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Abstract 
The evaluation of benchmarks for building energy savings 
for a specific dwelling usually requires the generation of 
an individually calibrated model (ICM). The development 
of such models requires specialist knowledge, has time 
and cost implications, and may require the deployment of 
field devices to obtain data for the calibration process. The 
project reported here compared the outcomes from the 
simulation of detailed ICMs and corresponding (simpler) 
models selected from a pre-constructed collection of 
models comprising a building stock. The results 
demonstrated a reasonable agreement between 
benchmarks derived from ICM and stock model 
simulations in ~29% of cases. In the other cases, the stock 
model tended to over-predict the potential savings. This 
was attributed to lack of diversity in parameters defining 
heating system time-of-use and set-point temperatures. 
The paper discusses how a future collection of stock 
models can better incorporate these aspects.  

Introduction 
An upgrade programme, developed in co-operation with 
Glasgow City Council as part of a UK Future Cities 
Demonstrator project funded by Innovate UK (MRUK, 
2016), set out to develop a low cost, rapid evaluation 
procedure for the assessment of housing upgrades when 
applied to dwellings throughout the City (Allison et al., 
2015). 

The procedure combines building simulation and field 
monitoring of indoor conditions and energy use. This 
paper describes the approach with the emphasis on the 
building simulation component and its use to provide 
benchmark data to quality-assure the upgrade outcome. 

The aim of the paper is to investigate if a collection of 
stock models with sufficient parameter diversity can 
provide a useful benchmark prediction as judged by 
acceptable agreement with a calibrated dynamic model of 
a dwelling, i.e. an ICM. 

While it is well understood that weather, archetype details 
(building type, number of bedrooms, floor area, 
construction and orientation), occupant behaviour, 
heating/ cooling systems type and control, social and 
economic influences and desired thermal comfort dictate 
dwelling energy use, most approaches to stock modelling 

encapsulate limited variability in occupancy and heating 
system use (Kavgic et al., 2010).  

In a previous project (Clarke et al., 2008), the Scottish 
housing stock was represented as a collection of models 
as required by the ESP-r program. These models – 
representing the existing stock and the many possible 
upgrades that may be applied in future – were then pre-
simulated and the results encapsulated within a Housing 
Upgrade Evaluator (HUE) tool. HUE therefore comprises 
a database of estimated energy use profiles (for space 
heating/ cooling, domestic hot water, lighting, and 
equipment use) derived from the results from simulating 
a large number of building simulation models. From a set 
of pragmatic inputs defining dwelling form, fabric and 
operation, the tool is able to determine the energy and 
emissions reduction potential of proposed upgrades 
applied to any portion of the building stock. 

In contrast, when focussing on single dwellings, the 
evaluation of benchmarks for building energy savings 
typically requires the generation of an ICM for a specific 
dwelling. The development of such models requires 
specialist knowledge and has cost implication associated 
with the acquisition of calibration data from smart meters 
or other field devices. This paper establishes a procedure 
to simplify the process without unacceptable loss of 
accuracy. The procedure was trialled by application to 
dwellings scheduled for upgrade throughout Glasgow. 
This paper reports the following. 

 The key parameters required to select suitable models 
from the collection representing the stock. 

 The establishment of the ICM and the use of 
monitored data to enable its calibration. 

 Comparison between benchmarks from selected 
models from the stock and the ICM. 

Glasgow City trial 
The Scottish House Condition Survey Local Authority 
Analysis 2014–2016 estimated that 27% of dwellings in 
Glasgow City are in fuel poverty (Scottish Government, 
2018). The Scottish Government has committed resources 
to tackle fuel poverty through various grants and other 
schemes, including the Home Energy Efficiency 
Programme for Scotland Area Based Schemes (HEEPS: 
ABS) (Scottish Government, 2016) and the Energy 
Companies Obligation (SI 2012/3018). This funding 



 

 

enabled Glasgow City Council to work with social 
property owners and private contractors to pursue 
insulation upgrades that would benefit those living in the 
most fuel-poor areas. 

