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Abstract: The present paper is a first one from a series of papers oriented to 
engineers who are not experienced in the field of the Computational Fluid Dynamics 
(CFD). The paper considers the important process of constructing the numerical grid. 
Four rules (constrains) are formulated which allow engineers to construct qualitative 
numerical grids. The rules are explained and demonstrated on an example of a 
ventilated room using the ESP-r (Energy Simulation Program - research) software  
 
Introduction 
In the world of complex modern buildings the integrated modelling becomes an important 
tool for optimising the work environment. Tools like the ESP-r software offer modelling 
capabilities at different levels. The level considered in the following concerns the 
Computational Fluid Dynamics (CFD) module of ESP-r. Using this module engineers can 
study thermal comfort in air-conditioned rooms, can define pressure distribution on the 
facades of buildings.  
 
CFD remains a complex area which requires from the users the knowledge of a 
considerable amount of input parameters. Those input parameters should be well balanced 
between each other in order to achieve reliable and accurate results. This paper targets the 
simple explanation of important rules during the grid generation process.  
 
All rules and examples in the paper are (to a big extent) general and hence are valid to the 
majority of today’s CFD-tools for analysing air-conditioned rooms.  
 
The paper is organised as follows. First we define the role of creating the computational grid 
within the overall modelling process. In order to achieve both accurate and quick solutions 
we introduce in section 2 four gridding rules. On a worked example in section 3 we 
demonstrate how to carry out the gridding process based on the four rules. Finally we 
consider the question how fine should be the numerical grids for engineering computations.  
 
1. The role of the gridding process in room airflow modelling 
The gridding process is the most time-consuming process in modelling. It is usually 
decisive: 

- for the accuracy of the results; 
- for the convergence behaviour of the computations (therefore also for the CPU-time 

of the computations). 
 
What makes gridding complicated is that it is connected to many other aspects of the 
numerical modelling. For instance, turbulence models of the low-Reynolds-number type 
require very fine grids near walls, while boundary conditions of the wall-functions-type 
should keep the opposite (and not so easy-to-check) constraint of "positioning the first 
numerical point outside the viscous sub-layer". Very often such requirements are not very 
informative and therefore of a little help for the non-experienced user. 
 
What further makes gridding complicated is that it requires some preliminary knowledge 
about the expected solution. Simply speaking - regions of large gradients of velocities 
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and/or temperatures should be covered by (as much as possible) finer grids. And finally, let 
us note that many gridding rules are contradictory, making from the whole gridding process 
a complicated optimisation problem.  
 
2. Four rules for creating numerical grids  
To make a grid means to divide the physical space of the room into smaller regular volumes 
which are of a parallelogram shape – they are called “control volumes” or “grid cells”. The 
target of gridding is to define the coordinates of the surfaces/faces of the control volumes 
(when projected on two-dimensional plots the surfaces/faces become “grid lines”, see Fig. 
1).  
  
The rules we will consider in the following are not always based on stringent theory; some 
of them simply had proven themselves useful in practice. Our further considerations will 
confine here to orthogonal structured (i.e. regular) grids as they are best suitable and widely 
used for room airflow problems. Non-orthogonal grids and their specific features are 
presented e.g. in Peric (1985) and Denev and Stankov (2000).  
 
Definition: “grid aspect ratio” is the ratio of the x-distance (similar for ∆y or ∆z) of two 
neighbour control volumes: ∆xi / ∆xi+1 (Fig. 1).  
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Fig. 1.   Two neighbour control volumes (grid cells) projected on the XY plane  
 
First rule: the grid aspect ratio should be kept possibly below 1.2 (or 1.2-1 - if the grid 
decreases in size) for all spatial directions (x, y or z). If it is not possible to keep the ratio 
below 1.2 one should try not to exceed the ratio 1.4 (or 1.4-1).  
 
Second rule: The largest and the smallest size of any two grid cells in one spatial direction 
should not exceed the ratio 10. If this is not possible, one should try not to exceed the ratio 
20 (see also FLOVENT on-line documentation, 2001).  
 
Example: assume that in Fig. 1 control volume No i has a size in x-direction which is equal 
to ∆xi = 0.36 [m]. In order to keep the first rule neither of its neighbour cells (No i-1 and No 
i+1) should be bigger than 0.432 [m] or less than 0.30 [m]. Assume that control volume No 
i+1 is the largest one between all volumes in x-direction (let ∆xi+1=0.40[m]) - then according 
to the second rule no one of the control volumes in the domain should have its ∆x-size (∆x-
distance) smaller than 0.04 [m].  
 
