tendency for the model to slightly overestimate maximum de-
mand in most households and to underestimate extreme values. The overestimation is
potentially the result of the current model basis that does not restrict simultaneous use
of different appliances and may, consequently, allow occasional periods of unrealistically
high demand. However, in general, the model replicates the distribution with sufficient
accuracy.

As the main use of this measure is for validation, with no direct influence on system

design, no further NCMD analysis has been undertaken.

8.4.1.2 After Diversity Maximum Demand

Dataset Validation

After Diversity Maximum Demand (ADMD) is a measure of the maximum demand
in an electrical network of multiple independent consumers, typically stated in kW per
household. As the number of households increases the probability of coincident demand
per household falls exponentially. For UK systems, ADMD design guidelines are typi-
cally electricity company specific, vary significantly, and are not scale-dependent. For
example, for systems without electric heating: Eon: 2kW per household up to 4 bed-
rooms and 0.5kW for additional bedrooms [64]; and SP Energy: 1kW for non-detached
3-bedroom or smaller households, 1.5kW for detached 3-bedroom and 4-bedroom house-
holds, and 2kW for 5-bedroom or larger households, plus 8kW per system [65].

A more detailed study by Barteczko-Hibbert [181] reviewed the ADMD distributions

for small populations (up to 100 households) based on Mosiac socio-economic indicators,
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and also for households with solar panels and electric vehicle charging. The analysis
determined that at the 100-household scale, there was an average ADMD of 1.56kW,
with lower values (c. 1.2kW) associated with older and lower income groups, and higher
levels (c.2kW) associated with younger and suburban households. It is therefore clear
that household characteristics potentially impact this measure for small-scale analysis.
An additional conclusion from the same study was that as the population becomes
smaller, in addition to the ADMD increasing exponentially, the degree of uncertainty
in the predicted value increases. There is therefore potential design risk with using the
typical or ‘rule-of-thumb’ type design rules identified above, particularly at the sub-100
household scale where the value is also highly scale-dependent.

For the 17 selected households in the Richardson et al dataset, the ADMD was
44.TkW or 2.63kW per-household. For 250 equivalent model runs, the ADMD was
45.7kW or 2.69kW per-household, with the measured data ADMD being in the 47th
percentile of the model results.

For the 14 selected households in the REFIT dataset, there is overlapping data
for approximately 9 months out of 11 months’ total measurement duration from June
to April, with the gaps spread randomly. The ADMD for the overlapping periods is
37.9kW. For 250 model runs for the equivalent households and period, the ADMD was
42.5kW, with the actual measurement being in the 18th percentile of the model results.

For the Ashton Hayes dataset (see 5.14.6.3), the maximum demand in the mid-
May to August period (to discount the impact of secondary heating at other times)
was 82.3kW on a 10-minute average basis. For the equivalent model over 100 runs
the average result was 86.5kW, with a range from 72.4kW to 101.7kW. As stated in
5.14.2.2, the potential underestimate of holiday absences may account for a degree of
overestimation.

Comparing the model output directly with the results from Barteczko-Hibbert [181]
is difficult as it is not clear what proportion of households in that study have electric
primary or secondary heating. However, the study includes analysis of homes with
heat pumps, where the heat pump diversity is considered separately from the remain-
der of the electricity demand, and therefore primary electric heating influence can be
discounted and it is assumed that secondary electric heating use is also low for these

households. This group has a non-heat pump ADMD at 100 houses of 1.31kW with
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the model predicting an average of 1.27kW for groups of 100 nationally representative
households.

In general, therefore, the model output for ADMD shows good correlation with
multiple independent datasets, with no obvious consistent under- or overestimation
and all measured data within the range of the model output.

Analysis

To determine the influence of area characteristics on peak demand, the nationally
representative 100-household set model (see Table 5.15) based on the lowest and high-
est deprivation (IMD) decile area characteristics were run 250 times, with identical
numbers of bedrooms and floor areas for each run, and with the household character-
istics allowed to vary probabilistically. The lowest decile set is simulated as all private
housing (‘Lowest-PR’) and the highest is all social housing (‘Highest-SC’) to represent
extreme but realistic scenarios for this scale of system. The ADMD results are as shown
in Table 8.6, with the smaller household set results generated by selecting fixed and
representative subsets of the 100-household output.

Table 8.6

Model predicted After Diversity Maximum Demand (ADMD) average and maximum per-house
values for different numbers of households for highest (IMD1) and lowest (IMD10) deprivation
decile locations.

Households 10 25 50 100
Highest-SC Avg. Demand (kW) 3.9 9.9 19.9 39.7
Lowest-PR Avg. Demand (kW) 4.7 11.5 22.5 45.5
Highest-SC Avg. ADMD (kW/house) 3.18 2.00 1.52 1.23
Lowest-PR Avg. ADMD (kW/house) 3.35 2.09 1.65 1.32
Highest-SC Max. ADMD (kW/house) 4.25 2.53 1.85 1.43
Lowest-PR Max. ADMD (kW/house) 4.46 2.69 1.88 1.48

The results indicate a lower household characteristics influenced variation than the
analysis of Barteczko-Hibbert, even if the lack of secondary heating use is considered.
This suggests that the Mosiac-driven analysis is not representative of actual communi-
ties, which would have a mix of different household characteristics that are influenced,
but not determined, by the location.

Based on this analysis, the 1kW assumption for 3-bed non-detached or smaller
households from Eon [64] would potentially underestimate maximum diversity. Alter-

natively, the SP Energy basis [65] would potentially overestimate for systems of 50
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households and above (allowing for an additional 0.25kW for secondary heating for
100-households based on comparison of [181] heat pump and standard heating system
households, and 0.3kW for 50-households on a pro-rata basis).

Further analysis of the ten deprivation (IMD) decile 100-household sets analysed
in 5.14.6.4, also shows a distinct but not overly significant influence on ADMD of the
energy system socio-economic characteristics. This suggests that ADMD is primarily a
function of the number of households and not overly influenced by area characteristics

in realistic multi-household systems.

8.4.1.3 Peak Electricity Demand Assessment Summary

Without the inclusion of a secondary heating module, the developed model cannot
currently be used for detailed assessment of maximum electricity demand. Further
work to integrate a secondary heating model would therefore significantly enhance its
capability in this area. The presented results, however, indicate that the model presents
an alternative design method to the simple ‘rules-of-thumb’ currently used by electricity
companies. As highlighted, there is significant scale-dependency and uncertainty in
peak demand for sub-100 household systems that is not captured by these simplistic

design guidelines.

8.4.2 Hot Water

The existing hot water diversity (peak demand) design standards make little or no
differentiation based on the characteristics of the connected households. The literature
on diversity is a combination of country standards with no explicit definition of how
they were calculated and a number of independent sets of analysis, typically based
on measured consumption on a relatively small scale. The significant variation in the
existing standards and published distributions (see Figure 1.7) for smaller systems
suggests either distinct localised behaviours or an uncertainty in predicted diversity
that is not captured by a single, deterministic assessment.

The only open-source hot water model, developed by Vajen and Jordan [149], would
require significant additional user calibration to be potentially useful as an assessment

tool for system diversity and is principally used to generate typical single day use pro-
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files. The developed model allows an assessment of the stochastic basis that underpins
diversity analysis, and allows are more detailed assessment of the impact of household
characteristics and outlier behaviours.

The following section first addresses the model predicted variation in diversity from
differences in house type and household characteristics. In addition, a comparison
between the model output and the current diversity standards identified in 6.5.6 has
been undertaken, with additional focus on the timescale of analysis, and the predicted
frequency and duration of periods where hot water use exceeds the design standard.

To provide 1-second diversity analysis, the 1-minute model output has been con-
verted to a 1-second basis by starting hot water cycles randomly within the minute
where a use is predicted, determining a flow randomly between 2.5 and 5 litres/min for
<3 litre volume cycles, and 5 and 12 litres/min for other cycles, as detailed in 6.5.6,

and determining the duration based on the cycle volume and flow.