The work being carried out under HEEPS: ABS is 
external wall insulation as this measure allows the most 
significant energy saving per property, which is a central 
aim for the Scottish Government. External wall insulation 
was applied in the upgrade programme and all houses 
already had loft insulation. 

To gain an overview of the upgrade quality and typical 
responses by occupants regarding behaviour adjustments, 
the dwelling selection process was based on random 
sampling within each city area corresponding to a 1/9th 
replicate subset. Table 1 provides details on the sample of 
the monitored dwellings discussed in this paper. 

Table 1: Sample of dwellings included in the trial. 

ID Construction 
type 

Building 
type 

Occupancy 

AN2 1950s/60s solid 
concrete/ brick 

high rise 

Flat, middle 
floor 

2 adults (1 
working, 1 not), 

2 children 

AN3 
Flat, middle 

floor 
1 adult (not 
working) 

CA4 

1920s terrazzo 
block cavity 

wall 

Semi-
detached, 1 

floor 

2 adults 
(retired) 

CA5 
Semi-

detached, 1 
floor 

2 adults 
(working) 

CA6 
Semi-

detached, 1 
floor 

3 adults 
(working), 1 

child 

CA7 
4-in-a-block, 
ground floor 

1 adult (retired) 

CA8 
Semi-

detached, 1 
floor 

1 adult (retired) 

DR1 

1950s solid 
brick wall 

Flat, middle 
floor 

2 adults 
(retired) 

DR2 Flat, top floor 
2 adults 

(working) 

DR4 
Flat, ground 

floor 
3 adults 

(working) 

DR5 
Flat, ground 

floor 
2 adults 
(retired) 

DR6 
Flat, ground 

floor 
1 adult (retired) 

SL3 1920s cavity 
concrete panel / 

brick 

Flat, ground 
floor 

1 adult (retired) 

SL4 Flat, top floor 
4 adults 

(working) 

SH6 

1920s cavity 
brick/ concrete 

block 

Semi-
detached 

1 adult (retired) 

SH7 
Semi-

detached, 1 
floor 

2 adults 
(retired) 

SH8 
Semi-

detached 

2 adults (1 
working, 1 not), 

1 child 

As shown, the selected properties encapsulate a variety of 
archetypes – semi-detached, tenement flat, multi-storey 
flat, and four-in-a-block – while constructions encompass 
solid brick, solid sandstone, solid concrete, and various 
two-leaf cavity types. The dwellings were mostly 
occupied by between one and three adults some of which 
were in full-time occupation, with some dwellings also 
having children. 

Upgrade evaluation procedure 
Procedure overview 

Properties were sampled from the upgrade programme to 
trial the benchmarking procedure intended to enable the 
quality-assure of the energy use and indoor conditions 
(temperature and relative humidity) improvements 
resulting from the upgrade. This paper focuses on the 
energy use component of the trial. The indoor conditions 
monitoring is here only included for the purposes of 
model calibration and not for the assessment of 
satisfactory indoor conditions. 

The assessment included a pre- and post-upgrade period, 
both falling within the same heating season. An initial 
deployment of monitoring equipment was undertaken at 
least 10 days before the upgrade works commenced. The 
measurement of heating energy consumption is not 
straightforward and can involve invasive sensor 
installations in pipework in the case of gas heating. To 
minimise occupant impact, utility meter readings were 
relied on as a proxy for heating energy consumption under 
the assumption that lighting and cooking energy use 
would be unaffected by the upgrade. 

To determine the efficacy of the upgrade, the post-
upgrade energy consumption of the dwelling was 
compared to a benchmark, with the result indicating 
whether the expected performance improvement had been 
attained. A practical method to determine a benchmark is 
explicit dwelling simulation. In establishing such a 
benchmark, it is assumed that there is no behavioural 
change after the upgrade and that the upgrade is fault-free. 

