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Abstract 

 

Global Perspective  

The wind turbine industry is currently growing on a global scale in order to meet 

governmental energy targets and to create a more sustainable future [1]. Operators are 

required to account for every kW generated (or indeed lost) with a current estimation 

of global underperformance to the tune of €500m annually [9]. It has therefore become 

increasingly important to the industry to develop sophisticated analytical tools to 

assess performance and efficiency of wind turbine operations. 

Aims of the Study  

The aim of this study is to further develop a procedure adopted by Natural Power to 

assess the performance characteristics of wind turbine operations. The study will 

focus on better identifying those turbines within a wind farm that are performing sub-

optimally. The methodology for the study will utilise ‘10-minute SCADA Data’ and 

‘Downtime Reporting Logs’ to develop an analytical tool.  

Development of Procedure to Identify Under-Performing Turbines  

Data from downtime reporting logs was analysed to identify those turbines that were 

the least efficient in generating power. Specific Key Performance Indicators (KPIs) 

were studied to isolate those most effective in improving analytical techniques 

currently used to identify inefficient turbines. The KPIs studied include power curve 

shape, energy ratio, pitch behaviour, yaw effect and rotor speed of turbine blades. 

Application of Procedures Developed to Wind Turbine Operations   

New procedures developed during this study has led to operational events being 

identified with significant energy losses previously unidentified. This has proved 

beneficial to the wind turbine operations management consultancy, Natural Power, to 

better identify performance characteristic changes. The framework thus established 

can be further developed for wind turbine operations in general. The study has 

additionally highlighted the need to develop a complex automated algorithm that 

interconnects multiple KPIs simultaneously due primarily to poor performance being 

related directly to specific operational faults. 
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1 Introduction 

 

With wind farm installation growing on a global scale to move towards a sustainable 

future, it is becoming ever more important to understand and analyse the performance 

of operational wind turbines in order to account for every kW generated. In recent 

years the development of wind turbine technology, resulting in a greater complexity 

of subsystems, has led to traditional performance monitoring techniques becoming 

outdated [2].  

In 2012, the UK added 3.2GW of installed capacity from renewables, 57% which 

came coming from wind power technologies [4]. More relevantly, of the 41,258GWh 

generated from renewables in 2012, almost half was generated from wind power, 

highlighting the UK’s investment into wind energy, both on and offshore. It is 

predicted that by 2020, 22GW of installed capacity from wind alone will be added to 

the renewable energy portfolio in the UK [1].  

On a global scale, China, USA, Germany, Spain, India and UK, respectively, are the 6 

main world leaders in wind power and continue to significantly invest in wind power. 

2012 saw record development in the USA, adding 13.1GW of new wind power 

capacity, coming from 190 projects leveraging $25 billon of investment [1]
.  

In consideration of the global renewable energy market outlook for the foreseeable 

future [5], wind energy is predicted to remain one of the main renewable energy 

sources. With this sheer scale in mind, it is therefore of great importance to take 

advantage of the extensive data available from commercially operational wind 

turbines, to be able to carry out detailed performance analysis in order to maximise 

the operation of wind turbine generation. For a consultancy managing multiple wind 

farms, it could prove beneficial to rank a type of analysis to efficiently improve the 

performance of wind turbines and consequentially that of the wind farm.  It is 

estimated by a leading wind energy consultancy that the wind industry is 

underperforming by €500m per year [9]. If on a global scale the performance of wind 

turbines are analysed and improved, the wind energy sector can be of more value both 

economically and environmentally for countries working to meet energy targets.  
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Using 10-minute SCADA data and downtime reporting logs for an operational 

onshore wind farm of 60 turbines, the aim of this project is to further develop an 

existing procedure that assesses operational wind turbine performance. Currently, at 

Natural Power, the assessment of performance of turbines mainly involves analysing 

power characteristics along with downtime, whilst in specialised PCYA (Post 

Construction Yield Analysis) reports, other KPIs (Key Performance Indicators) are 

included. This thesis aims to develop new assessment procedures for analysing the 

performance of wind turbines. The main objectives of this project are to: 

• Perform downtime analysis, in order to analyse the performance and 

reliability of the wind turbines 

• Investigate specific KPIs that affect turbine performance, including: 

! Power Curve Shape 

! Energy Ratio 

! Pitch Curve 

! Yaw Effect 

! Rotor & Generator Speed  

! Torque Characteristics 

The downtime analysis covers a detailed overview of the wind farm operation, which 

makes use of downtime logs, listing any time the turbine was not able to operate. This 

data can be analysed to identify over a long period of time which factors contributed 

to downtime the most. At this stage, the operational availability of the turbines and 

the wind farm can be calculated, by comparing the duration of time that the turbines 

were operating to the times they were not.  

Downtime normally accounts for ~1-10% of the duration of the operation of the wind 

farm. Of the other ~90-99% of the time, it is important to assess the efficiency of the 

turbines whilst they are running. The data available from turbine SCADA systems are 

extensive and so it is important to identify which parameters are of most use in 

performance analysis. In the first instance, obtaining power curves (plotting wind 

speed v active power) for each turbine over a period of time is useful in determining 

performance characteristics of each turbine. Additionally, by filtering out anomalies 

found from any bad data found in the plots, such as failed anemometry, icing or 

uncharacteristic performance, the actual performance of the turbines can be seen, and 
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this can be compared to turbine manufacturer warranty data. By reviewing monthly 

power curves for each turbine for the duration of the operation of the wind farm, 

noting changes in power curve shape, power curtailments and any other 

uncharacteristic performance, specific turbines can be identified for further 

investigation. Additionally, after comparing the actual energy output to that predicted 

by the manufacturer, the revenue gains/losses can be calculated, which is of great 

interest to a wind farm owner. 

From the power curve study of turbines requiring further investigation, analysis can 

be carried out on the aforementioned KPIs, to establish the root cause of the 

performance change. However, in some cases, reviewing power curve plots does not 

highlight every performance issue. This current investigation will therefore cover 

other KPIs that are useful in highlighting performance changes. This report will 

discuss the procedure to calculate performance losses in energy and monetary terms 

from any significant performance changes seen in the research. 
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2 Operational Wind Turbines Overview 

  

When assessing the performance of a turbine, it is important to have a good 

understanding of turbine subsystems. This makes it easier to understand the way in 

which the data available in the SCADA system is interlinked and how it can be 

subsequently analysed to result in useful information for operators.  

In this section, an overview of turbine subsystems and some key factors in turbine 

design relevant to this project will be discussed. 