8.4.2.1 House and Area Type Analysis

Average House Size

The average UK house has approximately 2.7 bedrooms [182], but with significant
variation between different areas. Analysis of UK Census data at the LSOA level
(typically 600-1000 households) shows that at this scale the variation is from 1.4 to
4.4 bedrooms, with a 5th and 95th percentile of 2.07 and 3.37 respectively [103], and
this variation would be expected to increase as the scale of area is reduced. Varying
the average number of bedrooms into 6 potential ranges for groups of 50 representative
houses for each range in a 6th deprivation (IMD) decile area, the average 1-second
diversity over 1000 model runs varies as shown in Table 8.7. (1000-run average is used
for comparative analysis as the maximum predicted value varies inconsistently at this
level of analysis)

Table 8.7
Variation in average modelled hot water diversity (1-second basis) for 50-household systems over
1000 runs by average number of bedrooms.

Average Bedrooms 1.4-1.6 2.2-2.4 2.4-2.6 2.6-2.8 2.8-3.0 3.0-3.2
Average 5.96 6.47 6.58 6.61 6.65 6.76

The impact on diversity is relatively small for mixed house size communities (i.e.
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Figure 8.3. Variation in modelled hot water diversity (1-second basis) for a fixed nationally
representative 100-household system over 1000 model runs by total number of occupants.
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the 2.2 to 3.2 range) primarily as the average number of occupants per bedroom falls
with an increasing number of bedrooms. The influence is more marked for less mixed
areas, such as the predominantly small house type range example (1.4-1.6).

Number of Occupants

At the 600-1000 household LSOA level, the average occupancy per household varies
from 1.4 to 4.8, with a 5th and 95th percentile of 1.96 and 2.88 respectively [183],
therefore significant variation can be expected at smaller scales.

For a fixed set of house sizes, the number of occupants can vary significantly. By
fixing the number of households and bedroom number, but allowing the total number of
occupants to vary probabilistically, allows the influence of people number on diversity to
be assessed. Figure 8.3 shows the distribution of total occupant numbers and predicted
1-second diversity values from 1000 runs of the hot water demand model based on
the nationally representative 100-household set (see Table 5.15) in a 6th deprivation
(IMD) decile area. The best-fit line indicates that while occupant number is predicted
to influence diversity, the impact is small (c. 0.004 per additional person), particularly
in comparison to the significant overall variation.

Area Type

The influence of the location socio-economics or community type on hot water di-
versity is not accounted for in diversity standards. However, it would be expected
that higher or lower average use would also translate to differences in maximum in-
stantaneous demand for a network, with further analysis required to determine if this
variation is significant.

Comparing hot water model output over 1000 runs for extreme highest and lowest
deprivation (IMD) decile area types, the results are shown in Table 8.8. The lowest
decile set is all private housing (‘Lowest-PR’) and the highest is all social housing
(‘Highest-SC’), and both are based on the nationally representative set of households
(see Table 5.15). In all cases the total number of occupants for each number of house-
holds was restricted to +10% of the national average of 2.3 people per household to
allow some variation but ensure occupant number was not a significant factor. Across
all sizes of community, the difference between the two area types was approximately

10%.
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Analysis Summary

The overall conclusion from the analysis based on number of bedrooms, number
of occupants, and area type, was that the primary influence on diversity is number
of households. The variation due to different household and area characteristics for
a fixed number of households is relatively small, particularly in comparison with the
probabilistic variation due to differences in individual household behaviours, and would

not require significant adjustment of the design standards to account for this potential.

8.4.2.2 Existing Standards Analysis

DS439 Comparison

The Danish DS439 hot water diversity standard has been recommended for use
in the UK by CIBSE, replacing the British Standard BS6700 which was deemed to
significantly overestimate diversity. Table 8.8 shows a comparison between the DS439
and BS6700 predicted diversity values and results for two extreme location models
based on a nationally representative mix of house types and sizes. The analysis is
based on the maximum diversity on a 1-second basis.

Table 8.8

Variation in average and maximum modelled hot water diversity (1-second basis) for different num-
bers of nationally representative households for a highest deprivation decile area comprising all social
housing (‘Highest-SC’) and lowest deprivation decile area comprising all private housing (‘Lowest-
PR'). ‘DS439" data from [56] and ‘BS6700" data from [59].

Households 10 25 50 75 100
DS439 2.37 3.76 5.59 717 8.64
BS6700 4.47 9.07 14.40 19.49 24.53
Highest-SC Average 3.45 4.65 5.97 7.03 7.93
Lowest-PR Average 3.73 5.06 6.57 7.80 891
PR/SC Ratio 1.081 1.088 1.101 1.110 1.124
Highest-SC Maximum 511 7.22 8.32 9.49 12.75
Lowest-PR Maximum 5.38 7.07 8.65 10.49 12.65

PR/SC Ratio 1.053 0.979 1.040 1.105 0.992

The results indicate that, up to 100 households, the model predicted average diver-
sity over 1000 model runs exceeds the DS439 basis for all but the 75- and 100-household
cases for the lower demand characteristics population. For all cases, the maximum
predicted diversity significantly exceeds the DS439 basis. The ‘error’ becoming more

pronounced as the number of households is reduced.
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What is not clearly defined in any of the current standards is the basis for the pre-
dicted value in terms of time basis or an allowable tolerance for short periods where the
demand exceeds the design basis. The following section address these two parameters.
Time Basis

The analysis presented above assumed a 1-second basis for the diversity analysis.
Within the constraints of the model output and computational requirements, this rep-
resents instantaneous diversity. However, it is not clear if this is the basis used for the
diversity standards, or whether this should be the basis for district heating analysis if
the dynamics of the system are considered.

Table 8.9

Variation in maximum modelled hot water diversity by number of households and diversity time basis
over 1000 model runs for lowest deprivation decile area comprising all private housing (‘Lowest-PR").
‘DS439’ data from [56].

Households 10 25 50 75 100

DS439 2.37 3.76 5.59 7.17 8.64
Lowest-PR Max. (1s) 5.38 7.07 8.65 10.49 12.65
Lowest-PR Max. (10s) 5.34 7.04 8.15 9.93 11.16
Lowest-PR Max. (60s) 3.69 4.90 5.48 6.50 8.35

Table 8.9 shows the impact on maximum predicted diversity over 1000 runs of
increasing the time basis to the average diversity over 10-second and 60-second rolling
periods using the higher demand characteristics population (‘Lowest-PR’) (see above).
Increasing the time basis reduces the predicted maximum diversity markedly. However,
even with a 60-second basis, the potential underestimation if using the DS439 standard
basis for sub-50 household systems remains.

Tolerance

Further analysis of the 1-second results highlights that the maximum diversity value
is often a significant outlier result and therefore considering the absolute maximum
value without also considering the duration of periods where the system demand may
exceed the design standard is potentially misleading. Table 8.10 shows both the average
and maximum per-run number of occasions (‘events’) and total duration when the
model predicts that the DS439 basis is exceeded for nationally representative sets of
households over an annual run. Again, the model predicts that the DS439 basis has
the potential to be significantly exceeded on this basis for at least up to 25 households,

although by 25-50 households the number of events and their duration have reduced to
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levels that may not be discernible to users.

Table 8.10

Average and maximum number of annual events and total duration where the predicted model
output diversity on a 1-second basis exceed the DS439 basis for different numbers of nationally
representative households.

Households 10 25 50 75 100
Events Avg. 110 56.1 15.3 6.5 2.8
Events Max. 307 178 52 22 16

Duration (mins) Avg. 24.6 9.7 2.0 0.81 0.25
Duration (mins) Max. 81.9 40.6 9.0 3.7 1.9

If we allow a small degree of tolerance for short periods of above-diversity demand,
the predicted diversity values reduce significantly. Table 8.11 shows the results for the
‘Lowest-PR’ household set (see above), based on the maximum predicted instantaneous
(1-second) value, and an allowance of 1 minute and 5 minutes annually where the
demand exceeds the stated diversity value. The results again indicate that the DS439
basis potentially underestimates diversity at the lower end of the analysed household
number range even when some flexibility for oversupply is allowed.

Table 8.11
Maximum model predicted diversity results with different levels of tolerance for the total annual
duration for which the stated basis can be exceeded. ‘DS439’ data from [56].

Households 10 25 50 75 100

DS439 2.37 3.76 5.59 7.17 8.64
Diversity - Max. 5.38 7.07 8.65 10.49 12.65
Diversity - 1-minute exceeded 4.16 5.36 7.00 9.24 10.16
Diversity - 5-minute exceeded 3.61 4.63 5.79 6.98 8.00

8.4.2.3 Hot Water Diversity Assessment Summary

It is beyond the scope of the presented work to determine a suitable basis for diversity
assessment, but clearly both the diversity time basis and tolerance of short periods of
over supply need to be better defined. From the other perspective, system designers
also need to better define the time basis that is critical for the system dynamics.