The energy use evaluation used monitored external 
weather conditions to adjust the energy consumption after 
the upgrade to enable comparison with the pre-upgrade 
period. The percentage difference in dwelling energy use 
is then compared with an energy benchmark that is 
specific to the dwelling and obtained by modelling. 

Individually-calibrated models (ICM) 

The ESP-r simulation program (Clarke, 2001) was 
employed to establish an energy saving benchmark for 
each monitored dwelling. The following data are required 
for model creation. 

 Dwelling geometry relating to the envelope and 
internal zoning. 

 Construction details for fabric and glazing. 
 Occupancy profile and related hot water, electrical 

appliance and lighting use. 
 Parameters of the heating system and related control 

settings. 



 

 

Dwelling dimensions were obtained via inspection of 
architectural drawings provided by the Council (such as 
shown in Figure 1). An example of a resulting model is 
shown in Figure 2. 

 
Figure 1: An architectural drawing as supplied by 

Glasgow City Council. 

 
Figure 2: ESP-r dwelling model derived from 

architectural drawings. 

Construction information was extracted from prior 
versions of the Building Regulations relevant to the year 
of construction and elsewhere (e.g. Harrison et al., 2015) 
for non-traditional housing types. 

The ICMs utilise occupancy profiles generated using a 
stochastic model (Flett and Kelly, 2016 & 2017). This 
models allows for the generation of diverse occupant 
presence/ behaviour and related electrical appliance, hot 
water and lighting use. These data that are then attributed 
to the ESP-r model. 

The key parameters required to generate the profiles are 
as follows. 

 Dwelling type: house or flat. 
 Bedrooms: 1–4. 
 Floor area (required for lighting model only). 
 Household type and age: single adult, small family, 

single pensioner etc. 
 Household tenure: owner-occupier, privately-rented, 

rented from housing associations, rented from Local 
Authorities. 

 Availability of mains gas connection. 
 Area type: urban, town, rural. 

 Scottish Index of Multiple Deprivation (SIMD) – can 
be derived from income per week for postcode. 

The information required was gathered from site visits 
and a questionnaire completed by occupants. 

Figure 3 shows an example of an occupancy profile and 
related gains as generated by the model. 

 
Figure 3: Example of a generated  

occupancy profile. 

The parameters of the heating system controls – time of 
use and set-point temperatures – were determined from 
monitored indoor conditions data. The monitoring of 
indoor conditions required two wireless temperature and 
humidity sensors transmitting to a local, internet-
connected logger/ router at 5-minutely intervals. 

In each dwelling, the sensors were installed in a living 
room and utility area (kitchen or bathroom). A 
temperature/ humidity sensor was also deployed 
externally as a local, low cost weather station, with one 
station covering the monitoring needs for all dwellings in 
the immediate vicinity. The external conditions data is 
used for the weather-related adjustments of the measured 
energy consumption and the model calibration process as 
explained later. Figure 4 shows a sample of monitored 
data captured for a dwelling during the pre-upgrade 
period. Other weather data, such as solar irradiation and 
wind velocity were obtained from a local weather station. 

 
Figure 4: Monitored temperature data over a pre-

upgrade period. 

It can be difficult to estimate heating system controls by 
direct inspection of data in the form of Figure 4. Instead, 
the data was transformed into the statistical representation 



 

 

as shown in Figure 5. This was generated by resampling 
the monitored data to 15-minutely resolution and then 
calculating the descriptive statistics (mean, median and 

standard deviation) across all days in the monitored 
period. This builds a picture of the typical daily indoor 
conditions in the dwelling. From this representation, 
estimates of the heating system timings and set-points 
were determined as illustrated in Figure 5. 

With the model fully defined, calibration was carried out 
by comparing simulation outcomes with monitored data 
for the pre-upgrade period. Calibration is automated via 
the Calibro tool (Monari and Strachan, 2017). When 
provided with a set of model parameters and the allowable 
ranges for their values, this tool utilises a statistical 
method to determine model input parameter values that 
give rise to the best fit with the monitored data. In this 
work, the thermostat set-point, heating system capacity, 
construction thermo-physical properties, and infiltration 
rate were the candidates for adjustment. 

