

Department of Mechanical and Aerospace

Engineering

The design and simulation in Python of a model

predictive control system to maximise use of local

renewables in a heat network with thermal storage.

Author: Richard Lane

Supervisor: Dr Paul Tuohy

A thesis submitted in partial fulfilment for the requirement of the degree

Master of Science

in

Sustainable Engineering: Renewable Energy Systems and the Environment

2019

Copyright Declaration

This thesis is the result of the author’s original research. It has been composed by the

author and has not been previously submitted for examination which has led to the

award of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material contained in,

or derived from, this thesis.

Signed :

 Richard Lane

Date : 22nd August 2019

Abstract

Increasing penetration of intermittent renewable generation within a power grid

brings challenges with physical constraints, especially in remote locations. Energy

storage is one approach to addressing this, and the possibility of providing this in

thermal form offers an opportunity to create low-costs systems which respond both

to the needs of energy consumers and the conditions on the local power grid.

Model Predictive Control (MPC) is a method of intelligently controlling an

unpredictable system to meet multiple objectives. In this study an MPC algorithm is

developed in the Python programming language to control a small district heat

network with thermal storage. A development at Findhorn, an eco-village on the

North Moray coast, is used as the inspiration for a modelled district heat network.

Code is created to model the demand and renewable energy generation on the site, as

well as model of the heating system.

The resulting Python library, named PyREmatcher, is coded in such a way as to

provide a flexible structure that may be used for subsequent development, and made

available on an open-source basis through the GitHub platform.

This algorithm is tested in a number of simulations of the Findhorn development to

determine its performance. It is found to be very successful in reducing the amount of

energy that needs to be imported from outwith the local private wire network to meet

need for space and hot water heating, with all simulations tested reducing imported

electricity to zero.

Possibilities for the future development of the system are discussed and

recommendations are made for future development, including the implementation of

this system in open source hardware.

4

Acknowledgements

This thesis draws heavily on the ongoing relationship between the Energy Systems

Research Unit at the University of Strathclyde and the Findhorn Foundation

community, and thanks are due to all who maintain this mutually beneficial

relationship. In particular, I would like to thank Paddy Atkinson of the Findhorn

Foundation and College for his rapid and helpful support in providing me with

details of infrastructure and plans for North and West Whins. I have received

generous support from many Strathclyde academics; in particular I would like to

thank Graeme Flett, Andrew Lyden for getting me started with heat pump and

demand modelling, and my supervisor Dr Paul Touhy, whose energy and

enthusiasm for renewable energy and the civilisation-wide project to decarbonise

our economy has been central to the rich experience of so many students on this

course. This thesis stands on the shoulders of the ORIGIN project, and thanks are

due to all who contributed to this important piece of work.

The partnership of an industrially-minded Department of Mechanical and

Aerospace Engineering and a remote, spiritually-minded retreat on the Moray coast

is not an obvious one but long may the association, with its spirit of joint enquiry

and experimentation, persist - to the benefit of all.

5

Table of Contents

1. Introduction ..10

1.1. Background ...10

1.2. Overall Aim ...14

1.3. Scope ...15

1.4. Methodology ...16

2. Literature Review ...18

2.1. Modern DHS design ..18

2.2. Thermal Energy storage ...19

2.3. Air-sourced heat pumps ... 26

2.4. Control systems ... 29

2.5. Findhorn and the ORIGIN project ... 32

3. Development of System Model ..34

3.1. Demand Modelling ..34

3.2. Heat network ..36

3.3. Thermal Storage ...37

3.4. Heat pump ...38

3.5 Renewable energy generation ..41

4. Development of Control System ..45

5. Implementation in Python ...47

5.1. Scheduler ...47

5.2. Forecaster ..50

5.3. LocalRE ...51

5.4. DemandModel ..54

5.5. HeatPump ..56

5.6. HotWaterTank ..57

5.7. Simulator ...59

5.8. Third party systems and libraries ..61

5.9 Simulation testbeds ...63

6. Simulation Testing..64

6.1. Generation ...64

6.2. Storage model ...66

6.3. Scheduling model ..67

6.4 Stochastic demand simulation ...68

(continues)

6

7. Results ...69

7.1. Scheduling results..69

7.2. Multiple hour simulation results ...71

8. Discussion ..74

8.1. The scheduling algorithm ..74

8.2. Model approximations ..75

8.3. Implications of widespread use ..78

8.4. Recommendations for future work ...79

9. Conclusions ...84

10. References ...86

Appendix A: Python codebase dependencies .. 92

Appendix B: Example output ...93

7

List of figures

 Page

1 Investment cost and cycle efficiency comparison of electricity
storage

11

2 The use of storage to reduce grid demand and increase
consumption of intermittent renewable sources

12

3 Site plan for the North Whins development, and its location
within Findhorn

13

4 Site plan and artists impression of 8-dwelling PET development at
North Whins

14

5 Semi-detached dwellings at West Whins 15

6 "Progression of District Heating – 1st to 4th generation” 18

7 One dimensional multi-node model for TES 22

8 Energy balance on an arbitrary tank node n. 24

9 Conceptual diagram of a heat pump 26

10 Control techniques used in Buildings Integrated with Thermal
Storage (BITES) with some typical applications.

28

11 Conceptual outline of the MPC process 31

12 Modelled TES behaviour from the ORIGIN project 33

13 Typical demand profiles from the BDST 34

14 Average daily profiles for West Whins dwelling from ORIGIN data 35

15 Dimensions of the modelled tank 38

16 2-dimensional characteristics of the ASHP 39

17 Modelled COP curves from datasheet regression 40

18 Plausible sizes of solar arrays on study buildings 42

19 Frequency histogram showing half-hourly demand on the
Findhorn private wire network

44

20 Structure of the MPC controller 45

21 The scheduling algorithm 46

22 Top level module architecture of codebase 47

23 Generation forecasts for two dates in August 2019 64

24 Forecast and observed data from the Dark Sky API for August 2nd 65

25 Wind speed from MIDAS and Dark Sky and generation data from
windpowerlib and ORIGIN compared

65

26 TES simulation output 66

8

27 Demonstration output from the scheduling algorithm 67

28 Examples of generated patterns of stochastic demand 68

29 Three day generated demand profile showing deviation in running
totals

68

30 Scheduling simulation output for February 1st-2nd 2019. 7 runs
were performed to find a successful scenario with 6 hours of
heating.

70

31 Simulation output for May 1st-2nd 2019. In this case no heating
was needed as the system was able to ‘coast’ to the prediction
horizon from a near-full tank.

71

32 Output from a simulated 24-hour run of the scheduler 72

33 Wind farm "power cones" 81

9

List of abbreviations

ASHP - Air source heat pump

BDST - Biomass Decision Support Tool

COP - Coefficient of performance

CH - Central heating

DHI - Direct Horizontal Irradiance

DNI - Direct Normal Irradiance

DHS - District Heating System

DHW - Domestic hot water

DSR - Demand side response

FWP - Findhorn Wind Park

GHI - Global Horizontal Irradiance

HWT - Hot water tank

LMT - Logarithmic Mean Temperature

MPC - Model predictive control

NFD - New Findhorn Directions

OEM - OpenEnergyMonitor

ORIGIN - Orchestration of Renewable Integration Generation In Neighbourhoods

PET - Parkland Ecovillage Trust

PV - Photovoltaic

RE - Renewable energy

SAP - Standard Assessment Procedure

SA:V - Surface area to volume ratio

SPF - Seasonal performance factor

TES - Thermal energy storage

VPP - Virtual power plant

WSHP - Water source heat pump

WWSHP - Wastewater source heat pump

10

1. Introduction

1.1. Background

In June 2019, both the UK and Scottish Parliaments passed legislation mandating a

movement to net zero carbon emissions by 2050. Whilst considerable progress has

been made toward the decarbonisation of the electricity supply, the supply of heat

is still predominantly derived from fossil fuels, with over 85% of residential

buildings in Great Britain using grid-supplied natural gas as a heating source

(Committee on Climate Change, 2016). The UK Government has announced plans

to prohibit the installation of gas boilers in new built domestic properties from 2030

(HM Treasury, 2019), with their role likely to be filled with technologies such as

hydrogen boilers and heat pumps. With 80% of a typical UK household’s energy

consumption being for the provision of heating and hot water (Haslett, 2019), the

increased electrification of heat - as well as the parallel effort in the transport sector

- is expected to significantly increase the demands made on the electricity grid,

exacerbating the stress experienced during periods of peak consumption.

Where an electricity grid has a high penetration of renewable energy (RE), the non-

dispatchable nature of RE generation further exacerbates such stresses. The

mismatch between irregular demand patterns and the stochastic generation

patterns of RE sources is principally addressed by two mechanisms: energy storage

and demand-side response (DSR), usually taking the form of peak-shifting. The

electrification of heat provides an opportunity to offer both of these mechanisms

cheaply and efficiently, using well-established technology.

The use of a large thermal mass to store heat has occurred since prehistory, and

water has been used as a storage and transmission medium for heat for centuries. A

well-insulated thermal energy store (TES) is both a vastly cheaper and more

efficient means of storing energy than an electrochemical battery or pumped

hydropower facility, and does not require high-cost (and potentially high-impact)

materials to make. Figure 1, from a paper by Lund et al (2016) illustrates the

comparison with pumped hydropower storage. The same evaluation found that the

investment cost of an electrochemical battery (the Tesla PowerWall) per MWh

storage is around 8 times that of pumped hydro storage.

11

 Figure 1: Investment cost and cycle efficiency comparison of electricity storage (as pumped

hydropower), thermal energy storage, gas cavern storage and liquid fuel. From Lund et al (2016)

Another valuable function of a TES is to act as a shorter-term buffer between the

heat source and the heat demand, to allow for smoother and more optimal

operation of the heat source. This can avoid the suboptimal performance and

increased mechanical wear that can occur when cycling on and off rapidly or

operating below rated output to match demand directly (Millar et al 2019).

A TES, usually in the form of a hot water tank is present in 90% of the existing UK

residential building stock (Fischer and Madani, 2017). The controlled use of this

thermal storage may be able to make a low-cost contribution to efforts to tailor

energy demands to the availability of surplus renewable energy, helping to reduce

the stress on the grid and increase consumption of renewables. Figure 2 illustrates

one such scenario. In an electricity grid system in which price is used as a control

this can also reduce the cost of running the heating system as renewable energy.

The effectiveness of such a strategy in practice lies in being able to intelligently

control the use of the TES to maximise consumption of stochastic RE. Typically

systems are controlled to avoid times of peak demand, but this may not correlate

well with periods of abundant RE generation. A better strategy could make a

12

significant contribution to tackling the decarbonisation of heat, especially if

employed at a large scale.

The same problem exists in microcosm where a district heating systems (DHS) is

coupled with local RE generation on a private wire network. This is the situation at

the Findhorn eco-village on Scotland’s Moray Coast, where the remote location

results in high prices for grid electricity. The community collectively owns 675kW of

wind generation capacity as well as its own private wire network, individual solar

photovoltaic (PV) generation systems, solar thermal collectors, hot water tanks

(HWTs) and heat pumps on residential blocks or individual houses.

The Findhorn community development company Duneland Ltd is currently going

through the planning permission process for an extensive expansion project at the

North Whins site (Figure 3). This development will comprise a mixture of co-

housing, communal housing and independent housing, built in clusters across the

site. All dwellings are to be built to similarly energy efficient standards as other

Figure 2: The intelligent use of storage to reduce grid demand and increase consumption of

intermittent renewable sources.

13

recent developments at Findhorn that have been the subject of previous study

(Tuohy et al 2015).

Figure 3 - Site plan for the North Whins development (outlined in red, left), and its location

within Findhorn (right). From the Masterplan by Makar Architects and planning application

submitted by Duneland Ltd.

This study will examine how a TES and small heat pump driven DHS supplying

domestic hot water (DHW) and central heating (CH) to a one group of eight

dwellings could be employed and controlled to maximise consumption of locally-

generated renewables and reduce imports.

1.1.1. The case study site

The specific site to be considered in this study is a development of 8 affordable

dwellings designed for the Park Ecovillage Trust (PET). It comprises a small terrace

of four two-bedroomed houses and an adjacent block of four studio flats, spread

over two levels. Figure 4 shows more detail on the site, including an artists

impression and a site plan.

14

The local renewables to be considered comprise PV arrays mounted directly onto

the buildings as well as the three turbines of the Findhorn Wind Park (FWP), the

‘Three Graces’. These are 225kW Vestas V29 turbines (‘Joy’, ‘Charm’ and ‘Beauty’).

In the year to October 2017 the turbines generated 77% of the electricity consumed

on the ecovillage site (Findhorn Wind Park, n.d.). There are also several PV arrays

installed throughout the site on a “rent-a-roof” basis. As at September 2015 the

total installed PV capacity was 23.85kW.

New Findhorn Directions (NFD) is the service company responsible for the village’s

infrastructure, including the provision of public utilities (including electricity) and

management of the site’s private wire network. NFD’s sole supplier of electricity is

FWP, who in turn trade only with a grid level supplier and NFD. Any generating

plant that wishes to connect to the local network therefore has to gain permission

from both organisations. FWP does not generally allow the connection of PV

systems above 3.68kW.

1.2. Overall Aim

This thesis will attempt to develop a control strategy that could be employed to

intelligently manage an 8-dwelling DHS at the North Whins site to maximise the

Figure 4: Site plan (left) and artists impression (right) of 8-dwelling PET development at North

Whins. (Images courtesy of Findhorn Foundation.)

15

consumption of locally-generated RE. The selected strategy will then be

implemented in Python code. Simulations based on data obtained from Findhorn

will be run to establish the possible benefit from the use of this control system in

terms of increased self-consumption of local renewables. Finally, the

implementation of and improvements to this control system will be discussed, as

well as the implications of more widespread of such systems.

1.3. Scope

As the North Whins development is still at the design phase, detailed thermal

modelling based on building fabric will not be possible. Instead, appropriate existing

profiles from other sites and literature has been used, though ways of customising

them to increase their relevance to North Whins has been considered. In particular,

the existing highly-insulated buildings at West Whins (shown in Figure 5), studied

as part of the ORIGIN project, will

be considered as surrogate models

for the proposed buildings.

Plans for the site include the use of

(cleansed) wastewater from the

community’s wastewater treatment

plant, ‘the Living Machine’, as a

heat source for a potential DHS

serving much or all of the North

Whins site. However, useful data on

the heat resource represented by this is not available. Air sourced heat pumps

(ASHP) are however widely used in buildings across the site, and the heat resource

from these is readily determined from meteorological data. The model devised for

this study will therefore include an ASHP as its heat source, with provisions for

adapting this for a wastewater sourced heat pump (WWSHP) discussed.

Figure 5: Semi-detached dwellings at West Whins

(photo courtesy of Findhorn Foundation)

16

1.4. Methodology

There are three major aspects to the work: the construction of a suitable control

strategy, the implementation of this in code and the simulation of the North Whins

site. The potential future implementation of this code in a control system must also

be considered.

1.4.1. Literature review

There is extensive literature published on strategies for thermal control of heat

pumps, DHSs and TES. This was reviewed for relevance to a system featuring all

three of these components in order to select a control strategy to employ in the

subsequent work.

Significant research was also required in devising the model for the DHS for North

Whins – papers detailing suitable approaches to the modelling of a TES system,

ASHP, residential demand for DHW and CH and renewable energy generation were

reviewed.