 

2.1 Turbine Subsystems 

 

Generally, all wind turbines work in the same way, by harnessing the power of the 

wind by converting aerodynamic lift generated by airflow over the blades to turn a 

shaft connected to a generator, which can convert the mechanical energy to electrical 

energy. There are differences between turbine design styles, including: 

• Blade orientation (horizontal/vertical) 

• Number of blades 

• Method of power control (stall/pitch regulation) 

• Rotor configuration (fixed/variable) 

Figure 2.1 shows a typical configuration of a commercial wind turbine, namely, a 

three bladed, pitch-regulated horizontal axis turbine, similar to the configuration of 

the turbines used to formulate the results presented in this thesis. 
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Figure 2.1 Typical Commercial Wind Turbine Subsystems Diagram, courtesy of Turbines Info [7] 

 

Most of the components of the turbine shown above are self-explanatory, however 

listed below are the key functions of some of the subsystems [8]: 

• Anemometer (Nacelle): Measures wind speed 

• Pitch Regulation: Twisting of the blades, changing the aerodynamic 

interaction with the wind, therein controlling rotor speed to regulate power 

output 

• Wind Vane: Measures wind direction and communicates with the yaw drive to 

rotate the turbine into the direction of the wind 

The nacelle anemometer sends wind speed data to a controller that controls the pitch 

actuation, to regulate power output. Wind speed measurements can be used in 

conjunction with average active power output to generate power curves, an important 

and useful tool for performance analysis.  

Pitch curve (wind speed v average pitch angle) analysis is an important KPI 

investigated in this project, as pitching correctly is related to performance [2]. The 

wind vane is an important component as it provides the data for the turbine to adjust 

yaw so that it is facing oncoming wind flow, for maximum power output. If the wind 

vane is misaligned, it can lead to a possible reduction in power and also fatigue the 



15 

structure, leading to losses in revenue from reduced, sub-optimal performance and 

downtime. 

 

2.2 Power Control 

 

Wind turbines are designed to operate over a range of wind speeds. Shown in Figure 

2.2 is a typical power curve, showing three distinct regions. The operating range is 

said to occur between the cut-in and cut-out speeds. At wind speeds in region I, the 

turbine is run at maximum efficiency to extract as much energy as possible [6]. In 

region II, the wind speeds are such that the turbine is able to reach its rated power. In 

region III, the turbine is controlled such that the energy extracted remains at the rated 

power. After the cut-out speed, the turbine will shut down as high wind speeds could 

damage the turbine. 

 

 

Figure 2.2 Wind Turbine Power Curve, courtesy of NI [6] 

 

In region III, the power output is controlled by either the stall or pitch regulation of 

the blades, in order to constrain it to rated power.  
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3 Performance Analysis Literature Review 

 

In the early stages of the project, a literature review was carried out to find which 

KPIs that effectively and efficiently identify sub-optimal performance of turbines 

would be of interest to investigate. Papers and conference presentations were 

reviewed of several industry leading consultancies, including GL Garrad 

Hassan[2][9][18], RES Group [11] and Sgurr Energy [19], to name a few.  

The aforementioned consultancies utilise data from similar SCADA systems for the 

analysis of turbines. From the literature reviewed, similar KPIs were suggested by the 

consultancies to be effective in identifying sub-optimal performance. Garrad Hassan, 

known to be the world’s largest renewable energy consultancy [20], provided the 

majority of the foundation knowledge required to develop the procedures presented in 

this research. No detailed methodologies were found in the literature review, for the 

likely reasons of the organisations wanting to protect their valuable information. 

However, the papers reviewed did highlight and give examples of what performance 

changes can look like in the KPIs chosen for study in this project. This provided 

sufficient grounding to develop the analysis in further sections of the report. 

As mentioned in the introduction, a power curve analysis study was carried out first. 

This method was found to be a commonly used tool to identify performance changes 

in turbines. Using Natural Power’s existing methods as a foundation, further 

methodologies were developed, revealed in Section 8. Subsequently however, the 

KPIs analysed were the development of new methodologies based primarily on the 

literature review carried out. 
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4 Data Acquisition & Analysis 

 

In the storing of large data sets, elaborate, robust and effective data management 

systems are required. In collecting years of operational wind farm data for multiple 

wind farms, millions and millions of rows of information are stored and so security 

measures for the protection of that data is also important. It is also required that 

analysts can efficiently retrieve the relevant data, to be able to carry out reporting to 

the wind farm owner/client, and also to carry out more detailed analysis like in this 

project. 

SCADA (Supervisory Control and Data Acquisition) is a system, which is used on 

wind turbines to monitor and acquire data, measuring all aspects of the turbine 

subsystems.  

Microsoft SQL Server is a relational database management system, which is used to 

create, read, update and delete data, sorted by rows and columns in tables. SQL 

(Structured Query Language) is a programming language used to manage the data in 

the database to carry out create/read/update/delete operations. The wind farm data 

used in this project was acquired and analysed using Microsoft SQL Server 2008 and 

SQL in unison. 

For the protection of the original data, a new database was set up for this project and 

the relevant data for each wind farm copied. This allowed full administrative rights 

over the data allowing appropriate manipulation of this data as required.  

In utilising data acquired from SQL Server, some data can be copied into Microsoft 

Excel and with the use of appropriate tools (for instance equation and graphing tools), 

it can be analysed. Additionally, Python is used to plot large data sets that Excel 

cannot handle. As Python is able to communicate and retrieve data from SQL Server 

databases directly, this allows for the automated generation of multiple plots. 

Windographer is an industry-leading tool for analysing wind resource data. By 

importing 10-minute data from an SQL database, it is simple to plot and manipulate 

data to provide useful results for analysis, rather than using manual plotting technique 

(like in Excel). Windographer was used in the KPI study to plot the parameters 

mentioned in the introduction. 
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5 Wind Farm Sites 

 

For the purposes of data protection, the name and specific location of the site from 

which data is used will not be disclosed in this thesis. However, it is the analysis and 

procedures developed in this investigation that is of value and these can be applied to 

any wind farm rendering the site specific details irrelevant.  

For clarity, the name “Wind Farm A” will be assigned to the wind farm used in this 

project. The wind farm is in the UK and some of its details are listed below: 

Wind Farm A:  

• 60 x 2.3MW turbines  

• Operational data available from August 2010 to June 2013 

o 2040 turbine months of data 

This specific wind farm was chosen to carry out a performance analysis study on for 

several reasons. It was important to pick a wind farm that had been operational for 2+ 

years in order to have extensive data for analysis, to enable potential performance 

changes to be found. This also offered the opportunity for the project to assess the 

potential for fatigue effects. With this wind farm housing 60 turbines, there were 

plenty of opportunities to be made between the turbines.  

Additionally, it is challenging to isolate performance issues due to any one parameter 

in the SCADA data, as quite often performance changes can be the result of the effect 

of multiple parameters. It is therefore important to pick a wind farm that has as few 

external factors affecting performance as possible, to give the best opportunity to 

make sense of performance changes without blurring the analysis. Wind Farm A was 

chosen as it is not subject to noise curtailments and shadow flicker curtailments.  
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6 Methodology of Analysis 

 

Developing the ideas discussed in the introduction, analysing power curves as a first 

port of call is useful in performance analysis [12]. As an existing method of analysis, 

reviewing monthly power curves for a turbine and noting any changes showing non-

standard behaviour can identify performance issues [2]. After filtering out any “bad 

data”, leaving only representative data points for the performance of the turbine for a 

given period, an operational power curve can be generated for that turbine, showing 

its actual performance, by averaging the active power output for a wind speed bin [10]. 