As these simulation models utilise stochastic occupancy 
models, there will never be an exact agreement between 
the observed and simulated fluctuations in temperature 
during the occupied hours that are caused by lighting, 
appliances, and the movement of people within the 
dwelling. To accommodate this issue, the procedure uses 
a 7-point calibration procedure (mean, standard deviation, 
minimum, 25th percentile, 50th percentile, 75th 
percentile, maximum). This ensures that the indoor 
temperature distributions are equivalent between the 
monitored real dwelling and the dwelling simulation. It 
also avoids the problems associated with the use of 
RMSE, which can penalise a model with a single 
relatively large absolute error caused by, for example, a 
gain misaligned by only a single time-step. 

. 

 
Figure 6: Probability density function comparison of 

indoor temperatures for a calibrated dwelling. 

The 7-point calibration can be visualised by generating a 
probability density function from the monitored and 
simulated data. Figure 6 shows a comparison of a 
calibrated dwelling with the metrics provided in Table 2 

Table 2: Example of calibrated model metrics. 

Metric Monitored Simulation Error (%) 
Mean 18.1 18.2 1 

Standard dev. 2.0 1.9 -7 
Minimum 12.6 12.7 1 

25% Percentile 16.7 16.9 1 
Median 18.5 18.5 0 

75% Percentile 19.6 19.6 0 
Maximum 22.4 22.0 -2 

Figure 7 shows a comparison between a post-calibration 
simulation and monitored data for the temperature 
component of the calibration procedure, illustrating the 
improved match after the model calibration process. 

 
Figure 7: Comparison between post-calibration 
simulation predictions and monitored data for 

temperature. 

In addition, the same procedure used to determine the 
heating system timings (Figure 5) can be used to compare 
the daily temperature profiles for the monitored and 
simulation data as shown in Figure 8. 

The calibrated model was subjected to annual simulations 
to determine the heating energy use. The model was then 
adapted to represent the proposed building upgrade and 
again subject to an annual simulation. The percentage 
difference between the two simulations is the theoretical 

Figure 5: Statistical metrics of daily indoor 
temperatures and the identified heating control 

profile. 



 

 

heating energy saving potential associated with the 
proposed upgrade. Note that this is the best performance 
that can be attained assuming a fault-free upgrade and that 
occupant behaviour and heating system use remains the 
same post-update. 

 

 
Figure 8: Statistical metrics of daily indoor 

temperatures for the monitored and simulated cases. 

Stock model selection procedure 
By using a specific combination of key parameters for 
each dwelling in the trial, an equivalent individual 
dwelling can be identified within the HUE database that 
represents its behaviour (here the information of Table 1 
and data from site visits as described in the previous 
section). Each dwelling was identified by: 

 house type (semi-detached, tenement, 4-in-block); 
 year of build (1919–44/1945–64); 
 number of storeys (1/2); 
 air leakage (5 levels: 1 (low)–5 (high)); 
 heating system efficiency (low/med/high); 
 heating control type (14 options); 
 building thermal mass (low/high); and 
 occupancy (5 levels: 1 (low)–5 (high)). 

The relevant HUE model then gives the space heating 
requirements for that dwelling. This value corresponds to 
the annual space heating requirement pre-upgrade. 

HUE incorporates a matrix of model variants that were 
simulated for a range of different contexts, e.g. local 
weather, air leakage properties, solar ingress, changes in 
occupancy patterns etc. to allow building performance to 
be established for these cases. To select an equivalent 
model from the stock that corresponds to a dwelling with 
external wall insulation applied, the advanced interface 
was used, where the U-value of the walls can be selected 
independent from the implicit values set by the building 
type and year of build. 