1.4.2. Development of system model

The system model, bringing together the models of each of the components above,

was created in Python code. Python is well suited to data-intensive applications,

and as an open-source language it is highly extensible and can be implemented in a

wide range of hardware environments. There is an extensive body of relevant pre-

existing libraries which will be reviewed for incorporation in the model.

1.4.3. Development of control code

Once models are in place for all aspects of the system, the decision-making control

system can be coded.

1.4.4. Simulation of control system

An evaluation of the effectiveness of the control system has three aspects. Firstly,

how well the models reflect the behaviour of the actual system should be examined

17

as far as is possible given the as-yet-unbuilt site. Secondly, how well the control

system responds to changing environmental factors (the variability in local

renewable generation) should be examined, and finally the control system’s

response to unpredictable behaviour of building occupants.

1.4.5. Review, discussion and recommendations for future work

The effectiveness of the system will be reviewed, with recommendations made for

identified weaknesses as well as future development to improve the system.

Practical issues for the implementation of the control system in the development at

North Whins will be discussed.

18

2. Literature Review

2.1. Modern DHS design

The DHS has a long history, but its nature has changed substantially over the past

century. Lund et al (2014) identify four distinct ‘generations’ of DHS with distinct

characteristics and means of operation, summarised in the well-known graphic by

Thorsen et al (2018) shown in Figure 6.

The proposed DHS at Findhorn fits the description of a 4th generation DHS

(4GDHS), featuring a high degree of decentralised renewable energy generation,

modern, well-insulated buildings and smart interaction of demand and RE supply.

The temperatures in the network, and flow rates, are lower than the historic norms,

Figure 6: "Progression of District Heating – 1st to 4th generation,” Thorsen et al (2018)

19

the heat typically supplied between 40-55°C. The risk posed by the growth of

legionella bacteria in stored water, which thrives in water between 20-45°C, is

minimised by using a closed system with indirect heating: rather than stored water

being delivered into the domestic environment through hot water taps, a high-

efficiency heat exchanger is present in each dwelling to raise incoming fresh water

to the temperature of the DHS network. Without this separation, supply

temperatures below 55°C would only be possible with the addition of a biocide

(usually a chlorine-based oxidising agent) or periodic ‘thermal shock’ treatment in

which the entire system, including all taps and appliances, is raised to between 70-

80°C (European Guidelines Working Group, 2017).

The lower flow rates of 4GDH systems allow smaller pipes, and therefore more

insulation for the same external duct size. Combined with the lower temperatures

this means that heat losses can be significantly reduced. Typically the flow rates in

the network are highly variable dependant on demand.

2.2. Thermal Energy storage

One of the crucial advantages provided by a DHS is highlighted by Lund et al

(2016): the ability to implement energy storage in a more efficient form (thermal,

gaseous or liquid) and in larger scale at the community level.

The overwhelming majority of TESs in operation use water as the thermal storage

medium, most commonly in purpose-built highly insulated tanks (Sarbu and

Sebarchievici, 2018). Water has a high thermal mass: its specific heat capacity of

4190J/kg K is greater than concrete (879 J/kg K) or oil (2200 J/kg K for the Calorie

HT43 thermal oil), and an unbeatably low cost and high availability (especially in

Scotland).

Many other thermal storage media have been considered and employed, most

notably phase change materials (PCMs). These are a group of substances which can

have potentially higher thermal energy densities by virtue of storing heat as latent

energy as a substance melts and re-solidifies, instead of (or in addition to) as

sensible energy. This energy stored in melting a substance, referred to as the

20

specific latent heat of fusion, can be much higher than sensible heat capacities:

almost 200kJ/kg for stearic acid (Sharma et al, 2009). The use of these is technically

more challenging as once a substance is in a solid form it becomes far more difficult

to transfer heat into and out of. Any increased energy density must be weighed

against the significant additional volume needed for structures (fins) to distribute

heat into and out of the solid, and the greater cost of the substance – by an order of

100 times greater per kWh, as estimated by Hauer (in Sarbu and Sebarchievici,

2018).

An approach examined by Kelly et al (2014) was to use a hybrid TES of which a

proportion of the volume was taken up with a PCM (an inorganic hydrated salt).

For the particular case studied it was found that installing PCM modules to

comprise 50% of the capacity of the TES could allow the total size of the TES to be

reduced by half whilst still obtaining approximately the same performance.

However, based on the relative price estimates of Hauer this 50% volume saving

from the use of PCM modules would incur a cost increase of more than 800%.

In modelling the behaviour and performance of thermal storage, a range of different

techniques can be applied. The simplest is to treat the store as a single mass of

uniform temperature. The energy stored in can then readily be calculated from its

temperature and specific heat capacity. For water used in heating systems, the

specific heat capacity does not change significantly over its temperature range (the

range is less than 1%).

This model omits the effect of the variance of a material’s density with

temperature, which is to give rise to thermal stratification. In any fluid, warmer

masses at lower densities will be buoyant, floating on top of colder masses. In tanks

with low flows this can be a significant effect. It can also be a beneficial effect as it

means that higher temperatures can be maintained by drawing water off at the top

of a tank, even as the energy stored in the tank drops, increasing the efficiency of

energy storage by up to 20% over a fully-mixed tank (Ghaddar, 1994). However it

can also have an injurious effect as it greatly increases the amount of energy need

to raise the bottom of the tank to a high enough temperature to kill bacteria

(Armstrong, 2015).

21

The degree of stratification is heavily influenced by the tank’s shape. A taller,

thinner tank will be better able to maintain a higher temperature difference

between top and bottom, but the greater surface-area-to-volume ratio (SA:V) may

increase thermal losses. The aspect ratio (the ratio of its height to its diameter) of

HWTs is typically between 1.5 and 5. Armstrong (2015) modelled a range of aspect

ratios for plausibly-insulated tanks (50mm of polyurethane) and found that the

benefits from stratification outweighed the increased SA:V up to the maximum

value studied (SA:V=5), but that the gains for larger tanks were less significant

above an SA:V of 3.

As modelling the complex interactions of different masses of water is potentially

extremely computationally expensive, a number of simplified models have been

proposed.

One widely employed model is the ‘plug-flow’ model, which considers a tank as

two bodies of variable mass, each at uniform temperature, with the thermocline

forming a ‘plug’ of mixed water of fixed size between them. This thermocline

boundary can then be considered to move vertically in the tank. This model is

therefore also known as a moving boundary model and is used to model TES in

software applications like energyPRO and TRNSYS.

Another approach is to consider the tank as being made up of separate nodes:

volumetric spaces within which a fluid is fully mixed at a uniform temperature.

Such models can be progressively simplified by considering these nodes in two

dimensions only, by assuming radial symmetry within a cylindrical tank, or even by

considering nodes in one dimension only, as a stack of vertical volumes. This latter

approach makes the problem vastly easier to solve but neglects often significant

effects such as conduction through tank walls (Lavan and Thompson, 1997), which

can lead to destratification over time.

22

Such a one-dimensional model is described in detail by Duffie and Beckman (2013)

and illustrated in Figure 7. Mass flows

between the stratified nodes, and into

the tank from outside are both

modelled using simple logic-based

functions dependant on the relative

temperatures of the masses.

Ghaddar and Marafie (1989) formulated

a similar approach to this problem

which included an ‘eddy conductivity

factor’ to consider turbulent intermixing

and demonstrated that this significantly

improved the validity of the model even at low flow rates.

One method of reducing the disruptive effects of turbulence and preserving

stratification in a real tank is the use of a low-velocity inlet manifold which

minimises mixing within the tank (Duffie and Beckman, 2013).

De Césaro Oliveski et al (2003) examined the relative accuracy of one- and two-

dimensional nodal analyses of HWTs, confirming the greater validity against

experimental observations of two-dimensional models. The study concluded that for

long-term simulation of energy storage one dimensional analysis gave a good

agreement with observed data, and recommended the inclusion of “computational

artifices” such as counter-intuitively allowing node temperatures to swap to avoid

temperature inversions occurring in the nodes.

In all of these approaches, determining the behaviour of a TES involves second-

order differential problems: the rate of change of temperature of a node reflects the

energy transfer which is in turn a function of the relative temperatures between

nodes. This is shown in Equation 1, the node energy balance equation adapted from

Duffie and Beckman (2013).

Figure 7: One dimensional multi-node model for TES

23

Power flowing into

this node

𝑚𝑖

d𝑇𝑖
d𝑡

= (
𝑈𝐴𝑊
𝐶𝑝

)
𝑖

(𝑇𝑎
′ − 𝑇𝑖) + 𝐹𝑖

𝐼�̇�𝐼(𝑇𝐼 − 𝑇𝑖)

 + {
 �̇�𝑚,𝑖 (𝑇𝑖−1 − 𝑇𝑖) if �̇�𝑚,𝑖 > 0

 �̇�𝑚,𝑖+1 (𝑇𝑖 − 𝑇𝑖+1) if �̇�𝑚,𝑖+1 < 0

 − 𝐺𝑖�̇�𝐿𝑇𝑖

Equation 1 – Energy balance for node i within a multi-node tank (after Duffie and Beckman,

2013). The annotations of each term are indicative only – all terms have been divided by Cp (the

specific heat capacity of water).

Note that conduction through the tank walls is not being considered here.

Buckley (2012) presents a computational method of solving this using a finite

difference method to discretise this differential equation. This is then solved by an

implicit method in which the temperatures of each node are modelled as a function

of node temperatures in the previous timestep, creating a set of simultaneous

equations of equal number to the number of nodes in the tank, which can be solved

as a linear matrix equation.

Figure 8 and Equation 2 illustrate this method for an arbitrary node n in a tank.

Upward mass flow through the node (min, mout) is taken to be positive. Δ𝑥 is the

distance between the centroids of each node, AW is the exposed area of the node

wall with heat loss to the environment of U, and k is the conductivity of water

through the cross-sectional tank area A.

Loss to environment at

ambient temperature Ta

Inflow at temperature TI , dependent on

buoyancy function F

Energy associated with mass

flow between nodes i and i+1

Energy loss from mass flow to

load (Gi=1 if connected)

24

�̇�𝑜𝑢𝑡𝐶𝑝 {
𝑇𝑛 𝑖𝑓 �̇�𝑜𝑢𝑡 > 0
𝑇𝑛+1 𝑖𝑓 �̇�𝑜𝑢𝑡 < 0

𝑘𝐴

∆𝑥
(𝑇𝑛+1 − 𝑇𝑛)

�̇�𝑅𝐶𝑝𝑇𝑅 �̇�𝐿𝐶𝑝𝑇𝑛

�̇�𝑖𝑛𝐶𝑝 {
𝑇𝑛−1 𝑖𝑓 �̇�𝑖𝑛 > 0
𝑇𝑛 𝑖𝑓 �̇�𝑖𝑛 < 0

𝑘𝐴

∆𝑥
(𝑇𝑛 − 𝑇𝑛−1)

 𝑈𝐴𝑊(𝑇𝑛 − 𝑇𝑎𝑚𝑏)

𝑚𝑛𝐶𝑝
𝑇𝑛
𝑡−1 − 𝑇𝑛
∆𝑡

= �̇�𝑜𝑢𝑡𝐶𝑝 {
𝑇𝑛
𝑇𝑛+1

+ 𝑈𝐴𝑊(𝑇𝑛 − 𝑇𝑎𝑚𝑏)

 +�̇�𝐿𝐶𝑝𝑇𝑛 +
𝑘𝐴

∆𝑥
(𝑇𝑛 − 𝑇𝑛−1)

 − [�̇�𝑅𝐶𝑝𝑇𝑅 + �̇�𝑖𝑛𝐶𝑝 {
𝑇𝑛−1
𝑇𝑛

+
𝑘𝐴

∆𝑥
(𝑇𝑛+1 − 𝑇𝑛)]

Equation 2 – Energy balance equation for node n shown in Figure 8 (expressed as the loss in

energy from this node in this timestep)

By rearranging the terms we can arrive at Equation 3 which collects determinable

coefficients of each node temperature:

Energy change by
mass upflow
to/from node n+1

Energy change by
mass upflow
to/from node n-1

Energy input by
conduction from
node n+1

Energy loss by
conduction into
node n-1

Energy from
return flow

Energy from tank
outflow

Energy loss by
conduction to
environment at Tamb

Figure 8: Energy balance on an arbitrary tank node n. mout = 0 at top node, min=0 at

bottom node, mR and mL are only nonzero for nodes with external connections.

25

𝑇𝑛 [
𝑚𝑛𝐶𝑝

∆𝑡
+ {

�̇�𝑜𝑢𝑡𝐶𝑝 if ṁout>0

0 otherwise
+ 𝑈𝐴𝑊 + �̇�𝐿𝐶𝑝 +

2𝑘𝐴

∆𝑥
− {

�̇�𝑖𝑛𝐶𝑝 if �̇�𝑖𝑛 < 0

0 otherwise
]

+𝑇𝑛−1 [
−𝑘𝐴

∆𝑥
− {
�̇�𝑖𝑛𝐶𝑝 if �̇�𝑖𝑛 > 0

0 otherwise
]

+𝑇𝑛+1 [
−𝑘𝐴

∆𝑥
+ {
�̇�𝑜𝑢𝑡𝐶𝑝 if �̇�𝑜𝑢𝑡 < 0

0 otherwise
]

 =
𝑚𝑛𝐶𝑝𝑇𝑛

𝑡−1

∆𝑡
+ 𝑈𝐴𝑊𝑇𝑎𝑚𝑏 + �̇�𝑅𝐶𝑝𝑇𝑅

Equation 3 – Rearranged energy balance equation

However, these need to vary slightly for the top and bottom node, to replace the

conduction from non-existent nodes with increased losses to the environment:

𝑇𝑡𝑜𝑝 [
𝑚𝑛𝐶𝑝

∆𝑡
+ 𝑈(𝐴𝑊 + 𝐴) + �̇�𝐿𝐶𝑝 +

𝑘𝐴

∆𝑥
− {
�̇�𝑖𝑛𝐶𝑝 if �̇�𝑖𝑛 < 0

0 otherwise
]

+𝑇𝑡𝑜𝑝−1 [
−𝑘𝐴

∆𝑥
− {
�̇�𝑖𝑛𝐶𝑝 if �̇�𝑖𝑛 > 0

0 otherwise
]

 =
𝑚𝑛𝐶𝑝𝑇𝑛

𝑡−1

∆𝑡
+ 𝑇𝑎𝑚𝑏𝑈(𝐴𝑊 + 𝐴) + �̇�𝑅𝐶𝑝𝑇𝑅

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 [
𝑚𝑛𝐶𝑝

∆𝑡
+ 𝑈(𝐴𝑊 + 𝐴) + �̇�𝐿𝐶𝑝 +

𝑘𝐴

∆𝑥
+ {
�̇�𝑜𝑢𝑡𝐶𝑝 if �̇�𝑜𝑢𝑡 > 0

0 otherwise
]

+𝑇𝑏𝑜𝑡𝑡𝑜𝑚+1 [
−𝑘𝐴

∆𝑥
+ {
�̇�𝑜𝑢𝑡𝐶𝑝 if �̇�𝑜𝑢𝑡 < 0

0 otherwise
]

 =
𝑚𝑛𝐶𝑝𝑇𝑛

𝑡−1

∆𝑡
+ 𝑇𝑎𝑚𝑏𝑈(𝐴𝑊 + 𝐴) + �̇�𝑅𝐶𝑝𝑇𝑅

Equations 4 & 5 – Rearranged energy balance equations – special cases for top and bottom

nodes.