This is an important factor in the performance analysis study, because it compares the 

theoretical power attained from the operational power curves before and after a 

performance change is identified, and this allows for energy losses and therefore 

revenue losses to be calculated. This will be discussed more in detail in a further 

section on power curve analysis.  

A monthly power curve can be generated by obtaining the wind speed and the 

corresponding average active power for a 10-minute period, and by plotting wind 

speed v average active power output for every 10-minute record in a month [2]. Wind 

speed measurements should be corrected for air density to generate accurate power 

curves. In this study, it was assumed that applying this correction factor would not 

affect the aims of the project (to develop new methodologies of performance analysis) 

therefore to save time, the measured wind speed was used.  

A change seen in the power curve could be the result of a corresponding downtime 

event, and so by identifying the time period when the change occurred and consulting 

downtime alarm logs, it can be relatively straight forward to find the root cause of that 

performance change. However, the root cause of a change can sometimes be unclear. 

In some cases, no change can be seen by visually inspecting a monthly power curve 

however a change in another parameter during the same month could highlight a 

performance change. It is for this reason that it is important to analyse other 

parameters available in the SCADA 10-minute data available. This makes it more 

probable to find performance changes and identify the root cause of the change, as 

later sections in the report will discuss.  
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For each KPI analysed, the expected range and standard operation should be 

identified. This in turn allows the analyst to fully categorise non-standard operational 

events. The KPIs chosen for study have been identified from carrying out a literature 

review on analytical techniques for performance analysis of turbines [9] [11]. Following 

sections based on operational data analysed will detail the standard operation of the 

said parameter, also showing examples of changes in performance and how this 

translated to an energy loss. Firstly, the next section will cover an analysis carried out 

on the downtime of Wind Farm A over its entire operation. 
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7 Downtime Analysis Study 

7.1 Contribution to All Downtime 

 

When considering all downtime, three key relevant data sets were retrieved for all 60 

turbines belonging to Wind Farm A since the beginning of operation, as follows: 

 
1. Number of Downtime Events 

2. Duration of Events 

3. Duration of Time between Events 

 

The data retrieved from the SQL Database has previously been analysed by wind 

analysts producing monthly reports over the duration of operation. All downtime logs 

have gone through a quality control process, as it is the client who uses the downtime 

log reports as an important reference, for understanding the reasons why their ‘assets’ 

did not produce energy and what factors are responsible for those downtime events. 

Therefore, it was possible to retrieve the data from the database without the 

requirement for quality control.  

Using the three datasets listed above, the contribution of downtime made by each 

turbine is illustrated in Figure 7.1. The table below summarises the three turbines that 

contributed to downtime the most. Note that the duration between events should be 

maximised. 
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WTG Number of Events (Descending) % of 
Total 

16 793 2.31% 

34 756 2.20% 

6 733 2.13% 

WTG Total Duration of Downtime 
(Descending) (Days) 

% of 
Total 

18 97.1 4.97% 

3 72.6 3.72% 

35 67.7 3.47% 

WTG Total Duration between Events 
(Ascending) (Days) 

% of 
Total 

18 932 1.55% 

3 961 1.60% 

35 963 1.01% 

 

Table 7.1 Contribution to Total Downtime for Total Operation of Wind Farm A 

 
 

Table 7.1 shows that with regards to the total amount of downtime, Turbine 18, 3 and 

35 contributed most to downtime, respectively. These turbines reappear in the listing 

of duration between events, confirming that not only are these turbines contributing 

most to downtime, but also that the duration between events were relatively shorter.  

In the calculation of duration between events, there were some events that gave a 

negative duration, meaning that an event was logged for a turbine during a currently 

active one for that same turbine. This was considered an error and these two events 

were equated to zero. The error calculated from making these changes is negligible 

(0.00012%). 



 

 
Figure 7.1 Contribution to All Downtime Wind Farm A 
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Table 7.2 summarises the most occurring Alarm IDs (in bold) for those turbines that 

contributed most to the duration of downtime. Listed below the Alarm IDs are the 

comments that were flagged as contributing the most to that Alarm ID. Of all Alarm 

IDs, the Manual Stop Alarm ID contributed the most (23%) at Wind Farm A. The 

generically named Alarm ID is not very useful, so the top comments for that Alarm 

ID allow for the analyst to understand in more detail what specific events contributed. 

 

  Alarm ID (Most Occurring in Duration Order) 

WTG 1st 2nd 3rd 

18 

Manual Stop  
(1001) – 60 days 

Grd Inv Comm Error 
(13122) – 18 days 

LMU Alarm Overspeed 
(6101) – 7 days 

! Inspect and test 
transformer – 51 days 

! LMU (Line Matching 
Unit) fault - 1 day 

! Change parameters 
converter System – 1 day 

! Replace 230V-27.5V 
power supply unit A12 
cabinet – 1 day 

! Inspect and test 
transformer – 17 days  
 

! Replacement of TS18/2 
33kV switchboard – 1 
day 

! LMU error – 1 day 
! Remove and replace 

centre plate low speed – 
1 day 

! LMU fault – 1 day 
! Investigate fault in LMU 

over speed – 0.5 days 
! Replace IO board in A3 

panel - 0.5 days 

3 

Mainbreaker Cut Out 
(13106) – 12 days 

Remote Stop - Owner 
(1007) – 9 days 

Manual Stop (1001) – 9 
days 

! Replace trip unit on 
turbine – 5 days 

! Replacement of main 
breaker – 3 days 

! Main breaker related 
issues – 3 days 

! HV switching to restore 
part of array - 6 days 
 

! Grid transformer fault – 
1 day 

! Replacement of switch 
board – 1 day 

! Servicing related 
downtime – 2 days 

! 120 other downtime 
event contributions 

35 

Manual Idle Stop (1015) – 
18 days 

Manual Stop (1001) – 12 
days 

Brakepressue Too Low 
(9303) – 7 days 

! Check delta modules – 
14 days 
 

! Inverter fault – converter 
calibration & test – 4 
days 

! Electrical fault finding 
on delta modules – 4 
days 

! Replace hydraulic motor 
– 2 days 

! 93 other downtime 
event contributions 

! Replace hydraulic motor 
– 7 days 
 

 

Table 7.2 Most occurring Alarm IDs (duration) for top 3 turbines contributing to downtime for total 
operation of Wind Farm A (Alarm ID in brackets, duration of alarm ID downtime in days, rounded to 

the nearest day) 
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Overall, this analysis provides the starting point for identifying which turbines and 

downtime Alarm IDs to consider for further investigation.  

