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Abstract

This thesis examines the growing problems surrounding the supply and demand of electric
power in the UK, brought on by the structure of the power markets and the increasing move
towards renewable generation as fossil based fuels become unavailable or unacceptable. The
objective of the report is to propose a restructuring of the UK electric marketplace on the
demand side, so that arbitrage returns. This will stabilise wholesale electricity prices,
increase the reliability of the electrical network, and promote an attitude of efficiency and

awareness in consumers.

A comprehensive software model has been produced. This is used to examine different
scenarios of future energy use, renewable generation, real-time pricing and embedded
electrical storage. The findings of this analysis are that demand response via real-time
pricing is a more effective method of managing supply and demand than by attempting to
provide additional amounts of generation capacity to cover winter demand peaks. The
benefits occur not only in the capital expense required, but also in the resulting security of
supply, average energy prices to the customer, and saleable load factor of existing plant
capacity. It is also found that real-time pricing in conjunction with conservative estimates of
demand elasticity provides a much better match between supply and demand than any
implementation of embedded energy storage achievable at reasonable cost and technical

complexity.
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Introduction

This thesis examines the growing problems surrounding the supply and demand of electric power in
the UK, brought on by the structure of the power markets and the increasing move towards
renewable generation as fossil based fuels become unavailable or unacceptable. The objective of
the report is to propose a restructuring of the UK electric marketplace on the demand side, so that
arbitrage returns. This will stabilise wholesale electricity prices, increase the reliability of the

electrical network, and promote an attitude of efficiency and awareness in consumers.

Reliable and sustainable energy supplies are crucial to the economic and social development of
both present and future generations. Our agricultural, industrial, service, communication, leisure
and domestic activities depend more than ever on a consistently available supply of energy. The
structure of the electrical power market in the UK is not well suited to ensure this reliable supply,
however. The wholesale price of electricity changes half-hourly, but the prices charged to
consumers are largely independent of time, weather conditions, demand levels and available
supply. Without any incentives to customers to modify their behaviour, the only reason that
blackouts do not occur presently is that the vast majority of available generators are controllable
to meet the expected demand, while the population as a whole is large enough to be fairly

predictable in its behaviour.

Electricity can be stored but it is expensive and difficult at large scales. From a network

perspective, the vast majority of electricity must be generated and consumed concurrently.

The supply and demand situation is changing, however. Record low average wholesale real prices of
electricity purchased from the privately funded generators combined with regulation from Ofgem
which limits sale prices to customers means that generators can be unwilling to continue business if
return on investment is below average stock market returns. This effect has occurred in the UK in
recent years, leading to generators being mothballed or cannibalised for spare parts. A mothballed
generation plant can take many months to re-commission. A lack of on-demand generation lowers
the margin between expected peak winter demand on cold snowy days and the total available
supply. If demand exceeds available supply, there are very few measures that the UK transmission

and distribution companies can take, and a blackout will likely occur.

Even more significantly, renewable generation is gradually providing a greater and greater share of
our electricity. Much of the renewable power generation is weather dependent: wind speed, wave
heights and sunshine will determine the amount of power available for generation at any instant in
time. This means that, if renewables are to provide a significant proportion of our UK electricity,

there are four options available to us, if we are to maintain a security of supply:-



1) A vast oversupply of renewable generation must be provided in the UK so that at the
worst case weather conditions for both generation and demand, there is always
enough power. Typically, the average achievable Load Factor' over a whole year for
PV generation in the UK is 20% or less, and for wind turbines is about 30%, assuming
that all power generated can be used. This implies that if wind and PV were major
sources of energy, we would need at least a 3x overbuild of peak wind capacity and a
5x overbuild of peak PV capacity to meet any given peak power demand. When
oversupply is provided, there will often be more energy than can be consumed,
hence saleable load factors drop even further with dire financial consequences for
the generators’ revenue and consequently the viable energy price. The actual
multiplication factors for overbuild might be larger, and will also depend upon
cross-correlation of weather conditions between the portfolio of different generation
types and the demand changes that tend to occur with those same weather
conditions. It will also depend upon the geographical spread of the renewable
deployment in relation to the size of the weather systems. Providing such a vast
oversupply of generation will necessarily lead to much higher overall capital

investment, energy costs and environmental impact.

2) Option two involves providing DC inter-connector links of very high capacity to
Europe and beyond. This means that the variations in of supply and demand is spread
much wider geographically, thereby reducing the statistical swings in available supply
and demand by averaging them out over many countries and possibly also
time-zones. This option also requires that the transmission grids within the UK and
the other participating countries would need to be strong enough to provide or
accept the huge sloshing of power around Europe. This scenario is both unlikely from
a financial and technical standpoint, involving massive capital investment in the
transmission networks. It also poses political and security-of-supply questions. The
inter-connectors and the entire UK grid would be operating at a relatively low load

factor and hence not used effectively from a financial investment perspective.

3) Option three imagines that we can realise some form of effective centralised bulk
storage of electricity. If an amount of electricity equal to 10 or 20 days worth of UK
consumption could be stored, then the renewable generation installed could be sized
appropriately to our peak demands with only a relatively small overbuild factor. Very
few cold and calm high-pressure weather systems would persist longer than 10-20
days during our peak demand winter months. However, current UK bulk storage in
pumped hydro schemes is only equivalent to 30 minutes of our average electrical
power consumption. It is unlikely that any further pumped storage facilities can be
built as there are few suitable sites remaining the UK and those that are suitable will

be subject to intense planning difficulties or excessive costs. Option three would only

! see appendix 7.1 for definition



be viable if some new technology becomes available for large-scale storage:
centralised hydrogen stores or superconductivity might provide answers but are
unproven at any required scale. The viability of such technologies is examined in
Section 2.4.

4) Option four is that the demand for electricity can be manipulated to match the
available supply in some way. This “Demand Response” is not a novel concept, but it
is novel for electrical markets in the developed world. Every other competitive
commodity market is influenced by the simple rules of supply and demand. When
demand approaches or exceeds supply, prices rise. Consumers react by reducing their
consumption; sellers make more money per unit sale of goods but sell less units.
Some sellers who previously might not have sold goods may now decide to do so at a
profit. When demand drops enough or the supply of goods rises, prices tend to drop
and the situation reverses. In our electricity market, this cycle is interrupted by the
structure of our electricity market and the regulator Ofgem. The prices that most
electrical consumers pay is more or less fixed, no matter what the status of the
supply or demand. If the cycle could be connected, by linking electricity prices to
the supply vs. demand balance, then demand should modify itself by dropping when
supplies are low and prices are high. This option is a technical, financial, and above
all social solution. It involves us, the population, and the changing of our behaviour
with respect to electrical energy. Our attitude to electricity consumption would
forever more be linked on a daily basis to the weather systems and to the concurrent
behaviour of our fellow consumers. This is a big change in our relationship with the
on-off switch. We would be re-learning to value energy for the commodity it is,
rather than a limitless resource. In the same way that we check the prices of petrol,
houses and apples, we would be thinking about the current price of energy before

buying it.

Any or all of these four options might be mixed in different proportions, indeed it is unlikely that

any single one will provide a solution alone.

However, since options one to three are either technologically unfeasible or excessively expensive,
this paper focuses on option four, demand response. It is shown that demand response can be an
effective and economic method of matching supply to demand, and hence ensuring security of
supply, for a high penetration of renewable power in the future. Demand response can also
minimise the capital investment in the power grid to achieve the required supply quality and
reliability. In the near term, demand response is the only method that can realistically be used to
enhance the security of supply following unanticipated events such as a gas pipeline explosion,

freak weather event or major problems at just one or two pivotal generator units.
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A report by the New England demand response initiative (NEDRI, 2003 [23]) says the following about

the role of short-term (i.e. day-to-day) demand response in New England’s power markets :-
Growing experience with regional power markets in New England and across the nation has
led to an almost universal understanding that an active demand response is crucial to both
market efficiency and power system reliability. Demand response resources can contribute
to efficiency and reliability in several different ways. One important opportunity is the role
that short-term, price-responsive load can play in real-time and day-ahead power markets.
The ultimate objective of efforts here is to create sufficient price-responsive load so as to
improve the performance, efficiency and reliability of wholesale electricity markets.
Several conceptual studies and actual experience in other regions (e.g., New York) have
demonstrated that a relatively small amount of price-responsive load can enhance system
reliability if there are reserve shortfalls and substantially reduce market-clearing prices

during tight market conditions, producing significant benefits to consumers.

Brief overview of contents

Chapter 2 describes the current supply and demand of electrical power in the UK. An estimate of
the future electrical supply in the UK is also presented, along with a review of possible storage
technologies. From this combination of knowledge and imagined future generation scenarios two
questions are then posed: what will be the impacts on the allowable demand for electricity? What
are the drivers for change on the demand side of the electrical market? Chapter 3 goes on to
examine methods by which these changes might be brought about. Chapter 4 describes the
structure and operation of a simulation tool which was developed during the course of this thesis.
Chapter 5 describes detailed numerical analyses using this tool. Two possible scenarios
representing near-term and future energy scenarios in the UK are examined. Chapter 6 presents

overall conclusions, both from the simulations and this document as a whole.

More detailed objectives are stated in section 2.6, since the exact objectives are defined after the

context of our energy challenges are described in chapter 2.
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2.1

The supply and demand of electrical power

Where does our energy come from?

For many years the bulk of our energy has been sourced from fossil and nuclear sources which can
be converted to energy of the required form with a high degree of controllability. Petrol and
Diesel can be stored in relatively small tanks and used for transport. Coal, gas and oil of high
calorific value per unit mass can be stored and burnt at will to produce heat, steam, motion or
electricity. Fissile nuclear fuel can also be used to create electricity in a steady and predictable
manner. These large thermal power plants can react to changes in electrical demand with advance
notice in the timeframe of several minutes or hours, although gas turbine plants can react more
quickly and some designs of nuclear plant only work efficiently at full load. Other traditional bulk
power generation in the UK includes hydro-electric generation which can be controllable at will in
a matter of seconds subject to plant operating conditions and the catchment’s rainfall available

each season.

Our modern society has become used to a supply of energy that is available in a “just-in-time”
basis. We do not store our own supplies of coal, logs or gas for our domestic or industrial needs.
We assume that gas will flow to our heating boilers and cookers when we turn the tap; we take for
granted that our lights and TV sets will stay on 24 hours a day without interruption. More than
that; we assume that these things will occur all year round irrespective of weather conditions or
other unforeseen events. Indeed, the gas and electric regulators will financially punish any energy
supply utility that does NOT fulfil these expectations. The pressure on the energy supply

companies to deliver a reliable service has never been greater.

At the same time, climate change arguments are driving us to shift our energy portfolio away from
fossil fuel sources. More importantly, they are running out - at least from a UK political standpoint.
The amount of economically recoverable global oil and gas reserves depend upon energy prices
and technology advances, but are unlikely to surpass 50-100 years each unless consumption
reduces substantially - and the trend is currently towards increasing annual consumption. The
reserves of these are mainly in countries and locations which do not possess a historical political
record of stability that we should rely on for our dominant energy supplies; from 2005 onwards the
UK will be a net importer of gas, initially mainly from Norway but within a few years most of our
gas will be pipelined from Siberia. UK oil reserves are virtually depleted unless the controversial
“Atlantic Frontier” reserves are tapped. There are substantial world coal reserves, at around 200
years, and the UK has its own substantial supply which could be recovered, although there are
substantial local environmental and health impacts of doing so. Currently, most of the coal for UK
electricity generation comes from Poland and China. Despite the fact that the coal is of inferior
standard to UK reserves, due to labour costs our coal is deemed economically unviable and will

remain underground unless foreign reserves become unavailable or much more expensive.



Nuclear fission power will only be sustainable if the fast breeder and/or reprocessing programmes
are reinstated so that both the naturally fissile ***U and the “inert” *8U (99.3% of the mined
uranium) can be utilised to create energy, via the Plutonium intermediate product. In this case, at
current rates of usage, the land-based ore stocks would last many thousands of years. However,
reprocessing plant operational difficulties and emissions, combined with the political difficulties of
dealing with and transporting the Plutonium has led to all commercial fast breeder programmes
worldwide being suspended indefinitely. While global nuclear power centres on traditional fission
techniques which only use the fissile 2*°U, land-based ore stocks will be depleted in 300 years at
current rates of usage (NIA, 2000 [28]), much less if Asia, Europe and the US increases their rate of

usage. The UK has insignificant reserves of Uranium.

Nuclear fusion might be realised on an industrial scale, or nuclear fast breeders might become
politically acceptable; both are real possibilities but outside the scope of this report, But in the
absence of these solutions to our energy problem, a steady transition to renewable “clean” energy

is the best option available to satisfy our long-term demand for reliable energy in the UK.

Renewable energy can be harnessed from many sources, but as a generalisation these sources are
less concentrated than fossil fuel based sources and are subsequently harder to gather into high
grade energy like electricity, high-temperature heat or a high-calorie combustible chemical fuel.
To provide a substantial proportion of total UK power from renewables requires a portfolio of

energy sources rather than a mass investment in a single technology.

Current total UK energy use, in 2002, was approximately (DTI, Energy Trends 2003 [11]) :-

TWh of raw fuel Percentage of UK fuel use
Petrol, DERV 418.68 18.5%
Aviation Fuel 139.56 6.2%
Electricity, domestic 336.63 14.9%
Gas, domestic 410.94 18.2%
Electricity, industrial 635.28 28.1%
Gas, industrial 316.17 14.0%
2257.26 100%

Table 2-1 Current total UK energy use, RAW fuel
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Figure 2-1 Current total UK energy use, RAW fuel

The DTI have published an energy flowchart which shows graphically how raw fuels are used,

converted and consumed in the UK. It is available from [9].
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Figure 2-2 Current total UK energy use flowchart



Of the electrical power we use, the energy is sourced from the following sources [11].

Percentage of UK raw fuel

Raw Fuel Use TWh /a use

Coal 344.25 15.3%
Qil 15.00 0.7%

Gas 326.34 14.5%

Nuclear 236.32 10.5%
Hydro 4.77 0.2%
Other renewables 24.07 1.1%
Other fuels 12.68 0.6%
Imports 8.49 0.4%
971.91 43%

Table 2-2 Current RAW fuel use to create UK electricity

The actual amount of electrical power that we currently use is significantly less than the

970TWh/a figure, as the raw fuels are not converted to electricity at 100% efficiency.

The actual electrical generation mix capacity and output figures for the UK in 2002 were [11] :-

Electrical Generation CAPACITY (maximum) in GW Actual Supplied
Total (GW) | Total potential (TWh/a) | TWh/a | Load factor
Coal/Steam 22.5 196.7 118.59 60%
Oil/Steam 2.7 23.7 4.24 18%
Mixed/Steam 10.0 87.6 3.56 4%
CCGT 22.1 193.5 148.74 77%
Nuclear 12.5 109.4 81.09 74%
Gas/0il Engine 1.5 12.8 0%
Hydro (generating) 1.5 12.8 3.86 30%
Hydro (pumped storage) 2.8 24.4 0%
Other renewables 1.1 9.9 6.24 63%
Imports 2.0 17.5 8.41 48%
76.6 688.4 374.7 54%
Table 2-3 UK electrical generation mix capacity and output

Our actual peak UK demand is approximately 62GW against a capacity of 76.6GW giving a
theoretical reserve capacity of approximately 20% in hand during winter peak load, assuming all
generation is operationally available. In practice the margin is much smaller, as a proportion of
generators will always be unavailable either for operational or resource-limited reasons. Also,
transmission and distribution systems will impose their own constraints on the power transfer.
Oversupply of peak capacity is also inefficient from a capital investment point of view. In reality
the margin between peak winter demand and available supply capacity is much smaller than 20%,

maybe 5% to 10%.

We can also deduce from the tables above that the aggregate efficiency of generation is
approximately 374.7/971.91 ~= 36% which is a figure dominated by the efficiency of the coal, gas

and nuclear plants.
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Where will our energy come from?

Calculations and references in appendix 7.2 detail approximations of UK future potential

renewable energy sources. They can be summed up as follows :-

Estimate of UK peak Load Controllable ? Annual energy
electricity capacity factor estimate
potential (Peak capacity * 8.76
[TWh/a/GW] * LF)
Hydro 1.5 GW 30% Yes 3.9 TWh
Domestic PV 30GW <20% No 52 TWh
Solar water (60 GW displacement) <20% No (105 TWh)
Land-based wind 40 GW 30% No 105 TWh
Offshore wind 40 GW 40% No 140 TWh
Wave 20 GW 40% No 70 TWh
Tidal 100 MW 50% Predictable 0.5 TWh
Domestic organic 200 MW High Yes 1 TWh
waste
Wood 10 GW High Yes 90 TWh
Biodiesel (10% of 7% of current transport Yes
UK landmass!) needs
Total electric ~142 GW 20-40% | Predominantly ~462 TWh
contribution (~200GW including No (-570 TWh inc
displacement) displacement)

Table 2-4 UK potential renewable electrical generation mix capacity and output

Clearly, these sources combined, as calculated above, could in theory supply enough electrical
energy to satisfy our current electrical demand of 375 TWh/a as shown in Table 2-3. However, the
electricity might not be available when demand would ideally call for it. Without demand response
or vast storage activities, it is unlikely we will be able to match supply with demand. Only a vast
overbuild of domestic PV or bulk wind power, relative to even the optimistic figures above, will be

able to release more renewable energy.

In future years, we can imagine a situation where there might be no fossil-based oil, coal or gas

commercial and industrial energy

available. This report will focus upon the domestic,
requirements which will need to be met. Analyses will be carried out, firstly assuming roughly
current rates of electrical energy consumption (i.e. gas is still available) but an increased
percentage of renewables in the electric generation portfolio. Secondly, the analysis will be
extended to imagine the case where our current natural gas energy requirements need to be met

by an entirely electrical power supply. Since current UK electrical power consumption is about
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370TWh/a and gas consumption is about 730TWh/a, displacing our entire gas use by electricity
means a factor of 3 multiplication in required electricity supply. This would be a substantial

adjustment to the UK power system.

In this report, transport energy requirements from non-fossil sources will not be considered in the
detailed analyses. Biodiesel production could account for a small (7%) proportion of our current
requirements, assuming we devoted a massive (and unrealistic) 10% of the entire UK landmass to
intensive production. More realistically, future transport without fossil fuels will be based upon
hydrogen, battery or superconducting storage technologies. All these require energy to be
generated, primarily via electricity, and these will add another 400TWh/a to our UK electrical
requirements. The time of conversion from electricity to the stored medium might be controllable
and might provide an interesting line of work for future demand-response study, particularly since
the amount of energy required is large. Until transport technology roadmaps become clearer, and
the hydrogen economy truly evolves (or not), detailed study is difficult and will not be attempted

here.

The current electricity market situation in the UK

In the UK, similarly to many developed countries, the electricity market has been deregulated and
the services “unbundled”. Historically, the CEGB was responsible for generating and transmitting
the power, while nationalised regional utilities were responsible for distributing the power to
homes and businesses, and providing the “service” face of the power industry. Now, the market is
privatised and split into many individual businesses. Generators can be fully independent private

enterprises, while some of the largest pivotal generators can be regulated private companies.

The transmission grid is run in England and Wales by Transco; it makes profits from the quantities
of power that it transmits at 275kV and 400kV (HV), and attempts to link transmission charges to
the area of generation and demand. These transmission charging fees are paid by generators and
RECs (Regional Electricity Companies) and are known as TNUoS (Transmission Network Use of
System) and BSUoS (Balanced Services Use of System). These charges are based upon location, as
they are evaluated by measurement of the peak demand at the Grid Supply Points (GSP) [19] and
Bulk Supply Points (BSP). Generators attached to an area of oversupply have to pay higher fees to
transmit their power via the grid, since the power will be used further away and cause more
loading of the network infrastructure. Generators attached to an area of undersupply might have
to pay lower (or even negative) fees to transmit their power, since their generated power eases
the burden on the network. This charging system correctly encourages bulk generation in areas of
undersupply, but poses economic problems for larger renewable generation schemes in remote
areas where resources are high but demand is low. The current charging system also rewards
transmission operators for the sheer amount of power that they transport; they take no part in the
actual purchase or sale of the electricity which flows in their conductors, hence, without

regulatory controls they have no financial interest in the market price or efficiency.
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The distribution system in the UK generally refers to the demand-side power network at voltages
of 132kV and below (some HV, mostly MV and LV) although the upper voltage level boundary
between transmission and distribution varies according to location and demographics. The
distribution networks are split into several different DNOs (Distribution Network Operators) who
are responsible for the physical infrastructure of the MV and LV networks. Historically the
distribution networks were responsible for simply distributing power from the transmission network
to the customers. However, as embedded generation becomes more popular, the role of the
distribution grid is changing. Generators attached to the distribution grids, many exploiting small
renewable energy resources, can both reduce strain on the network but also add to it. The
networks were designed for a one-way predictable flow but now it is possible to flow in either or
many directions. This has many effects, of which voltage rise and complications to network

protection schemes are two of the largest.

Use of the nework is funded by DUoS (Distributed Use of System) charges paid by the REC
customers to the DNO, based upon a Distribution Reinforcement Model (DRM). This model attempts
to estimate the capital cost required to increase the distribution demand capacity by 500MW, and
then spreads the cost between demand customers on per-KVA and per-KWh bases. For generators
attached to the distribution networks, no DUoS is charged but instead a connection charge is
levied. Until recently this was a deep charge, reflecting the generation connection cost plus any
network upgrades at the same or the next highest voltage level to accommodate the extra power.
Recently the charging has changed to a shallow charge, reflecting only the connection equipment
for the actual new generation; network upgrades further upstream are financed by all users via
DUoS. In future, a fairer arrangement might be to waive even the shallow connection charge for

embedded generators and include them in the DUoS fees.

These DNOs are also the default “service providers” by name in each physical region, although the
service provider will set up a separate financial entity as an REC to do this business. The REC takes
payment from customers in exchange for electrical connection, power use and customer service. In
each region, however, since, deregulation, rival competitive service providers (RECs) may provide
the same physical service but at differently competing financial payment terms and pricing
structure packages. The RECs buy and sell power from NETA, sell power to customers, and pay the

DNOs and national grid operator their DUoS and TNuOS charges respectively.

This competition and complex arrangement has been termed “unbundling” since the generation,
transmission, distribution and customer service/billing parts of the power industry have now been
unbundled from one nationalised entity into many separate parts to encourage competition and
innovation in the industry. Only in Scotland do the transmission and distribution bundles remain, in
the Scottish Power and Scottish and Southern areas, and this will shortly change with the

introduction of the BETTA arrangements which will supersede the NETA arrangements.
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All this is well and good, and encourages extremely cheap energy for customers. Indeed, The
regulator Ofgem uses an RPI-X control to regulate the price that the RECs are allowed to sell
electricity to us, the customers [19]. RPI-X means that the sale price of electricity may only rise
each year by the retail price index (RPI) minus a figure of X%, which is the efficiency gain which

Ofgem expects the transmission and distribution network operators to achieve in each given year.

The downside of the Ofgem controls is that we are exposed to the same potential situation as
faced California in 2000. The RECs and service providers are forbidden to charge any more than a
fixed (competitive) rate for electricity. This means they have no means of reducing demand by
using price as a control, even on a seasonal basis. Their revenue (and the revenue of the
transmission companies) is linked to the volume of power that they deliver; hence neither the
DNOs, REC service providers nor transmission companies have any revenue-based incentive to
encourage energy efficiency or energy use reduction - quite the reverse; they would like to sell
more electricity. At the same time, revenues available to the REC service providers are limited by
the price controls. This places an upper limit on the amount that generators may be paid. If
generation costs rise due to the increased costs of renewable rollout or increased fossil fuel costs,
there is no way to pass this to the customer unless Ofgem changes the allowed charging rates, and
this happens possibly once a year. If generators are not paid enough to operate, then as private
companies they may simply declare bankruptcy and cease operations. Very quickly, supply can fall
below demand and blackouts are a certainty. This was the situation in California and it could

happen in the UK.

Introducing market elasticity and the inelastic UK power market

At this point, the economic terminology of market elasticity should be explained.

If a product X sells a quantity Qx; at price Py, and a quantity Qy, at an increased price Py,, then
the own-price elasticity is expressed as:-

E = % change in demand for X divided by % change in price of X

sz — QXI
AQ, 1
é 9 (Qx1 +0y, )
E= X /=

AP,
Px PPy

1

5 (PXI + sz)

Equation 1 Own-price elasticity of demand
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So if demand drops from 1 to 0.8 when price increases from 1 to 1.2, E =
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Equation 1 may be inverted to find the new demand level as a function of price.

(1+a) 2a (P, -P,)

= — or - = ———where a = E—X2 X0

B B (R (Pes + P
Equation 2 Demand as a function of own-price elasticity

Generally, elasticities for commodities are negative, i.e. the more something costs, the less
demand there will be. Strongly negative elasticities (E<-1) suggest that customers are unwilling to
spend more in order to acquire the product if the price rises, but they will buy a lot more if the
price drops. Revenue therefore increases as the price drops when E is highly elastic. Weakly
negative elasticities (-1<E<0) suggest that customers are willing to pay more as the product is
desirable enough to warrant the extra expense. Revenue will drop as price lowers, since demand
is not increased enough to cover the revenue losses from reduced demand. Positive elasticities
imply that customers will buy more of something if it costs more. This is counter-intuitive but
occasionally occurs when the desirability of an object is enhanced by the perceived value due to

cunning marketing campaigns?.

The table below gives an indication of customer behaviour for some examples of elasticity.

Reference price 75 £/MWh "

Actual prices Elasticity (+0.1 to -1.5) and resulting relative demands
£/MWh -1.5 -1.25 -1 -0.75 -0.5 -0.25 -0.1 0 0.1
25 7.00 4.33 3.00 2.20 1.67 1.29 1.11 1.00 0.90
50 1.86 1.67 1.50 1.35 1.22 1.11 1.04 1.00 0.96
75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 0.65 0.70 0.75 0.81 0.87 0.93 0.97 1.00 1.03
125 0.45 0.52 0.60 0.68 0.78 0.88 0.95 1.00 1.05
150 0.33 0.41 0.50 0.60 0.71 0.85 0.94 1.00 1.07
175 0.25 0.33 0.43 0.54 0.67 0.82 0.92 1.00 1.08
200 0.19 0.28 0.38 0.49 0.63 0.80 0.91 1.00 1.10
225 0.14 0.23 0.33 0.45 0.60 0.78 0.90 1.00 1.11
250 0.11 0.20 0.30 0.42 0.58 0.76 0.90 1.00 1.11
275 0.08 0.17 0.27 0.40 0.56 0.75 0.89 1.00 1.12
300 0.05 0.14 0.25 0.38 0.54 0.74 0.89 1.00 1.13
325 0.03 0.12 0.23 0.36 0.52 0.73 0.88 1.00 1.13
350 0.01 0.11 0.21 0.35 0.51 0.72 0.88 1.00 1.14
375 0.00 0.09 0.20 0.33 0.50 0.71 0.88 1.00 1.14
400 -0.01 0.08 0.19 0.32 0.49 0.71 0.87 1.00 1.15
425 -0.02 0.07 0.18 0.31 0.48 0.70 0.87 1.00 1.15
450 -0.03 0.06 0.17 0.30 0.47 0.70 0.87 1.00 1.15
475 -0.04 0.05 0.16 0.29 0.47 0.69 0.86 1.00 1.16
500 -0.05 0.04 0.15 0.29 0.46 0.69 0.86 1.00 1.16
Table 2-5 Example demands for electricity based upon different elasticities and prices

* A classic example is the Parker 25 fountain pen, whose sales were poor as it was perceived as too cheap and
tacky, until the price was increased and sales rocketed. Also, the beer Stella will always be “reassuringly

expensive”.
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It is worth noting that elasticities are neither necessarily linear nor constant. As market prices
increase or decrease with time, the elasticity of a certain product might change if the price is
extremely cheap or expensive. Elasticities might also change with time dependent upon the

perceived value of the product due to market or social effects.

The cross-price elasticity of demand describes how demand for a good X varies with the price of
good Y. For example, off-peak electricity sales will be higher if on-peak electricity prices are
higher. Cross-price elasticities are therefore expected to be positive, defined by:-

E = % change in demand for X divided by the % change in price of Y

[AQ j QXZ_QXI
D' 1
0 *(Qx1+Qx2)
E= Oy _ 2
AP,
(FY ) B, =k,
(B, +B)

Equation 3 Cross-price elasticity of demand

An additional less common elasticity definition, called the elasticity of substitution, is sometimes
used within the power industry. Elasticity of substitution refers to two goods X and Y that are

essentially the same good (direct substitutes), bought at different times.
E=— Oy __ O, Oy

A[PXJ [P _Pm]
PY PY2 PYl

E = - % change in ratio of demand for X:Y divided by the % change in ratio of prices X:Y

Equation 4 Elasticity of substitution

Electrical power demand in the UK is perfectly inelastic in a real-time basis. UK Electrical prices
charged to domestic customers can in no way react to changing supply and demand characteristics
on timescales less than about a year, when Ofgem allows price increases. The only elasticities in
the day-to-day domestic UK electricity market are the “economy-7” and “white-meter” schemes
which encourage night-time use of off-peak electricity. These are useful schemes and have
fulfilled a requirement to partially flatten the daily load profile for many years, but they are not
flexible enough to provide the security of supply and network reliability that we demand, while

still allowing a more time-varying and unpredictable generation profile that renewables imply.
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Price volatility and load curves

Behind the scenes, electrical power is not traded at these regulated prices; it is a free market. In
England and Wales, power trades occur under the NETA agreements, which are shortly to be
superseded by the similar BETTA arrangements and will also include Scotland. Every half hour,
NETA purchases blocks of power from the generators and sells it to RECs via a system of bidding
and offering, known as the “Balancing Mechanism” [27]. The market price is the highest trading
price at any instant. Crucially, the supply and demand market reigns free in the balanced
mechanism of power trading. It is only the final end users - us, that do not appreciate it. On days
and at times when available generation capacity exceeds demand, the wholesale electricity prices
settle to low levels approximating the actual true cost of generating the power competitively
from the cheapest major generation technology (probably bulk coal), which is currently about
£15-20/MWh. In some cases, generators may in fact agree to sell power at a loss, as some revenue
is better than no revenue, and the sale can be a loss-leader to remain in the market and exploit
higher energy prices to come. Indeed, on days and at times when energy demand rises to within
striking distance of the maximum available supply, the energy price begins to rise and does so in a
very sharp manner. The rise of the energy price vs. the available in-hand power does not rise in a
normal fashion as in other commodity markets. Demand for electricity changes very little as
demand approaches the limits of supply; we as consumers have little idea when these times and
days are, so how are we supposed to conserve power at the appropriate times and stabilise the

market?

Generators that can exploit these higher prices will be at a competitive advantage, and larger
generators can exploit the market more than small generators. Lafferty et al [22] describe various
definitions of “pivotal” power sellers. These definitions are essentially identical but come under
the acronyms of SMA (Supply Margin Assessment) and RSI (Residual Supply Index). RSI is used in
California and can be determined for each generator every half hour by dividing the overall power
demand by the overall available power from all available generators except generator X. If RSl is
less than 1, then the generator (seller) is pivotal and any bid made by X must be accepted to
avoid a blackout. SMA is a similar test but determined on a peak-demand-per-day basis. If a seller
is pivotal at a particular time or half-hourly bidding period, it may bid any sum of money for the
power generated and the bid must be accepted or blackouts are inevitable. The market for the
power demand is perfectly inelastic as we have seen, so there is no sales volume penalty for a
pivotal seller raising the market price to almost limitless amounts in cases of shortage. This is why

the market price of power rises so sharply as demand approaches the supply limit.
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2.3.2.1 Demand forecasting in the UK

Figure 2-3 shows the “load duration” curve for England & Wales in 2001. This curve is
representative of most power networks in developed countries. It shows that demand only
approaches the top 10% of peak supply capacity for less than 5% of the time.