Definition: “cell aspect ratio” is the ratio between any two from the three dimensions of a 
single grid cell:  ∆xi / ∆yi  (see Fig. 1) or ∆xi / ∆zi  or ∆yi / ∆zi  .  
 
Third rule: the cell aspect ratio for each one control volume should be kept below 10; in 
case that this is not possible one should try to keep the ratio below 20.  
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Example: Let us consider again control volume No i (Fig.1) which has e.g. the size ∆xi = 
0.36 [m]. According to the third rule for this control volume we have: 
 
0.036 [m]  < ∆yi < 3.6 [m]  and   0.036 [m]  < ∆zi  < 3.6 [m].  
 
In a three-dimensional grid all combinations between the cell distances exist (each ∆xi is 
combined with each ∆yj  and with each ∆zk ). This automatically means that the smallest 
dimension (between all control volumes) and the largest grid-cell dimension (between all 
control volumes) are restricted by the ratio of 10. This could be just another formulation of 
the third rule.  
 
The first three rules guarantee that the resulting system of linear algebraic equations will 
stably converge within the iterative solver. The “ideal” numerical grid is consisting of cubical 
control volumes of equal size; the three rules actually do not allow the real grid to deviate 
much from this “ideal” situation. However, such grids with almost cubical and equal-size 
control volumes are usually very fine. This refinement is in some contradiction with the 
fourth rule.  
 
Fourth rule: - the overall number of control volumes should be well controlled so that the 
CPU-time for one simulation does not exceed 1-2 days.  
 
This fourth rule comes from the understanding that modelling usually requires repeated 
solutions with parameter variations. We would recommend as a good practice to solve the 
problem first on a very coarse numerical grid, e.g. below 10 000 grid points (please note, 
that on such preliminary grids it is difficult and not necessary to keep exactly the above 
given rules). On such a grid the user could make a series of quick runs in order to test the 
consistency of all other parts of the modelling process - boundary conditions, numerical 
parameters and physical models. The additional time spend to create an additional coarse 
grid usually is paid back due to shortening the overall time of the modelling process. How to 
proceed after this and create the fine grids we comment in the section 4.  
 
3. A worked example - gridding a room with the ESP-r  
The process of constructing numerical grids according to the above rules will be 
demonstrated on the example of the room from Figure 2 (the geometry is presented by the 
graphical tool of ESP-r). It is an example of an office room with dimensions 4 x 4 x 3 [m]. An 
inflow opening supplies fresh air from the back wall; the air leaves the room trough the 
outflow opening in the lower part of the door.  
 
As a first step we choose the origin of the grid and direction of each axis – e.g. let the origin 
of the Cartesian coordinate system be at vertex “v3” and the x-axis face vortex “v4”, the y-
axis face vortex “v2” and the z axes be directed vertically upwards (see Fig. 2).  
 
Now the gridding process can start independently for every spatial direction. However, 
prescribing the coordinate of each gridding line manually is quite a difficult task. Usually  the  
process starts with finding out the coordinates of the most important grid lines. Those 
important grid lines form the boundaries of the grid regions; all other grid lines are then 
calculated by the gridding software using the coordinates of the regions. By this process we 
just force some of the grid lines to pass exactly trough the boundaries of the regions; the 
other grid lines remain more “free”. When the final grid is created there is no difference 
between the grid lines at the boundaries of regions and the regular grid lines.  
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Fig. 2.   Geometry of the office room with the window, the door and the two 

ventilation openings. Vertex numbers and names of the surfaces are also shown  
 
Generally regions are formed by the boundaries of objects inside the room (e.g. computers 
or furniture) – on the surfaces/edges of such objects we need to position the corresponding 
grid lines. Other regions are due to boundary conditions. In this case objects at the 
surrounding walls (as e.g. windows) have different boundary conditions (e.g. temperature) 
and therefore grid lines should pass exactly their edges.  
 
Along the x-axis we divide the grid in three regions/sections (see also Fig.6). In the example 
considered here there is another natural choice for the first region in x-direction: this is the 
area close to the wall with the inflow-jet (x=0 [m]). In that area the grid should be fine 
enough to catch the large gradients of the jet close to the inflow opening. As the largest 
gradients are close to the inflow opening we would like the grid step to enlarge with 
increasing the distance from the wall. The length of the first region depends on the jet 
development (i.e. on the solution), but probably a good choice is a length of 0.5 [m]. The 
second section (region) is the largest one and is positioned in the middle of the room. The 
third section is near the wall with the window – the grid there should again be refined 
(decreasing the grid step) to catch the gradients near this outer wall of the room. We 
choose the length of this region to be again 0.5 [m].  
 