 

7.2 Contribution to Downtime – Turbine Category Only 

 

The above analysis considered all downtime, including Grid, Infrastructure and 

Environmental Categories.  In a similar method, the number of events, duration of 

events and duration between events was considered for the Turbine Category only, to 

assess what downtime was due to the turbine alone. This was important as 

manufacturers can be held responsible for energy not exported to the grid if it is due 

to unexpected problems with the turbines themselves. Even though current monthly 

reporting covers this information to account for lost energy due to turbine faults, one 

of the research objectives in this project is interested in the long term performance of 

the wind farm. Figure 7.2 illustrates the results for this analysis, along with Table 7.3 

summarising the top three turbines contributing to Turbine Category downtime 

below: 

WTG Number of Events (Descending) % of Total 

16 640 2.39% 

34 632 2.36% 

29 604 2.25% 

WTG Total Duration of Downtime 
(Days) % of Total 

35 59.9 5.56% 

34 57.3 5.32% 

9 44.3 4.11% 

WTG Total time between Events (Days) % of Total 

18 848.0 1.55% 

3 868.9 1.60% 

44 879.5 1.01% 

Table 7.3 Contribution to Turbine Category Only for Total Operation of Wind Farm A 
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Comparing these results to total downtime from the previous section, it can be seen 

that there are some similarities, however in the case of total duration, Turbine 35 is 

now the biggest contributor, with Turbine 34 and 9 following, respectively. In the 

case for number of events and time between events, the results have slighted changed, 

nevertheless, it is the duration of downtime that is of most interest. 

Again, similar errors were found with events being logged during already active 

events for that turbine, giving negative durations. These entries were equated to zero. 

The error was found to be 0.001%, which can be considered as negligible. 

Table 7.4 on the following page lists the top Alarm IDs for turbines that contributed 

most to downtime for the Turbine Category alone. As discussed previously, because 

the Alarm ID names are often generic, the top event comments contributing to that ID 

are listed too. 

Overall, this procedure provides a useful tool for knowing which factors related to the 

turbine subsystems affect downtime the most. Further investigation could be carried 

out to improving the efficiency of the turbines by preventing the most significant 

events occurring in the future. 
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  Alarm ID (Most Occurring in Duration Order) 

WTG 1st 2nd 3rd 

35 (in 

previous 

table) 

Manual Idle Stop (1015) – 

18 days 

Manual Stop (1001) – 12 

days 

Brake Pressure Too Low 

(9303) – 7 days 

! Check delta modules – 
14 days 
 

! Inverter fault – converter 

calibration & test – 4 

days 

! Electrical fault finding 
on delta modules – 4 
days 

! Replace hydraulic motor 
– 2 days 

! 93 other downtime 
event contributions 

! Replace hydraulic motor 
– 7 days 
 
 

34 

DC Fuse Blown (13110) – 

21 days 

Manual Stop (1001) – 11 

days 

Brake Pressure Too Low 

(9303) – 10 days 

! Replacement of delta 

modules – 21 days – 5th 

Dec 2010 

! Delta module 

replacement – 4 days – 

26th Dec 2010 

! 157 other downtime 

event contributions 

! No comments found   

9 

Manual Stop (1001) – 17 

days 

Manual Idle stop(1015) – 

13 days 

Remote Stop – Owner 

(1007) - 8 days 

! Generator related 

problems – 3 days 

! Fault in a12 cabinet – 2 

days 

! Replacement of 

generator – 2 days 

! 78 other downtime event 

contributions 

! Generator replacement – 

11 days  (related event 

to manual stop 

downtime) 

! HV switching to restore 

part of array 

(infrastructure related 

downtime) - 6 days 

 

Table 7.4 Most occurring Alarm IDs (duration) for top 3 turbines contributing to turbine downtime 
for total operation of Wind Farm A (Alarm ID in brackets, duration of Alarm ID downtime in days, 

rounded to the nearest day) 
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7.3 Contribution to Downtime - Turbine Only - Split by Category 

 

The analysis carried out to create Figure 7.3 below is useful in determining which 

specific Turbine Categories contributed to downtime for each turbine on the wind 

farm.  

This figure shows specific downtime in seconds, unlike any of the other figures 

displayed in this section. This is required in this specific analysis, to give an accurate 

illustration of the categories contributing to downtime, rather than a relative 

distribution. Additionally, it can be seen that this graph is essentially the same as the 

green dataset (duration) from Figure 7.2 however broken up by category.  

By using the information that is known from the analysis in the previous section that 

Turbine 35, 34 and 9 had the most amount of downtime attributed to the Turbine 

Category, this further analysis can show that for Turbine 35 and 34, that downtime is 

mainly due to the Electrical System. When retrieving data from the database the 

Alarm ID duration for Turbines 35 and 34 associated with the Electrical System 

alone, it is evident that all the time was due to a Manual Idle Stop and DC Fuse 

Blown, respectively, meaning that the those two Alarm IDs can be attributed to 

Electrical System faults, as might be expected. For Turbine 9, it is an unlogged 

manual stop that is attributed to the Alarm ID (which happens to be called Manual 

Stop). The uninformative manual stop alarm ID can be investigated further by 

reviewing work order comments in the downtime log, as completed in Table 7.4 

above. 

Overall, this procedure allows the analyst to hone in on what specific Turbine 

Categories affect turbines with extensive downtime and connect Turbine Categories 

with specific Alarm IDs. 



 

Figure 7.3 Contribution to Downtime – Turbine – Split by Turbine Category Wind Farm A 
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7.4 Contribution of Downtime per Turbine Category 

 

Instead of analysing each turbine and plotting the relevant data, it is useful to see the 

distribution of Turbine Category downtime to understand what subsystems of a Turbine 

contribute to downtime the most. 

In Figure 7.4, the duration of downtime and the number of events are plotted for each 

Turbine Category. The figure is sorted by duration of downtime, showing that the Electrical 

System Category has contributed the most to downtime for this wind farm over its operation. 

It is of interest to note the number of events alongside the duration to identify whether a 

period of downtime is due to several shorter events or longer less occurring events. This 

information could be useful in the planning of upgrades to subsystems of the most 

problematic turbines.  

Even though the scheduled maintenance and cable unwind Turbine Categories are 

unavoidable and necessary downtime events for any wind turbine, they have been plotted to 

show what duration they take up relative to the other categories. Since scheduled 

maintenance is the second biggest contributor to downtime, it could be the topic of a separate 

investigation to ensure this procedure is carried out efficiently and effectively. 

It should be noted that the Turbine Category ‘OK’ was set to equal 0, to allow the graph to 

represent the categories that were detrimental to energy generation. For the majority of the 

time the turbines are operational, therefore the duration of the ‘OK’ Turbine Category is 

significantly larger than any of the other categories.  