The resulting set of simultaneous equations can be expressed in a matrix form AT =

C, where T is a vertical matrix of node temperatures at the next timestep, and

solved by standard computational processing libraries.

26

2.3. Air-sourced heat pumps

A heat pump is a technology that applies mechanical work to force heat to move

counter to its usual equalising flow, making a hot space hotter or a cold space

colder. In the case of ASHPs used for space heating, low-grade heat is extracted

from ambient outdoor air and ‘pumped’ into a space to generate useful heat.

The outline concept of all heat pumps is shown below in Figure 9.

Figure 9: Conceptual diagram of a heat pump

A refrigerant is compressed, raising its temperature, and from this heat can be

rejected to one environment as it cools and condenses. This liquid refrigerant is

then pumped to another environment where it is allowed to return to a lower

pressure. At this lower pressure it will more readily evaporate – and to do this it

absorbs heat from this second environment. By this process, heat is transferred

from the second environment to the first, converting low-grade heat source at

ambient temperature into useful heat. That the amount of heat thus transferred

greatly exceeds the amount of mechanical work applied has made heat pumps a

technology of great interest in the ongoing effort to decarbonise the global demand

for heating and cooling systems. This level of interest is resulting in significant

improvements in performance and reliability (Chua et al, 2010).

27

Heat pumps can be designed specifically to pump heat in one direction or can be

reversible. The performance of a heat pump is commonly measured by the ratio of

heat delivered to electrical power required, the Coefficient of Performance (COP),

which varies considerably in different operating circumstances. The overall average

COP for a particular heat pump in a particular location in all seasons is referred to

as the Seasonal Performance Factor (SPF).

A number of different methods have been employed to model the variability in

COP. A basic model, as used for instance in the energyPRO modelling software,

applies a constant efficiency against the Lorentz model of a heat pump:

𝐶𝑂𝑃 = 𝜂 𝐶𝑂𝑃𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 𝜂
𝑇𝑚

𝑇𝑚 − 𝑇𝑜

Equation 6: COP modelled as Lorentz model with constant system efficiency η. In our case, Tm

= logarithmic mean temperature (LMT) of delivered hot water, To = LMT of heat source. (EMD

International, 2019)

Staffell et al (2012) derive simple formulae for COP as a function of the “lift” - the

difference between the source temperature and delivered temperature. Their

formula for a generic ASHP, derived from industry data and field trials, is:

𝐶𝑂𝑃𝐴𝑆𝐻𝑃 = 6.81 − 0.121Δ𝑇 + 0.000630Δ𝑇
2𝑓𝑜𝑟15 ⩽ Δ𝑇 ⩽ 60

Equation 7: Generic ASHP COP model after Staffell et al (2012)

A similar basis was used by Kelly and Cockroft (2010) based on a model devised by

Ferguson et al (2009) for a micro-cogeneration system. This too models COP as a

function of thermal lift, but also adds secondary components to model effects such

as the thermal mass of the system and parasitic heat losses.

Murphy et al (2013) provide a more complex, ‘black box’ method of modelling COP

and thermal output based on a least-squares regression from data points obtained

as part of the station European Heat Pump Association test regime. The regression

28

was carried out based against intake temperature (ambient air) and water return

temperature as two independent variables.

Underwood et al (2017) provided a development of this approach using a ‘grey box’

method, again to obtain COP and thermal output. They performed similar

regressions on experimental data points to obtain figures for ten parameters

relating to the physical characteristics of an ASHP system: six that model the

behaviour of the compressor, two that characterise the heat exchangers in

compressor and evaporator, and so on.

With ASHPs one must also account for the need to defrost the condenser

periodically when the surrounding environmental is at low temperatures), which

adds a significant degree of variability between heat pump models and is therefore

challenging to model (Underwood et al, 2017).

The heat pump employed in the recent West Whins development at Findhorn, the

template being used for the current study, is an air-to-water system, the Mitsubishi

Ecodan PUHZ-HW140V monobloc system. The manufacturer-supplied data for this

model is provided as a range of values (from maximum/nominal performance to

minimum performance) based on function of source (air) temperature, and supplied

(hot water) temperature. These data show that for the same ‘lift’ the COP can

actually vary as much as 31% (Mitsubishi 2015), and that defrost cycles are

anticipated when ambient temperature reaches 2°C.

The WWSHP proposed for the North Whins development is conceptually similar to

ASHP models, and in many ways simpler in practicality. The COP is likely to be far

more stable due to the far smaller variations in temperature of the source water and

the absence of the need for defrost cycles. One complexity that need be taken

account of however is the efficiency of the in-channel heat exchanger, the design of

which in turn is heavily dependent on the precise configuration of the wastewater

channel and the likelihood and type of fouling that may occur (Culha et al 2015).

The situation at Findhorn is somewhat distinct from the majority of cases studied,

as the outflow channel is effectively cleansed water output from the natural

29

purification process of the ‘Living Machine’. Fouling is therefore less of a problem

than would be the case with a typical WWSHP.

2.4. Control systems

A wide range of different techniques have been applied to the task of optimising

patterns of heat consumption with the use of thermal storage. Yu et al (2015)

provide a review of the various techniques, summarised in Figure 10.

Figure 10: Control techniques used in Buildings Integrated with Thermal Storage (BITES) with

some typical applications. From Yu et al (2015) after Afram and Janabi-Sharifi (2014)

Classic local-loop control, familiar to all users of central heating systems, may be

based around a set time-pattern or respond to a temperature set point, usually with

some hysteresis to prevent rapid cycling of heating plant. PID (proportional-

integral-derivative) control is long established due to the relative ease of

implementation with basic analogue electronic components – and indeed with

mechanical components before this. However, neither of these systems allows a

system to be able to plan ahead against external signals as we require to achieve

load balancing.

30

Such planning can be achieved in a number of ways. Adaptive control systems and

neutral networks both examine the performance of a system and optimise it against

a desired outcome as a black box (or ‘grey box’ in the case of model-referenced

adaptive control).

Model Predictive Control (MPC) is refinement of the model-referenced adaptive

control technique. It has three basic elements:

1. A pre-defined system model which can be used to predict future states of

that system (up to a ‘prediction horizon’),

2. an objective function (usually referred to as a ‘cost’ function) which defines

the optimality of operation, and

3. control logic to minimise (or maximise) the value of the cost function.

A typical application of MPC involves running the control logic at each decision

timestep, each time optimising the value of the objective function over the

prediction horizon and devising a plan of operation to minimise the cost function.

The interval between runs of the control logic (the ‘decision time step’) is

significantly less than the prediction horizon, allowing the controller to respond to

unexpected responses or changes to the system state. Figure 11 illustrates this.

Variants of MPC can be applied in a wide range of circumstances, including

systems with multiple inputs and outputs, systems with non-linear characteristics,

hard constraints, complex interacting control loops and poor data quality.

31

In the case of MPC used for DSR, the objective function would typically be based

on the cost of energy, carbon emissions, or renewable self-consumption, and the

prediction model would include forecasts of energy cost. Thieblemont et al (2017)

reviewed MPC strategies applied to TES which incorporate weather forecasting,

revealing also the growing interest in MPC strategies as small but computationally

powerful devices become cheaper and more commonplace.

1

1

2

2

Figure 11: Conceptual outline of an MPC process

32

2.5. Findhorn and the ORIGIN project

A key reference point for the present study is the past work conducted in

collaboration with the Findhorn Foundation Community, most notably the ORIGIN

project (Orchestration of Renewable Integration Generation In Neighbourhoods)

which ran from 2012 to 2015 (Tuohy et al, 2015 and Owens, 2015). Findhorn was one

of three communities participating in the project, alongside Tamera in Portugal and

Damanhur in Italy – all communities with significant local renewable generation.

As well as automated control strategies, the project developed advanced

mathematical forecasting techniques using neutral networks and investigated

participatory DSR through a web-based graphical interface designed in

collaboration with the communities. 12-months of demand and generation

monitoring was carried out in each location, including periods of detailed

monitoring of usage, performance and behaviour in individual properties.

The project demonstrated that whilst offering consumers a discounted ‘green

energy tariff’ to incentivise load shifting only resulted in a small reduction in

consumption of local renewables, implementing DSR via remotely-controlling

appropriate devices could significantly decrease imports and increase consumption

of local renewables (by 12% and 27% respectively).

TES formed one subset of the loads deemed appropriate to be controlled. The

‘Centini’ buildings at Findhorn contain a 210l storage tank (for DHW only), heated

both by an electrical immersion heater and a solar thermal collector. Under normal

operation, the electrical immersion heater would be active for one ‘off-peak’ hour

once daily. An MPC algorithm was developed to shift this electrical heating demand

according to the predicted solar input and local wind turbine generation whilst

maintaining the availability of hot water. The flexibility of this system was reduced

by the need in direct DHW storage to sterilise the tank periodically to prevent the

buildup of legionella bacteria. However it was found that by shifting loads, or

omitting a daily heat injection following a sterilisation cycle, significant flexibility is

possible.

33

Figure 12 shows how tank node temperatures vary with a daily heat injection (left),

which can be omitted entirely, allowing thermal comfort to be achieved for a 48

hour ‘coasting’ period through solar heating only (right). The thermal comfort

conditions can be allowed to vary throughout the year but is typically taken as

being 38C – human body temperature (and therefore the ‘standard’ temperature for

a shower).

Figure 12: Modelled TES behaviour from the ORIGIN project. t=0 is 15:30 on a June day

34

3. Development of System Model

3.1. Demand Modelling

The prediction of time-varying demand patterns has been approached from two

directions. Firstly, standard daily patterns based on residential building archetypes

have been obtained from the Biomass Decision Support Tool (BDST) (Carbon Trust,

2016). The BDST is an Excel-based heating system modelling tool developed by the

University of Strathclyde’s Energy Systems Research Unit in collaboration with the

Campbell Palmer Partnership. These provide example hourly thermal energy

demands for CH and DHW combined for each housing type (defined by building

type and age) for a range of daily average temperatures between -3 and 14°C. Two

typical demand profiles for a semi-detached property built since 2007 are shown in

Figure 13.

The second dimension to the demand modelling is the use of data from the ORIGIN

project. A data set has been obtained giving half-hourly CH+DHW demand

patterns in a West Whins semi-detached comparator building for two five-week

periods in February and June 2015. Average daily temperatures recorded during

these periods varied between 0.7 and 22.4°C.

0

1

2

3

4

5

6

7

0
0

:0
0

0
1

:0
0

0
2

:0
0

0
3

:0
0

0
4

:0
0

0
5

:0
0

0
6

:0
0

0
7

:0
0

0
8

:0
0

0
9

:0
0

1
0

:0
0

1
1

:0
0

1
2

:0
0

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6

:0
0

1
7

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

2
2

:0
0

2
3

:0
0

H
o

u
rl

y
h

ea
ti

n
g

d
em

an
d

 (
kW

h
)

1°C 6°C 10°C

Figure 13: Typical demand profiles for three daily average temperatures, from

the Biomass Decision Support Tool

35

The dataset does not provide enough points to build up a site-specific profile based

around average daily temperatures. It also contains numerous outlier readings

which may be the result of malfunction of the sensing apparatus or extremely

unusual behaviour. Figure 13 shows the averaged daily profile for the September

period and the February period. The error bars show the range of +/- 1 standard

deviation of the hourly data, which is many times larger than the average, and in

some cases an order of magnitude larger than the average.

It would clearly not be valid to attempt to create profile data in the sort of format

provided by the BDST from this data. For this study, the BDST tables were used but

linearly scaled to represent the difference in performance between the archetype

and the West Whins template.

The total energy used over the periods studied was 155.8kWh. Applying the same

daily temperature data to the BDST archetype the total energy consumption would

be expected to be 861kWh1. The demand profiles extracted from the BDST will

therefore be scaled by a factor of 0.18 to crudely represent the average performance

of the West Whins prototype.

1 The 14°C pattern was assumed to be DWH only, and therefore was applied to all average daily
temperatures above 14°C

0

0.2

0.4

0.6

0.8

H
o

u
rl

y
d

em
an

d
 (

kW
h

)

September

0

0.2

0.4

0.6

0.8

H
o

u
rl

y
d

em
an

d
 (

kW
h

)

February

Figure 14: Average daily profiles for West Whins dwelling, from ORIGIN data, with error bars

showing +/- 1 standard deviation

36

3.2. Heat network

The demand model must also take account of losses associated with the heat

network. In the absence of a detailed specification, planning guidance figures have

been used from the Standard Assessment Procedure (SAP) (BRE, 2016). These

provide a suggested scale to be applied to domestic demand to account for losses in

a DHS. A significant change to the figures have been proposed since the last

adopted guidance in 2012 (and agreed to by the Department of Business, Energy,

and Industrial Strategy [BEIS] in their response): the demand scaling to a small

heat network have been increased from a factor of 1.05 to 1.5. The justification for

this is that it reflects the greatly reduced energy consumption of modern homes:

the losses in the DHS system become far more significant as a proportion of overall

demand. The revised figure of 1.5 will be applied to this model. This figure will be

considered to encompass all losses from leaving the tank to the point of use in each

dwelling, including the imperfect transfer of heat from the DHS loop to the

incoming water at each property.

A scale of 1.5 suggests that the losses in the system are around 33%. This compares

with a figure of 12% cited as typical for larger DHS systems in Sweden (Vesterlund

et al 2013).

The network will be modelled as a perfectly variable flow system, with pumping

energy considered to add 1% to the electrical demand as per the SAP 2016 guidance.

The network supply and return temperatures will be set as 50°C and 20°C, within

the archetypical ranges for 4GDH identified by Lund et al (2014) and meeting the

requirements of CIBSE guidance for heat network design (CIBSE, 2015).

With a small population size of 8 units there may not be much opportunity to

benefit from the smoothing effects of demand diversity. The ORIGIN project also

faced this problem in modelling demand from individual households – in this case

based on learned patterns rather than standardised templates. The approach

adopted was to build in a prediction margin based on one standard deviation of the

variability across the whole day. This has the effect of making the model more

pessimistic, which is an effect that should to some extent be averaged out as the

model is re-run hourly. This approach was adopted for the current study.

37

3.3. Thermal Storage

The TES model used in the simulation was based heavily on that developed by

Buckley (2012) for simulation in MATLAB, but simplified in a number of ways. The

original model allowed for the mass of water in the tank to vary, with nodal

volumes allowed to become empty space as the water level dropped. The sealed

DHS using indirect heating considered in this system will be considered to contain

a fixed mass of circulating water, and will neglect the changes in density also

modelled by Buckley. In a real installation, an expansion vessel would be provided

to maintain the unvented tank at capacity and pressure safely.

PCM storage will not be considered; due to the cost it is unlikely that such

technology would be implemented at Findhorn.

Four connections are made to the TES: the draw to the heating circuit load is taken

from the top node of the tank, and the outlet to the heat pump is taken from lowest

node. The return flows from the heat pump and the heating circuit are both

considered to be injected by a perfect inlet manifold, operating such that water re-

entering the tank is re-injected above the highest node whose temperature is lower

than that of the inflowing fluid, with no turbulence effects. Inflowing fluid to a

node is not allowed to exceed the mass of the node in a single timestep, so if the

first node cannot accept all the incoming water the remainder is injected into

higher nodes sequentially.