The results highlight that considering the dynamics of the system and user toler-
ances are important. The type of probabilistic, high-resolution assessment presented
potentially allows for a better understanding of the system characteristics, particularly

in comparison with existing deterministic assessments based on country-specific stan-
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dards with limited or no calibration basis definition or measured results from small
datasets that may not be representative or of sufficiently high resolution. The model
output, for example, could be used to generate representative data for dynamic district
heating system models for better assessment of the impact of short periods of demand
that exceed the design diversity value.

Whilst the DS439 basis is clearly more accurate than the previous UK BS6700 basis.
There is evidence, as a minimum, that its use in the UK should be carefully monitored
for evidence of underestimation resulting in poor performance, and that its predicted

basis for sub-50 household systems should be treated with caution.

8.5 Time-Dependent Optimisation Analysis

8.5.1 Representative and Extreme Case Modelling

The average demand uncertainty analysis detailed in 8.3.2 indicated that a significant
degree of uncertainty, with respect to potential impact on energy system performance,
remains for systems of at least 100 households. Furthermore, the time-dependency of
the uncertainty is more directly linked to system performance, particularly for systems
where supply and demand matching is critical, and is likely to significantly exceed the
observed average demand uncertainty.

As shown in 7.5.5, highly probabilistic models must be run a sufficient number of
times to obtain a representative distribution of results. However, in most cases further
analysis based on the overall set of results is both impractical and unnecessary, and a
filtered, representative subset can be used.

Two types of filtered assessment using the demand model output were therefore de-
fined; a targeted ‘stress-test’ that determines the impact of the most extreme cases and
a more refined assessment based on a representative, equally probable range of potential
demand cases. These methods allow the predicted average demand uncertainty deter-
mined in 8.3 to be used as the filtering basis for more detailed analysis, assuming a close
correlation between average demand and more refined time-dependent assessments can
be shown.

To assess each model run, the primary variable is the average per-run demand
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Figure 8.4. Representative and extreme filtered subsets from 250 annual duration electricity
demand model runs for the same 100-household nationally representative energy system.
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relative to the average for all runs. Secondary relative assessments can also be added
dependent on system type, such as daytime demand percentage for solar and wind
powered systems, or overlap with heating and hot water use for CHP systems. The
distribution of results based on a primary and secondary variable can be represented
visually as shown in Figure 8.4.

For the extreme ‘stress-test’ case, nine results are selected; average, highest and
lowest average (‘High’ and ‘Low’), highest and lowest daytime proportion (‘Day’ and
‘Night’) plus the point furthest from the average in each quadrant that is not already
selected (‘HD’, ‘LN, etc.).

Representative samples can be selected using a variety of techniques, including
the Kennard-Stone method and a method that uses a similar approach to the Kernel
Density method used in this work (see Appendix A). In this case the Kernel Density
method is used based on the MATLAB function, kspxy. As shown, if a sufficient number
of points are selected, the majority of the ‘extreme’ cases are also included. Analysis of
the minimum number of filtered cases required for a representative sample is reviewed

below.

8.5.2 Analysis Examples

Annual demand at a 1-minute resolution was generated for three sets of 100 house-
holds; the nationally representative set (see Table 5.15) based on the 6th deprivation
decile (‘National Average’), and the ‘Lowest-PR’ and ‘Highest-SC’ sets identified in
8.4.2.1. 250 separate model runs were generated with only the house size, type, and
tenure specified, and household characteristics determined probabilistically for each
model run using the developed sub-model (see 4.3). This analysis therefore determines
the maximum uncertainty based both on unknown characteristics and behaviour. For
the equivalent 50-household system analysis, a fixed and representative selection of
the 100-household data is used, and for the 200-household system analysis, two ran-
domly selected 100-household sets are combined. The results have been filtered into
the ‘extreme’ and ‘representative’ subsets as outlined.

Two types of analysis have been undertaken. The first is a solar generation and

storage system sizing analysis based on utilisation targets for three community types
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using the average, minimum, and maximum cases from the ‘extreme’ filtered subset.
The second is a full matching analysis for a simple solar energy system using the fully
representative filtered datasets as outlined.

Both analyses utilised the energy system optimisation program, Merit [184], which
allows a detailed assessment of the performance of selective case sampling and provides
an indication of the potential for deviation from average system performance because
of the demand variation and uncertainty predicted by the model. Merit allows the
demand profiles at high resolution to be matched with generation from solar panels,
wind turbines, and other sources, the impact of integrated storage to be assessed,
and for both the need for a grid connection and the extent and timing of the import
and export flows to be determined. The standard version of Merit has a 60-minute
resolution but this has been modified for this work to allow comparison using the 1-
minute resolution demand model output.

These type of design assessments for small-scale systems are complex undertakings,
with optimisation criteria typically being project-specific. A review of published re-
search in this area demonstrates the assertion in Chapter 1 that the occupancy and
demand influence is the weakest element in optimisation analysis. Analysis is typically
based on very limited monitoring data (e.g. [185], [186]) or generic demand examples
integrated with the optimisation software [184], with probabilistic approaches being
limited to simple statistical modelling of potential uncertainty (e.g. [187], [188]). The
developed model offers a different approach, with a highly probabilistic, high-resolution
demand prediction based on behaviour differentiated calibration.

Table 8.12
Assessment of solar and battery storage required for net supply and demand balancing and 50%
solar utilisation for three demand cases and three location characteristic types.

. National
Case Type Highest-SC Average Lowest-PR

Lowest Solar(kWp) 290.8 304.1 358.3
Battery(MAh) 3.45 3.63 4.30

Average Solar(kWp) 337.0 341.2 389.6
Battery(MAh) 4.08 4.16 4.77

Highest Solar(kWp) 370.2 393.5 426.8
Battery(MAh) 4.48 4.78 5.21
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8.5.2.1 Generation Equipment and Storage Sizing

To demonstrate the potential of the developed model for equipment sizing; the lowest,
average, and highest average demand cases were assessed for generation and storage
capacity required to achieve a balance between total supply and demand, and 50%
utilisation of the solar panel output. This was done for the three identified sets of
households (‘Highest-SC’, ‘National Average’, and ‘Lowest-PR’). The results are shown
in Table 8.12.

The results demonstrate a significant potential variation between the extreme un-
certainty driven cases (‘Highest’ and ‘Lowest’) and lesser but still significant differences
based on location characteristics. Design rules for smaller-scale systems that are based
on limited data or experience do not allow the full variation in potential demand sce-
narios to be assessed, with the risk that the data sources are below-average examples

or that the potential impact of outlier scenarios is underestimated.

8.5.2.2 System Balancing and Grid Connection

A simple solar system analysis (panels only with no storage) has been performed to
indicate both the performance of the case filtering approach for balancing and grid
connection analysis, and the capability of the model to perform probabilistic assessment
of the potential operating scenarios. The solar array is fixed for all cases and sized such
that the total annual generation matches the total annual demand for the model run
closest to the average over the 250 runs. For the 250-run, 100-household case used,
it is predicted that on average 43.8% of the generated electricity will be used by the
households and the remainder balanced from the grid.

Table 8.13 shows the balancing and grid connection results for the ‘extreme’ anal-
ysis case. The grid export total varies from 91% to 107%, and import from 87% to
119%, compared to the average predicted values, which is a significant variance. The
equivalent export values for equivalent 50- and 200-household sets are 88% and 108%,
and 93% and 105% respectively. The equivalent values for grid import are 80% and
128%, and 90% and 117% respectively. The system scale therefore has an impact on the
predicted range, as would be expected, but with the uncertainty remaining significant

at 200 households.
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For the more detailed representative analysis, first the optimum number of selected
runs needs to be determined. Figure 8.5 shows the position of each representative case
on the overall per-run demand distribution based on range position in the representative
analysis ranking. This indicates that between 20 and 30 runs are required for an
effective range of values, and therefore 25 runs (10%) was selected as the basis for a
representative sample.

Table 8.13

Range of total annual electricity demand plus total electricity utilised, imported and exported for
eight extreme cases and the average case over 250 model runs for a 100-household solar panel
supplied energy system.