If this analysis were to be carried out on every turbine across multiple sites, it would be 

beneficial to compare the performance of one wind farm to the results found across multiple 

sites. This would be useful for a wind farm owner who owns multiple sites, or a consultancy 

for assessing the downtime of a site in comparison to others.   
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7.5 Summary 

 

Firstly, turbines were identified from Wind Farm A that contributed to downtime by 

duration, number of events and duration between events. For those turbines 

contributing to downtime the most, the corresponding Alarm IDs and work order 

comments were identified, showing the cause of downtime.  

Secondly, the downtime was analysed for the turbine and its subsystems only, making 

it clear which turbines had more downtime due to technical issues associated with the 

turbine alone. By organising this analysis according to turbine category, the specific 

components/factors affecting downtime for those turbines could be identified. Again, 

these categories could be associated with an Alarm ID, to hone in on the root cause of 

the overall downtime. 

Finally, the Turbine Categories were analysed to show which turbine subsystems 

contributed to downtime the most for all turbines over the entire operation of the wind 

farm.  

This analysis allows the wind analyst and client to identify which turbines have been 

most detrimental to energy generation and forms an important element in the overall 

performance analysis investigation. 
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8 Power Curve Analysis 

8.1 Overview 

 

As previously discussed, it is important to identify the standard operation of the 

performance indicator to be able to identify when a change occurs. In Figure 8.1, a 

power curve is shown for a turbine during one month’s normal operation, plotted by 

running a python script that retrieves the required data from MS SQL Server. Each 

blue point represents one record for a 10-minute period. It should be noted that a 

specific filter is applied to specifically plot records that have a full 10-minute 

duration, so that erroneous records and downtime is not plotted. The red line is the 

warranted power curve, supplied by the manufacture, giving the estimated 

performance of the turbine that is taken from wind tunnel testing under specific 

conditions [13]. 

It is normal for the general trend of the operational data to be offset to the left of the 

warranted power curve. This is due to the wind speed being measured behind the 

rotor, normally at the back of the nacelle, so the wind speed recorded is marginally 

less for the corresponding active power measurement at the rotor. 

 

Figure 8.1 Monthly Turbine Power Curve  – Normal Operation 
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In Figure 8.2 below, two examples of monthly power curves for a turbine show 

apparent changes in performance. The power curve on the left shows an example of 

bad data (the data circled in red), which can be due to faults in the measurement, or 

faults with the turbine system(s). In this particular plot, when looking at the 

corresponding month in the downtime alarm logs, it was found that there was some 

downtime for diagnosing a potential problem with the hydraulic pitch system. It 

would need to be investigated exactly when in the month this bad data occurred to 

ensure that the root cause of the bad data seen is due to the hydraulic pitch system 

downtime, nevertheless the purpose of discussing this particular power curve is to 

highlight how bad data can appear on a power curve. In the right hand power curve, 

the highlighted area shows an example of power curtailment, which is when the 

turbine is forced to de-rate its performance, to perhaps control power output to the 

grid for supply-demand matching. 

 

Figure 8.2 Monthly Power Curve Examples of Bad Data and Curtailment, respectively 

 

As discussed previously in the methodology of analysis, for each monthly power 

curve plot, any bad data or curtailment needs to be filtered out, in order to be able to 

generate an accurate operational power curve for each turbine. This in turn will affect 

the accuracy of the theoretical power values calculated. The theoretical power is the 

calculated theoretical value for active power output from the operational power curve, 

for a given wind speed.  

Filtering out uncharacteristic performance data for 34 months of operation for 60 

turbines (2040 plots) is a time consuming process and so a simple filtering tool was 

developed for this filtering process, discussed in the next sub-section. 
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8.2 Power Curve Filtering Process 

 

Filtering of data is carried out by applying SQL queries to the database table of 

operational data to attribute data outside defined limits to be excluded from 

characteristic operation. In this case, a column was added in this table called “filter 

bad data” and any data to be filtered was assigned the value 0 in this “filter bad data” 

column. The data left to be included in calculating theoretical power and generating 

operational power curves is assigned the value 1 in the “filter bad data” column. For 

efficiency, by plotting the data for the entire operation for a turbine and filtering out 

uncharacteristic performance, all monthly power curves plotted by default became 

filtered.  Two methods were used in this filtering process, detailed below. 

 

8.2.1 Filtering by Warranted Power Curve 

 

Since the general trend of data points are offset to the left of the warranted power 

curve for most of the turbines at Wind Farm A, for any data points to the right of the 

warranted power curve (which are probably not part of the trend), a mathematical 

query to assign those data points to be attributed to 0 in the “filter bad data” column 

can be carried out. This is done by selecting data points that are less than ~90-99% of 

the warranted power curve.  

Figure 8.3 shows an example of three iterations carried out to filter out 

uncharacteristic data by attributing data that is less than percentage of the warranted 

power curve to be equal to 0 in the “filter bad data” column. When filtering, the 

analyst must be careful not to select data that is part of the trend, so the 1st iteration 

was carried out from 0-11m/s at 95%, the 2nd iteration from 11-14m/s at 97% and the 

3rd iteration from 14-25m/s at 99% to filter out the rest of the data.  
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Original 

 
1st Iteration 

 
2nd Iteration 

 
3rd Iteration 

 

Figure 8.3 Power Curve Filtering Iteration using Warranted Power 

  

8.2.2 Filtering by Standard Deviation  

 

It is difficult to precisely know what percentage to the left of the warranted power 

curve that the general trend ends, to be able to capture the data points to be filtered 

accurately. Data can be selected by choosing above/below a certain wind speed and 

above/below a certain active power to be filtered, however this is very time 

consuming. Therefore, a tool based on standard deviation was developed to cater for 

this. By selecting data by small wind speed bins and calculating the standard deviation 

for that bin, data outside 2-4 standard deviations outside those limits is easily selected 

as uncharacteristic data and can be filtered out. An Excel tool was developed to 
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visually show the points being selected and a corresponding SQL query was used to 

execute the calculation to filter out the data in the database. The Excel tool was 

important in this process to ensure that data inside the general trend was not selected, 

because if the query was run in the database to filter out that characteristic data, the 

standard deviation of those points within that bin changes and so it would be difficult 

(not impossible) to attribute the wrongly filtered data back to being part of the trend. 

Nevertheless, this tool saved a great deal of time in the filtering process. Using a 

similar tool or developing this one further is essential for carrying out performance 

analysis on other wind farms, especially with wind farms growing in size (US & 

Offshore) [1]. An example below in Figure 8.4 shows the iterations continued from 

Figure 8.3 to complete the filtering process for this turbine for its entire operation. 
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1st Iteration 

 
2nd Iteration 

 
3rd Iteration 

 
4th Iteration 

 
5th Iteration 

 
Final Filtered Power Curve (entire operation) 

Figure 8.4 Power Curve Filtering Iterations based on Standard Deviation Tool 
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8.3 Operational Power Curve 

 

After completing the filtering process for all turbines, an operational power curve can 

be generated for each turbine. This can be achieved by running a code on the 

operational data to calculate the average active power for each wind speed bin over 

the entire operation. Figure 8.5 shows the generated operational power curves plotted 

for T1-T5 as an example. The warranted power curve is also plotted to show the 

comparison in operational performance to the manufacturer’s power curve.   