80%

% of Peak Demand

10 0 a0 40 50 0 70 a0 an 100
% of Time of Year

Figure 2-3 Load-duration curve for England & Wales, 2001 [25]

To balance the supply and demand of electricity in England and Wales, the Balancing Mechanism
organisation receives forecasts for demand from various sources and distribution companies (the
DNOs). There are a number of different forecasts for the day-day operation of the network, and

these are continually updated as each day progresses.
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The bulk of the required power can be purchased ahead for a given day, based upon the
reasonably accurate demand forecast which is available. This is based upon the previous day’s
demand, the weather forecast, the day of the week, known TV schedules and major sporting or
media events. As a day progresses, the actual weather and random events mean that the demand
deviates from forecast. Power is traded with generators and RECs to balance the difference. In
addition, the forecast for the remainder of the day is modified so that last-minute trading is
reduced as far as possible. These last-minute power trades are the most volatile in terms of

pricing.

As well as short-term forecasts, long-term forecasts are published.
The next three diagrams show the forecast demand and capacity for England and Wales for weeks
28-53 of 2004 and weeks 1-24 of 2005.

Peak demand forecast 2004-2005, England and Wales

S
o
L

Peak demand (GW)
n w
o o

o
L

28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 4748 4950515253 1 2 3 4 5 6 7 8 9 10 111213 1415 16 17 18 1920 21 22 23 24
Week number (2004-2005)

Figure 2-5 Demand forecast 2004-2005, England & Wales

Demand increases in winter, although there is a marked reduction in demand over the Christmas
week, due to shutdowns at industrial plants, and a smaller drop at Easter. The minimum demand

occurs at week 31 to 32, in August.

Margin forecast 2004-2005, England and Wales
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Figure 2-6 Margin forecast 2004-2005, England & Wales
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The margin of supply over demand changes as expected. The Christmas drop in demand forms a
marked feature in the data. Summer margin is not normally a problem, although day-to-day
changes and unexpected outages of generation plant can still cause short-term energy shortages.
During winter, there is a forecast negative margin. This data does not take into account of the
France-England inter-connector which can supply 2GW. Presumably network planning between
now and week 50 will ensure that more generation is on-line by then to cover the remaining
deficit! The function of this projected data is to achieve this exact purpose - to highlight

potential supply shortfalls or oversupplies in good enough time to allow corrective action to be

taken.
Peak demand and capacity forecast 2004-2005, England and Wales
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Figure 2-7 Demand and implied capacity forecast 2004-2005, England & Wales

This chart is simply the previous data combined and overlaid to show the implied capacity vs.
demand. Capacity varies throughout the year, even though the bulk of the capacity is fossil-
based and not constrained by weather. The fluctuations in projected capacity are due to planned

maintenance, outages, de-commissioning of old plants and commissioning of new generation.

In a future UK scenario, with much greater penetrations of weather-dependent wind, solar and
wave power, it will not be possible to forecast capacity in the same manner. Long-term averages
of capacity might be relied upon to certain confidence levels if reasonable large factors of
overbuild are used, but short-term availability of wind, wave and solar power will fluctuate with
the weather. Renewables can reduce the required fossil-based mean power output but can
increase variability. Weather forecasts will play an increasing role, not only in the short, medium
and long-term forecast of demand but also in the forecasts of supply. While extreme fluctuations
in weather cause modest changes in the percentage energy demand, of the order of 10% (for
example a 50 to 55GW shift on a cold week) , weather fluctuations might cause the entire UK
wind capacity to operate at 100% or 0%. If wind penetration was 20% of UK capacity, that could
mean a 20% drop in capacity on a calm day. These swings in capacity are far larger than any
other unpredicted and uncontrollable short or medium-term changes that we currently encounter

in demand or generation availability.
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2.3.2.2 Price volatility examples, England & Wales, 2003-2004

Presented here are three examples of the price volatility in the wholesale UK electric power
markets. The markets are currently operated by Elexon [14] under the NETA [27] arrangements.
The situation is not unique to the UK - experience in the US markets has also shown that peak

electricity prices can spike up to 1000% of the nominal values during tight margin conditions.

The first two examples were picked by analysing records from the MET office past weather
website [32]. The worst cold-weather events across England & Wales during the last two years
occurred around the 7-8" January 2003 and the 26-28™ January 2004. The England and Wales
demand and pricing information was extracted from the Balancing Mechanism website [27] for
these periods. As a contrast, demand and pricing was also extracted for a period of warm

summer weather in June 2004.

England and Wales electricity price volatility, January 2003
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Figure 2-8 England & Wales demand and price volatility, January 2003

In January 2003, a winter snowstorm caused the electrical demand for England & Wales to rise
towards 55GW. The data for the exact available generation is not directly available in the public
domain. Assuming that there was a 3% margin of supply at the peak 55GW demand, then only
1.65GW more power could be called upon. We can safely assume that the inter-connectors from
France and Scotland were already importing their capacity of 2GW each, and therefore any extra
supply would have to come from within the UK. There exists in the UK a certain amount of
industrial load-shedding that can take place via standing agreements with the distribution
networks, but aside from this the demand is inelastic to the diminishing supply-demand margin.
Any generator who was able to supply more power at this peak time has a powerful market
position to sell power very expensively. In particular, as the figure of 1.65GW is small enough to
be within the capacity of a single large coal-fired or nuclear supplier, that supplier might become

pivotal.
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The wholesale electricity prices, during the January 2003 weather event, fluctuate from a low of
£5/MWh to the nominal £15-20/MWh to over £350/MWh.

An additional trend to note is that the 5™, 11" and 12" are weekend days, and have noticeably
reduced peak demands due to industrial and commercial use reductions, and changes in the

domestic load profiles.

England and Wales electricity price volatility, January 2004
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Figure 2-9 England & Wales demand and price volatility, January 2004

In January 2004, another cold weather event occurred. The peak demand was lower that for the
January 2003 event, at about 52.5GW, and the peak price of £150/MWh occurred on Wednesday
28" during the snowstorm. Presumably, the required network generation was on-hand and the
supply margin was always substantial, as prices remained relatively stable. The prices depend on
a number of factors, aside from the weather pattern driven demand. If the weather event is
predicted by the Met. office, then the demand forecast for the days ahead can account for it. By
raising the demand forecast, more power can be purchased from the generators in advance
agreements, leaving less trading to the last minute. This reduces and stabilises the price.
Possibly, during January 2004, the weather forecast had predicted a worse weather event than
actually occurred. This would encourage a “glut” of power which might be available should the
weather event prove milder than expected - leading to oversupply and a short-term drop in
wholesale prices. Over-forecasting the demand is not a solution to volatile prices, however;
consistent oversupply causes inefficiency and consequently raises the average price over the

long-term as generators recover the costs from lost sales.
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England and Wales electricity price volatility, June 2004
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Figure 2-10 England & Wales demand and price volatility, June 2004

The above example was taken from a week of good weather across England and Wales, during
June 2004. Notably the peak demand is only 40GW, relative to peak winter demands of 50-55GW.
Also, a demand tapering can be seen for Friday June 11", Saturday June 12 and Sunday June
13", An interesting event occurred during June 8", when prices spiked to £250/MWh - higher
than the price during the cold weather event of January 2004. Peak demand on June 7 was
39.5GW whereas demand on the 8" just surpassed 40.0GW at 11:30AM. Prices began rising on 8"
at 8AM, presumably caused by a new updated weather forecast or an extrapolation of demand to
produce a more accurate daily forecast than the previous release. It is possible that the
magnitude of the price spike could be linked to a “psychological” barrier at 40.0GW. Demand on
the subsequent days came close to, but did not reach, 40GW, and prices were very stable. The
total available economic supply to the market that day might be only marginally higher than
40GW based upon the long-term demand prediction for summer months, and the major generator
units that are subsequently taken off-line for maintenance or are uneconomic to run during these
times.

These prices can be plotted in a way that is more useful from for economic modeling. Plots of
price against demand, known as “demand curves” give an indication of the way that prices rise

extremely rapidly as demand approaches the fundamental limits of supply capacity.
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Figure 2-11 System buy price vs. demand; January 2003 and 2004 events separately

Figure 2-11 shows the events of January 2003 and 2004 separately. Although these events caused
different demand peaks, they occurred at approximately the same time of year and the amount
of generation capacity was approximately the same. When overlaid in Figure 2-12, the two data
sets are not visually discernable and can be considered as one. It can be seen that the supply
capacity must be in the 55 to 60GW range, and that there is a substantial knee in the curve at
around the 48GW, £100/MWh region.
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Figure 2-12  System buy price vs. demand; January 2003 and 2004 events combined

Also, there is a considerable spread in the price points for demands between 35 and 55GW. The
curve is not tightly defined against the demand alone. The additional factors are the last-minute
balancing required which allows aggressive energy traders to drive prices higher or lower, and

the effects of energy sellers or buyers who are pivotal, or close to pivotal, in the market at any
instant.

System buy price, June 2004 fine weather week
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Figure 2-13 System buy price vs. demand; June 2004 fine weather week

An equivalent chart for the summer data is shown in Figure 2-13. This curve is much more tightly

defined than the winter data, although it must be remembered that the price spike to £250/ MWh
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occurred on only one day (Figure 2-10) so the data sample around and above the knee of the

curve here is rather smaller than for the winter data.

The form of the price-demand curve, for the current inelastic market, therefore depends upon
the following factors :-

e The absolute available generation capacity at any time, on a purely technological basis.

e The forecast demand from the weeks, days and hours before. This determines the
amount of power generation that can be scheduled and purchased “in advance” in a
controlled more fashion.

e The difference between the actual demand and the forecast demand on a half-hourly
basis. These differences require power trades at very short notice and encourage volatile

prices which can be mathematically chaotic in the same manner as a stock exchange.

In terms of renewables, and the aim of introducing high penetrations of renewable generation, the
volatile prices pose a problem. Volatile prices discourage renewables since the renewables are less
controllable. Excessive prices are likely to occur when the sun isn’t shining or the wind isn’t
blowing. At these times, fossil-based generation available on-demand can exploit excessive
revenues, giving them a biased competitive market edge over the renewable generator who will
miss out on the highest-priced electricity sales. Flattening the price vs. time volatility will “level
the playing field” somewhat and help renewable generators achieve financial success, independent

of external grant funding or compensation mechanisms.

2.3.2.3 The impact of demand response on the price-demand curve

Passing time-varying prices to electricity consumers will introduce a degree of elasticity into the
market; this means that higher prices will persuade some or all users to reduce their
consumption and vice versa. Demand response will have two key effects on the electricity
market. As well as improving the network reliability, by encouraging load reductions as demand
approaches supply (via price), demand response will reduce the volatility of the wholesale

electricity price.

The effect can be demonstrated by referring to Figure 2-14, which is a simple cost curve model
based upon the data in Figure 2-12. In an elastic market, assuming an elasticity of, say, -0.2,
demand will reduce by 20% as price rises 100% as described in Equation 1. If demand reached
50GW, the price of electricity would rise to about £100/MWh (10p/kWh). Customers exposed to
this price increase over their “nominal” charge which might be closer to £50/MWh (5p/kWh)
would, on average, reduce their consumption by 20% due to this 100% price increase. The 20%
reduction would reduce demand to 0.8*50=40GW and the price of electricity would drop. If

demand remained this low, prices would also lower, and demand might subsequently rise.
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System buy price vs demand, simple winter model
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Figure 2-14  Simple model of system buy price vs demand, England & Wales, winter

This “step-by-step” analysis is over-simplistic as the situation would occur in real time on a much

more analogue basis. The way that demand, and subsequently price, changes in real time will be

a constantly varying pair of parameters, interrelated by the laws of supply and demand. The

effect of elasticity will also depend heavily on the method and time-lag with which the demand

and pricing information both reaches the customer, and how easily they can or choose to react.

Some customer demand reactions might occur in anticipation of price changes based upon fixed

time-of-use charges (i.e. economy 7 and white meter), while other customer reactions might to

be based upon real-time information or short/medium term notice.

Key points here:-

The shape of the price/demand curve is directly linked to the maximum generation
capacity available, also taking into account transmission and distribution constraints.

The shape of the price/demand curve rises exponentially as demand approaches the
available capacity minus the capacity of the single largest generation company (which
will become pivotal).

Demand only approaches the maximum available supply capacity for very small
proportions of the time (Figure 2-3).

When demand does approach the maximum available supply capacity, only small
reductions in demand can produce much larger proportionate changes in price. This is
shown by the gradient of the demand curve in Figure 2-14.

The low asymptote of the demand curve tends to the minimum achievable economic
generation price based upon capital plus fuel costs, although occasionally the wholesale
price goes below this level due to market forces.

The shape of the demand curve will not be modified by demand response activities.
Demand response activities simply affect the operating points used on the curve. This is

done by market elasticity, by passing on higher prices to customers at high demands,
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therefore tending to push demand down. Demand response will tend to avoid operating
the price-demand curve in the highest price regions where the price tends to infinity.

¢ When referring to the demand and price vs. time graphs Figure 2-8 to Figure 2-10, the
effect of demand response will be to smooth the demand curve, by lowering the peaks.
The troughs will also be filled, as customers will be eliminating some non-essential peak
demand (e.g. excess lights), but shifting other more essential demand (e.g. washing
machines) to off-peak hours.

e By using the same price-demand relationship without modification, the price vs. time
traces in Figure 2-8 to Figure 2-10 could be smoothed. The small reductions in peak
demand will remove the largest fluctuations in energy prices, and reduce the price

volatility.

2.3.2.4 Regional electricity company revenues, expenditures and profits

The REC (Regional Electricity Company) service providers must pay the system buy prices to
purchase the power that is sold on to us. However, as already discussed in section 2.3, most UK
electricity customers pay a flat rate for power, independent of time. The exceptions to this rule
are some “economy 7” and “white meter” domestic customers, and some large industrial
customers who can pay real-time prices for electricity and/or take part in emergency load-

shedding activities.

The REC revenue stream comes mainly from fixed-rate standing charges and per-kW charges that
we pay. However, the REC financial outgoings for the energy are real-time prices paid to the
Balancing Mechanism. Therefore, the REC financial position is inherently risky. Whether they like
it or not, the REC is engaged in an energy futures business between us, the customers, and the
Balancing Mechanism. If a harsh winter was to occur, the REC companies might have to absorb
massive losses due to escalating energy buy prices. To safeguard against this, our fixed-rate
electricity is marked up substantially from the £15-20/MWh (1.5-2p/kWh) realistically viable base
wholesale price. Domestic consumers pay approximately 7.5p/kWh (£75/MWh) plus a standing
charge for connection. The bill includes DUoS fees of approximately 0.7-0.8p/kWh (£7-8/MWh)
for daytime and 0.1-0.16p/kWh (1-1.6£/MWh) for economy-7 and white meter electricity [19].
These figures, even after subtracting the DUoS fees which relate to capital network maintenance
and upgrade, imply that up to 50% of our electricity bill is markup in distribution and
transmission. A substantial portion of this is attributable the “risk premium” that we pay to cover

harsh winters.

During mild winters, the REC can profit from the lower energy prices since demand will be lower.
As we have seen, since very small reductions in demand on critical days can cause large price
changes, the variation in expenses that the REC incurs can be massively dependent upon weather
events and human mass behaviour on particular days. In some years, the REC utilities will make
massive profits, in the same way as an insurance company profits from our policies. As customers

paying fixed rates for power, we are essentially buying an insurance policy from the RECs. So
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2.4

long as Ofgem allows them to charge a high enough charge per kW, and the average price of
wholesale power remains low enough, the RECs’ profits can be large and positive based on their
weather-based derivatives bets. Even during the worst weather events of 2003 and 2004, the
average wholesale energy price is only £46/MWh (4.6 p/kWh). During the June 2004 period data,
the average wholesale energy price was £28/MWh. These example periods all allow the DNO to

continue profitably when the charge to customers is closer to £75/MWh.
Currently:-

e REC revenue stream is largely out of their control - it is fixed by our inelastic demand
and the per-kWh charges that Ofgem allow the REC to charge. REC revenue will only
increase if they sell more power, but encouraging customers to do this is both politically
unacceptable and also risks blackouts (and hence financial penalties) if the uptake is too
successful! Hence, REC utilities tend to adopt a neutral stance on issues of energy
efficiency, neither encouraging nor discouraging efficiency or increased energy use.

e REC financial expense is a gamble on the weather, generator availability, transmission
grid availability, and mass human behaviour. Much of the REC profits and losses are
essentially the results of derivatives bets based upon these factors.

e The mass customer market funds the gamble indirectly, via long-term payments

substantially above the average energy price.

Storage technologies and reserve capacity

The implementation of electrical storage technologies can mediate the effects of short and
medium-term supply and demand imbalances. Indeed, if electrical storage capacity was virtually
unlimited, price volatility would be very low. In this case, electricity prices would change on
weekly or vyearly timescales dependent upon long-term aggregate energy supplies and
requirements. Volatility would be less than current oil price volatility, since UK-based renewable
and fossil energy source availability would be largely immune from political situations in foreign
countries, and stored energy could ride us through days or weeks of generation down-time or

demand surges.

The reality is that bulk electrical storage is extremely difficult and expensive, and will remain so
without a major breakthrough in superconductivity or some other currently unknown physical

effect.

However, there is an extremely important point to bear in mind. The financial benefit of storage,
in a free market, is governed by the highest prices of electricity which occur at times of peak
demand and/or supply-demand deficit. Therefore, if the stored electricity is sold at peak periods
for costs of £50, £100 or £400 per MWh, but was purchased at £15/MWh, then the financial
economics of the storage facility benefit from the revenues that can be generated at peak periods.

Care must be taken to include the round-trip efficiency of the storage, since this increases the
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2.4.1

amount of electricity that must be first purchased in order to release a given amount of energy,

and also the difference in wholesale buy/sell prices that NETA offers [20]°.

For example, the Cruachan pumped storage facility might buy 4000MWh of power at £15/MWh over
several hours at night, at a cost of £60,000. The next day, the power available for release will only
be about 70% of this due to the inefficiencies of pumping and generating. Therefore, during the
peak periods of the day, 2800MWh could be sold over 6 hours at 400MW. The sale price at the peak
time might be £100/MWh leading to a revenue of £280,000. Net revenue minus expense for the day
would be about £220,000. Over a year, £80 million might be generated. Over 25 years, £2 billion.
These kind of economic values placed on storage might justify capital investment in either large
scale bulk storage, or widespread embedded micro-storage. To obtain these financial incentives
for embedded storage, it is crucial that electricity prices are allowed to vary in real time with the
supply and demand market. A flat rate electricity price will not provide revenues to justify capital

investment in embedded storage schemes.

Reserve capacity types

Reserve capacity on the network is required :-
e To fill in any deficits in the supply vs. demand balance, that cannot be met wholly or
effectively by available storage.
e To be available to cover for any unexpected outages in firm generation or network

infrastructure.

There are several classifications of reserve capacity:-

e Regulation. Generators online, on automatic generation control, that can respond rapidly
to system-operator requests for up and down movements; used to track the minute-to-
minute fluctuations in system load and to correct for unintended fluctuations in generator
output.

e Spinning reserve. Generators online, synchronized to the grid, that can increase output
immediately in response to a major generator or transmission outage and can reach full
output within 10 minutes.

e Supplemental reserve. Same as spinning reserve, but need not respond immediately;
therefore units can be offline but still must be capable of reaching full output within the
required 10 minutes. Hydro and pumped storage can fulfil this requirement with
reasonable efficiency.

e Replacement reserve. Same as supplemental reserve, but with a 30-minute response time,

used to restore spinning and supplemental reserves to their pre-contingency status.

? In 2003, the NETA buy/sell differential was large enough to dissuade pumped hydro operators from trading.
Instead, they sometimes chose to leave the network be and let NETA balance the system with CCGT generation.

This adds to market volatility.
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2.4.2

Reserve capacity is expensive. Spinning reserve and replacement reserve plants (known as
“peaking” plants) must be manned and operational, but earn little revenue while not exporting
power. Their costs must be covered during potentially short bursts of peak power, or via contracts
which reward them for simply being “on-call”. Regulation requires that generators operate at less
than 100% power so that some is in reserve. Operating at less than 100% power output often

lowers efficiency unless the plant is very well designed.

Pumped Hydro

Pumped hydro capacity in the UK is stated to have a maximum peak output of 2788MW [10]. The
storage consists of just four bulk storage facilities [10]:-

e Dinorwig 1728 MW, 9100 MWh, 72-78% cycle efficiency [12]

e Ffestiniog 360 MW, 1400 MWh, 72% cycle efficiency [12]

e Foyers 300 MW

e Cruachan 400MW

These facilities can typically only run at full power output for 4 to 5 hours until the upper level
reservoir is empty. The facilities can store and retrieve the electrical power at approximately 70%
efficiency, so substantially more power must be put in than is recovered. The total amount of
energy retrievable is approximately 14GWh, which would be enough energy, alone (assuming the
power could be released at any speed), to supply the UK energy demand (370TWh/annum) for
about 30 minutes on average. Clearly, the pumped hydro storage that we currently have is
nowhere near an amount required to ride the UK through a sustained period of substantial supply
deficit. The supply deficit might be caused by a high penetration of wind power and a windless
period of many days and/or a severe weather event combined with a lack of available peaking

power, be it renewable or fossil based.

It is extremely unlikely that the amount of pumped storage in the UK will increase by any large
factor. The lack of suitable sites from technical, economic, political and environmental
standpoints makes future large schemes like Dinorwig difficult to imagine. The large bulk storage
schemes require heads of approximately 500-600 metres, with suitably large reservoir locations at

both the upper and lower levels, and a suitable location for a power plant.

From a smaller scale perspective, within a distribution network, we might imagine small pumped-
storage schemes.

The storage capacity of a 10m x 10m x 10m tank of water, suspended 30m above a similar but
lower reservoir, would be approximately :-

E = Volume.p.g.h

E=10x10x 10 x 1000 x 9.81 x 30 = 294.3 MJ ~=82 kWh

p=1000 kg/m’

g=9.81 m/s?
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2.4.3

Also, it must be remembered that the energy put into such a tank would in fact be approximately
82/0.84 = 98 kWh and the amount of energy retrieved only 82x0.84 = 69 kWh, since the
efficiencies of pumping and retrieving are approximately 84% each, leading to a round-trip

efficiency of about 70%.

This amount of energy would (on average) provide the electricity for one household for 5.5 days
based upon a current average household electricity consumption per day which is approximately
12.6kW/day based on a UK domestic annual usage of 115TWh and 25 million UK households [8].
The amount of realised storage capacity is not large compared to the number of house-days’

worth of electricity served by the rather unfeasible 10m? tank of water suspended 30m high.

Demand response as a storage technology

In effect, any shifting of electrical demand that a customer might make due to pricing signals can
be considered as a form of “storage”. Activating space heating at different times of the day
constitutes storage since the building stores the heat over time. Delaying a washing machine cycle
from 3pm until 1am constitutes a release of energy to the network at 3pm and a storage of energy

at 1am. What’s more, these “storage” efficiencies can be 100% or close to 100% efficient.

If the demand response of the customer to the pricing signals is simply to reduce consumption,
without later carrying out that same activity, then the “storage” has an effective efficiency of
>100% or even infinity. For example, if a customer simply turns off a light in response to a peak
electricity price, the “storage” efficiency is infinite, since no energy input is required at other

times to yield the demand reduction at peak time.
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2.4.4 Summary of storage technologies

A detailed analysis of potential storage technologies is presented in appendix 7.3. The data is
summarised here into a table to provide easy comparisons and a contextual feel for the scale of

the energy storage which is achievable, both technologically and economically.

Bulk storage Storage capacity Domestic Round-trip Cost Plant Feasibility
capacity density, per 10m x storage efficiency life
(proven) 10m x 10m cube feasibility
and
capacity
MWh House %
hold-
days
Pumped Hydro 14GWh (UK) 0.069 5.5 NO 70-75 ££ 25+ Extremely
1.1 million years limited by
household-days suitable
locations
Lead-acid Small scale 28 2200 £8000+ 85% ££ 10 Widespread
for a 5-10 £60- years uptake limited
day 120 by global lead
reserve /KWh availability
unless
electrolyte
stores used?
May become
marginally
financially
viable.
Heated water Small scale 98 (heat) 7800 Very 100% (to £ 25 Cheap, simple.
cheap. heat). years BUT, energy
Potential must be used
50% loss as low-grade
per day in heat for
summer washing,
per day, heating,
for a small bathing etc.
system.
Hydrogen Not yet proven, 800 63000 Possible 20% (to £28 ? In development
but potential on + 800 electricity).
a large scale (heat) 20% (to
heat).

Flywheels Unproven 12 950 ? ~60-80% £888 25 Problems with
Less for £3500 | years? | bearing losses,
storage /KWh mechanical
times of stresses, risk of

days catastrophic
(bearing failure.
losses?)
Compressed air None 2.3 180 NO ~64% ££ Large pressure
Efficiency Less for vessel required.
drops to storage Temperature
~17% over hours losses rapidly
after one or days. reduce
day efficiency.over
time.
Superconductivity None 0.0015 0.12 ? ? £ELEL ? Long lengths of
wire immersed
in liquid helium.
Tolerable
magnetic field
strengths?
Demand ? ? ? ? 100% to £? ? To be
response infinity discussed

Table 2-6 Summary of storage technology potentials

The conclusions are fairly simple. Pumped hydro works well in large schemes but there are few or

no UK locations remaining. Although pumped hydro dominates our current storage capacity, it is
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still only equivalent to 30 minutes of average UK electrical demand. Pumped hydro is not
effective at small scales, as the energy density is too low. Fundamentally this is because the force
of gravity is weaker by orders of magnitude than the other physical forces of electro-magnetics
and molecular bonding. Superconductivity and compressed air fail to produce appreciable energy
storage densities due to constraints of electro-mechanical and thermodynamic laws. Flywheel
storage can store limited amounts of energy, if expensive composite materials and high

specification bearings can be used.

Lead-acid batteries store energy reasonably densely, due to the chemical bonding nature of the
energy stored. Their uptake might become marginally financially viable in the near future, but
widespread deployment might be limited by the global reserves of lead and possible lead market
price rises. Electrolyte stores might get around the lead problem, and could also avoid the
requirement to space the batteries at 1/3 battery to space ratio, since the electrolyte could be
stored in relatively maintenance-free tanks. The batteries power-cells themselves require

maintenance and probably a replacement/refurbishment scheme after 10 years.

Hydrogen storage, which stores energy via chemical bonds, represents very good energy density
and the liquid hydrogen is also transportable by reasonably conventional means. The downside is
the relative immaturity of the technology (which can be overcome), but also the relatively poor
electrical round-trip efficiency which is only 20%. Heat is also released at about the same rates
and can be used if heat loads are nearby. It is unknown whether hydrogen electrolysis might be

acceptable in a domestic environment in the future.

Simple, low-tech heating of water stores energy in larger energy densities to a lead-acid battery
store (at 1/3 battery to space ratio). Water heating requires very little capital expense - there are
no pressure vessels and the heating element is a simple resistor. Suitable insulation must be used
but this is relatively cheap. The downside is that the energy cannot reasonably be reconverted to
electricity. It must be used (or lost) as heat in or near the energy store. Small domestic stores,
depending upon the size and insulation, lose energy via conduction relatively quickly over hours or
days. This energy storage efficiency loss can be minimised by sizing a tank appropriately for each

dwelling or group of dwellings, and investing in insulation.

2.5 Summary of drivers for demand response

The drivers for demand response are:-
e That there is currently no closed link in the supply vs. demand cycle for electric power in
the UK.
e The resulting market inelasticity causes volatile prices.
e The market inelasticity means that there are very few real-time tools for reducing demand
in times of poor winter weather or when supply is otherwise constrained.
e The fixed price electricity which we buy does no encourage awareness of energy efficiency

or of the real-time difficulty of supply and demand in the electricity industry.
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2.6

e The REC companies currently stand to make a large proportion of their profits from the
derivatives trading surrounding the “premiums” that we pay against the risk of harsh
winters. Since these energy trades were the kind of business that Enron were involved in,
having divorced themselves from the actual business of operating networks, it is
reasonable to suggest that our REC and DNO companies should be concentrating on running
efficient networks and security of supply. Their revenue stream should be based around
quality of service and efficiency; they should not be primarily engaged in the business of
energy futures to generate their profits.

e As customers, although wholesale energy prices are at all-time low prices in real terms, we
are not able to participate in the use of off-peak electricity prices, apart from a few users
of economy-7 and white-meter schemes.

e Fossil fuels are running out, or becoming suspect from a security-of-supply viewpoint.
Nuclear fission is not yet proven. Nuclear fission will only last 300 years (less if the Far
East increases consumption), unless fast breeder technology is adopted and this is
politically unacceptable at the current time. Our energy must increasingly be sourced from
renewable supplies and these are weather dependent. Weather-dependent sources by their
nature are variable and uncontrollable. Without substantial overbuild, vast bulk electrical
storage would be required and this is not currently viable due to technological, financial
and efficiency constraints. Consequently our available supply will become more variable,
and therefore our electrical demand must begin to adapt to the changing supply. This can

only happen if the supply-and-demand cycle is completed by passing prices to customers.

Detailed objectives of this paper

During this paper, we will investigate the effects that demand response and embedded storage
facilities might have on the UK electrical power grid. The demand response involves a large social
change, whereby individuals or businesses modify their consumption patterns based upon pricing
signals from the power markets, or merely via voluntary actions. We will investigate in depth the
potential for manual and automatic demand-response mechanisms in the domestic sector, while

also considering the commercial and industrial environments.

The demand response may consist of any combination of the following three intertwined actions,
either by manual conscious decision or by some automated system:-

e Energy reduction at times of peak electricity price (peak clipping)

e Shifting of energy consumption from peak to off-peak times (valley filling and smoothing)

e Embedded and domestic storage schemes activated by peak and off-peak pricing signals

(smoothing)

First, we conduct a review of available methods of achieving demand response. This includes the
technical, financial and social issues surrounding the passing-on of electricity prices to the general
population. Also, we review the estimated elasticity of demand for the domestic, commercial and

industrial sectors from available literature.

32



In chapter 4 we present a novel analysis tool with which we can generate and present
demand-response simulations which combine estimated market elasticities, UK energy
consumption data, estimated human behaviour factors, weather data, storage technology data,
and a model of electricity pricing in the UK. The outputs of the simulator are baseline (without
demand response) and new (with demand response) demand and price profiles for the UK power
network over chosen time periods and weather events. The aim of the simulations is to find
realistic demand-response and embedded-storage implementations that modify UK electricity
demand to fit a variable, weather-dependent generation portfolio, while not requiring any more
bulk pumped-hydro storage capacity than we currently have. Simulation results are presented in

chapter 5.

33



3.1

Demand response methods and technologies

The Demand Response and Advanced Metering Coalition [7] quote information from the California
Energy Commission. The claim they make is that building peaking power plants to cope with peak
demand costs $600 per kW, while demand response measures only cost $100 per kW to implement.
This statistic alone, if accurate, is enough to justify the development of a widespread demand

response programme.

Currently, in the UK, there are only limited methods via which demand response may occur in the
electricity market.

e “Pre-agreed” load-shedding in the industrial sector

e “Economy-7” and “White-meter” split day and night-time metering

e Emergency load shedding by the DNOs (this is a last resort and leads to some non-essential

customer’s experiencing an unplanned blackout)

This chapter will detail the existing and potential methods by which demand response (including
non-bulk storage) can be triggered by the balance of supply and demand, and the pricing signals
given from the balance. The first discussions will involve established demand response methods,
and then move on to emerging and then untried systems. Also, the technical feasibility of the

schemes will be discussed. At all times, the positive and negative fiscal, technological and social

factors must be borne in mind.

Industrial load curtailment measures

In the industrial sector, where individual customers can consume many hundreds of kW, load
curtailment has been a common practice for many years. The methods are established, although
the exact details of the contracts and the fiscal incentives have changed since privatisation of the

power networks.