Associating appropriate number of grid points (denoted by “cells”) in each region leads to 
the menus given in Fig. 3 – the resulting x-grid (variant 1) has now in total 16 grid cells.  
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                          a) variant 1                                                   b) variant 2 

Fig. 3.   The menu for building regions along the x-axis. Note that the power-law 
coefficient with a value of 1.2 (denoted “P-law coeff” in the menu) gives results which 

are similar but not the same as a “grid aspect ratio” equal to 1.2  
 
Within each region the user can control the grid aspect ratio by means of the power-law 
coefficient – values larger than 1.0 create grids with consequently increasing cell-sizes and 
vice-versa. With this approach problems usually are encountered at boundaries between 
two regions. Therefore there is a tool which allows to monitor the grid aspect ratio - the 
screen output from this tool is given in figure 4 (variant 1).  
 

    
a) variant 1                                                      b) variant 2 

Fig. 4.   Screen output in a tabular format of the grid aspect ratio for the two variants 
of the x-grid. 

 
Looking at the screen output we can notice that exactly at the boundaries between the 
regions (cell index 5 and 14 in Fig. 4a) there are unacceptably high grid aspect ratios. 
Therefore a second variant of the grid should be created which avoids the sudden jumps in 
the x-distance between neighbour control volumes (see the same figure). This is achieved 
on the expense of increasing the number of control volumes from 16 to 20 and restricting 
(at the same time) the power-law coefficient to be closer to unity (compare Figs 3a and 3b). 
The resulting grid aspect ratio for this second variant is shown in Fig. 4b – all aspect ratios 
are now kept below or equal to the desired ratio of 1.2.  
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Fig. 5 shows the consequent menus/submenus used for the gridding process in the ESP-r. 
The so far created x-grid is then presented in Fig. 6.  
 

     
 
Fig. 5.   Three consequent menus governing the gridding process. Fig 3. is a result of 
option “b” in the middle menu while Fig. 4 is produced by option “d” in the last menu  
 
 

 
Fig. 6.   The constructed grid for x-direction (variant 2) containing 20 control 

volumes. All vertical lines (called “grid lines”) show the boundaries of the control 
volumes. The thick lines present the boundaries of the regions used to prepare the 

grid. In the final grid there is no difference between the thick and the thin lines  
 
For gridding the two other directions (y and z) it is good first to start with a vertical view of 
the room and to have a look at the elements which define the boundaries of the regions,  
Fig. 7. What concerns the gridding process, there is no principal difference between the y 
and z directions; therefore we will continue the explanations with the vertical (i.e. z) 
direction.  
 
Description of the regions and their z-dimensions are presented in Table 1. Looking at the 
table one could notice that two of the regions (5 and 7 – the shadowed ones) are quite 
small. Such small-size regions could affect the whole numerical grid (trough the first rule) 
making it unnecessarily fine. However, very often such regions could be omitted by just 
moving their boundaries until they coincide with the boundaries of neighbour regions. Of 
course, the whole process is allowed only if the effect on the expected solution is be “small” 
or “acceptable”. In our case one should keep on any price the dimensions and position of 
the inflow opening. Therefore we choose to move the upper part of the window 5 [cm] up 
(see the arrow in Fig. 7) in order to align it with the lower part of the inflow opening  

 6 



(alternatively one could decide to move the whole window 5 [cm] up). By this movement 
region 5 is included (lumped) into region 4. Similarly, we could move also the upper part of 
the door by 10 [cm] up to coincide with the upper part of the inflow opening; however, this 
movement seems not necessary as the upper part of the door is “within” the inflow opening 
which should anyway be covered by a very fine grid. As a final result the number of regions 
in z-direction is now 7 (see Fig. 8b).  
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Fig.7. Vertical view trough the room - dashed lines denote
gridding (see also Table 1)  
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Table 1. Information required to create the grid in the vertical (z) direction  
Region 

No 
“Begin ÷ end” boundaries 

of the region 
Vertices 

[m] 
z  

coordinates [m] 
length  

of region [m] 
1 floor ÷ outflow_1 2 ÷17    0÷0.3 0.3 
2 outflow_1 ÷ outflow_2  17÷19 0.3÷0.6 0.3 
3 outflow_2 ÷ window_1 19÷14 0.6÷1.0 0.4 
4 window_1 ÷ window_2 14÷15 1.00÷2.25 1.25 
5 window_2 ÷ inflow_1 15÷21 2.25÷2.30 0.05 
6 inflow_1 ÷ door_2 21÷12 2.30÷2.50 0.2 
7 door_2 ÷ inflow_2 12÷24 2.50÷2.60 0.1 
8 inflow_2 ÷ ceiling  24÷6     2.60÷3.00 0.4 