 

 

Figure 8.5 Operational Power Curve T1-T5 Wind Farm A 

 

Operational power curves can be used to compare the performance of turbines against 

each other. Additionally, operational power curves can be plotted on a wind direction 

basis. Figure 8.6 below shows the operational power curves for T1 on a 30° basis (12 
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sectors), again with the warranted power curve plotted as a reference. Plotting by 

sector is useful in identifying if performance changes are due to the turbine operating 

in any particular sector.  

 

Figure 8.6 Sectorwise Operational Power Curve T1  

 

As previously discussed, plotting operational curves is an important process of 

performance analysis as this step leads into calculating theoretical power, discussed in 

the next section. 
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8.4 Theoretical Power 

 

After calculating the operational power curve for each turbine, a code can be run on 

the 10-minute operational data to calculate the active power output that could 

theoretically be generated based on the operational power curve for that turbine. This 

is denoted as the theoretical power. 

Theoretical power can be used in calculating the energy loss/gain from a performance 

change. When calculating the operational curve values for each turbine as carried out 

in the previous section, the data from the entire operation of the turbines are used. 

However, if the time of change of the performance of a turbine is known, then an 

operational power curve can be generated for the operation before the change and 

after the change. From this, the theoretical power for each 10-minute value can be 

calculated based on both operational power curves for the entire operation of that 

turbine. Therefore, by comparing the theoretical power between the two different 

operational curves after the performance change occurred, the theoretical energy loss 

can be calculated. By applying a £/MWh rate to this energy lost, the consequence of 

the performance change in a financial context can be obtained. An example of this 

methodology will be developed in further sections. 

 

8.5 Summary 

 

Power curve analysis is a key factor in performance analysis of wind turbines. By 

noting changes in power curve characteristics, most but not all performance issues can 

be found. By correlating any changes with downtime alarm logs, the root cause of 

events can in most cases be identified.  

It is from power curve analysis that leads performance changes to being 

contextualised into energy loss/gains and hence revenue loss/gains.  

Finally, this analysis leads into other studies and even in studying other KPIs, 

referring back to the power curve is important in building up the entire picture when 

diagnosing a performance change. The analysis carried out in this section is from 
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carrying out existing techniques, adding the filtering process as a new tool for time 

saving. The following sections on other KPIs are developing new methods of analysis, 

having identified these KPIs in the literature review to be of benefit for performance 

analysis. 
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9 Energy Ratio 

 

The energy ratio KPI relates closely to power curve analysis and is a relatively quick 

tool for performance analysis. The energy ratio is simply the active power divided by 

the theoretical power. Since active power records from the SCADA system are in 10-

minute periods, active and theoretical power values should be divided by 6 to convert 

the power units into energy units (kWh). In this case no difference is made to the 

results, as it is the ratio that is of interest. Figure 9.1 illustrates an example of the 

energy ratio calculated for a selection of turbines at Wind Farm A on a monthly basis 

for the operation of the wind farm.  

 

 

Figure 9.1 Energy Ratio Wind Farm A (Selection of Turbines) 
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2012 is seen to have a lower energy ratio than the other selection of turbines plotted. 

When reviewing the corresponding power curve for this month, this relative 

performance decrease is not easily identifiable.  This issue requires further 

investigation to find the root cause as it is not clear if any downtime event has 

contributed to this change. This case shows an example of an event found relatively 

simply that went unidentified from the power curve analysis. 

Using the energy ratio could also become a useful tool in assessing the performance 

of the turbines over a long period of time (years), with regards to the deterioration of 

turbines that are deterring due to fatigue.  

Overall, this KPI is a useful representation of showing performance of the turbines. 

This analysis can highlight turbines in periods of poor performance that power curve 

analysis cannot. However, using power curve analysis and downtime logs alongside 

the energy ratio KPI is useful in confirming performance changes identified. The 

analysis is quick to implement and it would be relatively simple to automate an 

energy ratio plotting tool into monthly reporting of turbine performance.  
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10 Wind Vane Misalignment 

 

When plotting wind speed against KPIs (power, pitch, rotor speed etc) changes in 

performance found can be due to the turbine having a misaligned wind vane. This is 

because if the wind vane is misaligned with the turbine, the measured wind direction 

will be offset to the actual yawed position of the turbine. This will manifest in any 

parameter plotted against wind speed as the turbine will be not be pointing in the 

correct direction.  

Plotting the measured wind direction against a neighbouring turbine or a 

meteorological reference mast is a good way to check if a turbine has a misaligned 

wind vane. When correlating the wind direction of turbines, the analyst has to be 

careful that the wind direction data is correct. At Wind Farm A, some turbine 

correlations showed offsets of more than 100°. This is more likely due to a correction 

factor not being implemented on the data, rather than a misaligned wind vane. Of the 

analysis carried out, an example of a misaligned wind vane was not found. 

Figure 10.1 below shows an example of a turbine having a misaligned wind vane, 

offset by 30°, resulting in an estimated loss of €150,000 per year [9]. Misaligned wind 

vanes can also increase the fatigue affects on the turbine, and therefore can effectsthe 

long-term performance of the turbine [14]. 

 

Figure 10.1 Example of Misaligned Wind Vane, courtesy of Garrad Hassan [9] 
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It is therefore of great important to ensure that turbines have well aligned wind vanes. 

This can be achieved by using advanced technologies, like LiDAR [15][16].  Moreover, 

if performance changes are identified in other KPIs, it should be checked if the 

change is due to a misaligned wind vane, before moving forward in investigating 

other possible root causes.  
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11 Pitch Curve Analysis 

 

11.1 Overview 

 

This section will detail how analysing the pitching of the blades of a turbine can 

identify performance changes. In a similar methodology to power curve analysis, it is 

important to identify characteristic operation of the parameter of study. Figure 11.1 

shows a monthly pitch curve (winds speed v pitch angle) and represents standard 

operation for this specific turbine manufacture. The pitch angle is calculated by 

averaging the angles of the three blades. The plot was exported from Windographer. 

 

Figure 11.1 Monthly Turbine Wind Speed v Pitch Angle Curve  – Normal Operation 

 

In a similar fashion to the power curve analysis, changes in characteristic operation in 

monthly pitch curves can be noted and for any significant changes, further 

investigation can be carried out. Analysis was carried out on a cluster of 15 turbines at 

Wind Farm A to find performance changes in the pitch curve. In this section, one 

example of a change in pitch characteristics is discussed.  
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11.2 T30 Pitch Curve Characteristic Change 

 

The example in question is a change in the pitch curve observed during November 

2012 for T30. Figure 11.2 below shows that a step change occurred during this month, 

highlighted by the arrows pointing to the step change in the trend.  