Load curtailment in the industrial sector happens via pre-agreed curtailment contracts. Businesses
must sign up in advance, and renew the agreement periodically. The agreement specifies the
amount of load that can be shed, the notice period that must be given, and possibly the minimum
and maximum number of times per year that the curtailment might be required. The agreement
might be with the DNO/REC directly or via an intermediary CSP (Curtailment Service Provider)
company. For the largest customers connected to the transmission grid, the CSP might in fact be

the Balancing Mechanism administrator itself.

If demand approaches supply, the CSP can contact the business and give the required notice by
phone or other real-time communication method. The load that the business sheds is “bought
back” from the business at the maximum of either:-

a) The market rate for electricity, or
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b) Some fixed amount, dependent upon the amount of notice given

If the business fails to shed the load, a fiscal penalty of some form is imposed by the CSP. There
are many forms of penalty, from simply fines to withheld future payments of “capacity credit”
payments. Large customers partaking in the curtailment schemes can qualify for “capacity credit”,
as they essentially count as reserve generation. The credit is a financial incentive to join the
scheme. The capacity credit magnitude varies with location, being larger in areas where
generation is sparse and lower in areas where generation is plentiful. Referring to Figure 3-1, the
capacity credit in Cornwall and the area West of London would qualify for the high capacity
credits, while Scotland would not. A more detailed network diagram would highlight smaller

localised areas of over and undersupply.
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Figure 3-1 Forecast average UK power flows, 2006-2007, in MW [25]

The NEDRI report [26] describes recommendations for two types of industrial load curtailment
plans. One is a real-time plan, and one is a day-ahead plan. The real-time plan has 2 available

notice periods: 30 minutes and 2 hours. The minimum price that the curtailed power is bought
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back is proposed to be $500/MWh and $350/MWh for the 30-minute and 2-hour plans respectively.
A previous scheme charged an annual fee of $5000 from each participant, and required an
aggregate 1MW load size to be eligible. To boost participation, NEDRI recommend that the signup

fee be reduced to $500 per annum, and the threshold for eligible load size be lowered to 100kW.

NEDRI [26] recommend that the CSP take a 30% cut of the financial transaction between the
system operator (the Balancing Mechanism in the UK) and the customer for the bought-back
energy, while the remaining 70% of the transaction value is passed to the customer. The minimum
energy buy-back prices above are designed so that the 70% cut which passed to the customer is
still a large enough incentive to encourage participation, while also providing a large enough

incentive for the CSP to run the scheme efficiently.

For the day-ahead plan, the businesses get the opportunity to bid daily the amounts of load that
they will curtail on the following day. Again, NEDRI had a plan existing but the minimum bid size
was 1MW, and they recommend that this be reduced to allow smaller users to participate. This
method requires a reasonable forecast of 24-hour-ahead supply and demand, but enables
businesses to plan the load curtailment better. It also encourages competitiveness and stability in
the energy price - so long as the supply and demand forecasts are accurate. For a day-ahead
programme to work well, with weather-dependent renewable generation, the weather forecasts
will need to be accurate enough that the wind, solar and wave power available can be forecast to

a reasonable degree.

The real-time and day-ahead programmes require at least one dedicated person to be responsible
for the daily activities at each participating business. Smaller energy users might not be able to
afford this manpower, and instead might like to participate in a weekly or monthly ahead bidding
programme. This would require accurate forward forecasts of supply, demand and weather over
longer time-spans and might be hard to delivery effectively on an accurate basis, although overall

known annual cycles of average supply and demand can be known reasonably well.

Some of the industries that curtail loads will not simply go without power. In many cases they can
instead use a standby generator to make up the power required to keep operations running. In real
emergency periods, the emissions from these generators are not terribly important. However, if
load curtailment is to become more common on a daily or weekly basis, it becomes more
important to ensure that the on-site generators do not pose a health risk to nearby residents or
workers. In general, any industry signed up to a load curtailment programme will be monitored by
an environmental organisation (e.g. SEPA) to check that the generator emissions are within
acceptable limits. The data containing times of load curtailment events and the participants

involved is passed from the CSP or DNO to the environmental organisation.
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3.3

Large-scale industrial real-time power pricing

Industrial customers above reasonable thresholds of demand can already choose to participate in
real-time pricing of electricity. Some of these customers are large enough to be connected to the
transmission grid at HV, and therefore have no dealings with the DNOs and RECs. Others are
connected via the DNO/REC at MV distribution voltages, but consume sufficient power to warrant
partaking in such a scheme. Up to the present day, the threshold of power consumption has been
large, and another significant factor is that the business must be able to justify at least one
dedicated person working pretty much full-time on the energy purchasing activity. Essentially the
business buys and sells power at market rates, thereby obtaining cheap power at wholesale prices
plus a small TNUoS or DUoS markup. The industry takes on the risk of the fluctuating energy
prices, but does not have to pay a “premium” to the RECs like the rest of us. Unlike curtailment
contracts which are dispatchable by the network operator, in a real-time pricing contract the
industry can choose to reduce power consumption at will. It is possible to be in a curtailment

contract at the same time as a real-time pricing contract.

Some industry customers find that taking all the risk is unacceptable. Instead, they might agree to
purchase some quantity of power in advance at fixed prices, and then buy (or sell) the balance of
energy due to their actual usage at real-time rates. Different customers can negotiate different
prices for their fixed-rate power due to their daily and seasonal average load profiles which will be
known to both them and the supplier (since they have historical data from metering by the hour or
half-hour). The customers can make this deal with an REC or balancing mechanism directly, or
they can use a completely separate hedging company which is set up solely for this power trading
purpose. These hedging companies are purely dealing in energy derivatives. They attempt to make
profits by setting the fixed rates slightly above the average energy price over the future period,
taking into account the risk factors that they anticipate. (In the current domestic market, RECs are

simply hedging companies for domestic customers).

Another, softer method of hedging involves an agreement where the customer has a price cap
placed on the purchased power. The customer must pay an agreed fee to the hedging company,
but the hedging company will make up any difference between the capped price and the real-time

price if it subsequently exceeds the capped limit.

Voluntary non-fiscal methods

Although any form of quantification is difficult, the effect of purely voluntary changes to user
demand profiles should not be forgotten. In a “wartime” environment the public attitude might be
to reduce peak demand for the good of the country. In a more modern environment, some people
will alter their behaviour simply because they know (or believe) they are doing something good for
the environment, despite any fiscal reward for doing so. An example is the recycling of glass, tins

and paper. We receive no reward for doing so, in fact it can be a relatively unpleasant task

37



3.4

standing at the skip throwing the stuff in. However, across all classes of people there is a

reasonable uptake in recycling, on a purely voluntary basis.

So, in the remainder of this report, although it will be hard to quantify, every time that a fiscal
method is proposed as a demand response mechanism, we should not ignore the factor that some
people will modify their behaviour with or without the fiscal reward. Any measured or assumed
demand elasticity will include some amount of purely voluntary action on the part of the

population.

The key point here is that people must somehow be aware that it is “better” or “worse” to use
electricity at different times. Currently most people have no notion that time-of-use of electricity

could ever be important, let alone when those times might be.

Beneficial changes to the electrical demand load profile can be made by promoting voluntary
demand response. To do this, the information has to be disseminated. This could either be via
pricing methods, or via some much softer option. Such an option might be a daily report of
supply-demand balance in the news, similar to the pollen-index and ftse-100 updates that we get
regularly these days. We could be informed when and how severe the peak demand periods are
likely to be and on each day, and we could avoid those times. The severity could be simplified to a
scale of 1 to 5, say, with 1 representing plenty of supply and 5 representing a close-to-emergency
situation. When the severity reached 4 or 5, the bulletins could be played more often on the radio
or TV with updates in real time, so that people know when the situation has returned to a lower

level.

Fiscal methods in the medium use and residential

sectors

This section deals with customers whose load demand is small enough that it does not warrant
consideration for a dispatchable curtailment agreement with a CSP, and customers that do not
wish to be actively trading energy on an hourly or half-hourly basis. Generally, this applies to all
customers whose load is less than 100kW. Although these customers are unlikely to want to
actively trade in energy via phone calls and financial transactions every hour or half-hour, our
quest here is to find demand response methods which can enable them to be influenced by, and
influence, a market whose supply and demand balance changes with the time of day, weather and

season.

Demand response at the medium-size and residential consumption levels requires a social change
and a new attitude to electricity consumption. The question is; how to achieve this without
appearing to infringe on “human rights”, and how to achieve demand response in a politically
acceptable manner. The New England Demand Response Initiative (NEDRI) report [26] is a detailed

examination of the practical issues surrounding the implementation of fiscal demand response
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schemes for medium-sized and residential customers. These schemes and issues are summarised

here.

To enable most of the demand response methods, an advanced meter (AM) is required.

Advanced metering techniques

A traditional domestic or small-business electricity meter simply measures the real power
consumed over time. The meter is typically read every few months and a customer bill generated
by applying a flat rate to the power used. There is no information recorded concerning the time

pattern of the power usage.

An advanced meter (AM) records the power consumed during much shorter time intervals, forming
a list of values which describe a customer’s load profile on each and every day. Half-hourly
readings are typical. Due to the amount of data generated, it is no longer realistic to collect the
meter readings by hand, so electronic means are used. The meters communicate to a utility
central computer system via a secure method, of which there are several choices:-

i) Internet (via home computer)

ii) Internet (via LAN of ISDN connection)
iii) Phone line (via internal modem)

iv) Internet (via LV electric lines)

V) Short-medium distance radio.

Since large-scale uptake of demand response requires large-scale uptake of advanced metering
technologies, iv) and v) have the big advantage of not requiring any additional fixed-line
communication installation. The meter simply needs to be installed in place of the existing meter,

by connection at the user’s power entry point(s).

Most of the major meter manufacturers are now offering advanced metering products. Elster’s
new A3 Energy-Axis product is a typical example [15]. It offers two-way communication by phone
line via an internal modem, which provides a communication for rural, remote and “base-station”

installations.

The A3 meter also offers two-way digital communication in more urban environments via
unlicensed 900MHz radio band. Each meter installed can act as a repeater station, relaying
information from one meter to the next and forming sub-networks of up to 1024 meters. Each
sub-network requires just one meter to be connected to a phone line to complete the
communication link with the utility computer. In this way, the transmitted and received power
levels to and from meters can be very small, and reception can be arranged even in the most

tucked away of meter locations.
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In the UK, the electricity and gas utilities have access to unlicensed radio bands via the JRC (Joint
Radio Company) [21] which manages the radio spectrum available to these industries. In the UK,
the band 183.5-184.5 MHz is currently allocated for automated meter reading, but other
frequency ranges are also available to the utilities. New frequency ranges might be arranged by
agreement with the DTI. Relatively little bandwidth would be required for these communication
schemes, since the meters will be communicating over relatively short distances within the sub-
networks, and the amount of data is small (relative to voice communications). The
communication requirements are similar to several mobile-phone text messages being sent from
each meter to the central computer each day, and several broadcasts from the central computer
to all meters each day. Each message would be a single burst of maybe a hundred bytes,
compared to voice communications which require constant streams of hundreds of bytes per

second.

Historically, the costs of advanced metering have been the major technical barrier to the uptake
of demand response. DRAM California [7] now claim that the purchase and installation costs of an
advanced meter (AM) can now be as low as $50 and $50 respectively, implying a total installed

cost of just $100. This is a significant development in the feasibility of AM uptake.

Features which are required (or highly desirable) in an advanced meter to facilitate demand
response are:-
e Simple replacement or retro-fit of existing meters
e Half-hourly recording of power usage
e Ability to transmit lists of half-hourly data to utility computer, at its request
e Ability to transmit data concerning loss of mains (blackouts) and islanding during fault
conditions
e Ability to receive TOU periods, charges and updates from utility computer
e Ability to receive critical peak pricing time and charge information from utility computer
e Ability to receive real-time pricing information utility computer
e Wireless communication with a user-interface panel in an accessible location within the
building
e Audio-visual warnings from the interface panel during critical peak pricing events
e Programmable audio-visual warnings when user-settable real-time pricing thresholds are
surpassed
e Visual indication of real-time prices, TOU rates, schedules, forecasts etc.
e Wireless communication with appliances such as washing machines, fridge-freezers,
immersion heaters etc.
e Ability for users to program appliance schedules and cost driven go/no-go & buy/sell

thresholds via the interface panel
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3.4.2.1

Time Of Use (TOU) pricing

Time Of Use (TOU) pricing revolves around a number (generally 2 or 3) “fixed” time periods each
day at which different known charges apply. The time period may be completely fixed, or may be
varied periodically with notice sent to customers. The Economy-7 plan in England & Wales uses 2
fixed TOU periods, peak rate (8am to 1am) at about 7.5p/kWh, and night-time rate at about
3.5p/kWh (1am to 8am). The Scottish “White meter” scheme offered a similar scheme, although
the night-time rate could change within certain limits every day; the night-time rate being
broadcast over long-wave radio. Disappointingly, the “White-meter” scheme is no longer open to

new applicants.

More advanced schemes might use 3 periods. The periods of peak, mid-rate and bargain-rate
electricity might be adjusted 4 times a year to account for the different patterns of consumption

each quarter as the seasons change

The advantage of a TOU scheme for medium and small customers is that the rates are 100%
predictable, save for slight adjustments and re-learning that each customer must do each time
the periods change significantly. Customers can set immersion heater timers, washing machine

cycles, and other power-intensive activities to occur at known times each day.

The biggest disadvantage of TOU alone, compared to other demand response methods, is that it
does not allow updates on a daily basis. In terms of our quest to create a demand response to
weather-dependent generation capacity that varies by hour, day and week, TOU helps to modify
the general load profile on a statistical basis, but does not provide a full solution. The
supply-demand cycle has been closed, but with a filter that allows a seasonal but not a fully

dynamic demand response.

Inverted block rates

A cut-down version of TOU pricing can be implemented if advanced meters are not available at
customer sites. The method requires an estimation of a customer’s actual daily load profile. In
the absence of real half-hourly or hourly meter data from each customer, the profile might be
guessed by taking higher-level load profile results from within the distribution network, possibly
for an entire town, substation or residential neighbourhood.

The “inverted block rate” system has been used in the US (Arizona, California, ldaho and
Washington states). The average daily load profile of a residence is calculated from aggregate
data. Electrical load peaks in these American locations occur during summer early afternoons,
due to air conditioning loads. Since, in general, wealthier residents possess air conditioning, and
these residents also use more power on average, the power company concludes that poorer
residents have lower overall power usages, less air conditioning and therefore also their daily
load profile peaks less during these summer days. In an “inverted block rate” scheme the DNO or

REC charges a higher price per kWh to residents who use more power and vice verse, which is
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completely reverse to normal marketing techniques. This higher price reflects the way that the

REC believes that the richer customer’s load peaks correlate with system peak demands.

Such a scheme is obviously contentious since many residents might feel that the data does not
apply to their personal habits. Moreover, in the UK, it is unlikely that such a scheme would be
justified since our peak demands do not stem from such obviously wealth-related luxury devices
such as air conditioning, but more from water-heating, space-heating, cooking and kettles which

are cross-class necessity activities.

Critical peak pricing (fixed and real-time)

Critical peak pricing could be invoked for any customer with an advanced meter installed, that
can receive real-time instructions from a DNO, REC, or CSP. The action would be triggered at
similar times to those when the CSP requests large scale curtailments from heavy industry, when

demand is dangerously close to available supply.

When invoked, for a participating customer, the information would need to be conveyed to the
customer. This could be via a meter repeater panel in the residence or business, situated in some
common area where it can be easily seen and heard. An audio alarm would be a sensible feature.
Preferably, at least 30 minutes or more notice should be given, plus some indication of the likely
duration of the critical peak price. Once the critical price kicks in, the customer would be
charged either the full real-time half-hourly market rate, or some fixed critical peak rate, until

the end of the period.

If critical pricing was rolled out to the domestic population of the UK, critical pricing would be an
important communication mechanism to make the public aware when supplies are short. Aside
from the price-based decisions that some people would make, a certain amount of any demand
elasticity due to this scheme would be due to a “voluntary” response. No matter how wealthy the
individual, curtailing demand at these peak times decreases the likelihood of blackouts -
blackouts which cause disruption to poor and wealthy alike. Some of the curtailment will be done
to save money, some will be done to be “good to the environment”, and some will be done in the

hope of avoiding blackouts if others also curtail their demand concurrently.

TOU combined with critical peak pricing

TOU and critical peak pricing can be combined to operate as concurrent and complimentary
programmes, where both schemes are unmodified except that critical peak pricing takes priority

over the TOU timed events.

Real-time pricing

The half-hourly market prices could be passed back to customer meters in real time. If necessary,
the market prices could be moderated by capping the peak price to a regulated level, and adding

a small premium to the off-peak rates to compensate. Customers would be able to view the
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current price and an estimation of the price over the next 24 hours or more. Customer demand
would then be elastic as the population would then make valued judgements about which tasks to
carry out given the current price. Customers could program their meters through a simple panel
interface, possibly to emit audio-visual warnings when user-configurable price thresholds were
breached (or forecast to be breached). The programmable interface could also allow for control
of immersion heaters, washing machines, fridges etc. which could all have their behaviour

modified (if the customer chose) to avoid purchasing the most expensive power.

Demand-side active management

While larger customers can be part of dispatchable load curtailment programmes, smaller
customers enrolled in real-time or critical peak pricing schemes could develop their own load
curtailment rules. For example, people could program their washing machines; instead of starting
a cycle immediately in the afternoon or evening, the machine could be requested to wait until
the price of electricity crossed below a certain level and was forecast to stay that low for the
required period to complete the wash. Immersion heaters could be programmed the ways such
that most power was purchased at cheaper times. The customer could set up slightly more
complex programs that would delay activation as above, unless a certain time was reached, and
then the activity would start anyway. This would be useful to ensure that a wash was complete or
water was hot for some deadline time. Other examples include:-

e Fridges and freezers could be programmed to deactivate for a configurable amount of
time (say 2-3 hours) at times of critical peak prices. The time allowed would be defined
by the heat capacity of the fridge, to ensure that food did not spoil and freezers did not
defrost.

e Computers in an inactive state (i.e. in standby or after the monitor has entered a standby
state) could save all relevant data and power down completely.

e Electrical fan and wall heaters could be programmed to deactivate at times of high
prices.

e In general, conventional lighting circuits could not be part of an automated active
management scheme, due to obvious safety concerns. However, buildings with
motion-sensitive light circuits could adjust their mode of operation to reduce the latent

time that lights remain on after triggering during peak prices.

All this can be technologically feasible using an advanced metering and some intra-building
communication system. In a domestic environment the Bluetooth wireless protocol, or similar
system, provides a solution for communication between domestic appliances and the advanced
meter. Assuming all the user programs for load curtailment were entered via the meter interface
panel, the meter would make all the minute-to-minute decisions which would mean that the only
appliance intelligence required would be to pass a “request for start from appliance X” to the
meter, and to understand a simple “go/wait/no-go appliance X” signal from the meter. Each

participating appliance would need two “on-off” switches; one meaning a definite user input for
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“on/off” which would ignore the meter and electricity price, and one meaning “go, but only if the

meter says so”.

Social factors involved with real-time pricing schemes

These kinds of changes might have noticeable effects on average people’s lives. Some people
might embrace the change and some might hate it. Some people might have enough money not to
care, some might have lots of money but care about the environment and enjoy the change.
Particular care would need to be applied with the introduction of such schemes, however. In the
UK, since so much of our domestic energy demand is space heating, we need to be careful not to
add to the problem of “fuel poverty” in households where money is short. Schemes might need to

be introduced on a voluntary basis, or with exemptions for the retired, infirmed or poor.

Both the DRAM coalition (California report [7]) and Baladi [4] explain the results of experiments in
the USA examining the impact of forced vs. voluntary enrolment in a TOU scheme. The hypothesis
was that people who volunteered for a TOU or real-time pricing scheme would do so because they
believed that they would benefit from lower bills, while those that did not volunteer believed
that they would suffer from higher bills on the new scheme. The experiment involved installing
advanced meters in all houses so that use could be monitored. Volunteers were requested, but
only about half the volunteers were actually enrolled on the TOU scheme; the remaining
volunteers formed a control group. The analysis of the data from the non-volunteers, the control
group and the volunteers on TOU shows that there was no statistical link between volunteering
and energy use profile before signing up to TOU. Volunteers or non-volunteers might have
believed that they would, or would not, benefit from TOU pricing. But the evidence suggests that
across the broad population, all households can benefit from real-time and TOU pricing to
approximately the same degree. These are important results if true, since they form a good
argument for TOU and real-time pricing to be socially inclusive. Additional data from a similar
study in the UK would be extremely useful, since it is vital that such schemes are understood by

the population to be socially inclusive tools rather than discriminatory methods.
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3.4.7.1 Cost estimates of common household electrical tasks

The table below gives an indication the costs of some common household electrical loads.

Task Power Time Energy Cost (pence)
(Watts) (Hours) (kWh) @ 7p/kWh
Shower for 10 minutes 9000 0.15 1.35 10
Bath 5 35
120 litre immersion tank kept warm at 55°C 200 24 4.8 34
for 24 hours, 1cm insulation thickness
Hairdryer for 10 minutes 2000 0.15 0.3 2.3
TV/Video on for 2 hours 400 2 0.8 6
TV/Video on for 12 hours 400 12 4.8 34
TV/Video on standby for 24 hours 9+9 24 0.4 3
Computer + VDU 400 12 6 34
on for 12 hours
Washing/Dishwash cycle 2200 1 2.2 15
100W lightbulb for 6 hours 100 6 0.6 4
4x100W lightbulb for 6 hours 400 6 2.4 17
100W lightbulb for 24 hours 100 24 2.4 17
Microwave for 5 minutes 700 0.08 0.06 0.4
Kettle for 2 minutes 2200 0.03 0.07 0.5
Hob for 15 minutes 2000 0.25 0.5 3.5
Lighting per day* 2.0 14
Cold appliances per day* 1.9 13
Cooking per day* 1.8-2.2 13-15
Brown appliances per day* 2.9 20
Wet appliances per day* 1.4 10
Space heating* 16.9-30 120-210
Water heating* 10-15 70-105

* these figures are average figures for all UK houses, per day, over 12 months between 2002 and
2004, based upon DTI data quoted in Table 4-1.

Table 3-1 Relative energy prices of common household tasks using electricity

Clearly, space heating and water heating cost us the most money. On winter days, space heating

will cost more than this figure, and on summers days the space heating may be zero.

How our demand might vary with electricity price-per-kWh will depend upon our concept of the

value of a particular activity to us, against the price it costs. With regard to the above table, it is

45



3.4.8

useful to consider the effect of a 2x to 5x price increase in price-per-kWh during a period of peak

demand.

People would probably like to reduce space heating and water heating demands, but this may be
difficult since it would still be regarded, even at prices of 2x to 5x current rates, as a necessity
rather than a luxury. We would expect elasticity to be low. Some kind of storage here is the most
sensible option so that the total energy use remains the same but the demand is moved to a

cheaper time.

In contrast, brown appliances and lights are more of a luxury good, commonly left switched on by

us when not needed. In these cases, elasticity is more likely.

These concepts will be used when setting up the simulation tool in section 4.12.1.

Regional electricity company effects

Demand response can result in an overall reduction in energy use. Under current REC revenue
structures, this can result in lower REC profits. The RECs currently have no incentives to
encourage energy reduction. They do, however, have an incentive for load curtailment and
demand response measures, since at peak times they will have to sell less power at fixed rates
while buying it on the market at peak-time rates. The implementation of an effective portfolio of
demand response tools ought to remove the risk from the REC financial position, and one might

imagine that the REC would embrace this with open arms.

The truth is that, as described in section 2.3.2.4, the RECs currently make money from being the
hedging agents in our current energy purchases. Passing the market price, and the risk that goes
with it, down to the customers means that the RECs would no longer be the hedging companies,
and that a large part of their profit mechanism would be removed. In a voluntary TOU or
real-time-pricing scheme, customers could choose to use an REC heavily for hedging purposes and
pay a flat rate, or choose to pay real-time, TOU or real-time capped rates with less hedging
charges. In effect, we would be choosing which “insurance” policy to buy from the RECs, instead
of being forced to buy the most conservative (and expensive) policy that gives us our flat-rate

electricity price.
Most likely, RECs will resist such change, but that is a matter for the regulator Ofgem to rule on:

the choice is between what is best for customers and network reliability vs. maximising the
profits of the RECs.
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4 Demand response analysis tool

In order to evaluate the potential effectiveness of demand response and embedded storage, a
comprehensive software tool has been developed. The tool simulates disaggregated load profiles,
bulk and embedded generation, embedded storage, real-time electricity forecasts, prices, and
demand response scenarios. The remainder of this chapter will give a more detailed overview of

how this tool works.

4.1 Overall model structure

A conceptual diagram of the model is shown here. Program flow is generally from top to bottom,

while data flow is generally from left to right.

Start

Cookmg
Wet
Domeshc
Water
SpaceHeat -
Commermal Baseline weekly load profile shapes |—|
Baseline annual load profiles

cald
Industrial'—j_l J

Tradmonal

Wmdh -

Elulk generation models

Climate data WAVE :J
Domestic generation models _ : :
Wmdl—) Baseline house-by-house simulation
_VIj

Solarwaterh-eating madel |—| Darnestic water tank model

Price and forecasting models

ElaEe = |\
= Domestic electric storage models ——1 Demand response house-by-house simulation
FlypwheelfOther I—l

Demand response customer behaviour models

Data analysis

Figure 4-1 Demand response analysis tool: conceptual diagram
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4.2

4.3

The actual flow diagram for the model is significantly more complex to allow for such things as
partial simulations and the loading/saving of results. In particular, the results of the baseline
simulations may be stored and re-loaded as the seed for many different demand response
simulations. This allows a single baseline simulation to be taken as a “control”, against which

different scenarios of demand response can be compared.

The model is coded in a language called “Vee” which is published by Agilent Technologies. This
language was chosen because it provides the following benefits:-

e An extremely rapid prototyping environment and debugging facilities

e Easy access to windows-based graphical output tools and data input widgets

e Array and matrix processing

e Familiarity of the author to the tool
In the following sections, the functionality within the major model blocks will be summarised.

The tool splits electrical demand profiles down into component parts, by load type. The profiles are
simulated in time steps (nominally %2 hour long). The profiles are modified by climactic effects, and
then applied to individual “houses” which can have different attributes of appliance ownership and
behaviour. A baseline simulation produces a “control” result, and then a demand response
simulation adds domestic storage and demand response actions. The results of the demand

response simulation can be compared to the baseline simulation.

Correlation effects which are, and are not, modelled

It is useful to point out the factors which are NOT included in this modelling. Affluence and varying
house sizes are not accounted for in the model. No account is taken of any correlations between
affluence, house size and electrical demand. In the model, all houses are assumed to be of
average size. No data was available providing any quantitative link between these factors, and it
was not deemed appropriate to attempt to guess any such links. Likewise, no link is assumed
between affluence and electric vs. gas heating/cooking ownership percentages, and no
behavioural parameter depends upon anything other than a random number which is assigned to

each house at the start of the analysis.

The model does make extensive use of climate-based correlations between renewable generation

(wind, solar) and domestic heating demands (driven by temperature).

Baseline weekly 7-day load shapes

The overall electric demand profiles in this model are synthesised on a per-household average
basis. The shapes of the sum profile for each house, on average, should end up looking like the
shapes shown in Figure 2-8 to Figure 2-10. Simply taking the sum profile shape, however, would

not enable the detailed analysis required in this report to be carried out. Instead, the individual
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components of the profile must be disaggregated from the sum. The model analyses the profile in
the following parts

¢ Domestic brown appliances (TV, radio etc.).

e Domestic lighting

¢ Domestic cold appliances (Fridge etc.)

¢ Domestic wet appliances (Washing machine etc.)

e Domestic cooking

¢ Domestic water heating

e Domestic space heating

e Commercial (scaled to a per-household amount)

¢ Industrial (scaled to a per-household amount)

No data could be found in the public domain for the time-variant profiles of these component
parts. Therefore, a best-guess approach was taken to the individual load profiles. For example,
water heating requirements will probably peak around breakfast time and in the evenings, and TV
usage will peak in the evenings. Weekend usage patterns for these types will probably be more
spread out than weekday patterns. Cold appliance usage, on the other hand, is more-or-less
constant over both 24-hour and 7-day timescales. Within the model itself, the basic 7-day profiles
are built up by adding user-adjustable modified raised-cosine shapes. The raised-cosine waveforms
are specified by:-

e Start time, T1

e Rise time, RF1

e Start weight, W1

e Fall time, RF2

e Stop time, T2

e Stop weight, W2

Time -> P >
‘ ' o .

RF1 RF2

Figure 4-2 Load profile component
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The load profile magnitudes are specified in relative weighting terms; it is not necessary to
specifity the exact power magnitudes in Watts. The overall profile for each load type is built up by
adding as many weighted raised-cosine shapes as required. The model allows for 3 separate
weighted profiles for each load type:-

e A Monday-Friday profile

e A Saturday profile

e A Sunday profile

Shown below is an example of a seven-day profile; in this case for brown appliances (TV’s, radios
etc.) It can be seen that the Saturday and Sunday profiles (shown here as days=11-12 and days=12-

13) have quite different load shapes to the Monday-Friday profiles.

INDIVIDUAL PROFILE VIEW

Profiles Demand profile, per household
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Figure 4-3 Basic weekly 7-day load profile for brown appliances, per household

The load profile shapes built up here correspond to human behaviour patterns and demands. At
this point, the profiles do not account for climactic effects or seasonal load changing patterns.

These are applied in the next stage of the modelling.
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Baseline annual load profiles

Data is available from the DTI [8,10] giving a breakdown of annual electricity and gas use in the UK by appliance type. This data gives no indication of the

profile of use against time-of-day, week or season. The figures are simply total use for each load type over a 12-month period. There are many different DTI

tables from which the information summarised below has been collated into a useful format for this analysis. Even within the DTI figures for one year there

are inconsistencies between tables. The figures presented below are believed to represent a fair picture of UK electricity and gas consumption in the UK for

2002/2003 after cross-correlating the figures between as many tables as possible. As well as plain electricity consumption, data for gas consumption and

relative ownership rates for electric and gas appliances is gathered here. This enables scenarios of customer fuel switching between normal gas and CHP

domestic boiler types, and gas to electric heating/cooking to be analysed.

Lighting Cold | Cooking | Brown | Wet | Space Heat | Water | Total Commercial | Industrial
Elec Stats
% Houses 100.0% 100.0% | 60.0% | 100.0% | 100.0% 15.0% 15.0%
TWh/annum (UK total) 17.99 17.15 10 26.9 12.8 23.2 13.8 [ 121.8 TWh/a 98 111.75
kWh/house/day (ALL) avg 2.0 1.9 1.1 2.9 1.4 2.5 1.5 13.3 [ kWh/house/day 10.7 12.2
kWh/house/day (installed) avg 2.0 1.9 1.8 2.9 1.4 16.9 10.1 37.0 | kWh/house/day
Gas stats
% Houses 40.0% 70.0% 70.0%
TWh/annum (UK total) 8.1 272.9 98.2 | 379.2 TWh/a 101.3 176.6
kWh/house/day (ALL) avg 0.9 29.9 10.8 | 41.5 | kWh/house/day 11.1 19.3
kWh/house/day (installed) avg 2.2 42.7 15.4 | 60.3 | kWh/house/day
UKHouses 25,017,000
TWh/annum to kWh/house/day | 0.109514571
1 toe to MWh 11.63

Table 4-1 Annual UK electricity and gas consumption by load type
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To create the actual annual load profile for each load type, the model takes the weighted profile
shapes for each type, and then calculates the absolute power demands (in Watts per average
household) against time by equating the total used energy over a 12-month period to the value of
the numbers in Table 4-1. (Actually, in the model, the energy is equated over a 24-month period
to TWICE the numbers in Table 4-1. This allows a smooth calendar of weekdays to be set up for an
analysis over any period of the year including a crossing of the New-Year period). In the model, the
numbers are of course configurable to allow changes. In particular, it is possible to adjust the
ownership percentages for gas vs. electric heating and cooking. Since the model knows about both
gas and electric consumption per average household, it can then adjust the electricity usages to

simulate customer switching scenarios between gas and electricity.