Case Demand (MWh) Utilised (MWh) Export (MWh) Import (MWh)
Average 358.5 157.1 201.4 201.4
High 413.5 174.4 184.1 239.1
Low 319.6 143.9 214.6 175.7
Day 372.6 161.9 196.6 210.7
Night 346.2 151.2 207.3 195.0
HD 408.6 172.8 185.7 235.8
HN 398.0 168.2 190.3 229.8
LN 320.2 142.7 215.8 177.5
LD 320.1 145.1 213.4 175.0

The results for the 25 selected representative cases are shown in Figure 8.6 in
ascending order of predicted average demand. This gives an indication of the potential
range of the predicted performance measures, allowing for a more detailed judgement of
the system potential than if only the average or extreme cases are analysed. The results
indicate that for a 100-household system, the variance in potential performance based
on equally probable representative scenarios, is significant. Figure 8.6 also demonstrates
that using average demand for initial screening is effective as each of the time-dependent

assessments varies consistently with this simpler, easily determined measure.

8.5.2.3 Analysis Summary

Whilst the presented analysis is based on simple examples, and the degree to which the
predicted variances are significant is situation-specific, the overall results indicate that
for systems of at least 200 households, demand uncertainty would be an important de-
sign consideration, and would also significantly influence the system economics. Further

analysis for specific types of community and different types of distributed generation
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system are required to fully understand and quantify the potential impact.

As outlined, no existing demand models accurately capture either the variation
resulting from the location characteristics or the prediction uncertainty, that would
allow the design risk to be assessed on a case-by-case basis or probabilistic design
guidelines developed. Using the developed model for these types of assessment indicates

a potential means to address this for future system development.

8.5.3 Other Design Elements

The analysis presented above is predominantly focused on the sizing and balance, stor-
age, and grid connection design elements. The applicability of the developed model
to the two remaining elements (demand management and seasonal matching) have not

been reviewed in detail but are briefly discussed below.

8.5.3.1 Demand Management

The extent to which demand can be managed (i.e. shifted) is appliance-specific. For
example, Zhu et al [189] identified three distinct classes of appliance with reference to
this potential: non-shiftable (cooker, kettle, cold appliances, television, low-volume hot
water use); time-shiftable (washing machine, dishwasher, dryer, high-volume hot water
use); and power-shiftable (electric vehicles). Detailed analysis therefore needs to focus
on individual household behaviours for the potentially shiftable demands.

As demonstrated in Chapter 7, the developed bottom-up approach with individual
behaviour factoring allows a representative assessment of within and between household
demand behaviours at the appliance-level. This allows both an assessment of maximum
demand management potential and, critically, determination of the extent to which
individual households would need to alter their behaviours to have a significant overall
impact. Accurate assessment of realistic rather than maximum demand management
potential also requires that the willingness of each household to make the necessary
changes is also considered, which could be simulated with different factoring for each
modelled household based on detailed analysis how this willingness varies. For different
system scales, the developed model, as shown for other types of analysis, would also

allow the degree to which demand could be shifted to be determined as a probabilistic
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range rather than an average assessment.

8.5.3.2 Seasonal Matching

Final validation of the developed model for seasonal variation is currently limited by
the lack of a secondary heating module. For the other demands, a degree of seasonal
factoring has been included for some appliances (kettles, microwaves, cookers) where a
clear sinusoidal variation is discernible, and lighting use is directly influence by seasonal
variations in external light levels.

However, there remains areas where additional work on identifying potential sea-
sonal influences would be beneficial to model accuracy for this element. Analysis of
the occupancy data did not identify any clear and consistent occupancy variations by
month or season but further work in this area is required to determine if more complex
seasonal influences on occupancy exist. This analysis should also extend to other ap-
pliances, particularly TVs and computers, where a degree of seasonal influence related

to occupancy variations might be expected.

8.6 Model Applications Potential Summary

The stated aim of the model development was to provide a tool for comprehensive,
differentiated, and probabilistic assessment of domestic demand at a high time resolu-
tion and over extended periods. This was to provide a means to assess five key design
elements for small-scale energy systems with connected distributed generation (sizing
and balancing, storage, grid connection, demand management and seasonal matching
assessments). Existing models were determined to have limited or no calibrated differ-
entiation for household characteristics, occupancy, appliance ownership and type, and
energy use behaviour, and were therefore unsuitable for this type of analysis. The pur-
pose of the analysis detailed in this chapter was to assess if the aim had been achieved.

The presented peak demand and overall system optimisation analysis demonstrated
the potential for a probabilistic model that captures a comprehensive range of house-
holds by type and socio-economic factors, and also assesses the potential behaviour-
driven variation. The developed model therefore has the capability to be used directly,

or in parallel with limited measured data and existing deterministic guidelines, to assess
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design and operating risk that results from the overall prediction uncertainty. Using
simple examples, the model was shown to provide detailed probabilistic analysis for siz-
ing and balancing, storage sizing, and grid connection assessment elements. In addition,
the individual behaviour enhancement detailed in Chapter 7 would allow the model to
be used for appliance-level demand management analysis. Further model development
and calibration would be required to extend the model capability to accurate seasonal
analysis.

Whilst not directly comparable in terms of complexity and computational inten-
sity, the presented analysis has demonstrated that existing simple, deterministic ap-
proaches, such as BREDEM/SAP for monthly demand assessments and electricity
company guidelines for electricity network sizing, are overly simplistic and inaccurate
when applied to specific types of small-scale system.

In addition to specific system analysis, the developed model also allows a higher-level
assessment of the scale and impact of demand variation and uncertainty for different
system types and sizes as also demonstrated in this chapter.

As detailed, three distinct elements related to potential variation and uncertainty
must be considered to characterise demand for small-scale energy systems. The first is
predictable variation as a result of the socio-economic characteristics of the connected
households relative to the national average. This was determined to be approximately
+5-8% of the average predicted value and is not system scale-dependent.

The second is uncertainty resulting from unknown household characteristics, and the
third is uncertainty because of potential individual household behavioural differences,
both of which are scale-dependent. At the individual household level, the average
behavioural uncertainty was a factor of two, with extreme cases well in excess of this.
Unknown characteristics uncertainty adds an additional 33-50% to the total uncertainty
if only location and house type are known.

For 100 households, the overall uncertainty reduces by approximately a factor of 10
to ¢.£10-15%, with the behavioural element falling by a more significant proportion.
By 400-500 households the overall uncertainty, in terms of both average demand and
more detailed system performance analysis, has diminished to less than £5%, which is
assumed to be generally within the scope of any correctly designed system.

It is outwith the scope of the presented work to determine for all types of system at
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which scale the uncertainty is within the typical design parameters of a system design or
the system economics are not potentially compromised. What is clear, however, is that
little work has been done previously to test small-scale system designs across a realistic
range of design conditions and that the variations remain potentially significant, at least
in terms of system economics, beyond 100 households. The main conclusion, therefore,
is that the recommended optimisation and uncertainty analysis should be performed on
systems up to ¢.500 households until a better understanding of the overall impact can
be determined. The same conclusion would also apply to other types of demand-related
analysis, such as the impact of casual gains on current and future low-carbon housing
designs. As addressed, the developed model provides a means to perform this analysis

either directly or in parallel with other existing methods.
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8.7 Chapter Summary

This chapter detailed the analysis completed to determine the variation and uncertainty
inherent in demand prediction at the small-scale and methods to assess potential small-
scale energy system performance based on multiple results from a probabilistic model.