The U-value for a wall with external wall insulation 
applied can be calculated as a function of the original 
wall’s U-value and the thermophysical properties of the 
insulation as given by Equation (1): 

 Upost = 1/(1/Upre + dins/λins) , (1) 

where, 

Upre,Upost are the pre- and post-upgrade wall U-values 
(W/(m2 K)); 

dins is the thickness of external wall insulation (m); 
λins is the thermal conductivity of the external wall 

insulation (W/(m K)); 

The post-upgrade annual space heating requirements are 
then determined by 1) selecting the pre-upgrade model 
from the stock, 2) applying the modification to the U-
value as determined by Equation (1) and 3) reducing the 
air leakage by 1 level. The air leakage is reduced as 
external wall insulation upgrades typically increase the 
through-wall air tightness by negating the effects of 
mortar gaps, cracks in bricks/blocks/render etc. The 
newly selected model from HUE gives the space heating 
requirements for that dwelling post-upgrade. 

Results and discussion 
Procedure outcomes 

Table 3 lists the benchmark savings for each monitored 
dwelling in the trial. These data demonstrate the large 
variation in anticipated benefit among the dwellings in the 
trial, justifying the rationale for case-by-case benchmarks. 

Table 3: Energy performance benchmarks. 

ID 
Benchmark savings (%) Actual 

savings (%) ICM HUE 
AN2 14 17 70 
AN3 14 16 −4 
CA4 23 32 18 
CA5 16 33 18 
CA6 16 33 17 
CA7 24 25 3 
CA8 23 32 60 
DR1 14 40 19 
DR2 23 40 26 
DR4 22 41 6 
DR5 16 40 8 
DR6 22 39 10 
SL3 25 46 4 
SL4 16 48 23 
SH6 15 32 8 
SH7 15 32 40 
SH8 15 33 41 

Comparison of ICM benchmarks and actual savings 

From Table 3 ~29% of the upgrades could be immediately 
signed-off as their energy performance was close to their 
ICM benchmark and a separate analysis confirmed 
acceptable indoor conditions. The remaining dwellings 
required further investigation. These latter dwellings fell 
into the following categories. 

1. In 24% of the dwellings, the expected energy saving, 
compared to the benchmark, was not achieved. In 
these cases, the occupants had taken a large part of the 
insulation benefit as a higher standard of comfort. 

2. 18% of the dwellings exceeded their benchmark 
energy savings, but exhibited low indoor temperatures 
for prolonged periods and low total energy use pre- 
and post-upgrade. This indicated that the occupants 
were not using their heating system to provide 
recommended indoor conditions. This could be a sign 



 

 

that the occupants are experiencing difficulties 
relating to fuel poverty. 

3. 17% of dwellings had low energy saving compared to 
the benchmark, but had favourable indoor conditions 
pre- and post-upgrade. In these cases, it was not 
possible to determine whether behaviour changes or 
faulty installation was responsible for the discrepancy. 
A follow-on investigation was initiated by the Local 
Authority. 

4. The final 12% of the dwellings (see AN2, CA8) 
demonstrated significant energy savings above the 
benchmarks. However, these results were based on a 
short period of monitored energy use data post-
upgrade. The results were deemed unreliable in these 
cases. 

Comparison among benchmarks 

Overall, the benchmarks from the HUE models tend to 
over-predict the potential savings due to the building 
upgrade in comparison with the ICM models and the real-
world performance. However, for ~29% of the cases the 
ICM and HUE models demonstrated a good agreement 
between predicted performances. 

It is believed that the reason for the over prediction in the 
majority of the cases is the use of the monitored data–
derived heating profiles in the ICMs. These allow the 
ICMs to more accuracy capture the heating system time-
of-use and set-points for the specific dwellings, which 
have a significant effect on the space heating use. 
Investigation of the monitored temperature data for the 
cases in which the ICMs and HUE models showed 
agreement were in dwellings which followed a more 
‘standard’ heating profile with the heating remaining on 
during the actively occupied hours at approx. 21 C. 