For seasonally independent load types (i.e. Brown, Cold, Wet, Water, Cooking, Commercial and
Industrial), the annual load profile per average household is now complete. For the load types
Lighting and SpaceHeat, however, the profile power magnitudes vary in a more complex fashion

with season (climate).

Lighting and space heat load profiles

Climate data for the model was taken from datasets at the University of Strathclyde. Specifically,
the Dundee 1980 climate dataset sourced from the ESP-R package was used during the course of
this modelling. The dataset contains temperature, wind and solar insolation data, sampled hourly
over a one-year period. The climate data is loaded by the model, and then duplicated to form a
seamless two-year period so that the 24-month energy usage may be calculated. (Again, we use a
24-month not 12-month period here so that a smooth calendar New-Year period is available for

subsequent analysis).

The actual load profiles for Lights against time are adjusted according to the diffuse solar
insolation from the climate data, and two additional factors which define lighting use:-

e DiffuseForMinLights (DFML) specifies the diffuse solar insolation level (in W/m?) which,
even when exceeded, causes only a minimal amount of lighting to be used. Below this
level, however, the level of lighting used increases linearly to 100% when the diffuse solar
insolation drops to 0. Nominally DFML is set to 100W/m?.

e MinLightsFactor (MLF) specifies the amount of lighting which remains on, irrespective of

how high the diffuse solar insolation rises above DiffuseForMinLights. Nominally set to 0.2

These two factors modify the standard daily profile shape (as defined by the modified raised-
cosine shapes). If the simple daily lighting profile shape at any time is denoted as P, then the

actual real-time lighting profile L, at time t can be expressed as

L= P{MLF+(1—MLF)(1— !, D

DFML

where |, is the diffuse insolation at time t, clipped to a maximum of DiffuseForMinLights (DFML).
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To calculate varying space heat loads against season and climate, the model takes account of
both temperature and total solar insolation (diffuse plus direct solar) as they vary in time. The
model takes account of the following factors which are user definable:-

¢ InsideTemp; the desired internal room temperature (nominally 20°C)

e SolarCollectorArea; the effective area over which a solar collection efficiency of 100% is
assumed. This collected energy (due to total solar insolation) reduces the space heating
power required. This attempts to model, in a very simplistic fashion, the reduction in
space heating required on sunny days when radiation heats exterior walls or floods in
through windows to directly heat internal rooms. Nominally, a figure of 4m* per average
household is used.

e Templnvariant; the amount of space heating which remains on at all times, regardless of
climactic and seasonal variations. Nominally this is 0.2

e ThermalMassHalfLife; the half life (in days) of the internal building temperature as it
varies dependent upon the external ambient temperature. A longer half-life corresponds

to thicker walls with a larger heat capacity. Nominally, this is set to 1 day.

The first step towards calculating the space heat loads is to calculate the “degree-days-per-day”
for each day of the 24-month period. The “degree-days-per-day” figure for each day takes into
account the required “InsideTemp” figure, the average of the external ambient temperature over
the 24-hour period, and also the averages of the ambient temperatures over 24-hour periods for
the previous 15 days, with weighting factors applied in an exponentially decaying series as
defined by the ThemalMassHalfLife factor.

Next, the daily energy influxes due to the total solar insolation are also calculated. Again,
because the fabric of the building can absorb and store heat, the effective energy release on each
day is calculated by using the weighting factors of each day and the previous 15 days solar

collection, as defined by the ThemalMassHalfLife factor.

Calculating the actual electrical heating demands in Watts against time, in such a way that the
overall annual (or in this case 24-monthly) energy equates to the numbers in Table 4-1, is not so
easy in this case. The reason is that the energy balance equation for spaceheat depends upon

both the “degree-days-per-day” figures and also the solar influx figures, in a non-linear fashion.

E =Y f(k.DD, - SI, )T, where f(x)=x if x>0; 0 otherwise

Here E is total energy over the 24-month period (in Watt-hours), DD; is the “degree-days-per-day”
figure (after weighting) for each time step, SI; is the energy release due to solar insolation in
Watts (after weighting) at each timestep, and Tp is the number of hours in each timestep. k is a
constant (in Watts per degree-day-per-day) which the analysis needs to find in order to balance
the equation such that E becomes equal to twice the DTI figure for annual electrical space heat

use. Due to the non-linear operation of f(x) (which does not allow a negative space-heating
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demand on any single day!), the equation cannot be solved directly for k. The model instead finds
k via a Newton-Raphson iterative approximation. The amounts f(kDD;-Sl;) at each timestep i can

then be calculated explicitly and these are the required average spaceheating electrical demands.

Spaceheat, Water and Cooking demands: electricity vs. gas

The model takes account of user-configurable percentage ownership figures of gas vs. electric
appliances for space heating, water heating and cooking. From Table 4-1 it can be seen that
ownership in 2002-2003 was approximately:-
e Space heating and water heating: Gas 60%, Electric 15%
e Cooking: Gas 40%, Electric 60%. These figures are a simplified figure based upon the
actual consumption and ownership figures from DTI, since many houses currently have gas

hobs but electric ovens.

In the baseline simulation that follows (see section 4.10), houses are assigned ownership of
heating and cooking fuel types. The model assumes a direct link between space heating and water
heating, since the figures for ownership are currently almost equal and common sense suggests
that a gas boiler, once installed, will be used for both activities. Cooking ownership is assigned on
a house-by-house basis independently of the space heating and water heating fuel type. Within
the user-configurable energy use data provided to the model, the figures for current gas vs.
electric appliance ownership and energy use are provided. Also, the desired ownership figures for
the baseline simulation can be modified. This allows simulations to be carried out which analyse
future cases of either increased or decreased gas ownership and corresponding changes to

electrical ownership (gas-electrical fuel switching).

In the case of space heating and water heating demands, the model keeps track of not only
electrical demand load profiles but also gas heating demand load profiles. This is important since
the calculation of domestic CHP generation (see section 4.6) needs to know about gas usage
profiles so that the boiler outputs can be determined. The model is also supplied with the
efficiencies of both standard and CHP boiler types which it must account for in the calculations of
both gas-electrical fuel switching and CHP generation. These efficiencies are nominally [23]:-

e Standard boiler gas->heat efficiency = 0.65

e CHP boiler gas->heat efficiency = 0.6

e CHP boiler gas->electricity efficiency = 0.2

The current (2002-2003) ownership level for CHP boilers is assumed to be 0%.

If electrical ownership of a certain “task” (eg cooking) is increased relative to the 2002-2003
(current) levels, the model assumes that electrical energy use for that task per new electrical
customer increases by an amount equal to the displaced gas usage for that task, after accounting
for gas boiler efficiency. Conversely, if electrical ownership is decreased relative to the

2002-2003 (current) levels, the model assumes that electrical energy use decreases
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proportionately to the current electrical energy use for that task. This is a small point, but an
important technical detail, since it can be seen from Table 4-1 that current gas customers for
space and water heating use much more energy than their electrical counterparts (16.9+10.1=
27kWh per house per day, on average, for a house using electric space and water heating, vs.
42.7+15.4=58kWh raw fuel gas use per house per day, on average, for a house using gas space and

water heating).

Examples of baseline load profiles

The synthesised, disaggregated load profiles can now be presented by using some screenshots

from the model.

This graph shows how the average per-household spaceheat demand varies over the full 24-month
period which is used to equate the energy use to the DTI figures. The time axis spans a January 1%
to January 1°* to January 1° time period. Clearly the spaceheat demands are maximum during the

winter months and minimum during the summer.

INDIVIDUAL PROFILE YIEW
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Figure 4-4 Electrical space heat demands per average house over 24 months (Jan 1-Jan 1)

It is important to remember that the demand figures (in Watts) here correspond to the average
powers over all households. Since only 15% of houses currently use electric heating, the peak
average figures here of 200W per household in winter relate to the full population of households,
not just the households with electric heating. Therefore, within only those households with
electric heating, the average winter demand is expected to be of the order of 200W/0.15=1.3kW

over a 24 hour period.
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This screenshot shows the spaceheat and lighting demands over a single week (Monday-Sunday)
period in January. There is a drop in temperature to -6°C at day=3.5. which causes a peak in
spaceheat demand on days=3-4. Lighting demand can be seen to drop when the diffuse solar
component rises towards or above 100W/m?. Note also that the overall shapes of both spaceheat
and lighting demands are different between days 5-6 and 6-7, which are Saturday and Sunday
respectively. Saturday and Sunday can have both different demand shapes and demand levels as

defined by the modified raised-cosine definitions in section 4.3.

EBASELINE DEMAND PROFILES FOR OVERALL POPULATION
Domestic demand breakdown
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Figure 4-5 Electric space heat & light demands over one week in January (Monday-Sunday)

The demands here are scaled up by using number of UK households, which is approximately
25,000,000. This gives the overall UK domestic electricity demands for spaceheat and lighting

during a week in winter.

This screenshot shows all the domestic load types, for one week in January. Again, the numbers

are scaled for 25 million households to simulate a total UK demand.

EASELINE DEMAND PROFILES FOR OVERALL POPULATION
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Figure 4-6 Domestic demands over one week in January (Monday-Sunday)

The key point to note from this graph is that in winter (when our peak loads occur), even with
only a 15% figure for ownership of electric space heating, domestic UK electrical load is
dominated by space heat demand. Any demand response program that is to be successful must

bear this in mind. Space heating for many people in the UK will not be a luxury commodity, but a
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necessity. This situation is quite different from the “luxury” domestic air conditioning loads which

were the target of several US incentive programmes to reduce electricity consumption.

Next, this graph shows the sum of domestic plus commercial plus industrial electricity use over
the week in January. The total overall demand profile is not dissimilar to the actual known winter

load profile shapes (for England and Wales) shown in figures Figure 2-8 and Figure 2-9.

BASELINE DEMAND PROFILES FOR OVERALL POPLLATION
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Figure 4-7 Total UK demand over one week in January (Monday-Sunday)

Below, the disaggregated domestic and total UK demand is presented over one week in summer.
The domestic load shape is significantly modified (and lowered) since the spaceheat demands are
much lower. The overall UK demand peak is lowered from 50-55GW to 40-45GW. The Summer
demand peaks predicted here show a reasonable match to the real data shown in Figure 2-10,
after accounting for the increase in households from the England&Wales data in Figure 2-10 (23

million households) to the UK data modelled here (25 million households)
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BASELINE DEMAND PROFILES FOR OVERALL POPULATION
Domestic demand breakdown
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Figure 4-8 Total UK demand over one week in June (Monday-Sunday)

We conclude that although the disaggregated load profile shapes used here are unlikely to be
100% accurate (since they are composed by the author without any time-variant data from hard
data), the profiles are generally of the right shape. The energy balance which is carried out

guarantees that overall annual energy use for each load type fits known data from the DTI.

For the remainder of the baseline analysis, and for the demand response analysis presented in this
report, it is not vitally important that the disaggregated demand shapes be 100% accurate, so long
as they are reasonably representative of the real magnitudes and shapes of the demands. For any
further analysis, if it was important to achieve greater accuracy in the disaggregated profiles, real
data could be used to optimise the modified raised-cosine pieces so that the synthesised profiles
more closely matched the real profiles. It is not clear where any real data to support this activity

might be sourced from, however!

Bulk generation model

The bulk generation model is reasonably simple. Bulk generation may be supplied by one of the
following types:-

e Traditional

e Wind
e PV
e Wave
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The peak capacity of each generation type can be defined either as a fixed power in Watts, or as a
fixed percentage of the overall calculated electrical demand peak which occurs during the
simulation timescale (this will be determined during the baseline simulation). After the peak
capacity has been set, the actual real-time capacities of each generation type are calculated over

the simulation period by using the climate data.

Traditional generation is assumed to be available at all times on demand. The available capacity is

a flat line against time.

Wind generation capacity is calculated by splitting the total wind peak capacity into installations.
For example, 1GW of peak wind capacity, supplied by installations each of peak capacity
(parameter PeakWattsEach) 100MW, implies that there are 10 installations. Each of these 10
installations is powered by wind. The wind data to each installation is modified from the standard
climate data by:-

¢ A ClimateWindSpeedMultiplier (nominally 1) which allows the standard climate windspeed
to be increased to simulate installations sited in favourably windy sites.

e A time shift offset in hours which is a random number between -HoursSpread and
+HoursSpread. HoursSpread is nominally set to 24. This time shift allows a certain degree
of de-correlation between the outputs of multiple wind farm sites. This simulates
changeable conditions at different sites, and the effect of different wind directions on
different sites. Prolonged periods of low windspeed will still cause correlated dips in
available wind capacity, but brief fluctuations will tend to be flattened out. The
smoothing effect will be greater if either HoursSpread or the number of installations is
increased.

The wind power at each installation also depends upon the user-configurable parameters
RatedWindSpeed, CutinWindSpeed and CutOutWindSpeed. These define the power output

characteristics of the turbines.

PV generation capacity is also calculated by splitting the total PV peak capacity into installations.
The solar insolation data to each installation is modified from the standard climate data by:-

e A time shift offset in hours which is a random number between -HoursSpread and
+HoursSpread. HoursSpread is nominally set to 2. These time offsets create a smoothing
effect identical to that described above for wind turbines.

e The available PV power at each installation also depends upon the user-configurable
parameters RatedSolarWattsperm2 (nominally 1000) and Efficiency (nominally 0.15). These
define the power output characteristics of the PV arrays.

e No account is taken of the angle of solar incidence - the bulk PV power stations are
assumed to provide a scanning action which tracks the sun as it moves across the sky so

that all available direct normal solar radiation is gathered.
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4.6

The bulk wave generation model has only been created as a place keeper and is not complete. It

has not been used during the analyses presented in this document.

Domestic electrical generation model (PV, wind, CHP)

The model allows simulation of several different modes of domestic electrical generation:-
e Domestic PV
e Domestic wind

e Domestic CHP from a boiler, driven by spaceheat and water demands

The domestic PV and domestic wind models simple re-use the same model from the bulk
generation section (see section 4.5), although in this case the PV model simulates the fixed angles
of domestic solar panels and the tracking action of the sun by using the vector mathematics
derived in appendix 7.5. In the domestic case, the number of installations is defined by the
number of households in the simulation, multiplied by user-configurable percentage ownership
figures. The HoursSpread figures may also be modified, to simulate either widely dispersed or

closely packed populations and the resulting correlation effects of climate-driven generation.

Climate and sunshine monitor
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Figure 4-9 Example of climate, solar incidence angle and domestic solar panel orientations

To calculate domestic CHP generation, the model uses the demand profiles of space heating and
water heating gas usage that are already known after the calculations described in section 4.4.2.
The boiler efficiencies must be accounted for here, since the DTI annual usage figures for gas are

expressed in raw fuel terms.

A simple example may be presented here, by regenerating the baseline profiles from Figure 4-5 to
Figure 4-7 but for gas this time, and by assuming a hypothetical CHP (relative to total gas)
ownership of 50%. The overall electrical ownership level for spaceheat and water is still set at 15%,
and the ownership for gas spaceheat and water is still set at 70% (as per Table 4-1), but now 50%
of the gas customers (ie 0.7*0.5=35% of all households) use a CHP boiler. For the same week period
in January, the CHP generation across the UK amounts to a peak of 12GW. Notice that domestic
electrical generation appears as a negative demand. Significantly, the peaks of CHP generation in

the UK tend to fall at periods of peak electrical demand since space and water heating combined
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are such dominant parts of the domestic electrical load, even with only a 15% current electrical

space and water heating ownership level.

VIEW DOMESTIC CHP GENERATION
Domestic CHP electricity generation

Deg ¢
2 6a998881

Watts
1367707ESG

CHPGasWaterten 106G

CHPGasSpaceHeatGen %

TotalDomCHPGER

56
TotalDom

106

Temperature

,,,,,,,,,,,,,, -1224748956 — 7 B [+] -6.0999999

Auto Scale Days
Figure 4-10 UK Domestic CHP generation & demand for one week in January (Mon-Suny)

The effect of this CHP generation on the overall UK demand shape in winter is shown below.
Compared to Figure 4-7, the shape of the winter load profile is not much flatter in shape, but the
absolute daily load cycling, measured from the peaks to the troughs, has been reduced from (53-

32=21GW) to (42-26=16GW). The peak winter demand has also been reduced from 53GW to 42GW.
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Figure 4-11 Total UK demand accounting for CHP over one week in January (Mon-Sun)

In summer, the space heating demands for both electricity and gas are much reduced. With the

CHP generation added, the summer load profile over one week now looks as shown below.
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4.7

Figure 4-12  Total UK demand accounting for CHP over one week in June (Monday-Sunday)

The summer demand, accounting for CHP, looks similar to Figure 4-8 since the CHP generation due

to space heating is relatively small.

The most significant point to note here is that with figures of approximately 70% gas space and
water heating ownership and 50% of these houses possessing a CHP boiler, our UK winter and
summer demand curves become very similar! Winter peak demands have been reduced to about
42GW, which is approximately the same as our peak summer demand. Analysis shows that
increasing the level of CHP ownership from 50% to 75% means that UK summer peak demands
would remain around 40-41GW while winter peak demands would drop further to about 37GW.
Remember that the CHP ownership figure is a percentage of the overall gas space and water

heating ownership, which is held at 70% for this analysis.

In conclusion for CHP, there will be a benefit for the annual “flatness” of electrical demand
profiles in the UK as total CHP boiler ownership rises from 0% to 35% of all households (50% of
70%). Beyond this figure, the amount of CHP generation may be so large that it could reverse our
summer and winter peak demand times. This would be a problem for high penetrations of
renewables in the UK (particularly wind and wave) since our available wind and wave power will
peak in the winter months due to the energy being dispersed in Atlantic depressions which is
greatest in these same months. This effect of peak demand reversal from winter to summer could
be offset, however, if ownership of electrical space heating was to rise from its current value of
15% (displacing some gas space heating ownership). This would cause increases in winter electrical
demand. Ideally, a fair plan across the UK would be to encourage a gradual fuel-shift from gas to
electricity (for security of supply reasons) while concurrently encouraging a gradual and balanced

shift of remaining gas users to CHP systems.

Price model

The price model is a central part of this work; the way that price fluctuates with demand and
supply will be the signal to customers that might persuade them to change their behaviour, or to

invest in storage or efficiency measures.
The price model is based upon the analysis that was carried out in section 2.3.2. The data below is

a review of this data, with low, middle and high estimates of bounding price curves

super-imposed.
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System buy price, Jan 2003 and Jan 2004 weather events
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Figure 4-13 Wholesale price model candidate curves

The wholesale candidate curves are of the form
Price = Ae™ + C where price is in £/MWh, and x is evaluated as

Demand
X

B Capacity — Larg estGeneratorCapacity

The values A, B and C for the three candidate curves here have been determined empirically, and
are selectable within the model via a price model configuration screen. It is possible to select
between the low, middle or high curves, or to specify an entirely different type of curve. Care
must be taken to avoid mathematic errors in the price curve in the rare cases when demand
becomes negative or exceeds capacity by a large amount. The price curves are all subject to an
addition of a DUoS charge (nominally 8 £/MWh [19]) and then a price capping subsequent to
evaluating the wholesale price equation. A figure of £500/MWh is nominally used for the price
capping (50p/kWh). At the time of writing, the analysis does not account for different buy and sell
prices to houses. This could be applied by subtracting 2xDUoS from the buy price. A house buying
power at a flat rate of 7.5 p/kWh (including DUoS of 0.8 p/kWh, would expect to sell power at
7.5-2x0.8 = 5.9 p/kWh. This correction can only sensibly be applied to the overall domestic
electric load which is the combination of all domestic loads and generators. Putting a revenue
figure on domestic storage or generation then depends not only upon the amount of power
imported, exported and generated, but also the times and relative weights with which these
happen. Some generation will offset normal use and therefore form a benefit equal to the buy
price, whereas excess generation will be exported at the sell price, incurring less revenue per
kWh. Such a cost model needs care to set up, so that different load, generation and storage types
are costed fairly. No attempt is made to do this in the current analysis. Only the buy price is

considered.

The next picture shows the price curve configuration screen.
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PRICE MODEL PARAMETERS
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Figure 4-14 Price model configuration screen

The capacity of the largest generator, which is used in the price curve configuration, is a
configurable parameter within the bulk generation model. The demand and bulk generation
capacity are calculated during the modelling. Hence, at any time it is possible to evaluate the
price of electricity in retrospect, subsequent to the completion of any time period, when the

demand for a period has become a known quantity. However, this isn’t much use.

To be useful, as a tool in a demand response scenario, the price must be forecast so that
customers can be made aware in advance of impending supply shortages (expensive power) or

supply excesses (cheap power).

Forecasting model and system stability

A good forecasting model is going to be a key component of any demand response program. In the
simplest terms, what we require is a method of forecasting of the price of power, for time periods
from % hour ahead to 24 hours ahead. This is a bare minimum; longer term forecasts (with less
accuracy) of up to a week or two ahead would also be useful. In fact, rather than simply
attempting to forecast price directly, what is required is forecasting mechanisms for supply
capacity and demand loads. Once these two quantities are forecast, the forecast price can be

simply evaluated from the two.
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NETA are reasonably good at forecasting demand and supply in the UK, as described in section
2.3.2.1, for our current flat-rate inelastic system. It is not an easy task, however. Human
behaviour, weather patterns, TV schedules, sporting events, power station outages and
maintenance schedules are all things that must be taken into account in a decent forecasting
algorithm. The situation becomes even more difficult when demand response and embedded
storage becomes significant. Rather than forecasting something with a reasonably regular pattern,
power demand profiles under a demand response scenario with embedded storage might vary
wildly from the familiar shapes we saw in sections 2.3.2.2 and 4.4.3. Traditional forecasting tools
that utilities currently use may well prove to be inadequate in this case. The forecasting tools will

need to be adaptive, just as demand behaviour will be adapting to the electricity price.

In order to create a half decent forecasting model in a reasonable timeframe for this project, it
was necessary to create an adaptive forecasting model that creates a forecast by simply looking
back at past data and attempting to guess what the next data might look like. No attempt is made
to account for any form of weather forecasting. Such an enhancement would be an interesting

extension to this work.

The forecasting model looks back over a configurable number of days (nominally 15), and attempts
to produce a forecast for a reasonable forward-looking timescale (nominally 24 hours). The
forecasting model is used to analyse bulk generation capacity and overall demand. The price is

then simply calculated from the two forecasts by using the price model.

The forecasting algorithm itself is based upon a first order polynomial fit (a linear regression)
followed by a fourier analysis of the data. The details of this algorithm are well beyond the scope
of this document but have been used previously by the author in several circumstances. The
fourier technique is particularly suited to the forecasting of electrical demand since the demand
tends to cycle over 24 hours and by week. The algorithm is fully adaptive - no assumptions are
made about the shape of the capacity or demand profiles, the algorithm learns the shapes over
several days and will adapt if the profiles change with time. This is a necessity since the demand

profiles will change with time when demand response is significant.

It has been found that a slight tweak to the forecast figures in the short-term can make some of

the forecasts more accurate.

FOREGASTING PARAMETERS

Recard |

Field name Value

LookBackDaysForForecasts I—

LockPorwerdDaysForFerecasts  F—
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StdLa, mw-wn‘ s
DELastKnownieighting ‘ o

DELookForwardbaysForzerohastKnownWeight ing ‘ o

Figure 4-15 Forecasting model configuration screen
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The parameters StdLastKnownWeighting and StdLookForwardDaysForZeroLastKnownWeighting
define slight modifications which are made to all forecasts except the demand response forecast
for electrical demand. Hence, these parameters are active for the baseline simulation forecasts
for demand and bulk generation capacity, plus the demand response simulation forecast for bulk
generation capacity. What these parameters mean is that the forecasting algorithm will compare
(in retrospect) the forecast amount for the last period with the actual amount that occurred. The
forecast for the next period will be modified by a factor of StdLastKnownWeighting times the
actual-forecast error that was observed in the previous time period. The forecast for the next
several timeperiods will be modified by linearly decreasing amounts until a time
StdLookForwardDaysForZeroLastknownWeighting days ahead, when the modification value drops to

Zero.

It has been found that applying this retrospective error modification to the demand response
forecast for electrical demand can cause problems related with stability and oscillation,
particularly when the price drives customer decisions involving electrical storage or immersion

heaters.
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Figure 4-16 Example of demand forecast and price instability

The above screenshot shows an example of demand and price forecast instability. The instability
begins at day=1.5, triggered by a sharp rise in demand to a point very close to the supply capacity.
The demand and price forecasts begin oscillating out-of-phase with the actual electrical demand,
while the relative price index forecast (price/average price) oscillates between less than 1 and
more than 1. This oscillation in relative price index (RPI) causes houses to make buy and sell
decisions en masse. The effect is devastating when RPI oscillates all the way from <0.5 to >1.5

since at this point every single household will make the same decisions. If RPI oscillates only from
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0.8 to 1.4, say, then only a portion of the households will make the buy/sell decisions and feed the

demand oscillations (see section 4.12.1).

This example was caused by a population with 100% penetration of immersion heaters which
switched on and off in response to the price forecast. The immersion heater elements were 3500W
each, which means that there is the potential for an 87GW shift in power demand if all 25 million
UK households make the same decision at the same time. 60% of households also had battery
storage with a 200W power capability, which adds another 1.5GW to the potential power swing.
This behaviour, in combination with the steepening of the price-demand curves (Figure 4-13) as
demand approaches supply, means that only small changes in forecast price can cause massive
fluctuations in demand. Only a very robust forecasting algorithm in combination with diversity in
population behaviour can avoid instability in this kind of scenario. In the case above (Figure 4-16),
the forecasting algorithm managed to (temporarily) recover just before day 2, but in some cases
the oscillation will only cease when demand drops well below capacity and the relative price index

becomes s steadier value less than 1.

These are the reasons that the demand response forecast for electrical demand does not use the
same parameters; it uses twin parameters DRLastKnownWeighting and
DRLookForwardDaysForZeroLastknownWeighting, which are nominally set to 0 so that the error
modification is disabled. In addition, the stability of the demand response forecasts are enhanced
(oscillation is reduced) by removing higher order harmonic products from the forecast. This
equates to a low-pass filter in the time domain and is critical to reducing short-term oscillations in

demand (and hence price) forecasts.

A theoretical analysis of system stability it presented in appendix 7.4, which assumes that a very
simple forecasting model is used and shows that almost no storage power or immersion heater
power can be controllable by price without instability. The forecasting algorithm used in this
analysis is designed to avoid instability, so that larger storage powers and immersion heater
elements may be controllable without instability. The algorithm is by no means perfect however,

and development of better forecasting algorithms is a big area of future work.

The outputs of the forecasting model are (nominally) a 24-hour forecast of demand, bulk
generation capacity, and hence price. This forecast is updated every time period (nominally every
half hour) and forms a rolling set of data. Therefore, customers get an indication of future prices
up to 24 hours ahead, but of course the forecast changes with time and there is no guarantee that

the forecast will be accurate.

What is fixed, however, is that customers can only ethically get billed an amount for any time
period based upon the forecast price which was issued a single time period ahead. The implication
for not doing so is that the customer buys power at an unknown (and to them, random) price. So,

at the beginning of each (half hourly) time period, the customer has a 24-hour forecast in
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half-hourly steps available. There is no guarantee that the forecast 24 hours or 2 hours ahead will
be accurate, but the forecast price for the NEXT half hour must be the price that the customer
actually gets billed for that half hour. This is the approach taken in this model, and is a minimum
for social acceptability. In reality, to be socially acceptable, the forecast price for the next 2 or 3
(or more) hours might be the legal maximum price that the customer could be charged, no matter

what actually happens to supply and demand over this timeframe.

Domestic water tank and solar water heating models

One of the main requirements of the model is to simulate domestic water tanks containing heated
water. The hot water can be used to satisfy household needs for washing, bathing and for space
heating via a central heating system. The hot water can also provide a useful store of energy if the

tank is big enough and adequately insulated to efficiently store significant quantities of energy.

As described in section 4.4.2, the baseline simulation that follows models some houses with
electric space and water heating, and others with gas heating. Only those houses with electric

space and water heating are accounted for in the water tank model.

The model includes a simple design tool for water tanks. The user-configurable parameters are:-

e (CapacityLitres: the maximum capacity of the tank

¢ HeightToDiameterRatio: nominally 2 for practicality, although 1 will lead to the lowest
heat loss

¢ InsulationKValueWpermperK: nominally 0.04W/mK for expanded polystyrene or mineral
wool quilt [23]

¢ InsulationThicknessMetres: nominally 0.01m for a standard tank, 0.05-0.1m for an efficient
energy store

e TempUselessLowDegC: this is the temperature below which the water is useless to the
user. Nominally 35°C

e TempMinDegC: the temperature which the immersion element will maintain when active

e TempMaxDegC: the maximum temperature which the tank may attain. This will be larger
than TempMinDegC. TempMaxDegC is relevant when either a solar water heater is
producing very hot water or when a demand response tank is buying cheap electricity to
heat water and store energy. If this temperature is attained or exceeded, the immersion
heater and solar water heater will deactivate until the temperature falls.

e LevelMinLitres: the minimum level of water that the tank may hold to avoid immersion
element damage, and to satisfy user demands. This number can be as large as
CapacitylLitres, but setting it lower, for a large tank, can allow greater flexibility and
efficiency in solar water heater capture energy.

¢ ElementWatts: the immersion element power, nominally 3000W
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The model accounts for two types of tank. The first tank is a standard tank, of nominal size 120
litres which is a common size of immersion heater tank. The standard tank is used for all electric
space and water heat customers in the baseline simulation. The second tank is a “demand
response” tank which is designed to be bigger and with better insulation. The demand response
tank is only used in the final “demand response” simulation, and then only by a configurable

percentage of customers.

The model includes a simple design tool which processes the parameters for the two tanks and
gives an indication of energy stored, heat loss, time to heat and time to cool. Part of this design
tool involves solution of the differential equation governing temperature in the tank.

If:-

P= immersion element power consumption (Watts)

Q-= heat lost through tank walls = (T,-T,).H where T,, is the water temperature, T, is the
ambient temperature indoors which is taken to be the same InsideTemp as specified in section
4.4.1 . H is the heat transfer coefficient through the tank walls in W/K

then:-
dl,, P-Q
dt mc,

solving this for Ty reveals:-

b el P+HT
T, =—+Ae™ ") where hb="——""4 and ¢ =
c me, mey

A must be found by applying boundary conditions some start time Ty with water temperature Ty,

The solution can be re-expressed to find the time taken to reach certain temperatures as

-
—In ¢
A
r=t, +
c

The statistics for two examples of tank are summarised below. The standard water tank (120
litres) stores between 4 and 8kWh of energy, dependent upon whether the reference energy is the
water at the mains water temperature (nominally 6°C) or the minimum useful temperature of the
water set by TempUselessLowDegC (nominally 35°C). The demand response tank stores between
18 and 32kWh. Note how the thicker insulation on the larger tank allows its heat loss power to be
LESS than that of the smaller tank, despite having a larger surface area. The surface area of the
tank will rise with the square root of the tank capacity, so increasing the insulation thickness by a
factor of more than the square root of the capacity increase can lead to lower heat losses.

It might be argued that heat losses from the tank could count against space heating demands since
the heat will be lost to the building interior (assuming the tank is indoors and the building sensibly
designed!). This effect is not assumed or accounted for in the model. Providing good insulation on
the tank will lead to a more controllable use and storage of energy and should be regarded as the

“best practice”.
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Figure 4-17

Demand response tank design tool output
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Figure 4-18 Demand response tank design tool output

The operation of the tanks is as follows, although small modifications are made if solar water

heating is available and providing power (see section 4.9.3):-

4.9.1 Standard tank operation

Standard water tanks supply hot water for washing and bathing requirements etc. (i.e. NOT space

heat demands which are provided by electric convection or radiation heaters).