The chapter highlights are as follows:

e Significant electricity and hot water demand variation for areas with identical
housing can be expected based on the area socio-economic characteristics and age
profile. The influence on peak demand is lower, with the number of households

the primary determinant.

e At the household level, typical electricity demand behaviour-driven uncertainty
exceeds a factor of two and for hot water demand exceeds a factor of three,
with extreme examples significantly higher. At 100 households, average demand

behaviour-driven uncertainty is ¢.4:10-15% and at 400 households less than 45%.

e In addition to the behaviour-driven uncertainty, uncertainty due to unknown
household characteristics can add an additional 33% for single household analysis,

and up to 50% for 100-household analysis.

e Hot water diversity is primarily driven by the number of households with less sig-
nificant variations based on overall household characteristics. There is evidence
that the Danish DS439 diversity standard basis, recommended for UK use, un-
derestimates diversity for less than 50 household systems. Further discussion is
also required on the timescale of the diversity assessment and the tolerance for

short periods of over demand.

e Results from multiple probabilistic model runs can be filtered to representative or
extreme selections by average demand for more detailed analysis. Small-scale sys-
tem optimisation analysis using filtered data demonstrated that time-dependent
demand uncertainty remains significant for at least 200 households and that fur-
ther assessment for different types and scales of energy system is required to

better understand when prediction uncertainty is no longer significant for design.
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Discussion

This chapter includes: a summary of the main contributions of the work; a discussion
on the applications and limitations of the developed occupancy and demand models;
a discussion on the implications of the work for distributed generation integration and
small-scale energy system design, particularly in relation to system scale-, type-, and

behaviour-driven demand uncertainty; suggested future work; and concluding remarks.

9.1 Contribution

The stated aim of this research project was the development of analysis methods and
simulation tools to account for realistic occupant behaviour in domestic energy de-
mand modelling. These should allow the influence of household characteristics and
behaviours, and overall system scale to be accounted for within a probabilistic as-
sessment of demand at high time resolution for small-scale (<1000 household) energy

systems. The following outlines the main contributions of the presented work.

e Enhanced Domestic Occupancy Modelling Methods - Improvements to ex-
isting domestic occupancy modelling methods have been developed, including an
effective higher-order Markov chain approach and a method to capture occupant
interactions for couples and family households. In addition, the minimum calibra-
tion population size for effective modelling was assessed and significant occupant
and day type differentiation based on this analysis used for occupancy model
calibration. A performance comparison confirmed that the new methods, both

individually and in combination, improved on existing approaches.

e Development of a Probabilistic, High-Resolution FElectricity and Hot

Water Demand Model - Existing bottom-up, high-resolution demand models
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were analysed and several potential areas for improvement identified, with the
use frequency and timing prediction for intermittently used appliances and de-
mands deemed the most significant. A new discrete-event method was therefore
developed for intermittent demands, calibrated using high-resolution data. The
developed approach was shown to be an improvement on the existing discrete-time
models, particularly in the areas of identified weakness. In addition, enhanced
versions of existing methods were used to model lighting, TV-use, always-on ap-

pliances, and miscellaneous low power appliances.

The developed model was shown to closely replicate the demand characteristics
of both the calibration and independent datasets. The model also incorporated a
significant number of additional probabilistic factors to account for variations in
household demand resulting from differences in income, occupancy, and energy
use behaviours. Further validation confirmed that the model could replicate the
range of potential household demands for all but a small number with unusual
patterns, and variations resulting from different area socio-economic characteris-

tics.

e Critical Assessment of Group-Calibrated Occupancy and Demand Mod-
els - A critical assessment of the performance of Markov chain occupancy models
calibrated using composite data from multiple individuals determined that sig-
nificant convergence to the average group behaviour can be expected within the
target model timescale (i.e. 1-year). Convergence was indicated by overly uni-
form timing of the main occupancy transitions (waking, sleep, etc.) and lower

variance in average occupancy in comparison with equivalent real populations.

A similar assessment of the demand model output, both overall and for each
specific demand, confirmed convergence in demand timing associated with the
occupancy model convergence and also as a result of the appliance cycle timing
model calibration using multiple household data with only minor further differen-
tiation. This convergence was highlighted by lower per-timestep demand variance

between households for the model output in comparison with actual data.

o Development of Methods to Individualise Group-Calibrated Occupancy
and Demand Models - Methods were developed to further refine both the
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occupancy and demand models to account for variations in individual behaviours
relative to the group calibration average. For occupancy, the time basis of the
Markov chain model was shifted and rebased for four key occupancy transitions.
For demand, the cycle timing model was manipulated to account for different

timing behaviours per household.

e Quantifying Demand Variation and Uncertainty in Small-Scale En-
ergy Systems - Demand variation and uncertainty has been analysed using the
developed probabilistic model for different types of small-scale energy systems.
Demand variation because of different household and area characteristics has also
been assessed. Uncertainty in predicted average, peak, and overall per-timestep
demand has been analysed and quantified for different system sizes and for differ-
ent levels of known household information. For distributed generation integration
design risk, uncertainty in demand prediction was shown to remain potentially

significant for systems in excess of 300-400 households.

e Creating Representative Subsets from Multiple Runs of a Highly Prob-
abilistic Demand Model - A method has been developed to reduce the results
from the significant number of individual model runs required for a representative
output from the probabilistic demand model to useful filtered subsets for detailed
analysis. Examples include representative and extreme subsets based on two key

per-run demand variables.

9.2 Model Applications and Limitations

9.2.1 Occupancy Sub-Model

The Markov chain approach has been shown to remain an effective method for stochas-
tic occupancy modelling from currently available data. An alternative discrete-event
method was reviewed but shown to perform poorly in the key occupancy transition pe-
riods. The use of higher-order models was shown to be more effective for input dataset
replication but will require significantly more input and validation data to determine
if the improved performance is significant in relation to the overall prediction accuracy

of this type of model.
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The primary aim of the developed occupancy sub-model was to generate input
occupancy data for a high-resolution, occupancy-driven energy demand model, with
the objective to identify specific demand patterns for homogenous communities (e.g.
retirement, social housing, commuter) and the specific influence of occupancy on any
identified differences. Significant differentiation by occupant and day type improved
the ability to capture individual behaviours. This was further enhanced by generating
sequences of separately calibrated working and non-working day types per employed
individual based on realistic variations in working patterns.

Further analysis determined an improvement in occupancy behaviour differentiation
between occupant types but that behaviour convergence remained within each occupant
type group. As a result, the Markov chain time basis has been manipulated to further
account for individual occupancy behaviours relative to the group average.

The occupancy model output remains limited, both for calibration and validation,
by the lack of large, multi-day occupancy datasets. The output is not suitable for com-
prehensive analysis at the single household level as occupants with unusual behaviours
are not captured. However, the developed method is an improvement on existing mod-
els, and captures a broader range of distinct behaviours, particularly in relation to
age and employment status, for the ¢.90% of individuals and households with typical

diurnal patterns.

9.2.2 Demand Sub-Model

Calibration of existing demand models has typically focused on either a limited se-
lection of household archetypes or large composite household groupings with minimal
differentiation. Consequently, for real world assessment they do not adequately cap-
ture the breadth of household types and behaviours, and the output is not sufficiently
representative to drive design decisions

The stated aim for the model development was to replicate the highly variable
and individual nature of household demand, and to comprehensively capture different
household types and specific demand behaviours associated with each type. In com-
bination with the developed occupancy sub-model, the model allows distinct demand

profiles for specific household types to be generated that can be used to provide im-
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proved demand prediction for specific types of communities in comparison with existing
models.

Validation with both the calibration and independent datasets has shown that the
developed model, particularly with the inclusion of additional individual household
behaviour factoring for specific demands, is able to capture a wide breadth of the overall
demand profiles from actual data. A small percentage of households (c.5-10%) exhibit
unusual demand behaviours, which are beyond the capability of this type of model to
capture. Therefore, the use of the model output for individual household analysis (i.e.
heat gains, EV integration, house-scale renewables) requires a degree of caution. For
comprehensive modelling, the developed model was shown to be broadly effective for
systems with a minimum of 15-20 households in terms of capturing the overall range of
expected demand patterns with a sufficient number of individual model runs performed
to capture the variation and uncertainty predicted by the highly probabilistic model

basis.

9.2.3 Model Applications

The development of a 1-minute resolution model with the aim to produce annual du-
ration output is computationally intensive. However, current computing technology
allows a 100-household electricity and hot water model to be completed in ¢.10 minutes
on a standard 2013 Quad-core desktop, allowing multi-run analysis to be completed in
a realistic timescale. Expected future improvements in computer technology will re-
sult in this type of high-resolution modelling becoming increasingly feasible for system
analysis at all applicable scales.

In Chapter 8 the potential for the model to be used in different scenarios was
assessed. It was shown to be applicable both as a research tool to quantify the degree
of uncertainty highlighted by the highly probabilistic nature of the model and observed
demand behaviours, and as a design tool for high-resolution modelling of small-scale
energy system performance, particularly for highly time-dependent analysis such as
system sizing, and matching of predicted demand with variable supply technologies.