3.3.1 Tank Sizing

Clearly, the larger the tank, the greater the possible impact for DSR. The study by

Kelly et al (2014) modelled a 1000L tank for single detached dwelling, and also cited

a finding by Arteconi et al (2013) which found that up to 800L capacity is required

to reliably achieve even a single hour of load shifting in detached dwellings

insulated to 1990 UK building standards with both underfloor and radiator-based

heating systems. The load shifting in this study used manually set ‘off peak’

38

timings; with an MPC controller responding to situations even greater flexibility

may be required.

A 1000l tank at the network temperatures of 50°C /20°C theoretically provides

34.3kWh of heat storage. The daily demand obtained for the lowest monthly

average temperature (2.4°C in February2) from the BDST when scaled by the West

Whins performance factor (0.18) and the DSH loss factor (1.5) is 53.0kWh,

representing a tank volume of approximately 1,550l. This will be used in the

simulation.

3.3.2 Tank losses

An aspect ratio of 3 was chosen to improve

stratification in the tank whilst maintaining

plausible dimensions. The resultant dimensions of

the modelled tank are shown in Figure 15.

An ideal tank might be modelled as 5mm of

stainless steel (k=20W/mK) insulated with 35cm of

mineral wool (k=0.04W/mK – though the same

conductivity would be achieved using cellulose or

hemp wool, which might be more in keeping with

the ethos of the Findhorn community), given an

overall U value of 0.11W/m2K for the tank walls.

3.4. Heat pump

The ASHP was modelled by regression following a method similar to that of

Murphy et al (2013), using the nominal data provided by Mitsubishi. The two-

dimensional regression of COP to ambient temperature and outlet temperature is

shown in Figure 16 as a 3D surface plot, and compared to the raw Mitubishi data

and the generic ASHP characteristics obtained by Staffell et al (2012).

2 Climate data from climate-data.org

Figure 15: Dimensions of the modelled

tank

39

The behaviour of the ASHP changes substantially when defrost cycles are required

(below 2°C, not shown in the above figures), and the accuracy of the regression is at

lower temperatures is significantly affected by this. To compensate for this, a

separate regression was performed on all points supplied where defrost cycles

would occur. The ASHP model will set its characteristics each time it is run, based

on whether the external air temperature is below 2°C. Figure 17 shows how the

Figure 16: 2-dimensional characteristics of the ASHP, obtained by regression (top), compared to a standardised

model after Staffell et al (2012) (lower left) and from raw manufacturer data (lower right)

40

matching is improved with the introduction of this ‘breakpoint’ and Equation 8

shows the resultant COP formula.

Figure 17: Modelled COP curves from datasheet regression. Top chart also

shows generic regression from Staffell et al (2012) for comparison (dotted line

indicates results outside of the specified valid range of lift).

1

1.5

2

2.5

3

3.5

-15 -5 5 15 25

C
O

P

Tamb (°C)

Modelled COP (Tsup = 55)

Mitsubishi data from Staffell et al from regression

1

1.5

2

2.5

3

3.5

-15 -10 -5 0 5 10 15 20 25

C
O

P

Tamb (°C)

COP modelled with defrost breakpoint

41

𝐶𝑂𝑃 =

{

5.53 + 0.125 𝑇𝑎𝑚𝑏 − 7.14 × 10

−4 𝑇𝑎𝑚𝑏
2 − 5.46 × 10−2 𝑇𝑠𝑢𝑝

−3.17 × 10−5 𝑇𝑠𝑢𝑝
2 − 1.40 × 10−3 𝑇𝑎𝑚𝑏 𝑇𝑠𝑢𝑝 for 𝑇𝑎𝑚𝑏 > 2

3.25 + 5.54 × 10−2 𝑇𝑎𝑚𝑏 − 1.55 × 10
−3 𝑇𝑎𝑚𝑏

2 + 7.18 × 10−3 𝑇𝑠𝑢𝑝

−5.09 × 10−4 𝑇𝑠𝑢𝑝
2 − 5.19 × 10−4 𝑇𝑎𝑚𝑏 𝑇𝑠𝑢𝑝 for 𝑇𝑎𝑚𝑏 ≤ 2

In order to prevent extremely high mass flow rates (which will reduce the accuracy

of the model) the heat pump will not activate unless there is a greater than 5°

temperature difference between the tank’s heat pump draw node temperature and

the outlet temperature of the heat pump.

3.5 Renewable energy generation

The model considers the three 225kW Vestas turbines of the FWP, the Three Graces,

and roof-mounted PV. Generation forecasting can be implemented in such a way

that it is driven entirely off weather forecast data. This allows it to be run with

historic data as easily as with forecast data.

3.5.1 Roof-mounted PV

The roof was measured from supplied plans and a plausible solar PV array size was

determined (Figure 18). The eastern block of studio apartments has a 34° pitched

roof facing due south onto which 11 standard size (approximately 1.7x1m) panels

could be arranged. The western terrace block has a 30° pitched roof facing slightly

east of south (an azimuth of 163°) onto which 2 rows of 10 standard sized panels

could be arranged, making space for a skylight.

Equation 8: COP formula from regression

42

Figure 18: Plausible sizes of solar arrays on study buildings

AES Solar is a local supplier of solar powered systems (both thermal and PV) set up

in 1979 by a pioneering member of the Findhorn community, Lyle Schnadt. They are

a distributor of SolarEdge inverters and SunPower PV panels and have a long

history of supplying to the community. Suitable models from these ranges have

therefore been selected, the module being the Sunpower X22 360W panel3. The full

specifications of the system are as shown in Table 1.

 Terrace array (W) Flats array (E)

Number of panels 20 (10 x 2, landscape) 11 (11 x 1, portrait)

Nominal power 7.2kWp 3.96kWp

Tilt 30° 34°

Azimuth 163° 180°

Inverter 1x SolarEdge SE6000H

(Rated at 6kVA AC)

1x SolarEdge SE3000H

(Rated at 3kVA AC)

All SolarEdge inverters allows oversizing against the total connected DC power of

up to 135% - even more in their newest single-phase HD-Wave range. In locations

3 Data specifications available at
http://spectrum.sunpower.com/sites/default/files/uploads/resources/X22_360DC_RES_UK_AUS.pdf

Table 1: PV array characteristics

43

where intense direct overhead is rarer, oversizing the inverter often has a more

optimal outcome (SunPower, 2016).

It has been assumed that the usual 3.68kW upper limit specified by FWP for PV

array size on the Findhorn private wire network can be circumvented for this

installation.

3.5.2 Local wind turbines

The power curve for the Vestas V29 turbine is available from technical

specifications. Estimates need also to be made for the turbulence caused by the

local terrain, which affects the profile of wind speeds at different heights. Forecast

wind speeds are usually given for a height above ground of 10m. To determine wind

speeds at other heights, the Hellmann exponential law (Equation 9) is commonly

used.

𝑣

𝑣0
= (

𝐻

𝐻0
)
𝛼

The local landscape is characterised by the Hellmann exponent (α as shown in

Equation 9), which is derived from experimental data and reflects the roughness of

the terrain. Values range from 0.1 for lakes and hardstanding to 0.4 for city areas

with high rise buildings (Bañuelos-Ruedas et al, 2011). For the area around

Findhorn a value of 0.2 (‘tall crops, hedges and shrubs’) was chosen to reflect the

scrub-covered duneland around the Three Graces.

Even though the FWP allows the community to be approximately ‘energy neutral’

when averaged over the year, when considering instantaneous usage it is clear that

local demand is not particularly well matched to wind generation. From half-hourly

data obtained during the ORIGIN project for 2014-15 it was found that of the

Equation 9: The Hellmann exponential model for vertical wind speed profiles. v

is the wind speed at height H, v0 the speed length at height H0 and α is the

Hellmann exponent.

44

1.282GWh generated in the year, 607MWh (47%) could not be consumed locally. The

challenge with an intelligent control system would be to make better use of wind

that would otherwise be exported, without further increasing the demand from

local wind generation during the times where wind generation is already entirely

locally consumed.

A simple and crude way of achieving this would be to set a threshold based on an

average local site demand, and only allowing our scenario planner to consider wind

that spills over this threshold. Figure 19 shows a frequency histogram of demand

over the course of the year studied during the ORIGIN project (the year to 1st

September 2015). The median half-hourly demand of 61.7kWh is also shown on the

graph. Setting this as our threshold would mean that for most hours of the year our

MPC controlled system will not be attempting to consume power that is already

being consumed locally, and therefore should guarantee an increase in local

consumption.

Figure 19: Frequency histogram showing half-hourly demand on the Findhorn private wire

network, as measured in the ORIGIN project.

0

100

200

300

400

500

600

0
.0

0

5
.4

1

1
0

.8
3

1
6

.2
4

2
1

.6
6

2
7

.0
7

3
2

.4
8

3
7

.9
0

4
3

.3
1

4
8

.7
3

5
4

.1
4

5
9

.5
5

6
4

.9
7

7
0

.3
8

7
5

.8
0

8
1

.2
1

8
6

.6
3

9
2

.0
4

9
7

.4
5

1
0

2
.8

7

1
0

8
.2

8

1
1

3
.7

0

1
1

9
.1

1

1
2

4
.5

2

1
2

9
.9

4

1
3

5
.3

5

1
4

0
.7

7

Fr
e

q
u

e
n

cy

Half hourly demand (kWh)

45

4. Development of Control System

The program flow of the MCP-controlled system is shown below in Figure 20.

The scheduling and optimisation algorithm in the MCP controller is a key part of

the system. An hourly schedule must be devised at each decision timestep to meet

the comfort criteria (the ability to provide DHW at a temperature of 38°C) with the

minimum electricity consumption. This schedule is a nonlinear timeseries in which

the ASHP is either ‘on’ or ‘off’. When ‘on’ the ASHP will operate on a standard set-

point thermostat to attempt to bring the HWT up to a temperature of 60°C.

As the time series is nonlinear, attempting to tackle it using computational

optimisation is likely to be inefficient. A simpler algorithm would be to insert the

minimum hours of heating required to meet comfort conditions. These hours would

Figure 20: Process flow for MPC controller

46

be inserted into the schedule at the periods of highest available renewable energy,

as shown in Figure 21.

This approach minimises the uncertainty within the forecast: if generation does not

match the prediction, the highest probability of generation is still likely to be

around the periods of highest generation.

For the purposes of assessing the success of the algorithm the facility to add a

baseline scenario will be included which will activate the heat pump on a regular

daily schedule. Where this has been tested this schedule activates the tank for two

off-peak hours (3am to 5am) each day.

Figure 21: The scheduling algorithm

47

5. Implementation in Python

The model was coded in Python 3.7 as a collection of classes, each in separate

modules (.py files) to allow independent examination of different aspects of the

system. The architecture of the codebase is shown in Figure 22. The codebase has

been uploaded into the open-source version control hosting platform GitHub and is

available at https://github.com/richplane/PyREmatcher.

The model, or any part of it, can be called from an interactive Python command line

or another script. In the case of most simulations in this study the model is

wrapped by a testbed script which when imported as a module sets all the system

characteristics and performs a single run of the scheduling model. All variables and

classes are then available through this module.

All parameters that have been estimated or represent boundary conditions are

accessible as class attributes, which can be set or changed by the top level controller

or through the interactive Python terminal if running in command line. These are

listed in the following sections, under the description of each class.

5.1. Scheduler

The top level controller defines the Scheduler class which is responsible for

initiating the system parameters, holding the system state over time and

Figure 22: Top level module architecture of codebase

https://github.com/richplane/PyREmatcher

48

performing the simulations necessary for each timestep to arrive at a suitable

scenario.

5.1.1 Class Methods

The Scheduler class has two accessible methods:

__init__([**kwargs])

The constructor method which creates the system simulation based on the

parameters sent to it in the keyword arguments:

• log_filename – if supplied, the details of each simulation run will be

output to this filename in a CSV format (see Appendix B for the format of

this simulation output)

• start_time – the start time for the simulation, supplied as either a Pandas

timestamp or a string that can be parsed into a timestamp. Will throw an

error if it is a date in the future.

• latitude, longitude, altitude, tz (timezone) – if not passed the default

values are for Findhorn

• housing_stock – quantities and types of all houses connected to the DHS

(see Demand module)

• minimum_temperature – the comfort condition setting the minimum

acceptable outlet temperature

• baseline_scenario – if supplied, the scheduler will perform an additional

simulation based on a daily heating schedule for the purposes of

comparison.

• network_losses, pumping_energy, performance_factor – all supplied as

a proportion of demand – will default to 0.5, 0.01 and 1 respectively.

• reserved_wind_power - absolute constant value (in kW) for local

consumption margin to determine surplus

• pv_arrays – characteristics of all PV arrays contributing to local generation

(see Generation module)

• wind_farm – characteristics of all wind turbines contributing to local

generation (see Generation module)

49

• hellman_exp, roughness_length – characteristics of the local wind

environment (see Generation module)

• tank_characteristics – characteristics of the modelled TES (see Tank

module)

This method then instantiates all other classes necessary for the module, loading a

locally stored API key from a local file named darksky_api_key.txt to pass to the

Forecast class.

run_model(time)

Performs the MCP algorithm to arrive at a schedule for the next 48 hours if

possible. Firstly, the forecast is requested from the Forecast class. The Generation

model is then used to refactor the formats and make a prediction of generation

surplus. The system then creates a blank (no heating) schedule and runs the

simulation based on this. Hours are then added into the schedule and the

simulation rerun until a schedule is found that meets the comfort criteria over the

prediction horizon. The function can also run a simulation of a baseline scenario, in

which the outcome of following a fixed daily pattern of activation is simulated. The

function reports on the energy consumption of the successful optimised and

baseline scenarios. For example output see Appendix B. If a log file has been

specified in the constructor, it is opened at the start and closed at the end of each

run of the model to allow it to be read whilst the script is still active (preserving the

system state). The time parameter (supplied as a Pandas timestamp) indicates the

time that the schedule shall be devised for; if this is omitted it is run for the present

hour. The system can also simulate future hours within the 2-day timeframe of a

forecast already loaded into memory for the present hour – this will necessarily

reduce the prediction horizon.

Two further methods are considered ‘private’4: _signal_heatpump(active, time)

is a placeholder for the function that in a real implementation of this code would

send the command to the actuator to turn on the heat pump, but currently just

writes a message to the screen. _add_hour(failure_time) is the prioritisation

4 Python does not support making methods truly private, but the convention is that methods that
should not under normal circumstances be accessed from outside of their class are denoted by an
underscore prefix.

50

method that selects an hour of the (next) highest surplus energy generation for

adding to the schedule.

5.1.2 Object Attributes

All the characteristics set through the constructor are accessible attributes of the

object, though start_time is first converted into a timestamp if necessary.

5.2. Forecaster

The Forecaster class handles the retrieval of forecast data from the Dark Sky API

(see section 5.8.1 below), storing it in a local folder in such a format that it can be

retrieved if the forecast is required again for the same hour, avoiding a repeated call

to the API.