¢ Hot water (and hence energy) is removed from the tank in each house according to the

baseline water demand profile, multiplied by a reducing factor called
StdWaterTankEnergyUsageEfficiency which is nominally 0.85. This figure modifies the
electricity demand profile previously calculated into a water demand energy. The energy
which has been “lost” is an approximation of the heat energy which is lost through the
walls of standard water tanks. Put another way, although electrical water heat customers
use 10.1kWh of electricity per day on average to heat water (according to figure Table
4-1), they actually only use, on average, about 10.1 x 0.85 = 8.6 kWh of hot water energy;
the remaining 1.5 kWh is lost heat.

e The standard tank is always kept full to the LevelMinLitres level with water. For the

standard tank, LevelMinLitres should be equal to CapacityLitres. The water to fill the tank
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will come from the solar water heater (if available and providing power) or the mains
water supply (nominally 6°C).

e It is assumed that users of standard tanks are good at predicting their hot water usage.
Users turn on their water tanks (or program their immersion timers) in such a way that
the immersion heaters come on to heat the tank of water to the TempMinDegC
temperature just in time for use. This means the StdWaterTankEnergyUsageEfficiency
parameter can be quite high, since the tanks often sit cool or cold when there is no water
demand. With reasonably poor insulation (1cm) on a standard tank, heat loss at 55°C is
about 200W, and the tank cools from 55°C to useless (35°C) in about 24 hours. The usage
efficiency of such standard tanks would be much lower if the tanks were heated at times
inappropriate for the demand for hot water. The model analyses water demand during the
baseline simulation and switches on the immersion heaters in each house only when
necessary.

e When the standard tank immersion heater is on, as required by the water tank demand,
the heater element will heat the water up to the TempMinDegC level, and then the

thermostat will turn the element off.

4.9.2 Demand response tank operation

The demand response (DR) tank is only used in the final “demand response” simulation, and then

only by a configurable percentage of customers.

e DR water tanks supply hot water for washing and bathing requirements etc. PLUS space
heat demands via a central heating system.

¢ Hot water (and hence energy) is removed from the tank due to hot water requirements in
each house in the same way as for standard tanks.

e Hot water is removed from the DR tank due to space heat requirements, but this water is
subsequently returned to the tank at a cooler (but still warm!) temperature because the
central heating is a closed system. The flow rate and return temperature of the central
heating water is determined by the tank water temperature, the building inside
temperature, and a parameter called CentralHeatingHeatExchangerEffectiveness which is
self explanatory.

e The DR tank must always be kept at or above the LevelMinLitres level with water, to avoid
heater element damage. The water will come from the solar water heater (if available
and providing power) or the mains water supply (nominally 6°C).

e The immersion heater element in the DR tank will always come on by thermostat if the
water temperature falls below TempMinDegC. In this way, the aim is to always have
on-hand a store of hot water to meet water and space heating demands.

e Finally, the immersion heater in the DR tank will switch on to buy power, regardless of
the tank temperature relative to TempMinDegC, if the house is in a buy stance (see
section 4.7). When this is occurring, the tank level will fill not only to the LevelMinLitres

level but to a level which minimises the tank temperature so that heat loss is minimised.
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4.9.3

The addition of water is limited by the tank capacity, and water will also not be added if
the overall tank temperature would be dropped below TempMinDegC. The overall effect is
that during times of low demand, when electricity prices are low, the DR tanks will tend
to a) fill to capacity and b) get heated towards the maximum allowable temperature. The
hope is that the stored energy can be used later, during times of potentially peak-price

electricity, without being forced to purchase power at premium rates.

Solar water heating

Some houses can have solar water heaters installed. Only houses with electric water and space
heating in combination with solar water heaters are modelled. The model includes a tool which

helps in the design of the solar panels. A screenshot is shown here.

Solar water power rating and output temperature ve Irradiance
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Figure 4-19  Solar water heater design tool

The solar water heater is designed using the following parameters:-
e Area (inm?
e Absorptivity, nominally 0.9 for black paint [23]
e UValue, nominally 2.8 W/m?K for double glazing, low emissivity, 6mm gap [23]
e Transmissivity, nominally 0.9
e PumpRateLitresPerMinuteFromMains
e PumpRatelitresPerMinuteFromTank

e MinCutinTempDegC, nominally 10°C

The design tool allows optimisation of the pump rates. These must be set so that over a sensible

range of solar irradiance from 200-1000 W/m?, the resulting water temperatures from the solar

water heater are hot enough to be useful, but not more than about 80°C. There are two modes of
operation for the solar water heater.

1. If the water tank is filling with new water or the DR tank is not full to capacity,

the solar water heater can heat water from the mains supply and add it to the

tank if the temperature of the solar heated water is above MinCutinTempDegC.
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2. If the water tank is already full to capacity, the solar water heater may operate if
it can heat the warm tank water to a hotter temperature and return it to the tank
with a net energy increase. For this mode to be successful, the heat loss through
the solar panel double glazing must be less than the solar input power. In the
example of figure Figure 4-19 this occurs only for irradiances greater than about
200W/m?.

The output temperature of the solar water heater is calculated by using the Hottel-Whillier
equation:-

0, =GAt.0) — [UA(TC -T, )]

where Qs is the power supplied by the collector

G is the irradiance (total solar insolation), modified by the panel-sun pointing angle error as
derived in appendix 7.5.

Tc is the transmissivity

ap is the absorptivity

T is the plate temperature

Ta is the ambient temperature (taken from the climate data).

Here, we estimate the plate temperature T to be the average of the feed water temperature to
the heater Try(which is known) and Ts, the solar water heater output temperature. Ts is, however
the quantity we wish to evaluate.

We can write

T — (TFW +Ts)
L =—r 5
2
and
Ts =Ty +.L
mc,,

where cy and m are the specific heat capacity and pump rate of the water.

Combining the above three equations eventually leads to this rather ugly equation for the solar

water output temperature, without reverting to any iterative processes.

T,
T,y +‘A[GTC0{P —U( = —TAD
mce,, 2

AU

2mc,

T, =
1+

4.10 Baseline simulation

The baseline simulation models a population of households, by using the baseline average load

profiles as a starting point. The following effects are included in the baseline simulation:-
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Bulk generation capacity due to traditional (controllable) generation plus renewables
which are subject to climactic variations (the wind and PV models)

Household use of the disaggregated load types, at current UK rates of usage

Embedded generation due to domestic CHP, wind and PV

Hot water use in electrically heated houses is calculated by using the standard water tank
model (see section 4.9.1), in conjunction with the solar water heater model.

Space heating in electrically heated houses is assumed to be supplied by convection,
bar-radiation or fan heaters.

Although customers in the baseline simulation are only billed at the flat rate price, the
forecasting and pricing models are applied to the baseline simulation, so that the results

may be compared to the subsequent demand response simulation.

The following effects are NOT included in the baseline simulation. These effects will be calculated

in the demand response simulation:-

Embedded storage as calculated by the domestic electric storage model

Demand response (elasticity, load shifting and critical peak pricing)

Allowance for customers switching to a demand response (DR) water tank which allows
more efficient hot water storage and supplies not only hot water for washing but also for

space heating.

To simulate the baseline situation, the user enters configurable parameters for

The number of households Ny to be simulated (nominally 25 million, which is the number
of households in the UK). 25,000 households would simulate a medium-sized town.

The number of “simulation households” Ns. Ideally, this would be equal to the number of
households. However, to avoid excessive computer resource use, this number should be

limited to a maximum of 100’s or 1000’s.

The baseline simulation performs a time-series simulation of Ns houses, but during the data

analysis stage at the end of the simulation, the sum electrical powers from all houses will be

increased proportionately so that the presented total demand figures are those that would arise

from a population of Ny houses.

Ny must be set large enough to create a smooth simulation, but not so large as to cause an

excessive simulation time. As an indication, with an electrical heating ownership of nominally 15%,

using Ny of 10 will only, on average, simulate 1-2 houses with electric heating and this will

probably cause quite a “jumpy” simulation result. Therefore, Ny must be set as large as reasonably

possible.

75



4.10.1 Assignment of house attributes

At the beginning of the baseline simulation, the Ny houses are assigned attributes at random,
according to the ownership percentages defined by the user. There is no correlation between the
attributes unless specifically mentioned below:-

¢ Does each house have electric cooking (Yes/No)?

¢ Does each house have electric water and space heating (Yes/No)?

¢ Does the house have a solar water heater in conjunction with electric heating (Yes/No)?
This can only occur if the house has electric heating.

e Does the house use gas heat and water heating (Yes/No)? This can only occur if the house
does NOT have electric water heating and space heating.

e Does the house have a CHP gas boiler (Yes/No)? This can only occur if the house has gas
water heating and space heating.

¢ Does the house have wind generation (Yes/No)?

e Does the house have PV generation (Yes/No)?

e The “solar offset” of the house, measured in time periods (nominally 2hour each). The
solar offset for each house is a random number between -HoursSpread and +HoursSpread
as defined in the domestic PV generation model. The number is stored here because it is
required for BOTH the domestic PV and domestic solar water heater models, and we
assume correlation between the two models for each house in terms of insolation at any
single point in time. The houses also have a “wind offset” which is calculated in the same
way but this is only required temporarily for the domestic wind generation model, so the
numbers are thrown away after use.

e The declination of domestic PV and solar water heater panels from overhead (flat)

¢ The azimuth angle of twist towards east of domestic PV and solar water heater panels

4.10.2 Quantisation of load-shiftable events

When demand response is to be applied later, some of the electrical load types are expected to
be either inelastic or subject to elasticity only, as opposed to possible load shifting (see section

3.4.7.1). These non load-shifting load types are:-

e Brown
e Lights
e Cooking

Therefore, these load types do not need to be modelled on a house-by-house basis since each
house simply takes on the average baseline load profile, to which elasticity can be applied in the
demand response simulation. However, for the remaining load types:-

e Wet

e Cold

e Water heating

e Space heating
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We require to model load shifting and water tank operation in the demand response simulation.
Therefore, at this point in the baseline simulation, these load types are modelled on a
house-by-house basis in a quantised form. This is done by using the average baseline load profiles
as a probability density function and then assigning quantised event starts for each house
individually by using Poisson distributions.

k —np

P(k)= (”P)k!e

average number of events expected at any time. The distribution has a mean of np and a variance

where P(k) is the probability of k events occurring at any time, and np is the

of np also.

For each load type, there are user configurable parameters describing the nominal power and
duration for a typical event. For example, the load type “cold” has a typical power of 150W and a
duration of 0.5 hours. This simulates a fridge running on a duty cycle; we would expect it to come
on in half-hour bursts and then be off for a while. Since average UK energy use for cold appliances
is 1.9kWh/day, we expect 25 of these cycles per day, which equates to a duty cycle of about %.
For wet appliances, the nominal power is 2kW, with a duration of 1 hour, simulating a wash cycle.
Since UK average figures for wet appliances are only 1.4kWh/day, we expect less than 1 cycle to
appear per day, on average. The result is that for individual simulated houses, the wet, water and
space heating load types will occur as demand spikes, while the cold load type will be more
consistent on a fairly steady duty cycle. Only when many houses are simulated and the demands

added will a smooth load curve be obtained.

Below is an example of a single household for two days in January, showing the quantised events
for wet, cold, spaceheat and water demands. The cold events are at low powers but spread
widely in time, whilst the wet events are rare. The wet events last an hour (two time periods) but
have much higher power levels (2kW). The water demands are extremely spiky. These water
demands are not actually electrical demands, they are converted to water tank heating demands
by the standard water tank model (see section 4.9.1). The space heat demands are large and
often, as this data is from winter. Remember, space heat demands in the baseline simulation are

direct electrical demands since an electrical convection or radiation type heating is assumed.

Bageline simulation
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Figure 4-20 Example of quantised demand events in one house
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To illustrate the action of the standard water tank model here, the following graph shows the
water demand from above, plus the water tank heating demand. The tank heating power is
capped to 3000W because this is the immersion heater element power. The tank heating occurs
before the hot water is required, so that the tank is hot in time to fulfil the demand. This graph
also shows the tank temperature and level for this house. The level is constant at 120 litres, but

the temperature rises as the immersion element draws power and drops as hot water is taken.
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Figure 4-21 Example of quantised water tank demands in one house

The graph containing the sum power and average tank temperature of all Ns=100 simulation

houses in this simulation, over the same 2-day period, looks as follows.

Baseline simulation
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Figure 4-22 Example of quantised water tank demands, 100 simulation houses

Here we can begin to see peaks in hot water demand in the mornings (about day=0.25 and 0.75)
and evenings (about day=1.25 and 1.75), although even Ns=100 simulation houses is not really
enough to achieve a smooth curve with only a 15% electrical heating ownership since only about
15 simulation houses will contain these spiky quantised events. Here, the 100 simulation houses
are representing 25 million households so the overall power levels are in the order of GW, since

each of the 100 simulation houses represents 250,000 actual houses.

An interesting point to note on this graph is that at day=1.35 the parameter
UnsatisfiedWaterDemand is not zero. This parameter is becomes non-zero when hot water
demands become larger in any time period for any single household, than the available hot water
in the tank. In real life this occurs when two or more people attempt to take a bath in quick

succession, for example. The model will occasionally simulate these scenarios. They will occur
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4.10.3

4.11

more often if the tank size is not sufficient to meet demands. The UnsatisfiedWaterDemand

parameter should be checked often to ensure that it does not exceed acceptable limits.

Running the baseline simulation

Once all the parameters have been set by the user, the baseline simulation simulates all the
houses over the required simulation time period. As the simulation progresses, a real-time display
of demand, capacity, actual price, and forecasts for all three is shown. This will be described in

more detail as part of the demand response results in section 5.

Data analysis

The data analysis part of the model can be used to view the results of the baseline simulation, the
demand response simulation, and make comparisons between the two. There is a huge quantity of
data that may be presented, both graphical and in statistical format. To understand the outputs of
the analysis, it is useful to describe the list of calculated parameters which may be explored. The
parameter values all refer to data “sampled” at the end of each time step, apart from the forecast
parameters which are calculated at the beginning of each time step. The first list contains
parameters which are all powers, expressed in Watts:-

e Brown - the electrical demand due to brown appliances

e Wet - the electrical demand due to wet appliances

e Cooking - the electrical demand due to cooking (in those houses with electric cooking)

e (Cold - the electrical demand due to cold appliances

e Lights - the electrical lighting demand

e SpaceHeatE - the electrical demand due to electric space heating from convection or
radiation heaters

e TankElectricHeating - The electrical demand due to immersion heater element demands

e TotDomLoad - The sum total of domestic electrical demands
(Brown+Wet+Cooking+Cold+Lights+SpaceHeatE+TankElectricHeating)

e SpaceHeat - the actual user demand for space heating. This can be fulfilled by either a
direct SpaceHeatE electrical demand, OR, for houses with demand response (DR) tanks, a
demand from the tank SpaceHeatW. Therefore, SpaceHeat=SpaceHeatE+SpaceHeatW

e SpaceHeatW - for houses with demand response (DR) tanks, a spaceheat demand which is
taken from the tank via a closed central heating radiator system.

e Water - the actual user demand for hot water which is taken from the water tank.

e WaterTankDemand - the sum water tank demand power;
WaterTankDemand=Water+SpaceHeatW

e TankHeatLoss - the power loss (heat) through the tank insulation

e TankSolarHeating - the tank heat gain due to successful operation of a solar water heater

e UnsatisfiedWaterDemand - any amounts of WaterTankDemand that cannot be met from
the hot water the tank, because the water is too cold and/or the demand volume is more

than can be supplied by the heater element working at full power.
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e (CHPGasSpaceHeatGen - the domestic generation due to gas space heating in houses
equipped with CHP systems. (Generation appears as a negative power)

e CHPGasWaterGen - the domestic generation due to gas water heating in houses equipped
with CHP systems. (Generation appears as a negative power)

e DomWindGen - domestic wind generation. (Generation appears as a negative power)

e DomPVGen - domestic PV generation. (Generation appears as a negative power)

e TotDomGen - total domestic generation. (Generation appears as a negative power).
TotDomGen=CHPGasSpaceHeatGen+CHPGasWaterGen+DomWindGen+DomPVGen

e Battery - power flow into domestic battery storage

¢ Flywheel - power flow into domestic flywheel storage

e TotDomElecStorage - total domestic electric storage power flow.
TotDomElecStorage=Battery+Flywheel

e TotDomDemand - total domestic electrical demand.
TotDomDemand=TotDomLoad+TotDomGen+TotDomElecStorage

e Commercial - commercial electrical demand

¢ Industrial - industrial electrical demand

e TotDemand - total system demand. TotDemand=TotDomDemand+Commercial+Industrial

e BulkTradGen - bulk traditional generation capacity

e BulkWindGen - bulk wind generation capacity

e BulkPVGen - bulk PV generation capacity

e TotBulkGen - total bulk generation capacity.
TotBulkGen=BulkTradGen+BulkWindGen+BulkPVGen

¢ TotGenShortfall - the generation capacity shortfall.
TotGenShortfall=((TotDemand-TotBulkGen) clipped to 0 on the low side)

e FcstTotBulkGen - the forecast bulk generation capacity, at the beginning of the time step

e FcstTotDemand - the forecast total demand, , at the beginning of the time step
ElasticDelta - the total demand change between the demand response simulation and the
baseline simulation due to elasticity

e LoadShifting - the total demand change between the demand response simulation and the

baseline simulation due to routine load shifting and critical peak price load shifting.

The parameters in italics (SpaceHeat, SpaceHeatW, WaterTankDemand, TankHeatLoss,
TankSolarHeating and UnsatisfiedWaterDemand) are not true electrical demands but are measures

of heat power flow.
The parameters in bold (UnsatisfiedWaterDemand and TotGenShortfall) are measures of system

failure. When either of these two values is greater than zero, demand for hot water or electricity

has not been fulfilled.
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The remaining list of parameters are in units other than Watts. They appear as “correlation
parameters” on the right hand axes of the graph sets:-

e ElecPrice - the actual effective price of electricity (E/MWh) (after addition of DuOS and
price capping), calculated at the end of a time period when actual capacity and demand is
known.

e FcstElecPrice - the forecast price of electricity (E/MWh) to the customer (after addition of
DuOS and price capping), calculated at the beginning of each time period.

e FcstElecPriceAvg - the customers perceived average electricity price (E/MWh), calculated
with a weighted average over a number of previous days.

e FcstRelPricelndex - the relative price of the electricity for the next period.
FcstRelPricelndex= FcstElecPrice/ FcstElecPriceAvg

e FcstCriticalPeakSignal - a signal which is normally 0, but rises to 1 when FcstRelPricelndex
rises above some critical threshold (nominally 3)

e BuySellNeutralStance - a stance which is determined for each house at the beginning of
each time period. Stance is -1 (sell) if FcstRelPricelndex is >>1, 0 (neutral) if
FcstRelPricelndex is about 1, or 1 (buy) if FcstRelPricelndex is <<1. (See section 4.12.1).

e Temperaturein °C

e Windspeed in m/s

e DiffuseSolar insolation in W/m?

e DirectSolar insolation in W/m?

e TotalSolar insolation in W/m?

e SolarWaterTempMains - the temperature of water (°C) at the outlet of the solar water
heater, if it is fed from the mains supply (nominally 6°C).

e SolarWaterTempTank - the temperature of water (°C) at the outlet of the solar water
heater, if it is fed from the tank.

e TankLevellitres - the level of water in the water tank (litres)

e TankTempDegC - the temperature of water in the water tank (°C).

e TankEnergy - the stored energy in the tank (Wh), relative to the TankTempUseless
parameter (nominally 35°C).

e BatteryEnergy - the stored energy in the battery (Wh)

e FlywheelEnergy - the stored energy in the flywheel (Wh)

e TotElecEnergy - (Wh) TotElecEnergy=BatteryEnergy+FlywheelEnergy

e TotEnergy - the total stored energy in embedded storage (Wh)
TotEnergy=TotElecEnergy+TankEnergy

The data analysis tool allows statistics to be generated from the data for all the parameters above,
correlated with the forecast, actual and flat-rate electricity prices. This allows calculation of the
total electricity bills for each customer due to each load type. For the baseline simulation, the
customer billed cost is calculated by using the flat rate electricity price (nominally 7.5p/kWh,

£75/MWh). For the demand response simulation, the customer billed cost is the forecast cost,
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4.12

made at the beginning of each time period and communicated to the customer (see section 4.8)
The load factors of the different load types can also be calculated, by
LoadFactor=abs(MeanPower/PeakPower). To analyse electrical storage effectiveness and use, the
actual mean power will be close to zero since power flow will be alternately positive (buying
power) and negative (selling power). To allow for this, the mean “traded” power is also
calculated; the traded power total being simply the sum of abs(power) over the period, and this
gives a measure of the total power flow either bought or sold by the customer. The load factor for
traded power is then abs(MeanTradedPower/PeakPower). High load factors close to 1 correspond
to storage schemes in use often. If the storage scheme is to be effective, the revenue from the
storage (measured by the negative billed cost of power) should be a large enough to cover the

capital and operating costs of the storage.

Demand response model

The following effects, over and above the effects modelled in the baseline simulation, are added
in the demand response simulation:-
e Embedded storage as calculated by the domestic electric storage model
e Demand response (elasticity, load shifting and critical peak pricing)
e Allowance for customers switching to a demand response (DR) water tank (see section
4.9.2) which allows more efficient hot water storage which supplies not only hot water for

washing but also for space heat.

4.12.1 Pricing and its effect on customer behaviour in the model

The electrical pricing and forecast models were described in sections 4.7 and 4.8. In the demand
response simulation, the forecast prices determine changes in customer behaviour. Specifically,
each house is assigned a threshold for buying and selling power. This threshold is simplified in the
model to a single number for each household, called “RelPricelndexThresholdToBuyPowerLow”.
This figure is used, for each house, in each time period, to determine a “BuySellNeutralStance”
which is either:-

e +1 if FcstRelPricelndex < RelPricelndexThresholdToBuyPowerLow, signifying that the
electricity is expected to be cheap enough in the next period that the house would like to
buy power into either electric or water tank storage.

e -1 if FcstRelPricelndex > 1/RelPricelndexThresholdToBuyPowerLow, signifying that the
electricity is expensive enough in the next period that the house would like to either sell
power from electrical storage, or at least to abstain from adding expensive energy to the
hot water tank.

e 0, otherwise (a neutral stance).

The reader may like to refer back to section 4.11 for definitions of the pricing variable names

used here. In particular, the FcstRelPricelndex is determined by dividing the forecast electricity
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price by FcstElecPriceAvg, which is the customers perceived average electricity price (E/MWh),

calculated with a weighted average over a number of previous days.

It will be shown later how important it is that the behaviour of the houses has a spread, caused by
a spread in the values of RelPricelndexThresholdToBuyPowerLow across the population. It is very
important that the houses to not all make the buy/sell decisions at the same point in time, as this

causes instability problems.

So, there are a number of parameters, forecast for the next time period and for the
forecast-ahead period (nominally 24 hours), which can be used by each house to determine
changes to its baseline electricity usage.

e The house has a forecast of the absolute and relative price of power

e The house has a forecast of it’s “BuySellNeutralStance”

e The house has a forecast of FcstCriticalPeakSignal, the times when electricity prices are

expected to be far in excess of normal due to generation shortfalls.

These forecasts are used by the house to determine actions in the electric storage, elasticity,

load shifting and critical peak pricing models, according to some fairly basic rules.

Referring back to section 3.4.7.1 and applying common sense, some requirements for the demand
response simulation modelling can be determined which will be suitable for the UK.

e For brown appliances, load shifting is not expected (it is unlikely people will watch a
similar TV programme at different times due to price, they will simply not watch if it is
too expensive, and they might leave TVs on more if it is cheaper). Brown appliances are
modelled for elasticity only.

e For wet appliances, some elastic behaviour can be expected, so this must be able to be
modelled. Also, it is quite feasible that a washing machine cycle could be shifted by some
time (nominally 12 hours) to take advantage of cheaper power. Washing machines can
also be delayed due to critical peak pricing.

e For cooking appliances, load shifting is not expected (people need to eat regularly!) but
elasticity is valid since some small efficiency savings can probably be made.

e For cold appliances, we do not expect elasticity, since a fridge is either in use or not.
Note here that in the long term (over years) fridge consumption can be elastic if device
efficiencies gradually change, but this demand response model is not designed to model
long-term elasticity dynamically. The long-term elasticity figures are embedded within
the annual usage figures defined in Table 4-1. We do not expect active load shifting
either, but we DO expect that fridges might be turned off temporarily (and hopefully only
occasionally) due to critical peak price signals. In this case, we allow fridge cycle events
to be delayed by only (nominally) 3 hours so that food is not spoilt.

e For lighting appliances, similar to brown appliances, we do not expect load shifting

(people do not need to switch a bulb on later if they didn’t earlier). We do expect
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elasticity, however. In fact lighting is probably one of the most elastic load types in the
UK. Remember, elasticity in this model is short-run elasticity due to hour-by-hour
changes, not long-run elasticity. Long-run lighting elasticity can be caused, for example,
by a shift to fluorescent bulbs, but this must be modelled by a change to the data in Table
4-1.

For space heat, we allow the modelling of elasticity, load shifting and critical peak price
load shifting. However, the aim is to be able to use the hot water tank storage reservoir
in such a manner that hourly space heat demands are decoupled from electrical demands
and the tank can be heated at times of cheap electricity. Therfore, the aim would be to
assume a zero or very small elasticity and no load shifting.

For water heating, the rationale is the same as for space heat, above.

Commercial. Without detailed knowledge of individual premises, only a simple elasticity is
assumed.

Industrial, as for commercial.

4.12.2 Demand response house attributes

Houses are assigned attributes, in addition to the attributes already assigned in the baseline

simulation 4.10.1. The attributes are allocated at random based upon percentage participation

rates defined for the simulation. The additional attributes are:-

RelPricelndexThresholdToBuyPowerLow (a real number, nominally random between 0.5
and 0.95)

Does each house have electric water and space heating (Yes/No)?

Does each house use a demand response (DR) water tank in place of a standard tank in the
demand response simulation (Yes/No)? This can only occur if the house has electric
heating.

Is the house actively load-shifting the wet appliance events (Yes/No)?

Is the house actively avoiding critical peak prices for wet appliances (Yes/No)? This will
always occur if the house is actively load-shifting the wet appliance events.

Is the house actively avoiding critical peak prices for cold appliances (Yes/No)? Note,
there is no active shifting of cold appliances.

Is the house actively load-shifting the space heat appliance events (Yes/No)?

Is the house actively avoiding critical peak prices for space heat appliances (Yes/No)? This
will always occur if the house is actively load-shifting the space heat appliance events.

Is the house actively load-shifting the water heat appliance events (Yes/No)?

Is the house actively avoiding critical peak prices for water heat appliances (Yes/No)? This
will always occur if the house is actively load-shifting the water heat appliance events.
Does each house have electric battery storage (Yes/No)?

Does each house have electric flywheel storage (Yes/No)?
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4.13

4.14

4.15

Domestic electric storage model

For houses with electric storage, a simple model is used for both battery and flywheel types.
Although the storage types are named battery and flywheel, other types of storage like
superconductivity and hydrogen could almost certainly be modelled by re-using these models as
long as suitable parameters were entered. Electricity is bought by a house if its
BuySellNeutralStance is 1, i.e. the forecast electricity price is low enough to entice the house to
buy electricity (see section 4.12.1). The amount of energy stored is capped by the storage capacity
of the device. The amount of energy stored is also reduced, relative to the amount of purchased
electricity, by the round-trip efficiency of the storage type. Further, the stored energy decays a
little by a factor determined from a “half-life” parameter, every time period. The half-life for

batteries and hydrogen storage is very long, but for flywheels is substantially less.

Elasticity model

The elasticity model is applied to each different load type at each time period. The actual
electrical demand for each load type is determined by Equation 2 from section 2.3.1, by using the
baseline demand and baseline flat rate electricity price (nominally 7.5p/kWh) as the reference
quantities. The elasticities for each load type are defined at the beginning of the simulation from
user input, and are expected to be either 0 for an inelastic load or an increasingly negative
number for increasingly elastic loads. Remember from section 2.3.1 that elasticities between 0
and -1 correspond to commodities which are valued or necessities, whereas elasticities less than -1
are assigned to loads perceived as lower value commodities or luxuries. For smoothed power
profiles (those not expected to be load shifted as per section 4.10.2), the calculation is fairly
simple. For those power profiles expected to partake in load shifting, the electric demand events
are quantised so cannot simply be increased or decreased by arbitrary percentages. In this case,
the number of event starts for each load type at each time for each household is adjusted up or
down by small amounts (using a Poisson distribution result as a modifier to the original Poisson

distribution event starts), depending upon the elasticity equation.

Load shifting model

The load shifting model is substantially more complex than the elasticity model. The load types
which allow load shifting were previously changed from smoothed power profiles to quantised
events as described in section 4.10.2. For each of the shiftable load types (Wet, Cold, SpaceHeat
and Water), the following algorithm is applied:-

e If energy is expensive and the house is in a sell stance (see section 4.12.1), and the load
type is available for load shifting according to the house attributes (see section 4.12.2),
then the customer will attempt to load-shift any current load event (e.g. washing machine
cycle) into the future.

e The event cycles can only be shifted forward a certain maximum amount. For example,

the default figure for wet appliances is 12 hours.
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e The customer will attempt to move the event to the time with the cheapest forecast price
in the available forward-shifting time window. If there is no cheaper time than the
current, then the load will not be shifted.

e One the event has been shifted once, it may not be subsequently moved again, nor (in the
model at time of writing) may any un-shifted events which already were due to happen at
the new time that the event has been scheduled for. This rule applies no matter what
happens to the energy price or the forecast. This model is not perfect but cleverer
applications would be much more complex to implement and require much greater

computer resource to track each event separately.

4.16 Critical peak pricing model

The critical peak pricing model is simply another application of the load-shifting model. This time,
however, the threshold for each customer deciding to shift the load depends not upon the
BuySellNeutralStance, but upon the relative price index RelPricelndex (see section 4.12.1) and
when it achieves a value greater than some defined constant (called
RelPricelndexThresholdCriticalPeakSignal and nominally 3). When this occurs, a critical peak price
signal is assumed to be in effect. This could in reality be either communicated by the DNO/REC, or
it could be determined independently in each household by the advanced meter. Each method has
different advantages and disadvantages. In the simulation, the implementation is simplified in that
all households are assumed to be paying the same price and averaging this over the same
timeframe and therefore they all have the same perception of average price. Therefore, in the

simulation, the critical peak price signal occurs for all households simultaneously.
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4.17

An example of critical peak pricing and load shifting is shown below.

Baseling simulation
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Figure 4-23  Example of load shifting and critical peak pricing

In this example, a critical peak price event occurs at day=64.8. At this time, all houses successfully
managed to temporarily switch off their fridges (saving about 2GW from UK demand). The loads
were shifted 2 hours (4 periods) into the future, when the critical peak price signal was expected
to be removed. Also, a substantial amount of household load shifting occurred in wet appliances,
shifting loads of the order of 2GW. The loads are shifted from periods of high price (here
represented by the relative price index), to periods of forecast lower price. However, these
shifted loads can cause their own demand spikes at the (supposedly cheaper!) later time,
especially if all houses make similar decisions. Thus, load shifting can be effective at “peak

clipping” and “valley filling” but can also lead to valleys becoming mountains if care is not taken!

Note that the cold events were not delayed due to the critical peak price signal at day=65.55. This
is because the critical peak signal was forecast to remain in place, and shifting load from one

critical peak to another serves no purpose.

Validation of the software model

Extensive validation of the model was carried out to ensure that energy and financial calculations
were consistent. Each piece of the model, for example the water tank model, was tested
individually after coding to ensure that energy was conserved and other inputs and outputs were
consistent with the expected results given by manual calculations and estimations. As an overall
test of the energy balance, a large simulation was carried out over a 365 day period. The overall
energy usage of water tank immersion heaters and other load types was verified to be consistent

with Table 4-1. The demand response simulation was verified to give identical results to the
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baseline simulation when all demand response parameters were set to neutral. The load shifting
model was verified to give a zero overall energy gain/loss over the simulation period, save for a

slight imbalance due to some events being shifted to beyond the end of the simulation period.
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5.1

Analysis of demand response in the UK

In this chapter, simulations using the analysis tool (described in chapter 4) will be presented for a

few interesting UK scenarios.