The benefits of the probabilistic nature and high resolution are that they allow for

different types of detailed analysis, particularly where the raw results are further filtered
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for representative subsets. In addition to average overall and per-timestep demand
profiles, demand extremes and detailed distributed generation matching analysis can
also be investigated. As an example, it was shown in Chapter 8 that the hot water
sub-model results contradict the hot water diversity standard assessment for systems
with less than 50 households, suggesting that this type of probabilistic model offers a
complementary and potentially more robust method for assessing rare but significant
demand extremes than analysis of demand in a small number of real buildings. This is

discussed further in ‘Further Work’ below.

9.3 Implications for Small-Scale Energy System Design

Understanding and allowing for demand variation and uncertainty is small-scale energy
systems is critical to the development of designs for distributed generation integration,
to both low voltage networks and independent energy grids, that are sufficiently robust
to account for all realistic scenarios. Analysis of the model output has shown that in-
dividual household average demand, even for households with identical characteristics,
can vary by an order of magnitude for electricity demand and in excess of this for hot
water use. The output also allows an assessment of the potential range of demands
allowing a probabilistic rather than deterministic approach to design to be taken.

Further to this, a method has been developed to determine sets of either represen-
tative or extreme results to allow the probabilistic element of the output to be usefully
incorporated in design decisions as it is recognised that accounting for every generated
scenario is neither practical nor necessary. This allows systems to be ‘stress-tested’ to
determine how sensitive to variations, and therefore how robust, the system design is.

There has been limited existing discussion or consensus on the implication of de-
mand variation and uncertainty on system design. In the presented work, both the size
and type of community linked to a centralised energy system has been shown to pro-
foundly influence the demand characteristics. The reduction in uncertainty with scale
is gradual and the point at which it is not significant for design likely to be system-type
dependent, therefore additional work is required to assess the implications for actual
systems.

As a minimum it can therefore be concluded that replacing generic design standards
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and ‘rules-of thumb’ with more specific analysis, such as the presented work, has the
potential to improve the design of small-scale systems. In addition, significant further
assessment is required of both the technical and economic performance of different
types of distributed generation systems to determine if available designs are sufficiently
flexible to account for the full range of potential operating scenarios.

An alternative view of the presented analysis is that, where practical, constrained or
independent energy systems should be used for sufficiently large populations to reduce
potential design and operating risk. The degree of demand uncertainty falls sharply
for systems in excess of 200-300 households, indicating that systems at this scale would
have a sufficiently diverse range of demand behaviours with a lower risk of demand-

driven underperformance.

9.4 Further Work

Recommendations for further work in response to the presented work is split into three
areas: further development of the model; reducing the calibration and validation data

limitations; and further analysis of specific small-scale energy system designs.

9.4.1 Model Development
9.4.1.1 Lighting

The lighting module is currently the least developed of the various developed demand
modules. This is partially the result of the low resolution of the lighting data in the
Household Electricity Survey (HES) [89] dataset, with main lighting use only measured
at central distribution boxes. The current migration from high to low energy bulbs
also makes analysis of household data difficult as, even within households, a significant
range of bulb types and wattages are used. The availability of room-level lighting data
at current levels of low energy lighting use would allow the module to be significantly
better calibrated.

The occupant-location driven model captures the broad tendency for occupants to
change activity and therefore potentially location. The model is, however, currently

hindered by the lack of understanding of how lighting is used in the daytime, multi-room
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lighting use when occupants move between locations, and the extent to which lighting is
left on for security or safety purposes. The current model basis is also calibrated based
on overall group behaviour and does not account of individual behaviour differences.

More specific lighting use data would significantly improve the model calibration.

9.4.1.2 Hot Water

The assessment of hot water diversity would be improved with better definition of
flowrates per specific use. Limited data is currently available and also the introduction

of lower flow hot water appliances in relation to diversity is poorly understood.

9.4.1.3 Heating

Development of a heating model in parallel with electricity and hot water demand
was hindered by the lack of data incorporating both heating use and sufficient socio-
economic and household data to allow the influence of different parameters to be as-
sessed.

The electricity model would be enhanced by a greater understanding of how sec-
ondary electric heating is used in households and for this to be integrated into the
model. In some cases, current validation was restricted to the summer months, when

significant heating use could be discounted.

9.4.1.4 Individualised Behaviours

The focus of the development to individualise occupancy behaviours has been on the
timing of waking and sleep transitions. This has driven an improvement in the repli-
cation of typical variance in per-household demand levels in these periods. Similar
developments targeted on the timing of the first absence from the dwelling and the
final return to the dwelling have not resulted in similar improvement in replicating the
variance in these periods (i.e. 7-10am and 4-8pm). Further work is therefore required
to refine this approach or develop new methods to better capture demand variance at

these times.
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9.4.1.5 Higher-level Demand Correlations

The developed model captures variation is household demand characteristics driven
by household type and income to a degree. However, it is expected that there are
additional levels of behaviour correlation that are not captured. For example, the link
between household type, income, and the maximum power of individual appliances
has not been explored in detail. Neither has the link between floor area and number
of owned appliances, and the potential link between number of owned appliances and
maximum power of individual appliances. Further work and additional data collection
is required to further explore the correlations between specific household characteristics

and individual demands.

9.4.1.6 Seasonal Variation

Analysis of the occupancy data did not indicate any extreme seasonal variations in
occupancy that were consistent across all populations and to an extent that could be
easily modelled. There is some evidence of lower active occupancy in mid-summer and
peaks in early spring and late autumn, and further analysis with the UK 2015 Time Use
Survey (TUS) when released will allow seasonal variations to be further reviewed. The
identified method for average occupancy variation in 7.3.2 could be used for seasonal
or monthly manipulation if consistent variances can be identified.

The model incorporates several factors to account for seasonal variations in de-
mand. The lighting model includes realistic solar cycles to ensure the lighting varies
realistically through the year. Certain appliances (kettle, microwave, dryers) have
clear sinusoidal variations in demand that have been incorporated within the demand
sub-model. Seasonal variation in cooker and oven use was expected but a consistent
variation was not observed in the HES dataset. Further work is also required to identify
patterns in the miscellaneous appliance models. As outlined, accurate seasonal analysis

would also require the potential for secondary electric heating use to be captured.

9.4.2 Data Limitations

All the work presented has to some degree been limited by data availability. The

principal gap is the lack of data that links occupancy with energy demand. Assumptions
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have been required about the extent to which occupancy, both total and at specific
times, impacts on the timing and frequency of specific demands, with the lack of linked
data preventing the relationship being more accurately determined and modelled.

The other major data gap is long-term occupancy data for individuals. Without
this it cannot be determined how consistent day-to-day occupancy patterns are and
how closely the model captures the distribution of different day types and occupancy
patterns at the individual level.

The impending release of the UK 2015 TUS dataset will allow the occupancy model
calibration to be updated to reflect current behaviours. This will also potentially allow
the IT appliance model to be converted to the same TUS-activity driven basis as TV
use, as the UK 2000 TUS data was considered to be unrepresentative of current use.
Comparing the two datasets will also allow it to be determined whether the datasets

can be combined if sufficiently similar.

9.4.3 Small-Scale Energy System Design Basis
9.4.3.1 ‘Stress-Testing’

The main conclusions from the presented work are that demand uncertainty at different
time-scales remains potentially significant for a range of potential small-scale energy
systems and that the impact of the uncertainty is likely to be system-type specific.
Therefore, further work is required to model different system designs and to determine
if they are sufficiently robust, both technically and economically, to allow for the range
of potential demands. It is possible that, at least for certain types of system, minimum
system sizes would be recommended to reduce the uncertainty to tolerable levels. This
would also allow it to be determined if, and at what scale, existing design standards
and guidelines can be used, and to potentially generate more comprehensive standards
or simplified analysis methods for smaller systems where the degree of variation and

uncertainty exceeds the ability to use a single ‘one-size-fits-all’ design basis.

9.4.3.2 Hot Water Diversity

Hot water diversity analysis for district heating systems, particularly under UK condi-

tions, is poorly understood. The conservative basis of BS6700 has been replaced by the
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Danish equivalent, DS439, but without any distinction made except for house number
and little definition of the timescales and tolerances considered. Much existing calibra-
tion work is based on actual measurements, which does not necessarily allow for the
full range of user behaviours to be incorporated.