5.2.1 Class Methods

__init__(API_key, latitude, longitude, tz)

The constructor merely sets the object attributes to the passed values. Again the

Findhorn location and timezone are used as defaults in this class.

get_forecast(sim_start_time) -> pandas.DataFrame

This function performs the request to the Dark Sky API and constructs a 48+ hour

forecast. If sim_start_time (in the form of a Pandas timestamp) is supplied and in

the past, weather data is retrieved for that period using the Dark Sky ‘Time

Machine’ historical data call. If the timestamp supplied is in the future an exception

is raised.

Forecast data is compiled from midnight at the start of the day requested to 48

hours after the time requested. In the case of historical data this will require

multiple calls; the class performs these and stitches the response data together into

a single Pandas DataFrame which is then returned from the function. This is done

to allow the calculation of the daily average temperature for the first day in the

forecast, which is also performed here and included in the returned forecast in its

own column.

51

If this process has already been performed for the hour requested then the forecast

should be saved in a local file with a predictable filename; before any calls are made

to the Dark Sky API this is checked. Correspondingly, once a forecast has been

compiled from the API it is saved into a local file before being returned from the

function.

The timestamp index of the forecast DataFrame becomes the common index used

in the generation, demand and surplus timeseries.

There is one private method: _call_darksky(url_suffix), which performs an

HTTP request to the API server, returning an object converted from the JSON

response. If the server does not respond an exception is raised.

5.2.2 Object Attributes

The latitude and longitude are the only intentionally accessible attributes in this

class.

5.3. LocalRE

The generation module defines the LocalRE class, which wraps the two third-party

renewable energy generation libraries, windpowerlib and pvlib (see section 5.8), and

handles the processing of supplied Dark Sky forecasts into a format sufficient to

predict the RE generation.

5.3.1 Class Methods

__init__([wind_turbines,] [pv_arrays,] [latitude,] [longitude,]

 [altitude,] [roughness_length,] [hellman_exp])

The constructor instantiates the ‘model chains’ for each of the generation libraries,

setting up all the parameters required to predict generation from forecast data. All

parameters are optional.

52

• wind_turbines – the characteristics of all local wind turbines to be

modelled, supplied as a list of dictionaries. For Findhorn the list contains

only one dict:

wind_farm = [
 {
 'name' : 'Vestas V29',
 'hub_height' : 30, # m
 'nominal_power' : 225e3, # W
 'rotor_diameter' : 29, # m
 'power_curve' : pd.DataFrame(
 data={
 'value': [p * 1000 for p in [
 0.0, 0.0, 2.1, 7.1, 20.5, 38.3, 61.9, 92.2,
 128, 165, 196, 216, 223, 225, 225, 0, 0
]], # in W
 'wind_speed': [
 0.0, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0,
 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 25.0,
 26, 27
] # in m/s
 }
),
 'qty' : 3
 }
]

• pv_arrays – the characteristics of all local PV generation to be included in

the model, again supplied as a list of dictionaries. For Findhorn the list

contains two dicts:

pv_arrays = [
 {
 'name' : 'Terrace',
 'surface_tilt' : 30,
 'surface_azimuth' : 163,
 'surface_type' : 'grass',
 'modules_per_string' : 10,
 'strings_per_inverter' : 2,
 'module_name' : 'SunPower_SPR_X22_360_COM',
 'inverter_name' :
'SolarEdge_Technologies_Ltd___SE6000__240V__240V__CEC_2018_'
 },
 {
 'name' : 'Studios block',
 'surface_tilt' : 34,
 'surface_azimuth' : 180,
 'surface_type' : 'grass',
 'modules_per_string' : 11,
 'strings_per_inverter' : 1,
 'module_name' : 'SunPower_SPR_X22_360_COM',
 'inverter_name' :
'SolarEdge_Technologies_Ltd___SE3300__240V__240V__CEC_2018_'
 }
]

53

• latitude, longitude, altitude – if not passed the default values are for

Findhorn

• roughness_length, hellman_exp – these characteristics are passed used in

windpowerlib to characterise the local wind environment - see section 5.8.3

for details.

The constructor relies on the named PV modules and inverters being present in one

of the databases of characteristics provided with pvlib (see Section 5.8.2 for more

details), and will retrieve the characteristics to use in the PV modelchain.

make_generation_forecasts(forecast)

This calls two private functions, _make_pv_forecast() and

_make_wind_forecast() which process the Dark Sky originated forecast into the

DataFrame formats required by the two power generation libraries. There are

differences in naming conventions and structure - windpowerlib expects a column

headed ‘temperature’ whilst pvlib expects ‘air_temp’, and windpowerlib requires

the columns to be multiindexed with the height above ground level for which the

forecast applies. Most significantly, the code needs to generate the principle

quantities necessary to calculate PV generation at the site – direct normal

irradiance (DNI), direct horizontal irradiation (DHI) and global horizontal irradiance

(GHI). These are not available directly in Dark Sky forecasts, so instead are

calculated by combining Dark Sky’s cloud coverage fraction with a clear-sky model

generated by pvlib. If possible (if the required modules are available), the code will

use the Ineichen and Perez clear sky model (after Ineichen and Perez, 2002) which

incorporates an interpolated figure for the Linke turbidity coefficient of the

atmosphere at the specified location and time. This figure, commonly denoted TL, is

the multiple that must be applied to the optical attenuation of a clear and dry

atmosphere to account for the increased attenuation of clouds, water vapour and

aerosols in the atmosphere at that time and location. It is determined in pvlib by

interpolation from a global dataset of monthly values.

Once compiled, the forecasts are stored as object attributes pv_forecast and

wind_forecast.

54

predict_generation(reserved_wind_comsumption) -> pd.DataFrame

Using the currently stored generation forecasts, this function runs the model chains

to produce a DataFrame of generation predictions for each hour from each source.

It also adds in a total column, an available_wind column (total wind generation less

the supplied figure for reserved_wind_consumption, or 0 if this figure would be

negative) and a surplus column (available_wind + total PV generation).

5.3.2 Object Attributes

Once instantiated, the pvlib and windpowerlib model chains are both stored as

member attributes of the class (wind_modelchain and pv_modelchains), and the

Location object from pvlib is stored in pv_location – this is used at every forecast

timestep to generate the clear sky models used to calculate irradiance. The adapted

forecasts are also stored as object attributes.

5.4. DemandModel

The DemandModel class deals with constructing demand models for the current

housing stock based on the archetype templates derived from the BDST, which

have been extracted and stored in the codebase as a ‘pickled’ multiindexed

DataFrame file.

5.4.1 Class Methods

__init__(houses)

The constructor simply calls another function (the private method

_get_standard_profile() to set as object attributes the initial set of daily profiles

based on the supplied housing stock and the demand standard deviation values.

The houses parameter is a list of dicts defining the housing types (referring to the

archetypes named in the BDST), the years in which they were built and the

quantity of each such house connected to the DHS. For Findhorn the value passed

is:

housing_stock = [
 {
 'house_type' : 'Semi-detached',
 'year_built' : 2019,

55

 'qty' : 2
 },
 {
 'house_type' : 'Mid-terrace',
 'year_built' : 2019,
 'qty' : 2
 },
 {
 'house_type' : 'Ground-floor flat',
 'year_built' : 2019,
 'qty' : 2
 },
 {
 'house_type' : 'Top-floor flat',
 'year_built' : 2019,
 'qty' : 2
 }
]

get_daily_demand(average_temp) -> Pandas.Series

This function, mainly provided for debugging, returns the totalled hourly demand

series for the housing stock for a day with the supplied average temperature.

get_hourly_demand(average_temp, hour) -> float

Returns the hourly demand from the stored totalled demand profile. It can accept

an hour parameter in the format of a timestamp or an integer.

predict_demand_with_margin(forecast) -> Pandas.Series

This function supplies the demand profile used in the scheduling algorithm. Using

the average daily temperature in the forecast data it selects the appropriate daily

demand profile, adds the standard deviation of the demand over the day to each

hour and returns a series matched to the timestamp index of the forecast.

In addition to the private method _get_standard_profile() already mentioned

there is also _get_sigmas(average_temp) which retrieves the standard deviation

for the day with the supplied average temperature.

5.4.2 Object Attributes

The profiles and standard deviations for the current housing stock are both stored

locally as object attributes profiles and sigmas; both are stored as DataFrames

56

indexed by hour in string format (“00:00”, “01:00”…) with demand profiles for daily

average temperatures between -3 and 14°C in separate columns.

5.5. HeatPump

The heat pump model is chiefly used to characterise the amount of energy

consumed in heating but also to set the performance limits. The model is hard

coded to represent the Mitsubishi Ecodan PUHZ-HW140V, but would be easily

adaptable to other systems. Unlike most of the other models in the system, the

HeatPump class defined in this module is considered stateless – its operation in one

timestep does not affect its operation in the next timestep in any way and it retains

no data on past or future conditions.

5.5.1 Class Methods

heatable_mass(T_in) -> float

This is the function that determines how much mass could be heated from T_in to

the outlet temperature (set as the class attribute T_out) in the current timestep

based on the capacity of the heat pump and the maximum flow rate. This is used to

set the amount of mass flowing from and to the TES in each timestep.

deliver_heat(T_in, mass) -> float

This function calculates the amount of electrical energy required by the heat pump

to produce mass kg of water raised from T_in to T_out. The appropriate

coefficients for current conditions are returned from a private method

_COP_coefficients(). If the mass of water is more than the heat pump has the

capacity to produce in this timestep a warning is raised. A warning is also raised if

the heat required is greater than the 14kW capacity of the heat pump, though since

the characteristics of the heat pump are used to determine the mass flow (from the

previous function) this should not occur.

5.5.2 Object Attributes

As the object itself is stateless, any parameters relating to its performance are

manipulated directly from outside of the class. timestep (in hours) is set upon first

57

instantiation, and T_amb is changed hourly to reflect the external conditions. Other

parameters of operation are not changed during simulations: the maximum T_out

supplied by the heatpump, nominal_power and max_flow_rate. The specific heat

of water is also made a class attribute (as class constants do not exist in Python).

5.6. HotWaterTank

There are two separate instantiations of the HotWaterTank class – one that is used

by the top level Scheduler class to maintain the state of the hot water tank between

timesteps, and one that is used by the Simulator class to simulate future scenarios.

At the start of each scenario simulation the top-level tank is deep-copied to create

the starting conditions for the tank in this scenario.

The tank model was coded in such a way that it can simulate an arbitrary number

of nodes (set upon instantiation of the class) to allow comparison with different

studies and datasets.

5.6.1 Class Methods

__init__(self, nodes, [**keyword_arguments])

The constructor method sets up the tank model with the desired characteristics.

The only required parameter is the number of nodes to be modelled (a minimum of

3); defaults are provided for all other keyword arguments.

• volume – the total tank volume, in m3

• diameter – the tank diameter in m

• height – the tank height in m. If a volume has been supplied the diameter

and height will be set based on the volume with an aspect ratio of 3 and

these parameters will be ignored

• start_node_temps – initial temperatures for all nodes in the system, passed

as a list (lowest node first)

• outflow_node – the node to which the outflow to the load is connected

• heater_draw_node – the node from which the heat pump will draw water

• wall_U_value – this will be used to calculate losses through the fabric of

the tank

58

inject_heat(mass_in, T_in)

Instructs the tank that in the next timestep it will receive mass_in kg of water at

T_in °C, drawn from the heat pump outflow node and returned by perfect

reinjection above the lowest node upon which it would be buoyant (the reinjection

is handled by a private method _reinject(T_in, mass).

draw_load(Q_out)

Instructs the tank that in the next timestep it will be expected to deliver Q_out kWh

of heat into the DHS. If the outflow node temperature is higher than the target

DHS supply temperature, the amount of mass removed from the tank is calculated

based on perfect mixing of return flow with tank outflow. The same amount of mass

is reinjected into the system from the DHS at the return temperature.

energy_stored()

Mainly for debugging and inspection, this calculates a symbolic value for the

energy stored in the tank at the current time based on a simple node mass ×

specific heat × node temperature calculation.

process_timestep()

This is where the matrix equation is compiled based on the inflows, outflows and

current temperatures, and solved (using linalg.solve() from the NumPy library)

to determine the tank node temperatures in the next timestep. At the end of the

function all inflows and outflows are reset to zero ready for the next timestep.

get_hp_draw_temp()

This is a quick getter function to expose the current temperature at the nominated

heat pump outflow node.

get_outflow_temp()

Similar to the above, this exposes the temperature at the node outflowing to the

DHS.

59

In addition to the private method _reinject already mentioned, another private

method is included _mix_temps(fluids), which when supplied with a list of fluids,

each presented as a list of [temperature, mass], will calculate the resultant

temperature of the perfectly mixed resultant single mass.

5.6.2 Object Attributes

The attributes of most interest are the node temperatures, stored in a list as

node_temps. However in order to build the conditions to process each timestep, the

inflows to and outflows from the tank at each node (input_masses and

output_masses) need to be stored, as do the temperatures of each of these

inflowing masses (input_temps). All are stored in lists, ordered from lowest node to

highest node.

As with the heat pump model, the timestep (in hours) is set upon first

instantiation, and T_amb is changed hourly to reflect the external conditions. Other

parameters of operation are not changed during simulations: the target

load_supply_temp and load_return_temp set for the DHS (50°C and 20°C)

supplied by the heatpump, nominal_power and max_flow_rate. The specific heat

capacity, density and conductance of water are made class attributes (again, as

class constants do not exist in Python). The _mass, _node_mass, _node_volume,

_node_surface (outer shell area), _node_height and _node_area (cross sectional)

are also stored as object attributes.

5.7. Simulator

The simulator module defines the Simulator class, coded such that it can model the

behaviour of the tank and heatpump in smaller timesteps than those of the forecast

and demand data, the tank timestep being set as an integer division of the decision

timestep. This allows higher resolution modelling of water flows in the tank and

reduces the likelihood of tank nodes transferring all their mass (or more) in a single

timestep.

60

5.7.1 Class Methods

__init__(heatpump, minimum_temperature, tank_timestep_multiple)

The constructor is passed the heat pump model as instantiated by the Scheduler

class, which is deep copied to create a separate instantiation of the HeatPump class

here. This allows the two models to operate on different time resolutions (if

necessary – currently the heat pump model is only used for simulation). The

minimum_temperature parameter sets the comfort condition for the simulation,

potentially allowing it to vary at different times of the year.

run_simulation(tank, forecast, demand, schedule, surplus,

 [log_file])

 -> Tuple (float, float, pd.Timestamp/bool)

This function is responsible for running the system simulation using the provided

schedule through to the prediction horizon, set by the length of the forecast

DataFrame. The demand, surplus and schedule data are provided as a series with

the same timestamp index as forecast – the schedule is simply a set of 0 or 1 values

indicating the heat pump state. The tank object is passed each time the simulation

is called and deep copied to create a clone that can run at a higher time resolution

during the simulation.

The simulation then loops through the forecast series, for each timestep performing

tank_timestep_multiple subtimesteps and then reporting on electricity consumed,

and the amount of this electricity that has had to be import. The third parameter

returned from the function is the failure_time – the timestamp at which the

simulation failed to meet the comfort criteria, or a boolean False value representing

the absence of failure.

5.7.2 Object Attributes

All parameters passed to the constructor are set as object attributes. The current

deepcopy of the tank is also stored as an attribute.

61

5.8. Third party systems and libraries

The codebase makes extensive use of the Numpy and Pandas mathematical and

data analysis libraries. The full list of dependencies is given in Appendix A.