First, we present a summary of published data from several countries concerning likely elasticities
of electrical loads, and attempt to use this to suggest sensible elasticities for an analysis of UK
demand. Then, we present the result of a simulation representing a relatively near-term scenario
for UK current energy use levels, assuming a reasonable dependence on wind power, along with a

partial switch of gas users to CHP boiler systems.

Finally, we present a somewhat concerning simulation of the longer term future which assumes a
complete fuel-switch from gas to electricity in the domestic, commercial and industrial sectors,

without a general decrease in our energy use levels.

Indications of elasticity from published data

There are several studies which have been carried out around the world, in an attempt to quantify
the elasticity of electrical demand. Some of these are theoretical and some are practical. A few
are presented here.

e Filippini [17,18] presented two papers based upon a questionnaire data from 40 Swiss
cities over 4 years which was then further mathematically modelled. The first paper
estimates domestic short-run elasticity to be in the region of -0.6 to -0.8. In his second
paper, after more complex mathematical analysis, he upped his estimates to -1.25 to -1.41
(peak electricity prices) and -2.30 to -2.57 (off-peak electricity prices). The significantly
increase in elasticities between these two papers changed Filippini’s view of electricity,
particularly at off-peak times, from a necessity good to a luxury good since its elasticity
was less than -1.

e DRAM (Caifornia [7]) present a concise review of elasticity estimates from 56 published

papers. The results are shown below.

Summary Stamistics For 56 EvasticiTy ANALYSES

THe Low anp HicH VaLues BRacket THE 95 PERCENT ConFIDENCE BAND

Geography n Short-Run Own-Price Elasticity

Low Medium High
California 13 -0.13 -0.21 -0.28
Us. 36 -0.23 -0.28 -0.34
Other industrialized 7 -0.28 -0.47 -0.66
countries?
Table 5-1 Summary statistics from 56 elasticity analyses
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Figure 5-1 Summary statistics from 56 elasticity analyses

e Sheen et al [30] present data and analysis of large industrial customers in Taiwan, and they

estimate own-price elasticity to be in the region of -0.75 to -1.8

There is considerable variation in all these presented results. Care must also be taken because not
all the data will be applicable to UK scenarios since our peak demands occur during winter due to
space heat demands whereas, for example, California peak demands occur in summer due to air
conditioning. Also, many of the analyses above are concerned with TOU (time of use) schemes,
where the own-price elasticities are only part of the story. Cross-price elasticities are equally

important for many of the analyses published, since they model load shifting via elasticity models.

In the simulations to be presented here, elasticity figures are only used, as described in chapter 4,
for loads which are either simply reduced or added due to the spot electricity price: any electrical
demand which is not increased or decreased but instead deliberately moved to a time of cheaper
price is modelled via the load-shifting and critical peak pricing models. So, to arrive at some
suitable elasticities for the different load types, we must take all these effects into account and be
a little conservative. We are attempting to split out simple overall electrical elasticity figures into
own-price elasticities and load-shifting parameters for all our different load types. Here it is useful
to refer back to section 4.12.1 which explains how the model works, and also section 2.3.1 for an
explanation and table showing the elasticity effect.
e For brown appliances, we can expect quite a high elasticity, as they are a luxury good.
Estimate -0.5
e For wet appliances, we can expect only a low elasticity (estimate -0.1), but there will also
be load shifting.
e For cooking, we expect a relatively low elasticity (estimate -0.1)

e For cold appliances, there is no elasticity, since the fridges are always on.
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5.2

e For lighting appliances, we can expect quite a high elasticity as people are currently very
bad at leaving lights on. Estimate -0.5

e For space heating and water heating, we expect a low elasticity (estimate -0.1), but hope
that storage will smooth out the demand peaks.

e For industrial and commercial demands, we assume here an elasticity of 0, to restrict our

analysis to the domestic sector.

All these figures are value-judgements made by the author on the basis of gathered material,
common sense, and the elasticity behaviour shown in Table 2-5. Note also that in these simulations
we will be modelling short-run elasticity effects only. We are assuming that overall energy
consumption drivers remain about the same. Some papers refer to long-run elasticities, but these
account for customers being able to purchase more efficient devices or install extra building
insulation. These effects are outside the scope of this thesis, but can be accounted for in the

analysis tool by altering the overall energy use figures at the beginning of the simulation.

Demand response simulation 1 — near term analysis

The first simulation is a near-term simulation. There are many input parameters, many of which
are left at the nominal figures described earlier in this text and are not described explicitly here.
The main properties of this simulation are:-

e Overall energy use demand is assumed the same as current rates

e Electrical water and space heating ownership is 15% (2003 level)

e Gas water and space heating ownership is 70% (2003 level), but 50% of these people are
assumed to have switched to a CHP boiler. Therefore, MORE gas will be used than 2003
levels, since the gas will be used to both heat and supply electric power. The CHP boilers
supply domestic electricity, often (usefully!) synchronised with times of peak electrical
demand as described in section 4.6.

e Electric cooking ownership is 60% and gas cooking is 40% (2003 levels)

e A 30% uptake of domestic PV (600W pk, 4m?)

e A 30% uptake of domestic solar water heaters within the 15% of electrically heated houses
(4m?, 2.5kW pk)

e 100% of people respond to critical peak price signals with cold and wet appliances, and
that 75% of people actively load-shift with their wet appliances.

e Elasticity figures as described in section 5.1.

e There are 25,000,000 households, which we simulate with 500 houses so that there are a
decent (500%15%=75) number of simulated electrically heated houses.

e Only 35GW (peak) of traditional bulk generation, and 30GW (peak) of wind generation

capacity.

The simulations run over an identical time periods of three months (93 days), during the winter

period. Over the time, the temperature, solar insolation and windspeed data is shown below.
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Figure 5-2 Climate data over the three-month (winter) simulation period

It can be seen that there may be several problem areas within the timescale, where either
temperature or wind-speed drops for a number of days consecutively. These will cause demand
increases and generation decreases respectively. Solar water and PV generation will be minimal on

days without significant direct solar radiation.

5.2.1 Simulation 1 results

An overview of simulation 1 is shown below. The baseline simulation (without demand response,
at a flat rate of 7.5p/kWh), is shown at the top. The lower graph set is the situation when

real-time pricing is introduced.

Baseling simulation
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Simulation with demand response
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Figure 5-3 Simulation 1 overview

The baseline peak UK demand is about 40GW, which is lower than our current (2003) peak of
50-55GW due to the CHP and solar generation in houses, which accounts for 12-15GW peak (see

Figure 5-6 and Figure 5-7). In the baseline simulation, there are a number of times when the
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overall demand (the upper black line) becomes greater than the available supply. These are times
when blackouts would occur, and the total shortfall is represented by the blue line. In the
demand response simulation, the overall demand is a much better match to the available supply.
Since, in this simulation, the elasticity of industrial and commercial load types was set to 0, this
demand profile change is entirely due to the defined domestic elasticities and load shifting. The

domestic demand total is shown as the lower black line in each graph.

At times when demand approaches or exceeds supply, the price of electricity rises to peaks. It
can be seen that these peaks are fewer and less extreme in the demand response case. The
purple line represents the moving average perception of the forecast electricity price.
(Remember that the baseline simulation does not actually bill the customer at the dynamic price,
but at a fixed 7.5p/kWh).

Baseline simulation
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Figure 5-4 Simulation 1 avoidance of blackouts

Above is a comparison of the demand and real-time forecast prices against supply, for the period
between days 54 and 71. It is clearly visible that most of blackout periods have been avoided by
demand response (the lower graphs), while the real-time electricity price has become more
stable. The average electricity price also remains lower during the difficult period by using
demand response. At times of plentiful suppy (between days 45 and 58 for example), the price is

lower than the baseline 7.5 p/kWh and customers can take advantage of cheap power.

The screenshot below shows how the four main contributors to the domestic demand changes are

affected by demand response.
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Figure 5-5 Brown, lights, wet and cold load-type reactions in simulation 1

The brown and lighting load-types show elastic behaviour (elasticity=-0.5 relative to demand at a
price of £75/MWh). The cold and wet load-types show loadshifting behaviour. The new spikes in
demand in the demand response simulation are caused by many customers simultaneously
loadshifting to the same cheapest forecast period in the future. This is explained further with

Figure 5-8 and Figure 5-9.
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Figure 5-6 Simulation 1 CHP generation (12GW peak)

70% of houses have gas heating, and 50% of these (35% of total) have CHP boilers. The correlation
between cold temperatures and CHP generation is clearly demonstrated. Of the houses with CHP
generation, each generated of the order of £115 revenue by displaced electricity purchase over
the 3-month winter simulation period. This is a substantial sum which would warrant investment

in this technology with only a few years payback.
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Figure 5-7 Simulation 1 PV generation (2.5GW peak, plus 1.5GW peak displacement)

30% of houses in this simulation have domestic PV installations, but only 5% (30% of 15%) have
solar water heaters in conjunction with electric water heating. The peaks of solar generation
obviously occur at times of peak solar insolation. Here, direct PV generation is displayed as a

negative demand, whereas the solar water heating shows as a positive power.

Of all the 30% of houses that has PV installed, the average load factor during this winter period,
accounting for climate data and panel/solar pointing angles was only 6%. Each house with PV
saved about £4 of electricity in this quarter by using their panels, whereas the 5% of houses with
solar water heating installed saved about £5.50 this quarter (although the load factor of these was
less, about 2.5%, because the hot water cannot always be used efficiently). Since both PV and
solar water heating arrays were 4m? systems, and taking into account the technology types, it
would appear better financial sense to install solar water heaters than PV systems. Neither,

however, would appear to be financially good sense at these energy prices.

Simulation with demand response
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Figure 5-8 Simulation 1 elasticity and load shifting

95



Here it can be seen that the ElasticDelta (i.e., the demand increase from baseline to demand
response simulations), is positive for most of the time, and about 5GW. This means that most of
the time, customers are taking advantage of prices that are cheaper than the baseline 7.5p/kWh
and are using more energy than 2003 levels. However, at times of high prices, the ElasticDelta is
negative, by up to 5GW. This reduces demand and helps to avoid both higher prices and

blackouts.

The LoadShifting parameter shows the shift in demand in the demand response simulation, due to
cold and wet appliance events that are moved, either due to pro-active load shifting or due to
critical peak price events. When prices are low, LoadShifting is zero, but when demand
approaches supply and prices rise, LoadShifting becomes significant. The sum total energy
integrated across LoadShifting is zero, but the times at which the loads are removed helps to

avoid both higher prices and blackouts.

Simulation with demand response
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Figure 5-9 Simulation 1 elasticity and load shifting (zoomed in)

This is a focus of Figure 5-8 to show some more detail. The relative price index (RPI) is the
forecast price divided by the customer’s perception of the average price (which is calculated by
weighted, running average). When RPI rises above 3, a critical peak signal is given. It can be seen
that the load shifting successfully begins to cause a drop in demand as a blackout becomes
imminent on day 57. However, the loads have been shifted and not removed, so they pop up again
in the future (for example at day=58.1 and day=61.2). Sometimes, this causes unexpected
demand spikes where “valleys” have been converted to “mountains”. Since customers, given the
choice and the same forecast information, will all load shift to the (same) cheapest period (when

RPI is least), this valley to mountain transformation is a real source of concern!

Overall domestic energy consumption actually increases with the use of real-time electricity
pricing in this simulation. Below is a table showing how some generic load type consumptions
change by moving from the baseline flat-rate system at 7.5 p/kWh to the demand response
system simulated here. These figures are taken over the 3-month simulation winter period, so

heating figures are larger than the average figures in Table 4-1.
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Baseline use Demand response use Change
kWh/day/house kWh/day/house %
Brown 2.9 3.8 +30%
Wet 1.4 1.5 +7%
Cooking (Electrically 1.8 1.8
heated houses only, 60%)
Cold 1.9 1.9
Lights 2.4 3.2 +30%
Spaceheat (Electrically 28.8 30.2 +5%
heated houses only, 15%)
Water (Electrically heated 9.1 9.6 +5%
houses only, 15%)
Total domestic loads (all 15.7 17.8 +13%
house types)

Table 5-2 Domestic energy use per day in simulation 1

These increases in energy use occurred, despite an overall reduction in average energy bill, over
the three-month period, from £109.63 to £108.03 between the baseline and demand response
scenarios. This is because the billed price per purchased kWh was a flat rate of 7.5 p/kWh in the
baseline scenario, but only 6.0 p/kWh in the demand response scenario. The minimum and
maximum real-time prices billed to customers in the demand response scenario were 2 p/kWh and
50 p/kWh. The actual average price over time was 7.1 p/kWh, but customers modified their
behaviour so that more energy was purchased at prices lower than average, hence the customers

average purchase price was 6.0 p/kWh.

Also of note, for this simulation, is that the overall price averages for the two simulations were:-

Baseline simulation | Demand response simulation
(billed at 7.5 p/kWh) (billed at forecast rate)

Forecast price average (p/kWh) 8.7 7.1
Actual price average (p/kWh) 7.9 5.7
Table 5-3 Forecast and actual price averages for simulation 1

Here, the forecast price average is just what it says, and for the demand response simulation is
the billed price to the customer. The actual price average is based upon actual (not forecast)
power demands, and is the effective price that the REC companies buy the energy before selling

it on to customers.

So, for this case, the flat rate cost of 7.5 p/kWh is not viable for the baseline simulation over this

winter period, since the REC’s will lose money as they will be supplying energy at a cost to them
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of 7.9 p/kWh and selling it to customers at 7.5 kWh. Over the summer months, with lower
demands, the REC’s might turn the situation around and make a small profit, but remember that
in this simulation the high domestic CHP generation penetration means that summer and winter
demand is roughly equal. In contrast, the demand response simulation presents a financially
viable scenario. Energy is sold to customer at (on average) 7.1 p/kWh (6.5 p/kWh after weighting
by demand profile), but only needs to be supplied at a cost of 5.7 p/kWh. This represents a profit

for the REC companies.

The difference in forecast and actual price averages is simply due to differences between the
forecast and actual demand, and is, in the case of this simulation, accidental. The point is worth
bearing in mind, however, since any trade at a loss will lead to power trading company
bankruptcy and all the associated effects. In a real system, some mechanism, such as a slight
over-estimation of demand and/or price, applied all the time, could be used to guarantee that
the actual price average was always less than the forecast price average over a reasonable

timeframe. Otherwise, power companies will cease trading.

A final fiscal point to examine is the potential financial cost of implementing this kind of demand
response, versus simply increasing the amount of firm generation capacity. DRAM [7] estimate
that building new plant capacity costs approximately $600/kW, while the cost (see section 3.4.1)
of implementing advanced metering is about $100 per household. Analysis of the total capacity
shortfalls in simulation 1 shows that about 6GW more firm capacity would be needed to make the
baseline simulation blackouts reduce to approximately the same level as for the demand response
simulation. Therefore, the costs for the two solutions are about:-

e Add firm capacity: 6GW/1000*$600 = $ 3.6 bn

e Impliment DR: 25 million houses x $100 = $2.5 bn

DRAM [7] estimate that the cost of implementing demand response is only $100/kW (peak demand
saved), which is only 1/6 of their estimate for implementing extra firm capacity. Simulation 1
analysis would suggest that the financial balance would still favour demand response as a course
of action, but by a much smaller margin. In essence, this analysis shows that for a $100 per
household investment, the peak demand saved is not 1kW but 6GW/25E6 = 240W. Of course, the
financial benefit of demand response could be calculated as much more if higher elasticities were

known or assumed. Here we have been quite conservative.

Conclusions from simulation 1

e Switching 50% of gas (heating) customers to CHP boilers evens summer and winter demand
peaks, and dramatically helps to avoid winter blackouts since generation peaks and low
temperature minima coincide well.

e CHP boilers will be a good financial investment in the near term.

e Solar PV and solar water heaters are currently very poor investments. Of the two, solar

water heaters are probably a slightly better use of capital investment.
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5.3

Elasticity and load shifting, in the domestic sector alone and to modest extents, can
significantly stabilise electricity prices and help to avoid blackouts.

Load-shifting of wet and cold appliances, by a combination of pro-active load shifting wet
cycles and critical peak shifts of cold and wet appliances, can produce short-term UK
demand drops of the order of 4GW. But, correlated “valley-filling” between customers
making the same decision and choosing the cheapest forecast time to shift events to, can
cause new correlated peaks (of the order of +10GW) where “valleys” otherwise would
have existed.

Real-time pricing of electricity can enable domestic customers to use more energy on
aggregate, by taking advantage of lower priced power for the majority of the time.

In a real system, care must be taken so that the overall billed (forecast) prices do not
consistently fall below the actual prices, otherwise REC companies will go bankrupt.
Implementing demand response will cost approximately £1.5 billion, whereas adding 6GW

of extra firm capacity would cost about £2.1 billion.

Demand response simulation 2 & 3 - without natural gas

Simulation 2 is a hypothetical analysis of a time in the future, when natural gas supplies have

either been exhausted or are not available in the UK. In this simulation, the following parameters

are used:-

2003 fuel prices are still assumed as a reference. The baseline flat rate price is still 7.5
p/kWh, and the price curves are still the same.

2003 energy use figures are assumed.

The elasticity figures used were identical to simulation 1. Industrial and commercial
elasticities were again set to 0, which is a pessimistic estimation of the true situation, but
allows the simulation to focus purely on the effect of domestic demand response.

85% of domestic customers acquire their water and space heating energy from electricity.
The energy use is calculated by displacing current gas users. Since, in 2003, gas heating
users use on average significantly more energy than electic heating users, this adds
significantly to the electrical demand. 15% of homes have no heating (or they have some
other fuel than electricity of gas). The analysis tool automatically calculates the new
energy use as per Table 4-1 from the percentage ownership figures.

100% of domestic customers use electric cooking. The analysis tool automatically
calculates the new energy use as per Table 4-1 from the percentage ownership figures.
Obviously, as there is no gas there is no longer any CHP generation.

Commercial and industrial electrical load types are modified from 10.7 and 12.2
kWh/house/day on average to 21.8 and 31.5 kWh/house/day, to account for a complete
gas-to-electricity fuel switch (as per Table 4-1).

Domestic solar water heating uptake is raised to 60% of households, with 8m? panels (5kW

peak).
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Domestic PV uptake is raised to 60% of households, with 16m? panels (2.4kW peak).

60% of households are equipped with 20kWh electrical storage capacity. Currently, the
most viable practical realisation of this would be an electrolyte store so that lead use is
minimised. Maximising storage energy and round-trip efficiency is of paramount
importance (along with cost and practicality), but the peak power input/output is not
required to be large. In fact, large peak inputs/outputs can be extremely bad for system
stability.

100% of households are assumed to have switched to a demand-response water tank and
heating system. The houses now get all their water heating AND space heating
requirements from their electrically heated tanks, via a standard central heating
arrangement. The tanks are 400 litres (compared to a standard tank today which is often
120 litres), but they are insulated so that the average heat loss is less than a normal 120
litre tank. The operation of the tanks is described in more detail in section 4.9.2.
Essentially, the tanks try to buy power when it is cheap, and try to use stored energy when
power is expensive. However, they will always attempt to deliver demand requirements
whatever the energy price.

80GW of wind capacity (as per Table 2-4)

100GW of firm capacity. This is thought made up of 20GW (wave) + 10GW (wood) + 1.5GW
(hydro) + 0.1GW (tidal) + 0.2GW (organic waste) + X

X = 68.2 GW. Where this comes from is open to debate and this thesis does not propose to
provide any solutions! Coal, nuclear, fusion, or some further firm renewable capacity.
Ideas on a postcard, please. Unless we are prepared to lower our overall energy use, the
UK needs to find an extra 68GW of capacity!

100 discreet houses are modelled. Since all houses have electric space and water heating,
the idea is that 100 discreet houses provide a big enough sample to provide a smooth load
curve of quantised wet, cold, water and spaceheat demands.

Simulation 2 occurs over the same 3-month winter timeframe as simulation 1 (see Figure
5-2).

There are a few key parameter decisions that determine the success or failure of the demand

response simulation due to stability constraints (see section 4.8 for more description of stability

problems).

The power rating of the immersion heater element in the water heaters is crucial to the
stability of the system. A standard 3kW element is not sufficient to supply the average
water heating plus space heating requirements of a house. However, doubling the value to
6kW causes the reaction of the population to price to be extremely severe. 25 million
households switching 3kW together amount to a 75GW demand change, whereas 6kW
elements could result in a 150GW demand change! Pre-analysis of simulation 2 parameters
showed that an element power of about 4kW was required to keep unsatisfied household
water demand within a reasonable level, while still achieving some kind of system

stability.
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5.3.1

e Even by optimising the immersion heater element powers, the system was still difficult to
keep stable. For this reason, the HIGH price curve was used for the demand response
analysis (see Figure 4-13 and the blue line in figure below). The high price curve has a
lower gradient and thus leads to less likelihood of oscillation and instability in the system.
The big disadvantage is that it raises prices somewhat unnecessarily when demand is of the
order of 0.5 to 0.8 of capacity. The selection of the optimum price curve is a tough
compromise between the availability of cheap power and the requirement for stability.
Only very robust forecasting algorithms will allow price curves with very sharp knees such

as the red (MID) curve below to be used without system instability becoming a problem.
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Figure 5-10  Price curves used for simulation 2

¢ Finally, although the domestic electric storage capacity was defined as 20kWh per house,
the optimum power flow rate input/output was found to be about 200W per house. This
allowed a reasonable overall power flow (60% x 25 million x 200W = 3GW) while still
allowing the storage to supply power steadily for 100 hours (4 days). There is little point
(from a network standpoint) of having storage discharge in a matter of hours, if supply
shortages can last for several days. The lower power flow also helps to keep the system
stable, whereas high power flows can cause instability with the current forecasting

algorithm.

Simulation 2 results

It is interesting to first present the results of simulation 2, but using the MID price curve. Terrible
instability problems are seen, due to the steep gradients of the price curve combined with the

high degree of customer response available!
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Simulation with demand response
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Figure 5-11 Simulation 2, demand response instability when using the MID price curve

Below is a zoomed part of the above graph set to show an example of the oscillation more clearly.
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Figure 5-12  Simulation 2, demand response instability when using the MID price curve

The system is much more stable when the HIGH price curve is used, and this is the result set
discussed in the following text. Below are shown the baseline and demand response simulations
for this scenario. The peak demand occurs on day 24 due to low temperatures (see Figure 5-2),
and is about 160GW. Peak generation capacity is 180GW (100GW firm plus 80GW wind), but the

actual available capacity rarely reaches this amount due to variable wind speeds.
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Figure 5-13 Simulation 2 overview

The lower black lines on each graph set show the total domestic demand, while the upper black
lines show total overall demand (domestic + commercial + industrial). The blue line shows the
overall generation shortfall. Quite clearly, the demand response simulation shows a much better
match of demand to supply. The blackout period durations and magnitudes have been reduced
dramatically. The average unsatisfied demand rate in the baseline simulation was 3.1% (kWh/day
unsatisfied divided by average kWh/day demand). In the demand response simulation, the

unavailability reduced to 0.6%.

To show the effects more clearly, it is useful to concentrate on the period from day 50 to day 80,
since this contains a period of sustained supply shortage over 10 days, with more plentiful energy
supplies both before and after. The overview of this time period is shown before, both for the

baseline and the demand response simulation.
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Figure 5-14  Simulation 2 overview (day 50 to day 80)

Below, it can be seen that domestic PV generation peaked at 23GW and solar water heating
displaced a peak demand of 18GW, but during the difficult period between days 58 and 70, the
electrical PV generation peak is only about 5GW peak, with a solar water displaced load of about
1-5GW peak. Of course, these peaks only occur during the hours of direct sunlight which are few

and far between in winter.
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Figure 5-15 Simulation 2 PV generation (23GW peak, plus 18GW peak displacement)

For simulation 2, the overall price averages over the 3 months, for the baseline and demand

response simulations were:-

Baseline simulation
(billed at 7.5 p/kWh)

Demand response simulation

(billed at forecast rate)

Forecast price average (p/kWh)

18.7

20.8

Actual price average (p/kWh)

18.1

21.5
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Table 5-4 Forecast and actual price averages for simulation 2

As opposed to simulation 1, this time the demand response average prices are higher than the
baseline averages. This is mainly because we were forced to use the artificially high price curve
for the demand response simulation, in order to achieve some semblance of stability. If we could
have a better forecasting algorithm and use the mid price curve, lower average prices could be

achieved.

This table contains a key point. In these simulations we have assumed that fuel prices and
baseline energy use remain at 2003 levels. The assumption of constant fuel prices allows us to use
the price curves in Figure 4-13. If fuel prices changed, we would have to set new curves.
However, in simulation 2 the average prices over the 3-month period are way above 7.5 p/kWh,
the 2003 flat rate for electricity. This is because, for large portions of the simulation, demand
was close to or above the supply capacity. This raised prices due to the market effects shown in
Figure 4-13. Clearly, a 7.5 p/kWh flat rate to customers over this period would leave any energy
supply company (REC) in massive debt. The baseline simulation using this flat rate is completely
unworkable (the flat rate would have to be raised to about 19 p/kWh). The overall average price
could be reduced in this simulation by simply adding more supply capacity arbitrarily to reduce
the pivotal seller market effect, but the point of these simulations is to show the effects of
constrained generation and how demand can be adjusted to meet these limits. In reality, adding
extra demand capacity also costs money (c. $600 per kW) and this will raise energy prices across
the board.

Even in this simulation, with an unworkable flat rate price of 7.5 p/kWh against an average cost in
the region of 20 p/kWh, the demand response customers managed to benefit a little from cheaper
power. They bought power, on average, at 19.9 p/kWh by changing their behaviour. The baseline
customers, however, if they had been paying for the power at true forecast prices, would have

paid 20.5 p/kWh on average.

The chart below shows the change in customer energy use between the baseline and demand
response scenarios in simulation 2. Because the prices are higher than the 2003 flat rate cost of
7.5 p/kWh, the overall energy reduction is lowered due to elastic effects. Customers are saving

energy to save money!

Baseline use Demand response use Change
kWh/day/house kWh/day/house %
Brown 2.9 2.0 -30%
Wet 1.4 1.3 -10%
Cooking (100% of houses) 2.0 1.8 -10%
Cold 1.9 1.9
Lights 2.4 1.7 -30%
Spaceheat (100% of 36.2 40.0 -12%
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houses)

Water (100% of houses) 9.5

Total domestic loads (all 56.3 48.8 -13%
house types)

Table 5-5 Domestic energy use per day in simulation 2

The demand response customers, on average, spent a total of £882 pounds per household over
this 3-month period. The baseline customers, if they had been billed at a workable flat rate of 19
p/kWh, would have spent £971 on average. The demand response customers save money, but
these bills are high relative to current 2003 bill levels. This will likely be the effect as gas (for
sale in 2003 at 1-2 p/kWh) begins to run out and a mass switch to electricity is mandatory (unless

we can use coal or nuclear mass CHP systems).

As outlined previously, in simulation 2, all customers have large (400 litre) hot water tanks and
60% of customers have domestic electrical storage (20kWh). By buying power at cheaper times
(and selling it at expensive times in the case of electrical storage), the houses can attempt to

profit from power trading.

Below is a graph set showing the combined electrical demand of the immersion heaters in all
houses. The water and spaceheat demands shown here are energy demands by customers from
the tank, and are therefore are not direct electricity demands. The water and spaceheat demands
take hot water energy from the tank, and the water tank model (section 4.9.2) decides when to
turn on the immersion heaters for each house. In reality, this decision would be made by a small
computerised panel in each individual house, with parameters customisable by each user. The
customisable parameters are important because it provides diversity amongst the customers,

which is essential for network stability.
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Figure 5-16 Simulation 2, water tank demands and heating (day 50 to day 80)

This diagram isn’t particularly clear, but it should show that the electrical demand placed by the
immersion heater elements tends to be less when the relative price index (RPI) is higher. What
this graph does show clearly is the trace of “UnsatisfiedWaterDemand” which is an amount of

desired hot water or spaceheat energy which is not available from the tank at any time. This
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trace is nearly (but not quite) zero at all times in the baseline simulation. The times when it is
not zero is equivalent to the real-life situation where the immersion heater tank runs cold when a
second person tries to run a bath - the immersion element does not have enough power to heat
the water fast enough for back-to-back full-power demands. In the demand response simulation,
both hot water and space-heat demands need to be met by the immersion heater element. This is
why the element power was raised to minimise the “UnsatisfiedWaterDemand” from 3kW to 4kW.
Ideally, this figure would be more, maybe 6kW, to ensure that customers never have cold baths.
However, the current forecasting algorithm available does not allow such high responsive power

demands without instability problems.
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Figure 5-17  Simulation 2, water tank stored energy (day 50 to day 80)
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The graph above shows more clearly that the effective stored energy in the water tanks (averaged
over all the households) rises towards a maximum level when the prices are low (relative price
index, RPI <1). During this time, the heater elements will be on and the tanks will fill to their
maximum levels. When prices are high (RPI>1), customers will try to use hot water from the tank
without adding energy, and the tank temperatures drop. What can be seen here, however, is that
the tank stored energy, for these 400 litre tanks, only lasts for a day or so. This is useful for riding
through shorter periods of high prices (related to the time of day), but is not much use over

longer periods such as the 10-day demand shortage between days 58 and 70.

An approximate financial revenue generated by having the 400-litre storage tanks over the three-
month period can be calculated. To do, this, take the total electriticity cost of the customer
water and spaceheat demand profiles, which will be biased towards the time of energy that the
customers uses. Now compare this to the total cost of electrical energy purchased to heat the
tank. For this simulation, the numbers are £811 and (£762+£19=£781), where the £19 is the energy
saving cost due to the solar water heater over the time period. The difference between £811 and
£781 is £30, which is the customer saving due to having hot water storage. Over a year, £120
might be saved. Over 5 years, £600 might easily pay for such a tank installation and this would

represent a reasonable financial investment for the customer.
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Simulation with demand response
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Figure 5-18 Simulation 2, battery stored energy (day 50 to day 80)

We can examine the effect of the electrical storage in a similar manner. The above graph shows
the total power flow to and from domestic electric storage (60% of households with 20kWh of
storage, at a maximum power of 200W). The 200W was artificially constrained so that the
price-demand system was stable, and also so that the 20kWh of storage, at 200W, would last a
reasonable time (20kWh/200W = 4.2 days). The graph shows that the domestic storage was filled
when the relative price (RPI) was low. On day 57, as demand rose towards capacity, the RPI rose
and houses began making the decision to release their energy. The release of energy reduced the
supply deficit and helped to stabilise prices. By day 67, the storage was depleted, but
fortunately, by day 71 the RPI was again low enough that customers began replenishing their
stores. The timeframe between day 67 and day 71 would represent a period of high risk of

blackouts, with depleted reserves and high prices.

The cost benefit of electrical storage can be assessed by examining the overall customer revenues
from the buying and selling of power. Of the 60% of houses with electrical storage, the average
power flow over the 3-month period was 85W, which equates to a storage utilisation “load factor”
of about 40%. Average customer revenue was about £20.30 over the quarter, so possibly £80 over
a year. With an installation cost of ~= £6000-£12000 for the 20kWh storage (see appendix 7.3.1)

this represents a 75 year payback at current prices, even without considering discount rates!