 

Figure 11.2 Step Change Observed (wind speed v pitch angle) T30 November 2012 

 

The corresponding power curve for this month for T30 shows a move of the trend to 

the right compared to normal operation and more of a scatter of data. Apart from this, 

the power curve does not reveal much more about this performance change, shown in 

Figure 11.3. 
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Figure 11.3 Power Curve T30 November 2012 

 

The next step in diagnosing this performance change is to identify when specifically 

in the month that the change occurred. This information can be useful in identifying if 

any particular downtime event that may have caused the step change. After some 

investigation, the following analysis in Figure 11.4 shows that the change occurred on 

21st November 2012 and thereafter, the new mode of operation commenced.  
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Figure 11.4 Pitch Curve T30 November 2012 – Identifying period of change 

 

After consulting downtime logs, it was found that on 21st November, a transformer 

was replaced in the A2 cabinet, which is part of the control system. It can therefore be 

assumed that this event is related to this performance change. It is then of interest to 

ascertain whether the change returned to normal operation or if this is a new 

operation. In this case, from 22nd November 2012 to the end of May 2013 (the latest 

operational data available), the pitch characteristics remained in the new operation. 

Therefore, with this new operation, the next analysis carried out was to identify what 

the energy losses/gains were as a result of this change. Before this, it is important to 

check that this performance change is not due to a misaligned wind vane, which the 

next subsection will discuss.  
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T30 Wind Direction Study 

 

To rule out that the pitch change was not due to a misaligned wind vane, Figure 11.5 

shows that a direct correlation between T30 and T29, a neighbouring turbine, is 

similar before and after the change occurred. For the red data points (T30), the 

majority of the records are between 180° and 360°. This is simply due to a prevailing 

westerly wind direction. 

 

Figure 11.5 T30 v T29 Wind Direction Correlation 

 

11.3 Consequence of Pitch Characteristic Change 

 

Having identified the date of change in the pitch curve and checking that the change 

was not due to a misaligned wind vane, the energy loss/gain can be calculated.  
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of T30 after the pitch change is offset slightly to the right of the operation before the 

change.   

 

Figure 11.6 Operational Power Curve T30 Before/After Pitch Change on 22nd Nov 2012 

 

The next step is to calculate the theoretical power values for the wind speed data after 

the change, based on both operational curves. Then by taking the difference between 

the total theoretical power available for the duration after the pitch change, the energy 

loss/gain can be calculated. The theoretical power is divided by 6 to convert the 10-

minute average power values into kWh energy units.  

 

!Σ!!ℎ!"#!$%&'(!!"#$%!"#$!!"!!"6 − !!Σ!!ℎ!"#!$%&'(!!"#$%!"#!!"!!"6  

where “op pc” = operational power curve 
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111MWh of energy could have been generated from November 2012 to May 2013. 

This counts for a 2.78% decrease in performance over the 6 month period. 

If the price of energy sold to a utility is £75/MWh, which is an estimate taken from an 

energy marketing website for UK (bmreports.com), the estimated loss in revenue is  

£8,300 over the 6 month period analysed after the change.  

 

11.4 Summary 

 

Analysing pitch characteristics is very useful in identifying performance changes in 

turbines. For the example with T30 discussed in this report, the power curve for when 

the performance change occurred did not give any indication of what the root cause 

may be. By plotting wind speed v pitch angle, it was possible to find the root cause 

and calculate the loss in energy due to the change.  

It should be noted that in calculating the energy loss from the change, it had to be 

checked that no other performance issues developed, so that the loss in energy 

calculated was a true representation of that one change found and not an 

amalgamation of a number of changes in performance. 

To ensure that the procedure carried out in this section is replicable, similar methods 

were carried out on another cluster of turbines at Wind Farm A, and several 

performance changes were flagged.  
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12 Rotor Speed Analysis 

 

In this section, rotor speed is investigated to identify performance changes at Wind 

Farm A. Figure 12.1 below shows a plot of rotor speed v active power for a month 

and represents normal operation.  

 

Figure 12.1 Monthly Turbine Rotor Speed v Active Power Curve  – Normal Operation 

 

When reviewing monthly rotor speed curves, a small change was found in September 

2011, as highlighted in Figure 12.2 below.  

 

Figure 12.2 Rotor Speed v Active Power T28 – Change observed September 2011 
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Further investigation was carried out to identify the specific date of change. It was 

found that the date of change corresponded with a downtime event, which was a 

software update carried out on all 60 turbines. This change was not observed when 

reviewing the corresponding power curve, however when plotting wind speed v rotor 

speed, the performance change can be seen, shown in Figure 12.3.  

 
Before Software Update 

 
After Software Update 

Figure 12.3 Monthly Wind Speed v Rotor Speed before/after software update 

 

12.1 Consequence of Software Update 

 

To calculate the energy loss/gain from this software update, the same procedure as in 

the pitch curve was carried out. 

The energy difference was estimated to be 16MWh for the 20 months following the 

software update for T10. On a yearly basis, that energy loss converts to 

£720/year/turbine based on a £75/MWh rate.  

Even though the downtime logs showed that all 60 turbines received the software 

updates, it was 24/60 turbines that the change in rotor speed plot was observed. So 

even though the loss in energy due to the software update was calculated to be a 

0.33% annual performance decrease, when multiplying by 24 turbines, losses are 

calculated to be £17,000/year. 
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12.2 Torque Characteristics 

 

During initial research in this project, it was found that software updates can have an 

affect rotor torque characteristics [2].  No changes were seen in any of the turbines at 

Wind Farm A when reviewing torque v active power plots, hence why it was not 

included as a section in this report. However, it is important to mention in this section 

that if in the future, a software update is seen in the downtime alarm logs, both rotor 

speed and torque parameter should be checked, as the software update may affect 

both. According to a study carried out by Garrad Hassan [2], a software update 

affecting torque characteristics gave an energy loss of approximately 1% on an annual 

basis, resulting in a substantial impact on the financial performance of the project. 

Figure 12.4 shows how the torque curve changed. The report reads that only a very 

subtle change was observed in the power curve, which may have left the issue 

undetected for a long period of time.  

 

Figure 12.4 Rotor Torque v Power performance change due to software update, courtesy of Garrad 
Hassan [2] 
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12.3 Summary 

 

Of all KPIs investigated in this project, the software update downtime event appeared 

to affect only rotor speed. When plotting wind speed v generator speed and generator 

speed v active power, a similar change was observed. This should be expected as the 

generator and rotor are directly connected by a shaft and gearbox, so the only 

difference is the scale (generator rpm is higher than rotor rpm). 

The purpose of the software update was unknown and so if this was investigated 

further, a better understanding of effects rotor speed could be gained. If a software 

update is found in the downtime logs in the future, investigating both rotor speed and 

torque proves to be useful in identifying any performance changes. 
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13 Discussion & Conclusions 

 

The research carried out during this project resulted in the successful development of 

existing procedures to assess operational wind turbine performance, making use of 

available SCADA 10-minute data and downtime logs. The procedures carried out 

have aided Natural Power to identify many changes found in the performance 

characteristics of turbines at Wind Farm A, previously unidentified. The framework 

established in this research can be further developed to apply to other wind farms. 