While HUE has the facility to select the heating control 
type (e.g. boiler thermostat or room thermostat), it lacks 
the ability to input on/off times and thermostat settings. 
Accounting for all potential on/off times and thermostat 
positions for domestic dwellings in a pre-simulated stock 
would be computationally expensive. However, future 
versions of HUE could incorporate a sub-set of the 
heating profiles generated in the construction of the ICMs 
in this work. The hypothesis being that in doing so HUE 
would be able to generate energy performance 
benchmarks in-line with those attained by individually 
calibrated models. 

Role of BSM benchmarks in future studies 

The use of pre-constructed stock models for generating 
benchmarks could have further uses than just being able 
to deliver more rapidly than an ICM. Consider each of the 
outcome categories discussed earlier. 

Category 1: These outcomes assume that had the original 
comfort levels been maintained, the energy saving would 
have been achieved. This analysis could be quickly 
confirmed using BSM derived benchmarks by selecting a 
different heating profile from the future stock model. 

Category 2: By selecting different heating profiles for 
both the pre- and post-upgrade selections from the stock 
could confirm this hypothesis. 

Category 3: Using a future stock model with additional 
parameter diversity it would be possible to permute the 
parameters to identify possible causes based on the 
measured energy performance benchmark for that 
archetype. 

In many of the cases that were immediately signed-off, 
the actual energy savings exceeded that of the theoretical 
best-case energy savings as determined by computer 
simulation. These results can also be attributed to changes 
in occupant behaviour. In one case, the average indoor 
temperature in the living area post-upgrade was lower 
than pre-upgrade, with minimum temperatures higher and 
maximum temperatures lower. This indicated that the 
occupants were using their heating system less after the 
upgrade. Such a reduction in heating system use could be 
because the home can retain heat for longer so that the 
operative temperature is the same as pre-upgrade even 
with a reduction in air temperature. 

Conclusions 
In the context of dwelling upgrades in Glasgow, the trial 
has shown that a low-cost monitoring approach can 
provide confirmation (or otherwise) of the efficacy of 
housing upgrades across a targeted estate. Outcomes from 
pre- and post-upgrade monitoring of internal/ external 
conditions and energy use were used to ascertain whether 
the upgrades were acceptable and to what extent the 
savings potential had been achieved. 

Many cities are upgrading old housing stock, and in the 
project reported here, a large upgrade programme was 
underway in Glasgow. A sample set of dwellings was 
subjected to short-term low-cost monitoring, and an 
upgrade evaluation procedure was developed that utilised 
detailed building simulation of calibrated models. 
However, the drawback of the procedure was the inability 
to generate benchmarks rapidly. In addition, the 
generation of new benchmarks is required when there is a 
change in occupant behaviour post-upgrade.  

To reduce the time and cost that are required for 
generation of individually calibrated models, 
corresponding models were selected from an existing pre-
simulated set of models comprising a building stock 
mode. 

The results demonstrate that the stock model with its 
current level of parameter diversity is unable to provide 
accurate energy performance benchmarks across all 
dwellings in the programme, but shows promise if future 
versions can incorporate heating system time-of-use and 
a range of thermostat set-points. This would require the 
following developments. 

 Incorporation of a set of monitored data–derived 
heating profiles into the stock models, 

 Pre-simulation of a range of stochastic occupancy 
profiles. 

 Re-calibration of ICMs with post-upgrade monitored 
data to confirm assesments on changes in occupant 
behaviour. 

 Currently neither benchmark generation approaches 
include any faults in the dwellings such as disrepair to 



 

 

critical elements, urgent disrepair, rising damp, 
penetrating damp or condensation. These can be 
included in future in order to benchmark the penalty 
to energy performance due to such faults in the 
building fabric. 

The hypothesis being that the addition of these elements 
to stock model generation will provide further diversity, 
which will service the rapid generation of more accurate 
dwelling-specific benchmarks. 
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