Another important factor to consider is the customer revenues due to the electrical power trades,
as a function of their power trading behaviour. As described in sections 4.12.1and 4.12.2, each
individual customer in the simulation is assigned a random threshold of the relative price index
(RPI) at which to begin buying power. This threshold is between 0.5 and 0.95 for each customer. A
threshold of 0.95 corresponds to a more conservative approach but with higher load factors of the
storage use. A threshold of 0.5 corresponds to a customer who will hold off buying and selling
until prices are very high or very low, with the aim of achieving higher revenues per unit bought
and sold. It is possible to extract the revenue per customer and plot this against their individual

buy threshold prices, and this is shown below.
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Electrical storage revenue vs RPI buy price threshold
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Figure 5-19  Simulation 2, revenue due to electrical power trades

It can be seen here that the more aggressive customers actually received less revenue per day due
to power trading than the conservative customers. This is due to the lower “load factors” of the
storage which is exercised less often, and the curve causes a minor problem since customers will
therefore all tend to use thresholds grouped around the 0.8 to 0.95 region, thus removing some
diversity from the population. This removal of diversity means that network instability is more
likely due to mass coordinated buy/sell decisions. Also, having no customers holding back their
storage until the price rises to very high peaks means that no storage capacity may be reserved
for longer periods of supply shortage. Some mechanism might be required to offset this
behaviour. A possibly solution would be a legal regulation of storage capacity to power ratio (to
guarantee that storage would take at least X days to charge and X days to discharge). This would
also have the beneficial effect of enhancing network stability as described in section 4.8. An
alternative viewpoint is that a price differential in power buy/sell prices should change the shape
of this curve and incentivise more aggressive price trading at the expense of the more
conservative approach. Also, the round-trip efficiency of the storage is less than unity, which
essentially adds a trading charge which will help to modify the revenue curve to favour buying
and selling and larger profits. Some of these effects are not seen in this simulation since the
maximum storage charge/discharge power of only 200W means that customers with conservative
buy/sell patterns and customers with aggressive buy/sell patterns tend to be merged since the
stored power takes many hours to buy and sell. Further analysis would be required to analyse
these possibilities, to further understand the economics of buy and sell behaviour, and whether

higher power flows enabling quicker buy and sell patterns would be beneficial or destabilising.

For simulation 2, the fiscal benefit of investing in demand response technology, as opposed to
investing in new generation plant, can be re-evaluated. The cost of investing in demand response
is still $2.5 billion (25 million houses x $100 from section 5.2.1). For simulation 2, the additional
firm capacity required for the baseline simulation, over the demand response simulation, to

provide approximately the same level of blackout avoidance, is about 35GW. At $600/kW cost of
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5.3.2

peak capacity, this would cost $21 billion. Clearly, demand response is a cheaper system in this

scenario.

Simply relying on extra plant capacity would also be extremely inefficient of capital investment
since the baseline simulation shows a delta between demand peak and demand minimum of 90
GW (72 GW minimum to 162 GW peak demand). It would be nice to prove that the demand
response simulation showed a smaller swing but in fact the simulation here shows a larger demand
swing of 93GW (53GW to 146 GW). This is due to demand “outliers” caused by some oscillations in
the price-demand feedback loop that have not been fully damped, combined with some new
demand peaks that have been caused by correlated load shifting. Simulation using a better
forecasting algorithm and a better load shifting algorithm ought to be able to show a lower

achievable demand swing.

Simulation 3 - increased customer elasticity

A final simulation presented here is that of simulation 2, rerun with the following small changes:-
e The domestic cooking, wet, water heating and space heating load type elasticities
increased from -0.1 to -0.2.

¢ The commercial and industrial sector elasticities set to -0.2 (0.0 in simulation 2).

Very briefly, these slight increases in elasticity produce an even better matching of demand to
supply. The graphs sets below should be compared to Figure 5-13 and Figure 5-14. It is impossible
to evaluate the added cost benefit of this increased degree of flexibility in demand, since
customer behaviour and elasticity is impossible to cost. However, the reduction in blackout

periods and price volatility is clear. The unavailability is reduced to about 0.04%.
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Figure 5-20  Simulation 3, effect of slightly increased assumed elasticity
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Simulation with demand response
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Figure 5-21 Simulation 3, effect of slightly increased assumed elasticity (day 50 to day 80)

5.3.3 Conclusions from simulation 2 and 3

A much better forecasting algorithm is required for electrical demand. It needs to take
into account the effect of price changes on future demand, to avoid instability and
oscillations in demand and price.

UK winter peak electrical demand, after a 100% gas to electricity fuel switch, will be about
160GW. This figure assumes that the transport sector continues to be a petrol and DERV
economy.

With high penetrations of wind power (80GW), we can expect supply shortages to last of
the order of 10-12 days.

High penetrations of installed domestic PV and solar water heating will only produce
15-25GW peak each, during the best winter periods, and much less during the worst winter
periods.

Market forces will play a proportionately more important part in electricity pricing as
supply becomes more variable, tending to increase prices by altering the operating points
on the price-demand curve. Any rises in bulk fuel prices will push the price-demand curves
up vertically.

Domestic hot-water storage tanks will need to be bigger than 400 litres in order to ride out
multiple-day periods of supply shortage and high prices. However, analysis suggests that
customer savings with these tanks merely to enable single-day storage can be financially
large enough to pay for their installation. The technology is simple; there are no
chemicals, high pressures or high technology parts.

Domestic electrical storage is desirable and controllable, but is unlikely to offer a good
financial return unless storage hardware prices fall by more than 4x or electricity price
volatility, at the customer, rises by an appreciable degree. Further analysis is required to
examine the revenues curves generated by such storage to avoid mass bulk buy/sell
decisions which might decrease network stability.

Slight increases in customer elasticity (to ~=-0.2) in the cooking, heating, commercial and

industrial sectors can produce a surprisingly good matching of demand to supply.
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5.4

Extension to analyse local grid constraints

To this point, all analysis and comment has been organised around a UK-wide scenario. The
simulations have analysed only the total power available and consumed within the entire UK at any
instant in time. The price calculated has been dependent only upon the balance between these
two bulk parameters, and no account has been taken of problems that will occur if there is excess
generation within one area of the network and excess demand within another area. On a local
scale, these effects must be accounted for, in order to avoid system overloads, voltage rise or

blackouts.

Future research in this area could be carried out relatively easily with this model, by analysing
smaller populations as sections of the network. This could be done at the BSP (Bulk supply point)
level, by considering the BSP as a traditional generator with a peak capacity equal to the capacity
of the BSP. The analysis tool could usefully be extended, for areas in which excess generation
might be expected, so that it checked for excursions of power export limits as well as times where
demand power exceeded power import limits. Within these smaller sub-networks, it is conceivable
and likely that local prices might deviate from prices at other parts of the network. Each
sub-network will typically have different:-

e total available (import or export) power limits

e demand profiles

e and also, possibly, different generators selling to the network, depending upon the

network financial structure

Since these three factors determine the price of power, it is quite reasonable to expect different
geographical areas to have different power prices in real-time. These different prices could be
calculated by the REC or DNO companies in real-time by using network data and overall generation
data from NETA. In this way, blackouts due to local grid constraints could be avoided without

unnecessarily affecting the prices and customer behaviour in distant parts of the grid.
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Conclusions

The results of this work suggest that demand response is a more effective solution to the problem
of variable supply and demand than simply adding extra peak capacity with poor load factor. In the
near to medium term, implementing demand response in the UK will cost of the order of £1.5
billion whereas adding 6GW of firm capacity would cost approximately £2.1 billion. Since all
customers will benefit from the resulting stabilisation of electricity prices and the avoidance of
power blackouts, there is no economic argument for not spreading the cost of bulk implementation
(installation of advanced metering in all domestic properties) amongst all UK power users,

irrespective of their participation in any real-time pricing programme.

In the longer term, as renewables play an ever larger part in our power portfolio, and natural gas
becomes less available, demand response will become even more attractive as a method of
ensuring security of supply, as it allows available generators to operate at higher load factors and

efficiencies by matching demand to supply rather than supply to demand.

The biggest barriers against exposing domestic customers to real-time electricity prices are the
social and political acceptability issues. These are mainly perception issues and could be overcome
by a well designed communication of the financial impacts to different customers. The main
concern would be any perceived negative impact on “fuel poverty”, the retired and the infirm. It
has been shown that demand response actually allows customers enrolled in real-time pricing
programmes to spend less on power than customers paying flat rates. This is because flat rates
include premiums to cover the variable prices, and avoidance of the flat rates therefore avoids the
premiums. The unemployed and retired, in general, will be more able than more wealthy people to
modify their electrical time-of-use behaviour with regard to electrical power, and hence should be
in a prime position to benefit from real-time pricing. However, for any real-time demand-response
programme to be politically acceptable, it would have to be (at least initially) a voluntary
programme. Within a few years of operation, it is anticipated that most customers would
voluntarily switch to real-time pricing in order to save money. Wealthy people with inflexible
schedules would be the least likely beneficiaries from real-time pricing. From this perspective,
demand-response is “socially inclusive” but the initial public acceptance of this might be hard to

achieve.

This report has examined the possible costs and effects of mass domestic participation of UK
households in a real-time price demand response programme, along with potential implementations
of domestic energy storage options and renewable generation scenarios. The analysis has been
carried out by developing a significant software tool to simulate portfolios of bulk and domestic
generation, embedded storage, and demand response. Demand response can be achieved by either
conscious human behaviour changes (eg. switching off an unnecessary light when electricity is
expensive), or by programmable domestic control panels which might control washing machines,

fridges, immersion heaters or electrical storage devices.
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It has been found that domestic energy storage is difficult and expensive to achieve in any useful
quantities relative to our energy use, particularly when a mass gas-to-electricity fuel switch is
imagined. Of all the storage options, domestic hot water storage is the most financially viable
solution at present, but this does not particularly help ride out supply capacity shortages of more
than a day or so in winter periods unless water tanks larger than 400 litres per household can be
installed. Domestic battery (or electrolyte store) storage offers a more controllable but much less
financially attractive solution, also requiring unattractive hazardous chemicals present in large
quantities. Other electrical storage methods are even less financially viable. The presence of
appreciable embedded storage capacity in the domestic sector increases the possibility for network
instability driven by a population that makes mass correlated buy/sell decisions. The stored energy
quantities must be examined separately from the maximum power flows storable or releasable from
the storage. Large amounts of stored energy are highly desirable, but it is not desirable from a
network stability standpoint for this power to be releasable en masse over short timeframes at high
powers. It might be necessary to regulate, by law, the ratio of stored energy to power flow rating
in each domestic storage installation, so that energy stored is only releasable over many hours or

days, and not over minutes.

A large part of the work involved in this report surrounded network stability, price stability and the
avoidance of blackouts. This report concludes that the issue of demand forecasting will play an
ever important part of any demand-response programme. The demand forecasting algorithm used in
this report was limited in its capability to account for the feedback loop formed by price and
demand. As a result, it was necessary to compromise the available customer responses, embedded
storage configurations and price curves in order to avoid devastating oscillations in electrical
demand. Creating a more effective, adaptive demand forecast will be essential to future network
stability. The demand forecast will be used to set price, and these price forecasts might also be
modified on a region-by-region basis to account for local grid constraints. The price forecasts also
need to be monitored and possibly adjusted upwards slightly, to ensure that the overall price
averages enable generators and power companies to operate profitably. The price forecast might
need to be asymmetric, i.e. able to react quickly to a rise in demand, but more slowly to a drop in

demand, in order to provide the best avoidance of blackouts while still avoiding price oscillations.

Overall, this report finds that passing on real-time electricity prices to the customer, thereby
exploiting the natural human tendency to save money and buy cheaper power, is a much more
effective solution to a future energy supply/demand problem than by simply making mass capital
investment in complicated generation and storage solutions. Relatively small modifications to our
electrical demand behaviour, such as allowing washing machines to operate at night, switching off
unnecessary TV sets and making small elastic economies on heating during critical winter periods,
will provide much more flexibility and security of supply, at a much cheaper price, than mass

capacity or storage solutions.
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Crucially, passing on real-time electricity pricing to customers closes the feedback loop between
available supply and customer demand. By receiving constant pricing signals, customers are
encouraged to make efficiency improvements and to save energy. Most importantly, the incentive
to save energy is greatest when it is most required - when supply is short. At time of excess supply,
customers are able to make use of cheap power. Implementation of a demand response programme
across the UK will make us aware of the true value and cost of energy. This is a key social

requirement as global energy supply is changing in the new millennium.
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6.1 Further work

During the course of this work, several areas of further research have been identified. The most

important such areas are outlined here:-

e Forecasting models. Demand and price forecasting models need to be refined. The demand
and price forecasting model needs to account for the anticipated effect of a price change
on the subsequent electrical demand. The forecasting algorithm used in this report did not
account for short-term demand change as a direct result of price change, and the result
was inadequate feedback leading to oscillations and system instability. The forecasting
model needs to avoid this situation, while still allowing rapid responses to unexpected
changes in demand. The requirements on this algorithm are therefore quite severe and
much more research is needed. The effectiveness of the forecasting algorithm affects the
allowed automated domestic response load/storage powers and the interaction between
these needs to be better understood.

e Better algorithms are required for automated customer load shifting, both in real life and
within the simulation tool. The modifications are required to avoid all households shifting
loads to the same, cheapest forecast time and therefore turning demand “valleys” into
demand peaks. The problem here is to find ways of automatic domestic response via each
house’s programmable price panel, which still maintaining enough diversity between
houses.

e The simulation model presented here assumes that all houses are homogeneous - i.e. all
houses are the same size, and have essentially random but uncorrelated attributes of
hardware and behaviour. In reality, houses will have different incomes, behaviour and load
profiles. It would be beneficial to understand this and to model the effects. Doing so is
challenging, however, and finding appropriate hard social data in a suitable form might be
impossible. The homogeneous approach might be the only viable solution.

¢ The simulation presented here assumes that houses buy and sell power at the same price.
This is unlikely to be an option in reality. More likely a fair sale price of electricity from a
household, at times of net energy export, would be the buy price minus 2x the DUoS
figure. It would be useful to expand the software model to account for net export
revenues at this lower price. This would be a relatively easy task in itself; however, it
complicates the cost-benefit calculations for storage and renewable generation
installation, since domestic net export quantities do not equal the dis-aggregated exports
from each individual export type. This is because much domestic energy generation or
release is not exported at the sale price but instead offsets purchased power.

e More analysis is needed to fully understand the optimum economic patterns for buying and

selling of stored energy, and how this affects network stability and customer revenues.
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7

7.1

Appendix

Glossary

AM

DR

BM
Brown
BSC
BSP

BSUoS
Cold
CCGT
Csp
DNO
DR
DRM
DTI
DUoS
EHV

GSP

HV
JRC

Load Factor

LV

MV
NGC
Ofgem
PV

Advanced meter, or Advanced Metering

Demand Response

Balancing Mechanism

Brown appliances include such things as TV’s, radios, hifi, computers etc.

Balancing and Settlement Code

Bulk Supply Point. Node at which the transmission network meets a distribution
network.

Balanced Services Use of System charge

Cold appliances include such things as fridges, freezers etc.

Combined-Cycle Gas Turbine

Curtailment Service Provider

Distribution Network Operator

Demand Response

Distribution Reinforcement Model

Department of Trade and Industry

Distributed Use of System charge

Extra-High Voltage. Generally, anything above 400kV. Not currently in use in the
UK, but 735kV is used for long distance bulk power transmission in the USA.

Grid Supply Point. A point in the transmission grid where a large generator or load
centre is attached.

High Voltage, 66kV, 132kV, 275kV and 400kV in the UK

Joint Radio Company

An expression of the average power output of an electrical generator relative to its
peak generation capacity. If a wind turbine has a peak capacity of 1MW but only
generates an average of 0.3MW year-round due to wind conditions, maintenance
outages or inability to sell its power, then it’s load factor is 0.3/1=30%. Load Factor
can also apply to an electrical demand in the same way. Load Factors closer to
100% imply steady generation or consumption. Lower Load Factors imply more
peaky or spiky generation or demand. A generator with a low Load Factor can be
hard to operate financially since capital costs must be recovered from small energy
sales relative to the installed capacity of the plant.

Low Voltage. In the UK: 230V (single phase) and 415V (three phase)

Medium Voltage. In the UK: 6.6kV, 11kV, and 33kV in the UK

National Grid Company

Office of gas and electricity markets

Photovoltaic
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REC

RPI

RPI-X

RSI

SEPA
SMA
SMES
TOU
TNUoS
Wet

Regional Electricity Company; a competitor to the DNO, providing a service and
financial package wrapper to the DNO service. They do not provide the actual
network connectivity which is still the responsibility of the DNO.

Relative Price Index. The forecast electricity price divided by the customers
perception of the average electricity price (determined by a weighted average over
a number of previous days)

Price control applied by Ofgem to electricity for annual rises. Retail price index
(RPI) minus expected network efficiency gains (X).

Residual Supply Index, determined on a half-hourly basis and if less than 1, the
power seller is pivotal and a bid must be accepted.

Scottish Environment Protection Agency

Supply Margin Assessment. Similar to RSI but done on a daily peak demand basis.
Superconducting Magnetic Energy Storage

Time Of Use (charging for electricity)

Transmission Network Use of System charge

Wet appliances include such things as washing machines, tumble dryers, and

dishwashers
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7.2 Potential future renewable UK energy sources

7.2.1 Potential UK biodiesel production from intensive crop farming

Mean UK insolation at sea level ~100Wm™ over 24 hours, 365 days per year [6].

Intensive biomass crops in temperate climate can transform ~1.6% of this into raw fuel
calorific value. (Biodiesel after processing ~0.14%).

Hypothetically, assume 10% of UK landmass set aside for Biomass crops (10% of 22982700
ha = 2.298E10m” [6]):-

Annual raw energy fuel output = 365*24*2.298E10*100%(0.016 or 0.0014)

= ~320TWh @ 1.6% conversion efficiency (solid fuel theoretical maximum)

= ~12GW @ 1.6%*33% conversion efficiency to electricity

= ~28TWh @ 0.14% conversion efficiency (biodiesel)

Current UK transport energy use ~= 400TWh [11]

28/400 = 7%, leaving 93% of transport requirements remaining to be curtailed or fulfilled

from other energy sources.

7.2.2 Potential UK domestic PV electricity production

In 2001 there were approximately 25 million households in the UK (DTI [8]).

Some of these will be houses and some will be flats

Assuming that each household on average could install a 2x2 metre array, i.e. 4 m?.

Mean UK insolation at sea level ~100Wm™ over 24 hours, 365 days per year [6].

Peak UK insolation at sea level is approximately 500-1000W/m?* (estimated as half the
peak insolation at the equator which is ~=1kW/m?). The panels are rated for insolations of
1000W/m?.

Efficiency of a PV system assumed to be 15%. The 4m’ array would be rated at
4*1000*0.15=600W peak.

Agregate UK energy production ~= 25E6*4*100*24*365*0.15 ~= 13TWh/a

Peak UK energy production, assuming a hypothetically clear sunny day over the whole UK,
might be approximately 25E6*4*500%0.15 = 7.5GW

This could double to 15GW (26TWh/a) if houses installed 8m? arrays (800W peak systems),
or rise to 30GW (52TWh/a) for 16m?arrays (2.4kW peak).

The load factor for grid-connected PV electrical production in the UK is approximately
100W/500W=20% or less

7.2.3 Potential UK solar water heater energy capture

In 2001 there were approximately 25 million households in the UK (DTI [8]).
Some of these will be houses and some will be flats
Assuming that each household on average could install a 2x2 metre collector, i.e. 4 m%.

Mean UK insolation at sea level ~100Wm™ over 24 hours, 365 days per year [6].
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7.2.4

7.2.5

7.2.6

7.2.7

e Peak UK insolation at sea level is approximately 500-1000W/m? (estimated as half the
peak insolation at the equator which is ~=1kW/m?)

e Peak output of a 4 m? at 1000W/m? is about 2.5kW, by using the design tool referred to in
section 4.9.3.

e Therefore, efficiency of a thermal collector system is approximately 60%.

e Agregate UK energy production ~= 25E6*4*100%24*365*0.6 ~= 53TWh/a

e Peak UK energy production, assuming a hypothetically clear sunny day over the whole UK,
25E6*4*500*0.6 = 30GW

e This figure could rise to 60GW for 8m? (5kW peak) systems.

Potential UK land-based windpower production

We could estimate the peak land-based windpower, very basically, by imagining, say, 4 lines of
1MW wind turbines stretched from the North to South of the UK. The spacing would be
approximately 100M and the distance is about 1000kM. This means a peak capacity of
4*1000*1000/100 * 1MW = 40000 * 1MW = 40GW. We could attain more peak capacity but space

and planning permission are big issues. The load factor would be around 30%.

Potential UK offshore windpower production

Offshore, we could presumably realise amounts of wind power of about 40GW also, probably by
using fewer but larger capacity turbines. The load factor would probably be a little better, say
40%, due to the more consistent maritime wind conditions. Access to shipping routes is a factor

which would make such large-scale deployment difficult.

Potential UK wave power production

We could imagine a line of Pelamis wave converters stretching the length of the western coast of
the UK. Assuming each wave machine peak power output rises from the current 750kW to
something more like 1MW, and the machines could be spaced as per the Pelamis recommended
configuration of 40 machines per km? (each km? is actually 2.1km long by 600m deep). The total
theoretical peak capacity is then 1000km/2.1*40 * 1MW = 19 GW. The load factor would probably
remain at about 40% (current Pelamis published data). Access to shipping routes is a factor which

would make such large-scale deployment difficult.

Potential UK tidal power generation

We might imagine 100 suitable sites around UK coastal waters that might support a 1MW tidal flow
stream converter. These sites are extremely limited by suitable tidal flow, environmental
considerations and operational difficulties. Peak capacity might be 100MW. Load factor will be

reasonable and predictable, say 50%.
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7.2.8

7.2.9

Potential UK anaerobic digestion of domestic organic waste to
biogas production

Analysis using an anaerobic digestion tool developed by the “Biomass group” [5] at Strathclyde
university shows that the electrical power realisable by processing the domestic organic waste
from a population of 60 million people would be between 130 and 330MW. The energy release
would to some extent be controllable as the biogas could be stored in a similar fashion to our
current natural gas reservoirs. The load factor would be limited mainly by the reliability of fuel

supply and the availability of the demand market, as opposed to climactic factors.

Potential UK wood to energy production

Analysis in [5] reveals that Substantial areas of forest are needed to support a wood-fired power station.
For example, a 6MW station with an efficiency of 20% would need between 430 and 2,150 hectares a year of
sustainably managed forest at harvest. This exceptionally wide range shows the variable yield of forest
residues. The yield itself depends on various factors such as terrain, accessibility, tree species and age, and
end use of the timber - as opposed to the residues - will be put. However, the feasibility of this will also
depend on other issues, such as the conservation status of the woodland, accessibility and countryside
policies.

In Scotland there are over 1,318,000 hectares of woodland and forest, so this would equate to
6MW*1318000/430=18GW to 6MW=*1318000/2150=3.6GW. We could double these figures to
estimate total UK wood reserves. Comparison with section 7.2.1 would suggest that 10% of all UK
landmass used intensively (2,298,270ha) would only support 12GW of electrical generation. A fair
estimate for peak UK capacity would seem to be about 10GW. Environmental impact and fuel
transport issues will limit any successful bulk implementation. The load factor could be both

controllable and reasonable.
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7.3

7.3.1

Storage technologies

Batteries

Deep-cycle lead-acid batteries are the most common form of electrical storage device aside from
pumped storage. The scales are quite different, however, since the cost of lead-acid batteries has
not traditionally made them feasible for bulk storage on the network, or domestic-scale storage

at home.

A deep-cycle lead-acid battery, measuring 0.28m x 0.18m x 0.19m and weighing 20kg [13] can
have a declared storage capacity of 100Ah @ 12V, at a cost of £87+VAT. The realisable capacity of
this battery might be 70% x 100 x 12 = 0.84 kWh, and it might be available for about £50

purchased in bulk quantities.

In reality, storing the energy will require passing through AC-DC converters, the battery, and
DC-AC inverters. The efficiency of the converters might be 97-98% each, and the batteries might
be 90% efficient at best. Therefore, each battery might require 0.84/0.97/0.9 = 0.96 kWh to
charge, and might only release 0.84 x 0.97 = 0.81 kWh.

Therefore, one household, on average, with a 12.6kW/day usage, could in theory store 1 day’s
worth of electrical energy in approximately 12.6/0.81 ~= 16 batteries, at a cost of £800 plus the
cost of the inverters. To store enough for a 5 or 10 day weather event, each household on average
would need between 80 to 160 batteries, with a combined mass of 3200kg and requiring the space
of a small shed 2.5m x 1.5m x 1.5m, assuming that only 1/3 of the volume can be used for the
batteries and 2/3 must be saved for access and maintenance requirements. The cost would be
£4000-£8000 plus the cost of the inverters. It is technically feasible, but bulky and expensive. The

batteries also have a finite lifetime and require a level of maintenance.

At an electricity cost of 7p/kWh and an average household consumption of 12.6kW/day
(4600kWh/annum), the average household electricity bill is currently £322 per vyear.
Unsurprisingly, an investment of £4000-8000 per household for this kind of storage facility,
representing over 10 times an annual electricity bill, is unappealing. Few people have this kind of
system apart from those without grid connections, or those with a “personal mission” to prove the

feasibility of embedded renewables®.

* The incentive for these people to install domestic storage is that current grid connection of domestic
renewables provides vastly different (but fixed) rates for import and export. The export rate paid to the user is
very low (below the lowest wholesale price). Therefore, these people currently justify their investment in battery
storage because it makes them almost self-sufficient from the grid, so that they do not get punished by the

imbalanced import and export rates.
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7.3.2

However, if domestic electricity prices were to move to a more real-time basis, following the

wholesale market prices, there might be real financial justification for normal users.

If a 160-battery micro-storage facility was built as described above for a cost of £8000 (plus
inverters), in a domestic or embedded manner, the following scenario might occur:-

Overnight, 160 x 0.96 = 153.6 kWh might be purchased at £25/MWh (in the distribution network),
at a total cost of £3.84.

During a following day, 160 x 0.81 = 129.6 kWh might be sold at peak rates of £50/MWh (in the
distribution network), for a revenue of £6.48.

The revenue minus expenses for the day might be £2.64. Over a year, this could amount to about
£960. Over 10-15 years, dependent upon interest rates, the capital sum of £8000 (plus converters)
might be paid off, although the system will be requiring maintenance and possibly battery

replacements by then.

This system is marginally feasible according to this rather over-simplified analysis, although not
obviously profitable enough (at present) to justify investment. However, a doubling or trebling in
overall wholesale energy prices, or an increase in peak price electricity, might easily make the

system much more appealing from a financial viewpoint.

Technically, the system is quite feasible, although large proportions of UK households in the UK
were to consider the scheme, one might question the space requirements, the chemical spill
hazard, the maintenance required, and the physical amount of lead required and the impact on
the worldwide lead market. Possibly, the global supply of lead might limit such a scheme! An
alternative option is an electrolyte store which would store large amounts of electrolyte but only
use a few lead plates. This limits the instantaneous power available, but, as we shall see later in

this report, this does not present a problem for embedded storage due to stability requirements.

As a comparison of energy storage density, we can consider the 10m x 10m x 10m cube full of
batteries (at 1/3 battery-space ratio for maintenance requirements):-

Number of batteries = 10m x 10m x 10m / 3*(0.28m x 0.18m x 0.19m) = 35000

Storage capacity = 35000 x 0.81kWh = 28 MWh

Heated water

Heating water represents an effective method of storing energy, as the specific heat capacity of
the water is so high. However, hot water is not a very good storage medium to be used for an
electricity -> hot water -> electricity storage cycle. The hot water is a reasonably low grade
energy which cannot readily be converted to electricity unless it is elevated to superheated
temperatures and pressures. These temperatures and pressures require very strong vessels which
are impractical and uneconomic to build. Large vessels of even un-pressurised water at

temperature require both insulation and structural integrity.
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Electricity can be used, at 100% efficiency, to heat a tank of water.

In a 10m x 10m x 10m tank, with water elevated to 90°C, relative to a base temperature of 5°C,
the stored energy would be:-

E = Volume x p x AT x ¢,

p=1000 kg/m’

Cp=4.17 kJ/kgK

E=10x10x 10 x 1000 x (90-5) x 4170 J = 354.45 GJ ~-= 98 MWh

This equates to 98000/12.6 = 7800 household-days of electrical energy consumption.

Assuming that the tank is insulated with a 100mm (0.1m) thickness of insulation (k=0.04W/mK),
the heat loss to surroundings at 5°C (with the water at 90°C) would be

Q = Area x AT / Thickness x k

Q=6x10x10x (90-5) / 0.1 x 0.04 = 20.4 kW

Hence the water would be cooling at approximately the following rate
20400 / (10 x 10 x 10 x 1000 x 4170 ) x 3600 = 0.018 °C/hour
and therefore the water would retain almost all the energy for at least a week (temperature drop

3°C in one week, corresponding to a 3/(90-5) = 3.5% round-trip efficiency loss).

This tank needs can be insulated well enough so as not to lose much of the heat in the time of
storage required. The heat could not effectively be re-transformed into electricity unless the
water was heated further and superheated by some other energy source, at which point it could

be used in a steam turbine.

The water could directly be used, at high efficiency, for nearby domestic, commercial or

industrial heating use.

On a smaller, domestic scale, a 120 litre immersion tank, suitable for a 1-bedroom dwelling, that
heats water from an input water temperature of 8°C to 65°C, consumes and effectively stores an
amount of energy:-

E =0.120 x 1000 x (65-8) x 4170 = 28.5 MJ ~=7.9 kWh

Heating the water, in a normal domestic immersion heater with a 3kW rating, would take 2.6

hours.

The heat loss from the tank (of diameter D=0.412 and height H=0.9m) with a 2cm thickness of
insulation (k=0.04W/mK) to ambient indoors air at 20°C would be:-

Q = Area x AT / Thickness x k

Q= (2.m.(D/2)* + m.D.H) x (85-20) / 0.02 x 0.04 = 186 W

Hence the water would be cooling at approximately the following rate
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7.3.3

186 / (0.120 x 1000 x 4170 ) x 3600 = 1.3 °C/hour =32 °C/day (~=50% efficiency loss)

Therefore, this size of energy store will only last a day or so without excessive efficiency loss.
However, in winter and poor-weather conditions, it must be borne in mind that the heat lost
through the tank walls will be transmitted to the internal building environment and will displace
other space-heating required, so the heat will not be wasted completely (it makes a warm airing

cupboard in the centre of the dwelling!).

The stored energy of 7.9kWh (and more for proportionately larger scale tanks in larger dwellings),
presents a reasonably large energy store relative to the current average household electricity
consumption per day which is approximately 12.6kW/day based on a UK domestic annual usage of
115TWh and 25 million UK households [8]. Although the energy cannot reasonably be reconverted
to electricity, if it can be stored without excessive heat loss and then subsequently usefully used
for bathing or washing (thereby displacing later energy use, possibly at peak times) then it

represents a practical and cheap method of energy storage.

Hydrogen

Hydrogen provides a method of storing and retrieving electrical energy via electrolysis of water
and then (popularly) via use in a fuel cell. Combustion in a CCGT might be an alternative and
simpler method for electrical recovery, with approximately the same conversion efficiencies when

used in medium-sized or large plants.

The benefits of hydrogen storage are the (potential) energy density of the hydrogen if stored as a
liquid or compressed gas, and also its transportability. The problems are the safety concerns
(explosions!), the cost, and the relative immaturity of the technology. The round-trip efficiency
of electrolysis -> H; store -> fuelcell storage cycles are currently 40% at best [3].