There is a strong suggestion from the model output that the worst-case instanta-
neous diversity for a system exceeds the DS439 basis up to at least 50 households.
Further analysis, including a detailed dynamic analysis of systems under short dura-
tions where the design basis is exceeded, is required to determine a better diversity

basis for UK conditions.

9.5 Concluding Remarks

The primary aim of the presented work was to generate a high-resolution, household-
differentiated, probabilistic energy demand model to allow assessment of small-scale
energy systems with homogeneous populations that deviate from the national average.
Whilst data limitations prevented the inclusion of a heating module at this stage, new
or enhanced methods were developed for domestic occupancy, electricity demand, and
hot water demand modelling. It has been demonstrated that the new methods are
an improvement over existing models in this field, particularly in terms of predicting
time-dependent variations at the household-level that results from different character-
istics and behaviours, and providing a comprehensive calibration basis that captures
all household types that allow it to be used generally for UK systems.

The first stage of model development using group-calibrated modules in two key
areas, was followed by a critical assessment of the output. This highlighted that this
type of calibration has a tendency for rapid convergence to the data average basis,
resulting in weak household differentiation performance. Further improved approaches
were developed to account for this unrealistic convergence to improve the degree to
which individual household behaviours were captured.

The inclusion of probabilistic factoring to account for the impact of both household
characteristics and individual household behaviours on household demand has allowed
the model to be used to assess both variation and uncertainty in demand for small-scale

energy systems. Whilst variation in average behaviour based on the characteristics of
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the system consumers can be significant, the presented work has demonstrated that for
small-scale systems the impact of less tangible behaviours can be several times more
influential in determining system energy use. There is little evidence that this is both
understood and incorporated in current energy system planning and design, which is a
potential cause of system underperformance. It is hoped that the methods presented

provide a pathway to improving small-scale energy system design.
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Multivariate Kernel Density

Probability Method

A.1 Appendix Overview

Kernel density estimation is a statistical method used to produce probability density
functions from distributions of individual data points. Multivariate kernel density es-
timation is an extension of the basic technique to multiple variable relationships. This
Appendix outlines how the multivariate method has been used to characterise a range
of probabilistic relationships within the model that cannot be adequately captured by

simple functions.

A.2 Kernel Density Method

For several relationships of interest there is a variable y that is strongly influenced by
a continuous variable z and for which the complex probabilistic relationship cannot be
easily simplified to a single mathematical function. The following method is therefore
used to generate a 2-d probability surface from the available data. This is used within
the model to generate values of variable y from a pre-determined value of z. The
MATLAB function, kde2d, was used for the data analysis.

The method requires that each data point (zi,yi) is converted to probability density
function (kernel) centred on the data point. Key parameters are the shape and width
of the density function. The default Gaussian kernel has been used in this case with
each data point therefore represented by a normally distributed function. The width

of the kernel (known as the bandwidth) is user defined to produce optimally smoothed
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(a) Undersmoothed (b) Oversmoothed

(c) Optimised Bandwidth

Figure A.1. Generated overall probability ‘surfaces’ for different bandwidths to demonstrate
the bandwidth influence on the surface characteristics.
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final distributions. Too small and the resulting density function is ‘undersmoothed’
with excessive influence from individual data points. Too large and the function is
‘oversmoothed’ with much of the statistical detail lost (see Figure A.1 for examples).
The overall density function is determined by adding the contribution of each in-
dividual kernel at each point on the surface. To simplify the analysis the continuous
functions z and y are reduced to a set of discrete values analogous to bins in a his-
togram analysis. For example, analysis of two variables, one with a range from 0 to
1 and the other from 0 to 10, would be converted to a 100x100 kernel density matrix
with bin widths of 0.01 and 0.1 respectively. The output is a series of 100 cumulative

probability distributions for y based on 100 equal-sized ‘bin’ ranges for .

A.2.1 Example: Relationship between Cooker Average Daily Use
Duration and Average Daily Cycle Number

The available data from 122 Household Electricity Survey (HES) [89] households shows
a distinct relationship between daily cooker cycle number and total use duration, with
cycle number increasing with duration. The relationship is however complex with
significant deviations from the regression trendline (see Figure A.2), therefore the kernel
density method is used to characterise the probabilistic range of potential relationships
between the two variables.

Figure A.1(a) and (b) demonstrate undersmoothed and oversmoothed data (rep-
resenting 0.2 and 5 times the optimum selected bandwidth). Visual analysis of each
1-d bin probability distribution determined that the result shown in Figure A.1(c) was
the optimum between retaining the overall statistical relationship and smoothing data
from individual data points.

The average daily cycle duration is determined for each household based on the
household type average and a probabilistically selected factor from the overall distri-
bution of ratios of household duration to the type average from the HES dataset. The
average daily cycle number is then determined by selecting the appropriate bin range
for the average daily duration within the kernel density model and then generating a
random number between 0 and 1 to determine the average daily cycle number value

from the cumulative probability distribution for that specific range.
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Figure A.2. Relationship between average daily cooker use duration and average number
of cycles.
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Figure A.3. Example average number of daily cycles cumulative probability distribution
for an average daily total cooker use duration of between 0.252 and 0.294 hours.
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For example, for an average daily cooker use duration of 0.28 hours, the 0.252-0.294
bin is selected (based on 100 ‘bins’ of 0.042 hours width). The applicable cumulative
probability distribution is shown in Figure A.3. A random number of 0.385, for example,

determines that the average number of cooker cycles per day is 0.76 cycles.
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Occupancy Model Module

Populations

Single-Person Household Modules

No. Day Work Age TUS Age Range TUS Diaries Occ Avg.
1 Weekday Full-time 18-33 18-34 236 18.6%
2 Weekday Full-time 34-40 30-50 222 21.2%
3 Weekday Full-time 41+ 34+ 234 23.1%
4 Weekday Not-working 18-33 18-40 221 31.2%
5 Weekday Not-working 34-46 28-56 214 39.7%
6 Weekday Not-working 47+ 40-67 349 43.7%
7 Weekday Non-working 65-69 61-72 295 46.8%
8 Weekday Non-working 70-79 68-79 353 48.3%
9 Weekday Non-working 80+ 78+ 212 51.4%
10 Weekend Full-time 18-33 18-50 199 21.1%
11 Weekend Full-time 34+ 33+ 200 24.6%
12 Saturday Not-working 18-33 18-40 225 27.5%
13 Saturday Not-working 34-46 28-56 211 33.8%
14 Saturday Not-working 47+ 40-67 237 39.4%
15 Saturday Retired 65-74 64-78 222 47.5%
16 Saturday Retired 75+ 75+ 156 50.0%
17 Sunday Not-working 18-33 18-40 242 30.3%
18 Sunday Not-working 34-46 28-56 241 36.4%
19 Sunday Not-working 47+ 40-67 252 42.2%
20 Sunday Non-working 65-74 64-78 207 47.2%
21 Sunday Non-working 75+ 75+ 149 50.7%
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Live-At-Home Adult Modules

No. Day Work Age TUS Age Range TUS Diaries Occ Avg.
1 Weekday Full-time 16-18 16-19 261 16.4%
2 Weekday Full-time 19-24 19-24 308 17.5%
3 Weekday Not-working 16-18 16-19 246 28.0%
4 Weekday Not-working 19-24 19-24 275 33.9%
5 Saturday Not-working 16-18 16-19 202 29.2%
6 Saturday Not-working 19-24 18-24 266 28.3%
7 Sunday Not-working 16-18 16-19 228 26.0%
8 Sunday Not-working 19-24 18-24 321 29.9%
9 Weekend Full-time 16-24 16-24 270 16.7%

Nightworker Module

No. Day Work Age TUS Age Range TUS Diaries Occ Avg.