This section will summarise the key findings of the analysis carried out during this 

project and will discuss the development and challenges for performance analysis of 

wind turbines. 

 

13.1 Downtime Study 

 

Carrying out a downtime analysis was useful in analysing the reliability and 

performance of the turbines at Wind Farm A. Analysing one wind farm’s downtime 

would not act as a benchmark to compare to another site, however developing this 

new tool further could contribute towards a future benchmarking application, if the 

analysis was carried out over multiple sites. However, in order to compare the 

duration of downtime and number of events to another site, common themes would be 

required. For example, only the same turbine manufacturers could be compared. 

Additionally, correlation factors would need to be built into the tool to account for 

varying wind distributions across sites. Moreover, it would be relatively simple to 

compare the analysis of turbine categories across different sites, discussed in Section 

7.4 (p31). The downtime study was not used in the KPI analysis using the 10-minute 

SCADA data, and so it can be said that this is a separate analysis. 
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13.2 KPI Study 

 

Investigating power curve characteristics proved to be a very useful parameter in 

analysing the performance of turbines. Many performance issues were flagged by 

reviewing monthly power curves. Additionally, by using wind speed, active power 

and the warranted power curve data, the energy loss/gains from any performance 

change could be calculated. However, resorting to reviewing power curves alone did 

not highlight all performance issues, hence the requirement to take full advantage of 

all the data available from the SCADA system to analyse other parameters.  

From reviewing monthly wind speed v pitch curves, many changes in performance 

were flagged. T30 was a good example of how analysing the pitch curve allows for 

the analyst to identify the root cause by finding the date of change and consulting 

downtime alarm logs. T30 was chosen as an example as the root cause was found and 

no other changes in performance in other parameters were observed, so the process to 

calculate the energy loss was straightforward. Often, there are not corresponding 

downtime events for observed changes in performance. Also, work order comments 

are not always included, giving less context to the downtime log. To investigate any 

flagged changes would require consultation with the wind farm manager.  

In investigating the rotor speed parameter, the only change that was seen was as a 

result of a software update. Generator speed is related to rotor speed, with a higher 

order of magnitude of rpm, so the change can be seen in generator speed plots too. If 

another software update is carried out on the turbines, it is important to monitor 

rotor/generator speed. Along with this, rotor torque should be monitored, as software 

updates have been found to affect torque [2]. Even though the energy loss calculated 

was relatively small, because the loss can be multiplied across multiple turbines, the 

losses can accumulate to become significant.  

 

13.3 Developing an Automated Algorithm to Detect Performance Changes 

 

With an objective to formulate the interconnectivity between the KPIs to develop an 

automated algorithm to detect sub-optimally performing turbines, it was found that 
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events identified which highlight poor performance are directly related to the type of 

fault. Therefore, to have a system that can detect any type of fault, a complex 

algorithm to check multiple KPIs simultaneously, rather than a linear procedure 

would be required. 

 

13.4 Challenges of Data Analysis  

 

In this project, getting from the raw data acquired from the SCADA system to useful 

results required a significant amount of time and effort. Data was analysed using a 

mixture of Python code, Excel and Windographer. To repeat such a study for another 

wind farm, the framework developed from this project should be used to develop an 

automated process to carry out many of the time intensive procedures, e.g. power 

curve filtering.  

Importing the SCADA data into a relational database software tool like SQL Server is 

good as it provides quick access to all the data in a logical way, however good 

understanding of SQL and the way the data is built up in the database is required, 

which comes with time and experience.  

The SCADA systems that provide the raw data for analysis are not standardised 

between wind turbine manufacturers. Therefore, if this research was to be repeated at 

another wind farm consisting of a different turbine manufacturer to that at Wind Farm 

A, it would be challenging for the analyst to understand the data and prepare it for 

analysis. Additionally, if the framework developed in this research to assess wind 

turbine performance were coded to have an automated software tool, the 

representation of data from SCADA would have to be considered for each wind 

turbine manufacturer. As the wind farm industry grows, so do the databases that store 

the information; it is becoming more important to assess the current structure and lack 

of standardisation of SCADA data. To show how current this aspect of performance 

analysis is, a conference organised in Hamburg, Germany for Late September 2013 

has a workshop dedicated to discussing data management and standardisation of 

SCADA [17]. 
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14 Future Work 

 

Due to time constraints during this investigation, there are several areas of research 

that could be conducted to continue the development of a performance analysis tool.  

 

14.1 Downtime Analysis 

  

As mentioned earlier in the report, carrying out a downtime analysis on multiple sites 

and using that as a benchmark to compare to single sites would prove useful in the 

analysis of sites. When considering duration of downtime and number of events, the 

tool would need to ensure that the same type of turbine from the same manufacturer 

are compared. 

 

Scheduled maintenance was found to be a large contributor to downtime. It could be 

the topic of a separate investigation to ensure that downtime for maintenance is 

carried out efficiently and effectively. A consultancy managing multiple sites may be 

able to assess the efficiency of external maintenance companies.  

 

14.2 Automation 

 

The findings of this project were as a result of the development of a new methodology 

to assess wind turbine performance. The procedures were executed manually, which 

was an ineffective and time consuming process, but a necessary one to develop the 

framework. For these findings to be of maximum benefit to a renewable energy 

consultancy like Natural Power, who manage multiple wind farms, the procedures 

would need to be developed into an automated software tool. The tool would ideally 

run an algorithm through the 10-minute SCADA data to automatically detect faults so 

that they can be dealt with immediately after the event is detected. Garrad Hassan 

make use of Changepoint Analysis for the automatic monitoring of turbine 
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performance analysis [2]. Such a system used on large datasets is computationally 

intensive, however as computer power becomes more affordable, it would be 

beneficial to develop a robust tool that can handle growing databases. 

Additionally, developing the power curve filtering algorithm to become automated 

when monthly data becomes available would save considerable amount of time for 

generating operational power curves. 

 

14.3 Other Performance Monitoring Research 

 

This research focused on analysing 10-min operational SCADA data. However, other 

SCADA-based data is available which would be useful for condition monitoring, 

including temperatures of turbine subsystems, voltages/currents and high frequency 

vibration data. Garrad Hassan in a paper presents how the monitoring of gearbox 

temperatures at high frequency to predict performance changes can be beneficial for 

flagging turbines with developing performance issues [18]. Developing a similar tool to 

prevent faults before they occur would be of great benefit both to a consultancy to 

offer the service and of course to a wind farm owner who could likely save money 

due to unnecessary downtime.  Such research was beyond of the scope of this project, 

however to be able to develop a system that integrates not only 10-minute SCADA 

data but data of other frequencies would be valuable. 
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