5.8.1. The Dark Sky forecasting API

The Dark Sky API is an HTTP-based ‘hyperlocal weather prediction’ service, written

in Node.JS and C, that generates both historical and forecast weather data. It

powers a series of apps available on most platforms as well as their website,

darksky.net. The algorithm generates a consistently structured dataset of weather

conditions (including temperature, observed temperature, precipitation, wind speed,

direction, gust, humidity and cloud coverage) for any location on the globe at any

time by synthesising a large number of data sources, primarily doppler radar

station data, and analysing it using artificial neutral networks and their own

“heuristic clean-up code” (Dark Sky, 2018). Their sources include the UK Met

Office’s NIMROD system, the German Meteorological Office's ICON model and

user-uploaded local condition data. Their forecasts are quality controlled and

retrospectively checked against observed data. Use of the API requires a license key

which permits up to 1,000 requests per day free of charge. This license key must is

not stored within the code but is instead read from a text file ‘darksky_api_key.txt’

stored in the same location at the Python code.

Up to 71 hours of forecast data can be retrieved in a single call, or 48 hours of

historical data. The code will stitch together datasets returned by separate calls if

necessary, and all forecasts are stored locally to prevent the need for repeated API

calls within the same hour. The daily temperature average is calculated alongside

the calls and stored in this forecast.

5.8.2. pvlib

pvlib is an open-source PV modelling Python library principally developed by

Holmgren et al (2018). It is a Python port of the PVLIB MATLAB toolbox developed

at Sandia National Laboratories but has been extended to incorporate many other

62

models and functions. It is hosted on github at github.com/pvlib/pvlib-python.

V0.6.3 (release May 2019) was used in the development of this model.

The pvlib library has a database of the characteristics of tens of thousands of PV

modules and thousands of inverters, drawn from the CEC Module database, the

Sandia database and the ADR Inverter database. It is also possible to define the

manually define a set of characteristics for any module to be modelled by the

library. pvlib determines the performance of a panel based on far more

characteristics than are provided in manufacturer datasheets (including, for

example, parameters determining material losses dependent on the angle of

incidence), and so to avoid using assumptions based on generic data a PV module

was chosen that was present in the pvlib database. The latest series of inverters

were not present in the database, so earlier models were chosen as surrogates: the

SolarEdge SE3300 and the SE6000 were used.

Pvlib also takes account of local conditions such as air temperature, wind speed (the

module temperature is modelled based on temperature, wind speed and irradiance)

and surface albedo (characterised for Findhorn using the standard figure for

“grass”).

5.8.3. windpowerlib

windpowerlib is pvlib’s complement for determining likely generation from wind

turbines. It is a fork (a specialised development branch) of the earlier feedinlib, and

is maintained on GitHub at https://github.com/wind-python/windpowerlib. Many

features of the library are still experimental and use of the model will display

warnings indicating such. V0.1.1 (released June 2019) was used in the development

of this model.

The principal inputs to the model are the characteristics of the wind farm (number

of turbines, their power characteristics and location), and the weather data (wind

speed, temperature, pressure and roughness length). Roughness length is

incorporated as a time varying quantity within the forecast in order to model

https://github.com/wind-python/windpowerlib

63

changing sea conditions, but in this case it was modelled as a fixed value of 0.15m

based on terrain-descriptive values given by Davenport et al (2000).

windpowerlib includes functions to model wake losses and smooth power curves (to

account for wind speed variance across a wind farm). With a farm size of three

turbines neither of these were used.

5.9 Simulation testbeds

Two simulation testbed scripts were created for the purposes of this study and have

been included within the repository. These scripts instantiate the Scheduler class

with all the characteristics of Findhorn and trigger the simulations.

The script findhorn_single.py simply instantiates the model for a given date, which

triggers the first scheduling operation. The findhorn_multi.py script is a more

rigorous test that assesses how the system deals with stochastic demand that varies

unpredictably. In this script a demand series is generated based on a normalised

random function which introduces a divergence from the expected demand profile.

The distribution of this divergence has the same standard deviation as the daily

profile. If the divergence would cause the demand to go negative, the demand is set

to zero and the negative quantity is carried forward to subsequent timesteps. The

result of this, over time, is a demand time sequence that has the same average value

as the original profile.

To achieve this simulation of the scheduling algorithm run in ‘fast forward’ it was

necessary to reach into the attributes of the module that would be private under

intended operation. Instead of reading the tank node temperatures afresh at each

decision timestep, the simulation environment runs the draw_load() function on

the Scheduler’s tank model to simulate the extraction of the stochasticised demand

taking place between decision timesteps.

64

6. Simulation Testing

6.1. Generation

Figure 23 shows the generation forecasts for two dates in August 2019. August 1st-

2nd was a period of high pressure with low wind speeds, though mostly overcast.

August 14-15th was a period of generally poor weather with a weather front moving

over ahead of a low pressure system.

A comparison between the forecasted and recorded data was also carried out as a

test of the Dark Sky API. The variation of the data for August 2nd is shown in

Figure 24.

Figure 23: Generation forecasts for two dates in August 2019

65

The generation model was also compared with recorded observations available

through the UK Met Office’s Integrated Data Archive System (MIDAS) (Met Office,

2019), and data gathered on wind generation gathered through the ORIGIN project.

Figure 25 shows the result of the comparison for a 48-hour period from November

1st 2014.

Figure 24: Forecast and observed data from the Dark Sky API for August 2nd 2019

Figure 25: Wind speed from MIDAS and Dark Sky, and generation data from windpowerlib and

ORIGIN compared

66

The MIDAS observation data shown is sourced from the Kinloss airfield, only a few

hundred metres from the Three Graces turbines. The wind speeds, shown as dotted

lines, display a good degree of correlation, lending confidence to the Dark Sky API

wind speed forecasting algorithm. The ORIGIN-derived wind generation figures

show a lower degree of correlation with the windpowerlib-sourced generation rates,

with the average deviation being 62% of the ORIGIN recorded generation. The

ORIGIN data correlates better with the MIDAS observation data. From this cursory

examination there is reason to suspect that the combination of Dark Sky forecasts

and windpowerlib modelling may underestimate generation at the site. This is as

would be expected for low wind speed data, as for hours where the average speed is

below cut-in, resulting in a modelled output of zero, there may still be periods

where it reaches above cut-in and therefore energy in generated.

6.2. Storage model

Figure 26 shows the modelled behaviour of the TES when subjected to a demand

pattern chosen at random from the BSDT for 24 hours, followed by three hours of

heating at full rated power (14kW). The meteorological conditions (which in this

simulation affect only the heatpump COP and the conduction losses from the TES)

were taken for the 36 hours from noon on August 14th. The COP was modelled at 2.6

and the simulation was run at half-hourly intervals.

Figure 26: TES Simulation output

-10

-5

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

H
ea

ti
n

g
in

je
ct

ed
/D

em
an

d
 d

ra
w

n
 (

kW
h

)

Te
m

p
er

at
u

re
 (

°C
)

Hours

Tank node #5

Tank node #4

Tank node #3

Tank node #2

Tank node #1

Tank node #0

Demand

Heating

67

A key consideration in running the model is that the finer the graticulation of the

tank model the better the result will be. If the heatpump drains an entire node

during a timestep, the temperatures of the nodes will become inaccurate during

that timestep. The heatpump is capable of producing 60°C at a flow rate of 40l/min,

meaning that the volume of a tank node (258l) could be transferred in 6.45 minutes,

and the entire 1,550l tank could be heated in 38 minutes. For this reason the

simulations were run at 15 minute resolution. In the simulation above the

maximum tank draw during any 15-minute simulation timestep was 145l.

As the ORIGIN data uses direct heating (water in the tank is directly output for

consumption) it is not possible to use the data to validate the tank model.

6.3. Scheduling model

The scheduling algorithm is the part of the code tasked with selecting the most

optimal hours for heating. This can be run independently using a random surplus

timeseries and making repeated requests to add hours in for heating. Figure 27

illustrates how hours have been added in to the example surplus timeseries shown,

starting at the highest peaks of surplus (shown in red) and working down in order.

Figure 27: Demonstration output from the scheduling algorithm

68

6.4 Stochastic demand simulation

An algorithm is used in the simulation testbed to generate stochastic demand based

on the standard profile. The output from two runs of this algorithm are shown

below in Figure 28.

The grey lines indicate the demand with margin used in the creation of the

pessimistic heating schedules. The blue lines indicate the raw daily profile from the

BDST and the red lines are stochasticised demand patterns generated for

simulation. Over short periods as shown here the total demand may vary

significantly from the average, but generating a 3-day stochasticised demand profile

resulted in a change in total demand of only 0.1% - the cumulative deviation (as a

percentage) is shown by the grey line in Figure 29.

Figure 28: Examples of generated patterns of stochastic demand

Figure 29: Three day generated demand profile showing deviation in running totals.

69

7. Results

7.1. Scheduling results

The scheduling simulation was run for a selection of 48 hour periods in 2019. Each

time the results are compared with a baseline scenario in which heating of the hot

water tank takes place for two hours daily between 3am and 5am. In each case, the

total amount of energy input and imported is determined.

The results are presented in Table 2. For all simulations the tank model was working

to a resolution of 12 minutes (five timesteps per hour) and the initial conditions of

the tank were near fully-charged (top node temperature of 57°C).

Start time Scenario Failure at Electricity used Electricity

imported

00:00, Jan 1st Baseline 24.1kWh 12.3kWh (50.9%)

 Optimised 23.4kWh 0kWh (0%)

00:00, Feb 1st Baseline 44 hrs 33.9kWh 23.3kWh (68.7%)

 Optimised 37.5kWh 0kWh (0%)

00:00, Mar 1st Baseline 23.5kWh 23.6kWh (100%)

 Optimised 0kWh 0kWh

00:00, Apr 1st Baseline 24.7kWh 24.7kWh (100%)

 Optimised 11.8kWh 0kWh (0%)

00:00, May 1st Baseline 22.7kWh 22.7kWh (100%)

 Optimised 0kWh 0kWh

00:00, Jun 1st Baseline 22.5kWh 16.9kWh (75.0%)

 Optimised 0kWh 0kWh

Table 2: results from single-decision-step simulations

In one case the baseline scenario was unable to run to the prediction horizon; this is

not necessarily a cause for concern as the demand predictions are built to be

pessimistic by the inclusion of the margin of one standard deviation (see section

3.1).

70

The graphs in Figures 30 and 31 show how successive scenarios are run, which the

tank outlet temperatures of each scenario coloured from red to indigo. Each run

includes more heating hours, until a scenario is found able to complete the 48 hour

prediction horizon. Note that the lines showing energy demand and generation

surplus are shown on a logarithmic scale, as the demand is usually a few orders of

magnitude lower than the wind power generation. The surplus is calculated from

the solar generation plus the ‘spill wind’ over the local consumption threshold.

Figure 30: Scheduling simulation output for February 1st-2nd 2019. 7 runs were performed to

find a successful scenario with 6 hours of heating.

71

7.2. Multiple hour simulation results

One of the strengths of the MCP paradigm is its ability to adapt to changing

conditions over time. This was explored using a testbed script to simulate multiple

hours of activity in which demand changed unpredictably from the expected

profiles (see section 5.9 for a fuller description of the testbed).

Figure 32 shows the results of simulating 24 hours from midnight on February 1st

2019 with a stochasticised demand pattern. The successful simulations of tank

outlet temperature generated at 4 hour intervals are shown – each one starts with a

large dot which indicates the point at which the ‘real’ tank has been cloned to

create the starting point for simulations run at this decision step. The outlet

temperatures of the ‘real’ tank are shown as the dotted black line from which all

the coloured simulation lines diverge. From these simulations it can be observed

how the heat pump schedule adapts to the divergence of the demand drawn

Figure 31: Simulation output for May 1st-2nd 2019. In this case no heating was needed

as the system was able to ‘coast’ to the prediction horizon from a near-full tank.

72

(shown as a solid grey line) from the expected template demand (profile demand

plus one standard deviation) modelled in the simulations (shown as a dotted blue

line).

The first schedule can be recognised as the successful result of the single timestep

modelling for February 1st, the final simulation run shown in Figure 29, which

anticipates needing 6 hours of heating.

Already in the second hour, the drawn demand exceeds the simulated demand –

the scheduler compensates by adding in an additional hour of heating at 14:00 of

February 1st, which can be seen as the uptick at this time in the hour 4 outflow line.

As time rolls forwards the MCP is looking further ahead and deciding when to

Figure 32: Output from a simulated 24-hour run of the scheduler

73

perform the heating to meet the anticipated demand taking place during the

morning peak of February 3rd. There is very little generation surplus anticipated for

February 2nd or 3rd, so the scheduler repeatedly adds in additional heating hours

during the periods of higher surplus on February 1st in an attempt to coast for as

long as possible through the period of low surplus.

74

8. Discussion

The results have shown that significant increases in self-consumption of local

renewable resources are possible using an MPC controller. The Python code

framework represents a viable control system but significant further development

would be necessary before it could be implemented in a site such as North Whins.

The single-hour simulations demonstrated a clear ability to load shift to match

renewable generation, with every run achieving 100% self consumption and a

reduction in electricity consumption under the daily timed thermostatically

controlled baseline scenario.

The multiple hour simulation showed an excellent ability to cope with variation

over time whilst maintaining consumption purely of local renewables. However, it

has also highlighted some shortcomings of the basic heuristic approach of the

scheduling algorithm.

8.1. The scheduling algorithm

The approach taken to scheduling by this system is a very simple one which takes

into account only the highest hours of local generation and makes no effort to

reduce total consumption. The result is that hours of less generation – when there is

still a sizable margin over the anticipated electrical demand – are often ignored,

when losses (and therefore consumption) might be reduced by spacing out hours of

heating more evenly.

In the 24-hour simulation performed for February, the relatively low surplus

projections for the hours after 4am on February 2nd still peak at an order of

magnitude higher than the anticipated electrical demand. By seizing on the periods

of higher surplus on February 1st and performing as much heating as possible here,

the tank is brought up to an unnecessarily high temperature. The surplus at 6am,

2pm and 3pm on February 2nd is easily sufficient to cover the ASHP consumption

75

without needing to import any electricity, and the tank could be allowed to coast

until then, resulting in fewer losses.

A classic optimisation algorithm to address this would use a ‘cost function’,

potentially based on a fluctuating price for grid electricity and a fixed price for local

generation, to drive the scheduling algorithm. The results of this optimisation

process would likely be extremely different from the approach taken, not least as

instantaneous (half-hourly) energy prices can in some conditions be negative.

Under these circumstances such an optimisation might also artificially increase

consumption and result in higher tank losses.

The argument in favour of prioritising the highest hours is that they are the most

likely periods of significant local generation. With the inherent variability of wind a

significant margin of error would have to be built in to any cost function – possibly

even an increasing discount on predictions further into the future to reflect their

uncertainty.

8.2. Model approximations

The most significant shortcoming of the system presented here lies in the

simplifications applied in the models, many of which could be addressed in future

work.

8.2.1. The DHS model

The ‘perfect’ model of the DHS obscures many significant realities. The assumption

of perfectly variable flow implies that pumps work with 100% accuracy to send only

the correct amount of water to meet the demand whilst maintaining a 20°C return

flow. This is impractical to achieve in the real world; not least as it would make

pipes prone to freezing during periods of low demand in cold weather. Slower flows

mean that water is spending longer in pipes and therefore losing more heat. The

approach used here - considering system losses as a proportion of demand – does

not give an accurate picture of the time-varying pattern of losses and was only ever

intended in the SAP to apply as a figure aggregated on monthly or annual demand.