Note: Outflow_1 means the lower end of the outflow opening and outflow_2 – its higher end an so on.   
          The numbers of regions correspond to the numbers on the right hand side of figure 7  
 

   
a) results for y-gridding 

 

 
b) results for z-gridding  

Fig. 8.   The final grid in y and z directions 
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Table 2.   Grid data for checking the second and the third rules (CV=Control Volume)  
direction maximum distance 

  [m]                      CV No 
minimum distance 

  [m]                         CV No 
ratio:  max / min 

[ - ] 
x  0.2573                      11 0.1132                          1 2.27 
y     0.30                     4 and 5 0.20                         9-13 1.50 
z      0.1639                       2 0.0928                        19 1.76 

 
The third rule requires that we check the ratio for each combination between the minimum 
and maximum distances from Table 2. Obviously, the worst case is presented by the largest 
number (0.30=∆ymax) and the smallest number (0.0928=∆zmin) in the table which gives a 
ratio of 3.23. Therefore the third rule is also satisfied. This is usually the case when the 
room dimensions are close to each other.   
 

 
Fig. 9.   The graphical presentation of the grid lines in the final yz-grid 

Note: This view is a mirror image of the view from Fig. 7 
 
As it concerns the fourth rule – our grid has now only 20 x 17 x 24 = 8 160 control volumes, 
i.e. we could expect quick solutions within minutes on a PC. This makes the grid suitable for 
testing of all other modelling features. Numerical grids with such small numbers of control 
volumes do not deliver grid-independent solutions. Therefore a considerably finer grid 
should be created for the final computations. This issue is addressed in the next section.  
 
4. Final grid refinement  
When planning the appropriate grid size, one should keep in mind that the CPU-time is 
proportional to N2, where N is the number of control volumes. Assume that in our example 
with 8 160 control volumes the computation need on a PC 10 minutes to converge. If one 
tries to increase the grid resolution twice in each spatial directions, the number of control 
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volumes will then increase 8 times (the control volumes will then be 40 x 34 x 48 = 65 280). 
The expected CPU-time for the refined grid now will be 82=64 times longer, i.e 640 minutes, 
or more than 10 hours ! reasonable CPU-times on today’s PCs are achieved usually with 
100 000 to 800 000 control volumes.  
 
Very often problems in ventilated rooms are stationary. When planning CPU-time for such 
simulations one should know that problems with buoyancy usually require at least 2-3 times 
longer iterations to achieve convergence.  
 
With much finer grids the first control volume near the wall becomes smaller and smaller in 
size. However, as mentioned in the introduction, turbulence models with wall functions put 
an upper limit to the size of the control volume near the wall. This rises the following 
question - how fine is allowed to be the grid near the wall in case of turbulence models with 
wall-functions ?  
 
For models with wall functions (as e.g. the most widely used standard k-ε model) it is 
assumed that the viscous sub-layer of the boundary layer ends at a dimensionless distance 
y+ < 11.62 (see Denev 1995); the first grid point should be outside this region. Assuming 
further that in ventilated rooms the velocities parallel to walls are usually in the interval 
cpar=0.1-0.2 [m/s] , we may calculate the minimum distance to the wall from the following 
equations:  
 

(1)          
ν

τu.y
=+y  

(2)          )Eyln(1
u

cpar ⋅= +

κτ

 

 
With constants κ=0.41, E=9.0 (for smooth walls), y+ = 11.62 and the viscosity of air equal to  
=1.485.10ν -5 [m2/s], equation (2) could be solved for the friction velocity uτ . Then the 

dimensional wall distance y can be obtained from equation (1). As a result we obtain that  
the viscous sub-layer is in the region y = 0.0098÷0.01956 [m].  This is the distance between 
the first grid point (which is positioned in the middle of the first control volume) and the wall.   
Therefore we obtain finally that the first control volume should be larger than approx. 2 - 4 
[cm]  in the direction normal to the wall.   
 
Conclusions 
Both modern commercial software or freeware packages like the ESP-r (see 
URL://www.esru.strath.ac.uk) contribute to popularising the Computational Fluid Dynamics 
as  a design tool for engineers. However, CFD remains a complex field which still requires a 
lot of  specialized knowledge. This complexity usually leads to errors by novices in the field. 
Therefore the present paper has been devoted to give some popular understanding of the 
important gridding process. To support this target four simple rules has been formulated. 
The rules allow the design engineer to create numerical grids of good quality without going 
deeply in the theory of CFD. The application of the rules has been demonstrated on a step-
by-step basis using an example of a ventilated room.  
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