1 All Full-time All All 330 22.1%

Single Parent Modules

No. Day Work Age* TUS Age Range* TUS Diaries Occ Avg.
1 Weekday Full-time All All 176 27.4%
2 Weekday Not-working 0-4 0-4 166 46.0%
3 Weekday Not-working 5-15 5-15 246 41.8%
4 Weekend Full-time All All 222 26.6%
5 Weekend Not-working 0-7 0-9 257 40.6%
6 Weekend Not-working 8-15 5-15 242 40.1%

*Note: Age = Youngest Child Age
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Couple Modules

No. Day Workt Age* TUS Age Range* TUS Diaries§ Occ Avg.
1 Weekday FT-FT 18-42 18-43.5 159 25.5%
2 Weekday FT-FT 43+ 35+ 151 31.1%
3 Weekend FT-FT 18-42 18-43.5 163 25.7%
4 Weekend FT-FT 43+ 35+ 157 31.1%
5 Weekday FT-NW 18-54 18-55 170 46.3%
6 Weekday FT-NW 55+ 50+ 171 52.5%
7 Saturday FT-NW 18-54 18-55 228 46.0%
8 Saturday FT-NW 55+ 50+ 207 52.2%
9 Sunday FT-NW 18-54 18-55 209 46.0%
10 Sunday FT-NW 55+ 50+ 188 52.5%
11 Weekday NW-NW 18-54 18-58 148 48.3%
12 Weekday NW-NW 55-64 50-64.5 231 52.9%
13 Weekday NW-NW 65-69 60-73 334 55.6%
14 Weekday NW-NW 70+ 69+ 253 58.6%
15 Saturday NW-NW 18-48 18-52 160 39.9%
16 Saturday NW-NW 49-54 38-62 229 48.1%
17 Saturday NW-NW 55-69 55-70 237 52.5%
18 Saturday NW-NW 70+ 63+ 219 56.7%
19 Sunday NW-NW 18-48 18-52 177 44.7%
20 Sunday NW-NW 49-54 38-62 209 50.4%
21 Sunday NW-NW 55-69 55-70 204 54.1%
22 Sunday NW-NW 70+ 63+ 205 58.1%

Note: *Age = Average Age fFT=Full-time, NW=Non-working §Number of combined diaries
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Parent Modules

No. Day Workt Age* TUS Age Range* TUS Diaries§ Occ Avg.

1 Weekday FT-FT 0-7 0-9 162 31.7%

2 Weekday FT-FT 8-15 5-15 207 32.6%

3 Weekend FT-FT 0-7 0-9 172 31.9%

4 Weekend FT-FT 8-15 5-15 219 32.7%

5 Weekday FT-NW 0-2 0-5 236 51.8%

6 Weekday FT-NW 3-7 3-9 226 49.3%

7 Weekday FT-NW 8-15 5-15 278 48.4%

8 Weekend FT-NW 0-7 0-9 146 50.9%

9 Weekend FT-NW 8-15 5-15 155 49.5%
10 Weekday NW-NW All All 214 52.6%
11 Saturday NW-NW 0-2 0-5 162 49.7%
12 Saturday NW-NW 3-7 3-9 165 46.7%
13 Saturday NW-NW 8-15 5-15 235 47.0%
14 Sunday NW-NW 0-2 0-5 169 48.3%
15 Sunday NW-NW 3-7 3-9 178 50.3%
16 Sunday NW-NW 8-15 5-15 252 50.5%

Note: *Age = Youngest Child Age {FT=Full-time, NW=Non-working §Number of combined diaries

Child Modules
No. Day School Status Age TUS Age Range TUS Diaries Occ Avg.
1 Weekday Term 0-9 8-9 172 19.6%
2 Weekday Term 10-11 10-11 187 20.0%
3 Weekday Term 12-13 12-13 175 20.1%
4 Weekday Term 14-15 14-15 153 21.2%
5 Weekday Non-Term 0-10 8-11 99 21.1%
6 Weekday Non-Term 11-12 10-13 115 27.4%
7 Weekday Non-Term 13-15 12-15 112 30.4%
8 Saturday Both 0-9 8-9 124 28.0%
9 Saturday Both 10-11 10-11 152 32.8%
10 Saturday Both 12-13 12-13 129 28.8%
11 Saturday Both 14-15 14-15 125 28.7%
12 Sunday Both 0-9 8-9 134 30.4%
13 Sunday Both 10-11 10-11 136 30.4%
14 Sunday Both 12-13 12-13 127 28.5%
15 Sunday Both 14-15 14-15 105 30.5%
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TV Shared Use Probabilities

This Appendix contains shared TV use probability data taken from the 2001 UK TUS
survey [83] as detailed in 5.10.1. It should be noted that shared use with children
watching is significantly lower than the equivalent for adults. There may be under-
reporting of location sharing for children as their diaries are completed by others, and

therefore child data should be used with caution.

Household Watching Units On Probability
2-Person 2A 1 78.8%
2-Person 2A 2 21.2%
3-Person 2A 1 68.2%
3-Person 2A 2 31.8%
3-Person 2C 1 0%
3-Person 2C 2 100%
3-Person 1A1C 1 25.5%
3-Person 1A1C 2 74.5%
3-Person 3A 1 55.7%
3-Person 3A 2 34.2%
3-Person 3A 3 10.1%
3-Person 2A1C 1 20.3%
3-Person 2A1C 2 68.3%
3-Person 2A1C 3 11.4%
3-Person 1A2C 1 0%
3-Person 1A2C 2 65.5%
3-Person 1A2C 3 34.5%

A=Adult, C=Child
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Household Watching Units On Probability
4-Person 2A 1 59.6%
4-Person 2A 2 40.4%
4-Person 2C 1 0%
4-Person 2C 2 100%
4-Person 1A1C 1 19.4%
4-Person 1A1C 2 80.6%
4-Person 3A 1 48.8%
4-Person 3A 2 32.5%
4-Person 3A 3 18.7%
4-Person 2A1C 1 24.8%
4-Person 2A1C 2 57.9%
4-Person 2A1C 3 17.4%
4-Person 1A2C 1 0%
4-Person 1A2C 2 25.4%
4-Person 1A2C 3 74.5%
4-Person 4A 1 36.7%
4-Person 4A 2 30.0%
4-Person 4A 3 30.0%
4-Person 4A 4 3.3%
4-Person 3A1C 1 21.7%
4-Person 3A1C 2 68.6%
4-Person 3A1C 3 8.4%
4-Person 3A1C 4 1.2%
4-Person 2A2C 1 0.1%
4-Person 2A2C 2 20.4%
4-Person 2A2C 3 63.5%
4-Person 2A2C 4 16.0%
4-Person 1A3C 1 0%
4-Person 1A3C 2 3.2%
4-Person 1A3C 3 12.7%
4-Person 1A3C 4 84.1%

A=Adult, C=Child
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Household Watching Units On Probability
5-Person 2A 1 54.5%
5-Person 2A 2 45.5%
5-Person 2C 1 2.0%
5-Person 2C 2 98.0%
5-Person 1A1C 1 17.1%
5-Person 1A1C 2 82.9%
5-Person 3A 1 19.7%
5-Person 3A 2 37.3%
5-Person 3A 3 43.0%
5-Person 2A1C 1 16.6%
5-Person 2A1C 2 47.6%
5-Person 2A1C 3 35.8%
5-Person 1A2C 1 0.1%
5-Person 1A2C 2 29.7%
5-Person 1A2C 3 69.5%
5-Person 4A 1 13.9%
5-Person 4A 2 59.9%
5-Person 4A 3 22.2%
5-Person 4A 4 4.1%
5-Person 3A1C 1 17.3%
5-Person 3A1C 2 21.6%
5-Person 3A1C 3 22.5%
5-Person 3A1C 4 38.6%
5-Person 2A2C 1 0%
5-Person 2A2C 2 5.0%
5-Person 2A2C 3 25.3%
5-Person 2A2C 4 69.7%
5-Person 1A3C 1 0%
5-Person 1A3C 2 4.2%
5-Person 1A3C 3 29.8%
5-Person 1A3C 4 66.0%
5-Person 5A 1 30.2%
5-Person 5A 2 55.6%
5-Person 5A 3 0%
5-Person 5A 4 0%
5-Person 5A 5 14.3%
5-Person 4A1C 1 0%
5-Person 4A1C 2 0%
5-Person 4A1C 3 52.4%
5-Person 4A1C 4 47.6%
5-Person 4A1C 5 0%
5-Person 3A2C 1 0%
5-Person 3A2C 2 0%
5-Person 3A2C 3 2.4%
5-Person 3A2C 4 83.3%
5-Person 3A2C 5 14.3%
5-Person 2A3C 1 14.0%
5-Person 2A3C 2 0%
5-Person 2A3C 3 15.8%
5-Person 2A3C 4 23.6%
5-Person 2A3C 5 46.7%

A=Adult, C=Child
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