When used with a fuel cell, hydrogen and oxygen will produce perfectly clean steam and

electricity with NO additional pollutants. Generally, the steam would be recycled back to

the electrolysis phase after first passing through a heat exchanger and/or condensing

turbines to recapture all the thermal energy. Nearly 5 MWh of electricity are required to

make 1000 cubic meter of hydrogen gas (and about 500 cubic meter of oxygen). When passed

through a fuel cell, this hydrogen will yield 1 MWh as electricity and 1 MWh as heat, giving

an overall storage efficiency of 40%.
Using the above data, and a molar mass of Hydrogen gas (H;) of 2g/mole, this means that 5MWh
of electricity create 1000/0.0224*2/1000=89.29kg of H,, because 1 mole of gas occupies 0.0224m*
at standard temperature and pressure (25°C, 1 bar). The 89.29g of hydrogen must have been
formed from 89.29 x (2+16) / 2 = 803.6 kg of water (H,O has a molar mass of 2+16=18g). The
803.6kg of water represents 803.6/18x1000 = 44645 moles of H,0. The enthalpy change of
formation of water, AHf, is -285.8 kJ/mol, so the total energy that has been stored in the
Hydrogen is 285.8 x 1000 x 44645 = 12.76 GJ ~-= 3.54 MWh. Therefore, the efficiency of the

electrolysis process, as described, is approximately 70%.
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7.3.4

The 3.54 MWh of available stored energy translates to 1MWh electricity and 1MWh heat from the
fuel cell. The electrical retrieval efficiency is therefore 28%, and the heat recovery process also
recovers the same amount. The overall round-trip electrical efficiency is about 20%, and the

overall round-trip recovery of heat from electricity is about 20% also.

Hydrogen might be stored in three ways:-
¢ In a chemical form inside a solid catalytic carrier (for transport usage since it will be safer
during a collision). Currently undemonstrated on any practical scale.
¢ In gaseous form at high pressure (up to 3000 bar), which requires very strong storage
vessels, impractical at any large scale.

¢ In liquid form at less than 20K.

In liquid form, the hydrogen has a density of 71kg/m®. Therefore a 10m x 10m x 10m tank of
liquid hydrogen would hold 71,000 kg of hydrogen. Using the figures above, this would require
4.0GWh of electricity to form, and would release 800MWh of electricity and 800MWh of heat when
processed in the fuel cell. It is assumed that heat exchangers would minimise heating and cooling
requirements associated with the hydrogen liquidisation, and that the tank would be suitable

insulated.
Flywheels
The energy stored in a flywheel is given by :-
1
E = E J@® where J is the moment of inertia, and w is the angular velocity in radians/second.

J is mr? where m is a mass at a distance r from the axis of rotation. For complex shapes,

J = Z:ml.ri2 which can be evaluated by integration if necessary.

1

If the flywheel is solid, the momentum will be
T 1
J=[2xrpHr dr= En.p.H.R“
0
but more practically the flywheel is hollow to minimise weight
R2 1
J= j 2xrp.Hr dr = 571'.,0.H.(R24 —R1Y
R1

although we can make an easier approximation to J by
J = pV.R* where V is the rim volume and R is the rim radius.
The tensile strength at the rim exterior will be approximately:-

T = p.R* .0
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7.3.5

The speed at which this flywheel might be rotated (and indeed the technical possibility of
mounting such a large weight on bearings at all) is subject to constraints. These constraints are
such things as:-

e Hoop stress in the flywheel

e Precession torque

e Tilt restoration tilt

e Bearing losses and strengths

e Containment vessel strength for protection in the effent of failure
Design of flywheel so that ideally any failure results in only partial and not total shredding of the

wheel.

Reference [29] gives some good descriptions of these forces and the relationships between
flywheel dimensions, material density and strength. To obtain the best energy storage densities

per weight and space, a very light but strong material such as carbon fibre composite is required.

Consider a flywheel to fit in 1m® space, having an external radius of 0.5m, internal radius of
0.375m, height 1m, density of 1100 kg/m?, and maximum tensile stress of 350MN/m? (about right

for carbon fibre)

@, zl\/zzllf‘)O ie 11,000 rpm
R\ p

and

0.5+0.375) (

J = pV.R* = 70 kgm? where V=21 { 0.5-0.375) = 0.34 m? and

_(0.5+0.375)

R = (.44

Hence, stored energy could be about E = %Ja)2 = 45MJ =12kWh

And the flywheel itself would weigh about 375kg. The reference claims that frictional losses on a
flywheel of about this size would be only 2W, leading to an energy store “half-life” of over 600
hours. This seems optimistic, so it would be safer to assume a shorter energy “half-life” in any

subsequent analysis.

Reference [29] claims that prices for flywheels are about US$6000 per kWh.

Compressed air

Compressed air is a simple but somewhat inefficient method for storing energy. Air is compressed
by a pump or turbine and stored in a pressurised container. The air is stored, and then released

via a generating turbine of some kind to generate power.

127



The theoretical energy storage, in a 10m x 10m x 10m vessel, pressurised to 50 bar (this will be an
expensive pressure vessel!), can be calculated from the thermodynamic properties of air which
can be treated as a perfect gas with c,/c,=y=1.4. The calculation method assumes a polytropic
adiabatic compression-expansion process.

Work = m.c, (T, —T,)

71

T, _ &Jy

T, P
and
pv=RT

Using p;=10° Nm2, p,=5x10° Nm?, and T,=293K, gives T,=896K

For air, ¢,=718 J/kgK and R=287 J/kgK

Inside the vessel, v, = RT,/p, = 0.0514 m*kg ", hence in 1000m?* at 50 bar there is 19400kg of air at
896K.

The energy put into this storage is then 19400.718.(896-293) = 8.4 GJ ~= 2.3 MWh.

The energy available, assuming the turbines are 100% efficient and that no heat is lost, will be the

same amount.

The efficiency of the system will be limited by the following effects:-

¢ The isentropic efficiency of the compression and expansion turbines which are unlikely to
be much more than 0.8 each.

e The insulation surrounding the pressure vessel, since the air inside must be maintained at
a high temperature unless energy is to be lost. Re-using the calculations and insulation
thicknesses from section 7.3.2 leads to an energy loss of 148kW from the tank at 896K
(623°C) to surroundings at 20°C. Storing the energy for a period of an hour would lose
4.5% of the energy, for five hours about 20% of the energy, and after 24 hours the air

temperature would be almost back to ambient (20°C).

If the inside air temperature dropped to ambient (20°C), then the recoverable energy would be at
most:-

T3 =293, v3=v,

P3= RT3/v3=287.1x 293 / 0.0514 = 1.64 x 10° (16 bar)

After re-expansion

T4=132K (-141°C)

Work=m.cy.(T3-T4) = 19400.718.(293-132) = 2.2 GJ ~=0.62 MWh

Therefore, the round trip efficiency of compressed air storage at 50 bar is at best 0.8 x 0.8 = 64%,

limited by the isentropic efficiency of the turbines. At worst, after several hours if the

compressed air loses its heat, the efficiency drops to 0.8 x 0.8 x (0.62/2.3) = 17%.
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7.3.6

Superconductivity

The principle of energy storage using superconductivity revolves around a superconducting closed
ring or coil of wire. Current flows in the wire, which has zero resistance and zero voltage between
any two points. Energy is stored via the inductance of the wire or coil, via E=14LI%. The energy is
stored in a magnetic field created by the current. Power is injected into the ring by “injecting”

current, and it extracted by “tapping” off some of the current.

The problems which limit energy storage in superconducting rings are:-

e The current stored in the ring is limited, by the “critical current” property of
superconductors. Above a critical current density, the wire ceases to exhibit the property
of superconductivity.

e There is also a critical magnetic field property, whereby the property of superconductivity
in a wire ceases when a certain magnetic field density is exceeded.

Because of the above two limitations, a storage facility for 1000MWh would require a ring
approximately 100 miles big [33].

The conductor (currently) needs to be immersed in liquid helium to maintain the superconducting
property.

The magnetic fields generated by a significant energy store would dwarf the earth’s latent
magnetic field, and might pose health risks or other effects (compass swings, magnetic card
swipes deleted, attraction of metal objects, induced currents in moving metal objects, and other

annoyances).

Superconducting magnetic energy storage (SMES) has been
demonstrated successfully in commercial and military applications
up to 6MJ/750kVA  (-= 1.5kWh) using niobium-titanium rings
maintained at 4.2K [24], [1], [2] in trailer-sized packages. The
major application of SMES systems is for very short-term (0 to 10
second), high current applications such as power conditioning and
ride-through for transient faults and spikes (e.g. lightning strikes) at

critical installations. The SMES systems can respond with 2ms or so,

just a fraction of a power cycle.

Figure 7-1 2MJ, 200kVA (8 second carry-over time) SMES system
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7.4

Stability of a simple demand-price control system

The problem of instability can arise in a demand response system when the (downwards) change in
demand due to an (upwards) price change causes a subsequent (downwards) change in price which
is larger than the original (upwards) price change. This will cause an unstable system, of which
several examples have been observed when using the modelling tool. The instability can be caused
by any or all of the combined effects:-
¢ Inadequate forecasting models
e Excessive storage power which is activated over small price change ranges. Note, there is
a clear distinction here between storage power and storage energy. Large amounts of
stored energy are not a problem. Instability is caused by it being absorbed or released
over too small a price range.
e Excessive elasticities of demand

e Excessively steep price-demand curves

The following calculations were an attempt to put some bounds on the maximum storage powers
or elasticities which might be allowed in a system. Unfortunately, the output of the calculations

does not reveal this, although a very important conclusion becomes clear.

A demand-response system in which demand and price depend upon each other may be modelled,
in very simplistic terms, by a classic
Actual

digital control system.
demand

Baseline

demand | Price

G(2)

H(z)

In this model, G(z) is Z-transform of the demand to price equation. H(z) is a combination of the

effect on demand due to price, plus the forecasting model.

Since control system theory works best with linear systems, the above diagram must be modified
to be able to analyse the potential stability of the demand-response system. This is because our
price-demand equation is not linear (section 4.7), and because there are large offsets from zero in
the system. The modified control system models excursions from a nominal demand Dy and price
Po, while using an approximation of the gradient of the price-demand curve at the nominal point
Do, Po.
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Actual
Demand - D
Baseline

Demand - Dy ! (Price - P,)/Py

G(2)

H(z)

Here we set, at time t;, demand Dy and price P,. For t>ty, the system models the excursions from
the starting point. Note that the output of the system is now not the absolute price excursion, but
the excursion divided by the reference price Py. This means that the output is in fact the relative
price excursion, which relates to the RelPricelndex parameter in the main demand response
modelling (see sections 4.11 and 4.12.1). This is useful since demand responses are driven by price
relative to the customers’ perceived average, and not absolute prices.

G(z) is now the gradient of the price curve divided by P,, i.e. it is the derivative of

. Ae™ + C + DuOS
Price = evaluated at Dy Py

)

Demand

where x = - .
Capacity — Larg estGeneratorCapacity

BAe™
F, (Capacity —Larg estGenemtorCapacity)

G(z) is therefore

H(z) is harder to formulate. H(z) is the combination (by product) of Z-transform of the forecasting
model with the Z-transform of the demand change (in Watts) as a function of relative price

change.

Taking the forecasting model first, it is almost certainly impossible to derive analytically the
z-transform of the forecasting function described in section 4.8, which is a combination of
polynomial fitting plus fourier analysis. It will also be impossible to derive the z-transform of more
professional prediction algorithms that take into account weather forecasts and TV schedules.
Therefore, probably the best we can do here is to analyse a very basic, weak, forecasting model,
and make the statement that whatever results we get here can almost certainly be bettered by
using a decent forecasting model. We will then put a safe limit on storage power and elasticity
that may be used without any danger of instability, using the most stupid of forecasting

algorithms. The forecasting model we can use here is a simple this-to-next algorithm. This means
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that we forecast the price in the next period to be the same as it was due to the demand in the
previous period. It is similar to making a weather forecast for tomorrow by saying it will probably
be just like today - it often works! The z-transform for such a simple forecast is simply z' since it

corresponds to data passed with a one-sample delay.

Now, we must derive the portion of H(z) due to either storage power flow or elastic change in

demand.

For storage, the upward change in demand for a decrease in relative price will be approximately

NHFS

PRlBuy - PRZBuy

where Ny is the number of households with storage and I_’s is the average storage power flow that

can be activated by each house. Py, — P is the relative price range over which the Ny

R2Buy

houses make their decisions to buy power. Typically, Py,

might be 0.95 and P, ,, might be
0.5. This signifies that houses choose to buy power between these relative prices, and if Ny is large
enough, the gradual increase of numbers of houses buying power as price moves downwards over
this range will cause a linear change in demand. Here, we assume that the linear change extends

into the range where relative price is >1 also.

The upward change in demand by elastic change in response to a decrease in relative price will be
approximately -EqDy. Remember that E, will be negative. Ey here is also the elasticity valid relative
to the price Py, which is not necessarily the same price as elasticities calculated relative to other

prices. It will be necessary to scale Ey to make it valid at a price other than P,.
In summary,

So, now it is possible to combine the equations G(z) and H(z) and determine the stability of the

system.

G(2)

The closed-loop transfer function of the system is ————————, and the stability of the system
1+G(2)H(2)

is determined by the location of the poles of this function in z-space. The poles are determined by

finding the zeros of the characteristic equation 1+ G(z)H (z) . It is useful to rewrite this equation

as 1+ Kg(z), since this separates the scalar gain factor K from the difference equation part g(z).

In our case, g(z) is simply z"' while K is the product of all the other scalar factors. We can now find

the sole zero of the characteristic equation, which falls at z=-K.
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A digital control system is stable is the poles of the closed-loop transfer function fall within the
unit circle on the complex z plane. In our case, clearly, the magnitude of K must be less than one

for our simple system to be stable.

We can now apply this criteria to K and backtrack to find approximate acceptable limits on the
storage power per house, or maximum elasticity, that may be allowed in conjunction with a very

poor forecasting model.

We assume:-

Ny=25,000,000

Capacity=52GW, LargestSingleGenerator=2GW, =>Capacity-LargestSingleGenerator=50GW

Po=15 pence/kWh (150£/MWh)

A
B
curve (Figure 4-13) of A=0.0001, B=15 and C=12, and DuoS of 8 £/MWh.

(150— C- DUoS)
In

Hence x = , which gives 0.94 using price model parameters from the mid

Dy can be evaluated as x*50 GW = 47.0GW

We can now solve two equations, one to find the maximum storage power per average house to
cause instability, and one to find the maximum elasticity to cause instability.

<1

Storage

Elasticity < 1

These two equations, when expanded, form

BAe™ N, Ps 1
P,(Capacity — Larg estGeneratorCapacity)| P, suy ~ Prosuy

BAe™
F, (Capacity — LargestGeneratorCapacity

)[_EODO]<1

which can be evaluated as
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15#0.0001¢"°* | 25%10° Py
150(50%10°) | 0.95-0.5

15%0.0001¢"7*%

B 9
5050°107] [ E, #46.5%10°|<1

then

13.0 [25*10“7%}
<1

50*10°| 0.95-0.5

13.0
W[—EO #47.0%10° <1
Hence

;s < 70 Watts
-Eq < 0.08

These are disappointingly small figures. Considering that each house may well have an immersion
element of at least 3000W alone, plus potentially other electrical storage, there is no way that the
system can be stable. We would also hope that overall household elasticity of demand might reach

the order of -0.2 to -0.5, which is a substantially higher elasticity than -0.08.

The conclusion here is simple. It is almost impossible to guarantee absolute system stability
from a theoretical standpoint with a simple analysis such as this. The forecasting models used
in reality, for a demand response system, must be orders of magnitude better than a simple
estimate based upon the demand and price from the single previous period. The forecasting
model used in the demand response model described in section 4.8 must be much better than the
worst-case forecasting method, because successful simulations can be demonstrated using much
higher storage powers per house than 77W. But it is almost certainly possible to determine the
z-transform of the current forecasting model or any reasonable candidate algorithms, aside from
some very simple approximations based upon low-pass filters. Therefore, system stability will
probably have to be determined by empirical (trial and error) methods. For this, the demand
response simulation software which incorporates the candidate forecasting algorithm will

therefore be invaluable.
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7.5

Derivation of solar view angles & solar panel rotations

The following algorithm finds the angles of the sun for a given location on the planet and
time, and computes these angles relative to a solar panel orientation. The collectable "power
factor" of the solar collector relative to the total direct normal solar irradiance available is
calculated.

Inputs:-

Latitude, Longitude

Time (in GMT, relative to midday on 21 June - at time t=0 a point at longitude O in the N
hemisphere has it's highest sun angle possible)

Azimuth (towards East) and declination rotation offsets for the solar panel from nominal flat.
Outputs:-

Solar declination, in degrees from directly overhead

Solar bearing, a compass bearing of the sun position relative to true North

The AimFactor power, which is the power available relative to direct normal solar

The bearing, declination, and overall angle errors of the panel orientation

The earth centre is considered stationary at [0,0,0] with the sun stationary at [infinity,0,0]
We begin by considering the point closest to the sun at t=0, on the equator.This is a vector of
[1,0,0].

This vector towards the sun points directly overhead in a direction of [1,0,0].

We also know that views East and North from this point at this time are [0,1,0] and [0,0,1]
respectively.

Know we apply the following rotations in order, to find these three vector directions for the
correct location and time:-

Rotation of latitude

Rotation of longitude

Rotation due to rotation of earth about N-S (the z) axis (every 23 hours 56 minutes)
Rotation of the N-S axis of earth about the y axis (23.45 degrees off axis)

Rotation earth and its N-S axis about the z axis every 365.25 days

The three transformed (overhead, East and West view) vectors for are now compared to the
sun-view vector which remains [1,0,0]

The three vectors EastVector, NorthVector and OverheadPointer form a right-handed
orthogonal set of axes.

We use these three vectors to form the actual panel pointer vector, by using a rotation
towards East and a declination from overhead.

This is an azimuth-declination transform similar to radar antenna pointing.

>restart;
>RzAnnual:=linalg[matrix] (3,3, [[cos (epsilon), —
sin(epsilon), 0], [sin(epsilon), cos(epsilon),0],[0,0,1]1]);
cos(e) —sin(e) O
RzAnnual :=|sin(e) cos(e) O
0 0 1

>
RyAxisOffset:=linalg[matrix] (3,3, [[cos(phi),0,sin(phi)], [0,1,0
1, [-sin(phi), 0,cos(phi)]]);
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0 1 0
—sin(¢) O cos(0)
>RzDaily:=linalg[matrix] (3,3, [ [cos (theta), -
sin(theta), 0], [sin(theta), cos (theta),0],[0,0,111);
cos(B) —sin(B) O
RzDaily := {sin(e) cos(0) 0}
0 0 1

cos(¢) O sin(o)
RyAxisOffset = }

>RzLongitude:=linalg[matrix] (3,3, [ [cos (alpha), -
sin(alpha), 0], [sin(alpha), cos(alpha),0],[0,0,1]1]1);
cos(a) —sin(ax) O
{sin(a) cos(Q) 0}

0 0 1

RzLongitude :=

>
RyLatitude:=linalg[matrix] (3,3, [[cos (beta),0,sin(beta)], [0,1,0
], [-sin (beta),0,cos (beta)]]);

cos(B) 0O sin(B)
{ 0 1 0 }

—sin(B) 0 cos(P)

RyLatitude =

>
OverheadRotationCombo:=linalg[multiply] (RzAnnual, RyAxisOffset,

RzDaily,RzLongitude, RyLatitude);
OverheadRotationCombo =

[((cos(€) cos(0) cos(B)— sin(e) sin(0)) cos(a)

+ (—cos(€) cos(¢) sin(0) — sin(€) cos(0)) sin(a)) cos(P)

—cos(€) sin(¢) sin(B), —(cos(€) cos(d) cos(O) — sin(e) sin(6)) sin( )
+ (—cos(¢€) cos(¢) sin(B) — sin(€) cos(0)) cos(a) , (

(cos(€) cos(d) cos(B)— sin(€e) sin(0)) cos( )

+ (—cos(€) cos(¢) sin(0) — sin(€) cos(0)) sin(at)) sin(P)

+ cos(€) sin(d) cos(P)]

[((sin(€) cos(d) cos(O) + cos(e) sin(0)) cos(a)

+ (—sin(€) cos( ) sin(0) + cos(€) cos(O)) sin(at)) cos(P)

—sin(e) sin(¢) sin(B) , —(sin(e) cos(h) cos(O) + cos(€) sin(O)) sin( )
+ (—sin(e) cos( ) sin(0) + cos(€) cos(0)) cos(a) , (

(sin(€) cos(¢) cos(0) + cos(€) sin(0)) cos(a)

+ (—sin(€) cos( ) sin(0) + cos(€) cos(O)) sin(at)) sin(P)

+ sin(€) sin(¢) cos(P)]

[(—sin(0) cos(0) cos(at) + sin(¢) sin(6) sin(ct)) cos(P) — cos(0) sin(P) ,
sin(¢) cos(0) sin( o) + sin(¢) sin(6 ) cos() ,

(—sin( ) cos(0) cos(a) + sin( ) sin(0) sin(ct)) sin(P) + cos(d) cos(P)]

>
OverheadPointer:=linalg[multiply] (OverheadRotationCombo,linalg

[vector] ([1,0,01));
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OverheadPointer = [ ((cos(€) cos(¢) cos(0) — sin(€) sin(0)) cos(a)
+ (—cos(€) cos(¢) sin(0) — sin(€) cos(0)) sin(a)) cos(P)
—cos(€) sin(¢) sin(P), ((sin(e) cos(h) cos(0) + cos(€) sin(H)) cos(a)
+ (—sin(€) cos( ) sin(0) + cos(€) cos(0)) sin(a)) cos(P)
— sin(e) sin(¢) sin(B),
(—sin( ) cos(0) cos(a) + sin( ) sin(0) sin(at)) cos(B) — cos( ) sin(P)]
>
NorthVector:=linalg[multiply] (OverheadRotationCombo, linalg[vec

tor] ([0,0,1]));
NorthVector = [((cos(€) cos(d) cos(6) — sin(€) sin(0)) cos( )

+ (—cos(€) cos(¢) sin(0) — sin(e) cos(0)) sin(a)) sin(P)
+ cos(€) sin(¢) cos(PB), ((sin(e) cos(P) cos(0) + cos(e) sin(0)) cos(a)
+ (—sin(€) cos( ) sin(O) + cos(€) cos(O)) sin(at)) sin(P)
+ sin(€) sin(¢) cos(P),
(—sin(¢) cos(0) cos(a) + sin( ) sin(0) sin(a)) sin(f) + cos( ) cos(P)]
>
EastVector:=linalg[multiply] (OverheadRotationCombo, linalg[vect

or] ([0,1,0]));
EastVector := [—(cos(€) cos(¢) cos(0)— sin(e) sin(0)) sin( o)

+ (—cos(€) cos(¢) sin(0) — sin(€) cos(0)) cos(a),

—(sin(€) cos( ) cos(B) + cos(e) sin(0O)) sin( o)

+ (—sin(€) cos(¢) sin(O) + cos(€) cos(0)) cos(a),

sin(¢) cos(0) sin(o) + sin(¢) sin(O) cos( )]
>
PanelPointer:=evalm(linalg[scalarmul] (OverheadPointer, cos (SPD)
) +linalg[scalarmul] (EastVector, sin (SPD) *sin (SRE) ) —

linalg[scalarmul] (NorthVector, sin (SPD) *cos (SRE) ) ) ;
PanelPointer = [cos(SPD ) (((cos(€) cos(¢) cos(0)— sin(€) sin(0)) cos(a)

+ (—cos(€) cos(¢) sin(O) — sin(€) cos(0)) sin(a)) cos(P)

—cos(€) sin(¢) sin(B)) + sin(SPD ) sin( SRE ) (

—(cos(€) cos(0) cos(0) — sin(g) sin(B)) sin( )

+ (—cos(€) cos(¢) sin(B) — sin(€) cos(0)) cos(a)) — sin(SPD ) cos(SRE ) ((
(cos(€) cos(d) cos(B)— sin(€e) sin(O)) cos( )

+ (—cos(€) cos(¢) sin(O) — sin(€) cos(0)) sin(at)) sin(P)

+ cos(€) sin(¢) cos(P)), cos(SPD) ((

(sin(€) cos(¢) cos(0) + cos(€) sin(0)) cos(a)

+ (—sin(€) cos( ) sin(0) + cos(€) cos()) sin(at)) cos(P)
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— sin(¢e) sin( ) sin(P)) + sin(SPD ) sin(SRE ) (

—(sin(€) cos(d) cos(B) + cos(e) sin(H)) sin( )

+ (—sin(€) cos( ) sin(0) + cos(€) cos(0)) cos(a)) — sin(SPD ) cos(SRE ) ((

(sin(€) cos(¢) cos(0) + cos(€) sin(0)) cos(a)

+ (—sin(€) cos( ) sin(0) + cos(€) cos(O)) sin(at)) sin(P)

+ sin(€) sin(¢) cos(P)), cos(SPD)

((—sin( ) cos(0) cos(a) + sin(¢P) sin(0) sin(a)) cos(P) — cos(P) sin(P))

+ sin(SPD ) sin( SRE ) (sin(¢) cos(0) sin(a) + sin(¢) sin(0) cos(a)) —

sin( SPD ) cos(SRE )

((—sin( ) cos(0) cos(a) + sin(P) sin(0) sin(a)) sin(P) + cos(h) cos(f))]
>
SunDeclinationFromOverhead_ F:=arccos (OverheadPointer[1])*180/P
1;

SunDeclinationFromOverhead_F  := 180 arccos ((
(cos(€) cos(d) cos(B)—sin(e) sin(0)) cos()
+ (—cos(€) cos( ) sin(0) — sin(€e) cos(H)) sin(at)) cos(P)
—cos(€) sin(¢) sin(PB))/n
>North:=linalg[dotprod] (NorthVector, linalg[vector] ([1,0,0]));
North := sin(B) cos(a) cos(€) cos(d) cos(0) — sin(P) cos(a) sin(€) sin(0)
—sin(P) sin( o) cos(€) cos(d) sin(O) — sin(P) sin(a) sin(€e) cos(0)
+ cos(€) sin(¢) cos(P)
>East:=linalg[dotprod] (EastVector, linalg[vector] ([1,0,0]));
East := —sin(a) cos(€) cos(d) cos(0) + sin( o) sin(€) sin(0)
—cos(a) cos(€) cos() sin(B) — cos(a) sin(€) cos(0)
> SunBearing:=arctan (East,North) *180/Pi;
SunBearing := 180 arctan (—sin( o) cos(€) cos(¢) cos(0) + sin(a) sin(€) sin( )

—cos( ) cos(€) cos(d) sin(B) — cos(a) sin(€) cos(0),

sin(PB) cos(a) cos(e) cos(0) cos(0)— sin(PB) cos(a) sin(e) sin( )

— sin(P) sin( o) cos(€) cos(0) sin(0) — sin(P) sin( o) sin(€) cos(O)

+ cos(€) sin(¢) cos(P))/n
>

AimFactor:=evalm(linalg[dotprod] (PanelPointer, linalg[vector] ([
1,0,0]1)));
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AimFactor = cos(SPD ) cos(PB) cos(a) cos(€) cos(dh) cos(0)
— cos(SPD ) cos(P) cos(a) sin(€) sin(0)
—cos(SPD ) cos(P) sin(a) cos(€) cos(d) sin(0)
— cos(SPD ) cos(P) sin(a) sin(€) cos(0) — cos(SPD ) cos(€) sin(¢) sin(B)
— sin(SPD ) sin( SRE ) sin( o) cos(€) cos(d) cos(0)
+ sin(SPD ) sin( SRE ) sin( o) sin(€) sin( 0)
— sin(SPD ) sin(SRE ) cos( ) cos(€) cos(0) sin(0)
— sin(SPD ) sin( SRE ) cos( o) sin(€) cos(0)
— sin(SPD ) cos(SRE ) sin(f) cos(a) cos(€) cos(d) cos(0)
+ sin(SPD ) cos(SRE ) sin(f) cos(a) sin(€) sin(0)
+ sin( SPD ) cos(SRE ) sin(B) sin(a) cos(€) cos( ) sin(0)
+ sin(SPD ) cos(SRE ) sin(B) sin(a) sin(€) cos(0)
— sin(SPD ) cos(SRE ) cos(¢) sin(¢) cos(P)
> SunOffsetFromPanelDegs_F:=arccos (AimFactor) *180/Pi;
SunOffsetFromPanelDegs_F := 180 (T — arccos (
—cos(SPD ) cos(P) cos(a) cos(€) cos(d) cos(0)
+ cos(SPD ) cos(P) cos(a) sin(€) sin(0)
+ cos(SPD ) cos(P) sin(o) cos(€) cos(d) sin(0)
+ cos(SPD ) cos(P) sin(a) sin(€) cos(0) + cos(SPD ) cos(€) sin(¢) sin(B)
+ sin( SPD ) sin( SRE ) sin( o) cos(€) cos(d) cos(0)
— sin(SPD ) sin( SRE ) sin( o) sin(€) sin( 0)
+ sin(SPD ) sin(SRE ) cos( ) cos(€) cos(0) sin(0)
+ sin(SPD ) sin(SRE ) cos( ) sin(€) cos(0)
+ sin(SPD ) cos(SRE ) sin(f) cos(o) cos(€) cos(d) cos(0)
— sin(SPD ) cos(SRE ) sin(P) cos( ) sin(€) sin(0)
— sin(SPD ) cos(SRE ) sin(P) sin(a) cos(€) cos(d) sin(0)
— sin(SPD ) cos(SRE ) sin(f) sin( o) sin(€) cos(0)
+ sin(SPD ) cos(SRE ) cos(€) sin(¢) cos(B)))/m

>DPE_F:=evalm(linalg[dotprod] (PanelPointer, EastVector));

>DPN_F:=evalm(linalg[dotprod] (PanelPointer, NorthVector));

>PanelBearing:=arctan (DPE,DPN) *180/Pi;
arctan (DPE, DPN )

PanelBearing := 180

>
PanelDeclination_ F:=arccos (evalm(linalg[dotprod] (PanelPointer,
OverheadPointer))) *180/P3i;

Above are all the big formulas. Below we put the numbers in
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phi:=23.45*Pi/180;
0 = 1302777778 =

> LongEastDegs:=—-3.169; LatNDegs:=55.977;

LongEastDegs = -3.169
LatNDegs = 55.977

> SolarPanelRotationToEast:=0; SolarPanelDeclination:=30;
SolarPanelRotationToEast =0

SolarPanelDeclination = 30

>Date:=242.5;
Date := 242.5

t is time (in days) relative to midday (GMT) on June 21 of a reference year when Greenwich
obtains it's most overhead sun possible at this time.
>t:=(Date-171.5);

t:=71.0

> alpha:=LongEastDegs*Pi/180;
o := —.01760555556 ©

>beta:=-LatNDegs*Pi/180;
B :=-.3109833333 &

> SRE:=SolarPanelRotationToEast*Pi/180;
SPD:=SolarPanelDeclination*Pi/180;
SRE =0

1
PD = —
S 67:

>epsilon:=-t/365.25*%2*Pji;
€:=—.3887748118 =«

>theta:=t* (1+1/365.25) *2*Pi;
0 := 142.3887748 =

> SB:=evalf (SunBearing); SB2:=round(SB); SunBearingTrue:=SB2
mod 360 + SB-SB2;
SB = 173.7499191

SB2 := 174
SunBearingTrue = 173.7499191

>
SunDeclinationFromOverhead:=evalf (SunDeclinationFromOverhead F

)
SunDeclinationFromOverhead := 48.29020857

> SunOffsetFromPanelDegs:=evalf (SunOffsetFromPanelDegs_F);
PowerRelativeToDirectNormal:=evalf (AimFactor);
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SunOffsetFromPanelDegs = 18.69101910
PowerRelativeToDirectNormal := 9472605210

>DPE:=evalf (DPE_F); DPN:=evalf (DPN_F);
PB:=evalf (PanelBearing); PB2:=round(PB); PanelBearingTrue:=PB2
mod 360 + PB-PB2;
BE:=SunBearingTrue—-PanelBearingTrue; BE2:=round (BE);
BearingError:=(BE2 +180) mod 360 -180 + BE-BE2;

DPE := 3 107"

DPN = -.5000000001
PB := 180.0000000
PB2 := 180
PanelBearingTrue := 180.0000000
BE = -6.2500809
BE2 := -6
BearingError :=-6.2500809

>PanelDeclination:=evalf (PanelDeclination_F);

DeclinationError:=SunDeclinationFromOverhead-PanelDeclination;
PanelDeclination := 29.99999993

DeclinationError = 18.29020864
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