76

In real DHS systems the flow and return temperatures usually vary by season, and

secondary pumps are sometimes employed to provide the range of flow rates

required in different seasons (CIBSE, 2015).

8.2.2. The TES model

The perfectly uniformly insulated tank modelled in the code is an impossibility, and

experimental experience (not least from the ORIGIN project) has shown it to be a

poor template for real-world situations. The losses associated with the connections

to the tank are more significant than those through the fabric of the tank.

As part of the ORIGIN work, the TES at West Whins was modelled with 6 nodes and

losses from each node were estimated to fit with measurements. Table 3 shows

these along with an approximate U-value for each node, based on the tank at West

Whins being approximately 0.9m in diameter and 0.86m height, equally insulated

on all sides, save for the underside which is perfectly insulated.

Node Estimated losses from ORIGIN Derived approximate U value

Top 0.95W/K 0.91W/m2K

0.8 0.95W/K 2.33W/m2K

0.6 0.9W/K 2.21 W/m2K

0.4 0.45W/K 1.10W/m2K

0.2 0.45W/K 1.10W/m2K

Bottom 0.45W/K 1.10W/m2K

 Table 3: Estimated node losses for the HWT studied at West Whins as part of the ORIGIN

project.

The high U value of the 0.8 node may be explained by the input from the solar

collector connecting at this point.

The TES for North Whins would be significantly different in connections, size,

geometry and construction, so it is difficult to extrapolate any quantitative lessons

from the West Whins data.

77

Another omission from the multi-node model employed here is the destratification

effect of conduction through the tank walls. This was found to be a significant

effect by Armstrong (2015), especially in low-flow situations. The use of a stainless

steel or even polystyrene tank in place of the traditional copper tank can mitigate

this, without any significant effect on the colonisation of the system by Legionella

and other bacteria (interestingly the study finds the biocidal effects of copper on

Legionella bacteria very much overstated).

Finally, the assumption of zero turbulence or mixing caused by the reinjection of

water must be highlighted as a significant shortcut.

8.2.3. The demand model

The shortcomings of the demand model with regard to standing losses have been

discussed above. There is also a clear deficiency in basing heating profile demands

solely on extrapolation from archetypical template profiles. Scaling these demands

is overly simplistic, particularly when based on a value recommended in SAP for the

purpose of estimating losses in the assessment of a wide range of house types.

In particular, when considering well-insulated buildings such as those at West and

North Whins solar gain becomes as significant a factor as external temperature in

predicting demand for space heating. As we are generating illuminance data for use

in predicting PV generation this could readily be built into the model.

The MPC paradigm includes the ability to learn from the comparison between

modelled behaviour and measured behaviour at subsequent timesteps – this is

discussed more fully in section 8.4.2 below, and may be the most practical way of

dealing with the unpredictable demand patterns of a particular building undergoing

a particular pattern of occupation and use.

78

8.2.4. The heat pump model

Although less crucial to the success or failure of the model, the heat pump model

provides the measure of the degree of success. Taking the nominal performance

figures measured by the manufacturer to the EN14511-2013 standard is not

necessarily a robust approach. The Mitsubishi databook includes ‘medium

performance’ data (80% of maximum) and also a set of ‘minimum performance’

data, and notes that actual performance may vary depending on operating

conditions. The assumption that the ASHP is stateless is also a simplification of the

reality, which is that heat pumps, like all heating plant, do not instantaneously

switch from zero operation to perfect modelled operation. This was examined by

Murphy et al (2012), whose ‘optimum start’ algorithm for heat pump control could

be built into the control model.

8.3. Implications of widespread use

It is worth considering the implications of the more widespread use of MCP-based

systems. As with any kind of DSR the group behaviour of many systems is a key

consideration. If independent systems designed to respond to price signals become

a significant portion of demand, the system has created a feedback loop which may

behave unpredictably. Kelly et al (2014) found that in responding to the price signals

from the Economy 10 tariff, a population of heat pumps synchronised to create a

new peak demand. Strbac (2008) and Moreau (2011) also highlight ways in which

the use of price signals may lead to a reduction in the ‘natural’ diversity of demand.

It is usually expected that such issues will be dealt with by market intermediaries –

aggregators who will develop their own control systems for managing significant

amounts of DSR. However alternative approaches, such as the use of a prioritised

random function have been described and assessed (for instanced by Moreau, 2011

and Ayodele et al, 2017). This is a way of artificially recreating system diversity

based on the urgency of meeting a need.

Such a strategy could also be employed to tackle the issue of overcommitment of

local renewables: if the dispatchable load at Findhorn were to become of the same

79

order of magnitude as the peak surplus energy generated by FWP, there would be a

decision to be made on to whom the surplus should be made available.

8.4. Recommendations for future work

Significant improvements in the output of the code could be made with minimal

additional work –more thought given to the structure and readability of both the

terminal output and logging would greatly increase its usefulness to other

developers. Although the system is capable of operating in the absence of a

successful response from the Dark Sky API (by relying on earlier forecasts with a

shortened prediction horizon), the API calling code could be made more robust with

a series of retries.

Many of the shortcomings and approximations in the system could be addressed by

improvements to the modelling. Some are caused by guesses made in the absence of

a detailed system design and could be better addressed once more details on a

proposed DHS become fixed. Others would take a significant amount of further

work to address.

8.4.1. Improvements to system modelling

Some aspects of the shortcomings identified in section 8.2 above could be readily

addressed in future code development. The effects of conductance of a tank wall

could easily be incorporated in the TES model. There is a standard process of

estimating pipe losses which could be incorporated. The efficiencies of heat

exchangers coupling individual properties from a ground loop could be built in.

Modelling more realistic tank losses would require detailed further research or

experimentation. The TES model developed here allows the modelling of any

number of nodes and allows the heat pump and heating outlet to be connected at

any node (height) in the system. Return connections are not considered as the

reinjection is treated as a perfect low velocity merge into a stratified tank. To create

an abstract model of tank losses responsive to different connection points is a

significant undertaking. To incorporate turbulence and mixing into such a flexible

80

model would be a huge undertaking. A more pragmatic approach would be that

adopted in the ORIGIN project, where losses are modelled on a tank-specific basis.

The ASHP model is likely to require some recoding for use with a WWSHP. Whilst

the COP regression model provides a viable structure – and simplified without the

need for the ‘defrost breakpoint’ – the source temperature will be harder to model

from weather forecast data. The length of the pipe run to the site (over 500m) is

such that the water temperature will be approaching that of the surrounding soil. A

model will have to be constructed for this. The easiest method would be through

regression from observational data.

8.4.2. Learning

Some of the shortcomings of the system models may more easily and pragmatically

be addressed by harnessing the possibility for an MPC system to learn from the

continual comparison of its model-based prediction with subsequent

measurements. This approach could be applied to every part of the system, but the

greatest benefits would be from its application to demand prediction, tank loss

modelling, and generation forecasts. To achieve the first two would only require

temperature sensing from tank nodes, whereas significant additional remote

electric monitoring would be required to measure generation.

The ORIGIN project used a 5-week learning period to generate a dataset of demand

profiles for the houses studied. The result was a model characterising the demands

against time (of day), outdoor temperature and solar radiation (Tuohy et al, 2015).

In the ORIGIN project there was significant scope for detecting changing

circumstances (as each property was modelled individually) and interacting with

occupants via an app to make decisions on observation data outside of predicted

bounds. This approach could be replicated in a future development of the

PyREmatcher system. The interactivity provided by the app may not be required

where the diversity of a larger demand population lessens the impact of individual

behaviour. A system similar to the Shewhart control rules (Yasui et al, 2006) could

be employed to detect changes in behaviour based on deviation from an expected

mean triggering an update in a stored demand pattern model.

81

Modelling the tank losses is less complex, as these would be considered time-

invariant. A learning period could determine a fixed set of values from the changes

of tank temperatures as compared with demand extracted and external

temperature. This learning period could be re-triggered periodically to absorb any

changes taking place in the DHS or TES – and a significant change would be worth

detecting and flagging for investigation.

Creating a learned PV model in order to improve the generation prediction in a

similar way is likely to be impractical due to the unmeasurable effects of shading. It

would be unfeasibly complex to infer shading from output data and solar geometry.

However, the prediction of local wind generation could be significantly improved by

a learning model. One aspect that is not taken into account at all in the

windpowerlib library is the wind direction of forecast wind, yet this is likely to have

a significant effect on wind generation at any real location, due to landscape and

obstacles present around the turbines. As wind direction data is provided with the

Dark Sky API, the combined power curve for the wind farm could be artificially

altered to generate a series of different power curves each for a different direction.

The resultant characteristic of the wind farm would be a polar power curve

response to a forecast wind – a power cone. Figure 33 illustrates the concept – the

windpowerlib expects generation to be equal whichever direction the wind is

coming from. In reality obstacles and terrain will result in an uneven power curve

response to wind direction. By building a directional profile, the wind generation

could more accurately be predicted. This would be relatively easy to achieve

programmatically, but would require additional monitoring to be installed with the

system to capture hourly or half hourly wind generation data.

82

8.4.3. Implementation of the system

The open-source nature of the Python language means that it is readily available in

a range of different environments. One particular environment of interest to energy

systems research is the OpenEnergyMonitor (OEM) platform: a suite of sensors,

actuators and controllers based around the low-cost Raspberry Pi and Arduino

systems (OEM, 2019). The central processor part of the OEM is the Raspberry Pi-

based emonPi device, which runs custom made open-source software to interface

with the other devices in the family and the open-source system emonCMS web

app. Much of the software on the emonPi is itself Python code.

Significant development would be required to change the Python codebase from a

simulator to a controller. Means of interfacing, both with actuators using the MQTT

message broker service and with sensors using the device’s 433MHz radio signal,

would be to be incorporated and would need extensive testing. To allow monitoring

of the system’s performance data would have to be either routinely pushed into a

cloud server or retrieved via SSH.

Figure 33: Wind farm "power cones"– left: the theoretical, rotationally symmetric cone; right: a

hypothetical power cone showing an obstacle reducing power output from southeasterly wind.

83

The codebase would need to be adapted such that its internal state is accessible for

examination during runtime. In simulation this is achieved easily by running the

system from an interactive prompt, but when running as an scheduled process, SSH

users will not normally be able to interrogate the state of a process initiated by

another user. One way to achieve this would be to use the RPyC (Remote Python

Call) library5, which provides a framework within which locally running code and

locally stored data can be selectively exposed to remote users.

The local storage of the retrieved Dark Sky forecast would have limited benefit in

the case of a system running a decision step on every hour, as forecasts would not

then be reused. This feature could either be removed or a ‘garbage collector’ routine

established to limit their accumulation. A logging system recording system

decisions rather than full simulation run outputs would also be advisable.

5 https://pypi.org/project/rpyc/

84

9. Conclusions

The model created and simulated in Python for this study has demonstrated a clear

and dramatic improvement in consumption of local renewables over a timed

schedule baseline. The results of the multi-hour simulation raise questions over the

energy efficiency of the solution and its effect on total consumption, but insofar as

this study aimed to use a MPC system to increase the consumption of local

renewables it has clearly succeeded.

Whether this makes the system appropriate for use in North Whins is a deeper

question which depends on the details of local circumstances. This highlights a

perversity in energy systems management: whilst drives toward energy efficiency

are being attempted in all industries, high levels of renewables penetration may

mean that dispatchable inefficiency is entirely acceptable, or even a virtue,

especially in the context of negative energy prices. It is a persistent problem of

engineering: determining the objective for an approach is often more difficult that

meeting it.

The principles of MPC and its efficacy in load shifting are well understood, and

whilst this study has described and assessed one application in a specific context,

the Python code created has the potential for wider use and has been made

available on an open-source basis for further development, examination and

exploration.

The incorporation of learning algorithms into the code have the potential to make it

more robust, but as a ‘grey-box’ method it is inherently linked to a model of the

system in which it is operating. Whilst efforts were made during coding to make the

models as flexible as possible, this has inherent limitations. For instance, it would

take significant additional development to characterise and simulate the WWSHP

proposed for North Whins, or a system involving two heat pumps or a tank

immersion heater.

85

That said, it is to be hoped that the housing developments at Findhorn are a success

and are replicated far more widely within the UK as part of the ongoing efforts

toward the decarbonisation of our energy sector. Such systems as low temperature

heating, 4GDH networks (of all sizes), heat exchangers, high solar gain design and

Passivhaus-standard insulation should become more widespread, and the

opportunities for intelligent control in these systems is a hot topic. An open-source

approach presents a considerable advantage in terms of interoperability and

transparency.

86

10. References

Afram, A., Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems – A

review of model predictive control (MPC). Building and Environment 72, 343–355.

https://doi.org/10.1016/j.buildenv.2013.11.016

Armstrong, P (2015). Enhancing the energy storage capability of electric domestic hot water

tanks. D.Phil thesis, Oxford University.

Arteconi, A., Hewitt, N.J., Polonara, F. (2013). Domestic demand-side management (DSM):

Role of heat pumps and thermal energy storage (TES) systems. Applied Thermal

Engineering 51, 155–165. https://doi.org/10.1016/j.applthermaleng.2012.09.023

Ayodele, T.R., Ogunjuyigbe, A.S.O., Akpeji, K.O., Akinola, O.O. (2017). Prioritized rule based

load management technique for residential building powered by PV/battery system.

Engineering Science and Technology, an International Journal 20, 859–873.

https://doi.org/10.1016/j.jestch.2017.04.003

Bañuelos-Ruedas, F., Camacho, C.A., Rios-Marcuello, S. (2011). ‘Methodologies Used in the

Extrapolation of Wind Speed Data at Different Heights and Its Impact in the Wind

Energy Resource Assessment in a Region’ in Suvire , G.O. (ed) Wind Farm Technical

Regulations, Potential Estimation and Siting Assessment. Rijeka: InTech. Available at

https://www.intechopen.com/books/wind-farm-technical-regulations-potential-

estimation-and-siting-assessment (Accessed July 23rd 2019)

BRE (2016). Standard Assessment Procedure (Draft SAP 2016). Available at

https://www.bregroup.com/sap/standard-assessment-procedure-sap-2016/ (Accessed

4th August 2019)

Buckley, R.C (2012), Development of an energy storage tank model, MEng thesis, University

of Tennessee, Chattanooga

The Carbon Trust (2017). Biomass decision support tool. Online resource. Available at

https://www.carbontrust.com/resources/tools/biomass-decision-support-tool/

(Accessed 27th June 2019)

The Chartered Institution of Building Services Engineers (CIBSE) (2015). Heat networks:

Code of Practice for the UK. London.

87

Chua, K.J., Chou, S.K., Yang, W.M. (2010). Advances in heat pump systems: A review. Applied

Energy 87, 3611–3624. https://doi.org/10.1016/j.apenergy.2010.06.014

Committee on Climate Change (2016). Next Steps for UK Heat Policy. London. Available at

https://www.theccc.org.uk/publication/next-steps-for-uk-heat-policy/ (Accessed: 18th

July 2019)

Davenport, A.G., Grimmond, C.S.B., Oke, T.R., Wieringa, J. (2000). ‘Estimating the roughness

of cities and sheltered country’ in 12th Applied Climatology Conference. American

Meteorological Society, Asheville, NC, 96-99

The Dark Sky Company LLC (Dark Sky) (2018). How Dark Sky Works. Blog entry, available

at https://blog.darksky.net/how-dark-sky-works/ (Accessed 15th August 2019)

De Césaro Oliveski, R., Krenzinger, A., Vielmo, H.A. (2003). Comparison between models for

the simulation of hot water storage tanks. Solar Energy 75, 121–134.

https://doi.org/10.1016/j.solener.2003.07.009

Duffie, J.A., Beckman, W.A. (2013). Solar Engineering of Thermal Processes. 4th ed. Hoboken,

NJ: Wiley

EMD International S/A (2019), Electric heat pumps in energyPRO. How to Guide for Energy

PRO. Available at

https://www.emd.dk/files/energypro/HowToGuides/Electric%20heat%20pumps%20in

%20energyPRO.pdf (Accessed 8th August 2019)

The European Guidelines Working Group (2017). European technical guidelines for the

prevention, control and investigation of infections caused by Legionella species.

Available at http://ecdc.europa.eu/en/publications-data/european-technical-

guidelines-prevention-control-and-investigation-infections (Accessed 7th August 2019)

Ferguson, A., Kelly, N.J., Weber, A., Griffith, B. (2009) Modelling residential-scale combustion-

based cogeneration in building simulation. Journal of Building Performance

Simulation, 2 1 1-14

Findhorn Wind Park (n.d.) Technical Information. Web page

http://findhornwind.co.uk/technical-blog/ (Accessed 27th July 2019)

Fischer, D., Madani, H. (2017). On heat pumps in smart grids: A review. Renewable and

Sustainable Energy Reviews 70, 342–357. https://doi.org/10.1016/j.rser.2016.11.182

88

Ghaddar, N.K., Al-Marafie, A.M., Al-Kandari, A. (1989). Numerical simulation of stratification

behaviour in thermal storage tanks. Applied Energy 32, 225–239.

https://doi.org/10.1016/0306-2619(89)90031-7

Ghaddar, N.K. (1994). Stratified storage tank influence on performance of solar water heating

system tested in Beirut. Renew Energy 4 8, 911-925

Haas, S., Schachler, B.; Krien, U.; Bosch, S. (2019). windpowerlib v0.1.1. Python library.

Available at https://github.com/wind-python/windpowerlib (Accessed 29th May 2019)

Haslett, A (2016). The Journey to Smarter Heat (ETI Insights Report). Available at

https://www.eti.co.uk/insights/the-journey-to-smarter-heat

Holmgren, W.F., Hansen, C. W., Mikofski, M.A. (2018). pvlib python: a python package for

modeling solar energy systems. Journal of Open Source Software, 3 (29), 884.

https://doi.org/10.21105/joss.00884

HM Treasury (2019). Spring Statement 2019: Philip Hammond's speech. Available at

https://www.gov.uk/government/speeches/spring-statement-2019-philip-hammonds-

speech (Accessed: 18th July 2019)

Ineichen, P., Perez, R. (2002) A new airmass independent formulation for the Linke turbidity

coefficient. Solar Energy, 2002, 73 3, 151

Kelly, N.J., Cockroft, J. (2011). Analysis of retrofit air source heat pump performance: Results

from detailed simulations and comparison to field trial data. Energy and Buildings 43,

239–245. https://doi.org/10.1016/j.enbuild.2010.09.018

Kelly, N.J., Tuohy, P.G., Hawkes, A.D. (2014). Performance assessment of tariff-based air

source heat pump load shifting in a UK detached dwelling featuring phase change-

enhanced buffering. Applied Thermal Engineering, Special Issue: MICROGEN III:

Promoting the transition to high efficiency distributed energy systems 71, 809–820.

https://doi.org/10.1016/j.applthermaleng.2013.12.019

Lavan, Z., Thompson, J. (1977). Experimental study of thermally stratified hot water storage

tanks. Solar Energy 19, 519–524. https://doi.org/10.1016/0038-092X(77)90108-6

Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J.E., Hvelplund, F., Mathiesen, B.V.

(2014). 4th Generation District Heating (4GDH): Integrating smart thermal grids into

future sustainable energy systems. Energy 68, 1–11.

https://doi.org/10.1016/j.energy.2014.02.089

89

Lund, H., Østergaard, P.A., Connolly, D., Ridjan, I., Mathiesen, B.V., Hvelplund, F.,

Thellufsen, J.Z., Sorknæs, P. (2016). Energy Storage and Smart Energy Systems. 1 11, 3–

14. https://doi.org/10.5278/ijsepm.2016.11.2

Millar, M.-A., Burnside, N.M., Yu, Z. (2019). District Heating Challenges for the UK. Energies

12, 310. https://doi.org/10.3390/en12020310

Met Office (2019). MIDAS Open: UK hourly weather observation data, v201901. Centre for

Environmental Data Analysis. doi:10.5285/c58c1af69b9745fda4cdf487a9547185.

Met Office (n.d.). UK Climate Averages Data: Kinloss. Available at

https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-climate-

averages/gfjryyz20 (Accessed: 19th July 2019)

Met Office (2019). MIDAS: UK Hourly Weather Observation Data. NCAS British Atmospheric

Data Available at

https://catalogue.ceda.ac.uk/uuid/916ac4bbc46f7685ae9a5e10451bae7c

Mitsubishi Electric Corporation (2015). Ecodan Renewable Heating Technology Data Book.

Available at http://www.mitsubishitech.co.uk/Data/Ecodan/Controls/PAR-WT50R-

E_FTC5/FTC5_Databook.pdf (Accessed 27th July 2019)

Moreau, A. (2011). Control Strategy for Domestic Water Heaters during Peak Periods and its

Impact on the Demand for Electricity. Energy Procedia, The Proceedings of

International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)

2011 12, 1074–1082. https://doi.org/10.1016/j.egypro.2011.10.140

Murphy, G., Counsell, J., Baster, E., Allison, J., Counsell, S. (2013). Symbolic modelling and

predictive assessment of air source heat pumps. Building Services Engineering Research

and Technology 34, 23–39. https://doi.org/10.1177/0143624412462592

Open Energy Monitor (OEM) (2019). OpenEnergyMonitor: Open source monitoring for

understanding energy (web site). https://openenergymonitor.org/ (Accessed August

20th 2019)

Owens, Edward. (2015). Orchestration of Renewable Integrated Generation in

Neighbourhoods: Final Report. 10.13140/RG.2.1.2659.0320.

Sarbu, I., Sebarchievici, C. (2018). A Comprehensive Review of Thermal Energy Storage.

Sustainability 10, 191. https://doi.org/10.3390/su10010191

90

Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D. (2009). Review on thermal energy storage with

phase change materials and applications. Renewable and Sustainable Energy Reviews

13, 318–345. https://doi.org/10.1016/j.rser.2007.10.005

Staffell, I., Brett, D., Brandon, N., Hawkes, A. (2012). A review of domestic heat pumps.

Energy & Environmental Science 5, 9291. https://doi.org/10.1039/c2ee22653g

Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, Foresight

Sustainable Energy Management and the Built Environment Project 36, 4419–4426.

https://doi.org/10.1016/j.enpol.2008.09.030

SolarEdge (2016). Oversizing of SolarEdge Inverters, Technical Note. Online resource,

available at

https://www.solaredge.com/sites/default/files/inverter_dc_oversizing_guide.pdf

(Accessed August 4th 2019)

Thieblemont, H., Haghighat, F., Ooka, R., Moreau, A. (2017). Predictive control strategies

based on weather forecast in buildings with energy storage system: A review of the state-

of-the art. Energy and Buildings 153, 485–500.

https://doi.org/10.1016/j.enbuild.2017.08.010

Thorsen, J.E., Lund, H., Mathiesen, B.V. (2018). "Progression of District Heating – 1st to 4th

generation”. Figure, available online at

https://vbn.aau.dk/ws/portalfiles/portal/280710833/1_4GDH_progression_revised_Ma

y2018.pdf (Accessed: 7th August 2019)

Tuohy, P., Kim, J.-M., Samuel, A., Peacock, A., Owens, E., Dissanayake, M., Corne, D.,

Chaney, J., Bryden, L., Galloway, S., Stephen, B., Santonja, S., Todoli, D., (2015).

Orchestration of Renewable Generation in Low Energy Buildings and Districts Using

Energy Storage and Load Shaping. Energy Procedia, 6th International Building Physics

Conference, IBPC 2015 78, 2172–2177. https://doi.org/10.1016/j.egypro.2015.11.311

Underwood, C.P., Royapoor, M., Sturm, B. (2017). Parametric modelling of domestic air-

source heat pumps. Energy and Buildings 139, 578–589.

https://doi.org/10.1016/j.enbuild.2017.01.026

Vesterlund, M., Sandberg, J., Lindblom, B., Dahl, J. (2013). Evaluation of losses in district

heating system, a case study, in: ECOS 2013: Proceedings of International Conference

on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy

Systems; 2013 July 16-19; Guilin, China.

https://doi.org/10.1016/j.egypro.2015.11.311

91

Yasui, S., Ojima, Y., Suzuki, T., 2006. Generalization of the Run Rules for the Shewhart

Control Charts, in: Lenz, H.-J., Wilrich, P.-T. (Eds.), Frontiers in Statistical Quality

Control 8. Physica-Verlag HD, Heidelberg, pp. 207–219. https://doi.org/10.1007/3-7908-

1687-6_13

Yu, Z., Huang, G., Haghighat, F., Li, H., Zhang, G. (2015). Control strategies for integration of

thermal energy storage into buildings: State-of-the-art review. Energy and Buildings, SI:

IEA-ECES Annex 31 Special Issue on Thermal Energy Storage 106, 203–215.

https://doi.org/10.1016/j.enbuild.2015.05.038

92

Appendix A: Python codebase dependencies

The follow is not an exhaustive list as many core Python libraries are installed

automatically (for instance, datetime, sys, warnings, typing and math) and most do

not present any compatibility problems. However this should list all the modules

that might conceivably require installation using pip or conda (or equivalents).

Module/package

(& minimum version)

Description Required by

Pandas (0.16.0) Python Data Analysis library All model code
NumPy (1.10.1) Numerical Python library Tank modelling code,

Pandas, pvlib,
pvlib (0.6.3) Open source PV modelling library Generation.py
windpowerlib (0.1.1) Open source wind power

modelling library
Generation.py

requests (2.7.0) Processing remote HTTP requests Forecast.py, pvlib,
windpowerlib

os Local operating system access Forecast.py
pytz (2017.2) Python timezone library pvlib, windpowerlib
six (1.5) Python 2 and 3 compatibility utils pvlib, tables
SciPy Python science and engineering

library
pvlib

PyTables* Python packaging for managing
hierarchical datasets

pvlib (used to access Linke
turbidity database)

h5py* Library for managing HDF5 binary
data encoding format

pvlib (used to access Linke
turbidity database)

mock* (2.0) Testing library PyTables

* indicates modules which are not required as their availability is detected before

attempting to use them. This was a workaround for the inability to install some

dependencies on university administered computers.

93

Appendix B: Example output

B.1 Simulator logfile

If a log file name is provided, the scheduler will write the outputs of all attempted

scenarios to a CSV file. This CSV file has the following headings:

• “Tank node #0”, “Tank node #1” … (repeated for all nodes) – in °C

• “timestamp” – in the form “2019-04-01 00:00:00+01:00”

• “temperature” – external air temperature from the forecast

• “demand (kWh)” – the demand profile plus margin

• “energy stored (kWh)” – the nominal energy stored in the tank

• “tank draw to load (kg)” – the mass drawn from the tank to the DHS in this

timestep

• “heat injected (kWh)” – the heat injected into the tank by the ASHP in this

timestep

• “electricity used (kWh)” – the electricity consumed by the ASHP

• “energy surplus (kWh)” – the solar PV generation plus available wind

• “tank draw to heatpump (kg)” – the mass circulated through the heatpump

and back into the tank in this timestep

• “heatpump active” – whether the heat pump is active in this hour in the

current simulation

Before each simulation two lines are written giving the time at which the

simulation was started followed by the first time to be simulated:

Scheduler instantiated at 2019-08-20 11:12:02
Simulation starting 2019-05-01 00:00:00+01:00

‘for current hour’ is substituted is the simulation is running on latest forecast data

as would be the case if the code was being called by a scheduled process (cron job)

in a real implementation.

94

After each simulation is run a report is added below the tabular data: if the run has

been unsuccessful this will note “COMFORT CONDITION BREACHED”. The successful

scenario is always the final scheduling run recorded in the log. After this, the

consumption is reported (“At time 2019-01-01 00:00:00+00:00 the optimal

scenario has 4 hours of heating, requiring 23.427543775744542kWh of

electricity of which 0.0kWh (0.0%) was imported”). If a baseline comparison has

been requested this is then shown as a single run (headed with “--- Baseline

scenario ---”) with the consumption reported similarly afterward.

B.2 Single hour simulations

For the single hour simulations, the system was called from a Findhorn.py script

which set the system characteristics and performed a single run of the scheduling

algorithm. The output from running this script in an interactive prompt is shown

below for a simulation starting at midnight on February 1st 2019:

>>> import Findhorn

Warning (from warnings module):
 File "C:\Python37\lib\site-packages\pvlib\forecast.py", line 20
 'The forecast module algorithms and features are highly
experimental. '
UserWarning: The forecast module algorithms and features are highly
experimental. The API may change, the functionality may be
consolidated into an io module, or the module may be separated into
its own package.

Warning (from warnings module):
 File "C:\Python37\lib\site-packages\windpowerlib\wake_losses.py",
line 124
 labels=[[], []]))
FutureWarning: the 'labels' keyword is deprecated, use 'codes'
instead
Running scenario: 0hours of heating
Scenario has failed at 2019-01-02 16:00:00+00:00
Running scenario: 1hours of heating
Scenario has failed at 2019-01-02 17:00:00+00:00
Running scenario: 2hours of heating
Scenario has failed at 2019-01-02 20:00:00+00:00
Running scenario: 3hours of heating
Scenario has failed at 2019-01-02 23:00:00+00:00
Running scenario: 4hours of heating
At time 2019-01-01 00:00:00+00:00 the optimal scenario has 4 hours
of heating, requiring 23.427543775744542kWh of electricity of which
0.0kWh (0.0%) was imported

95

At time 2019-01-01 00:00:00+00:00 the baseline scenario has 4 hours
of heating, requiring 24.12794672436572 kWh of electricity of which
12.283675338267306kWh (50.910570545410636%) was imported
At time 2019-01-01 00:00:00+00:00 the heatpump is ON

The two initial warnings are generated by the third party generation libraries. The

successful schedule is also output inline (displayed as ‘squeezed text’ in the IDLE

shell). In this case one of the hours of heating identified in the successful schedule

includes the first hour in the simulation, which has resulted in the ON signal being

sent to the heatpump.

B.3 Multiple hour simulations

The multiple hour simulations are performed by another test scaffold script which

calls the scheduler’s run_model() repeatedly, augmenting the log file each time and

resulting in the same output to the terminal as shown above for each decision

timestep.

Once completed, the test script makes its own addition to the log file to report the

stochastised demands that were drawn during each decision timestep.

