An Overview of Subversion for ESP-r Central Users
Version of January 4, 2008

ESP-r’s source code was placed under a version control system in April 2006 to facilitate its management and
development. This version control system is called Subversion. Subversion maintains a record of changes to
the source code and provides a means for dealing with concurrent changes to source files. It also allows develop-
ers a convenient method of contributing to the ESP-r code base. This document describes how to use Subver-
sion to checkout a working copy, to add and remove files, and to commit files back to the ESP-r code base. It is
also useful to read the other documents in the archive folder which complement this document.

Revision history

This document is under versioning control, and suggestions and contributions are strongly encouraged. The
troff-formatted source file for the latest version can be obtained at the following url:

https:/lesp-r.net/espr/esp-r/branches/development_branch/src/archive/subversion.trf

To generate an A4 postscript document from this file via the groff suite of tools (available for many operating
systems) issue the following command:

cat subversion.trf | eqn | tbl | groff -mms -dpaper=a4 -P-pa4 > subversion.ps

1. Introduction
What is a Subversion Repository?
A Subversion repository is both a storage area for project source code and a tracking system for source code
changes. It keeps track of the history of changes to every file and directory contained within it. The ESP-r Cen-
tral Subversion repository ensures that all developers and users have the most up-to-date version of the ESP-r
source code. Subversion also allows for developers to commit their bug-fixes and/or enhancements to the reposi-
tory.
For a complete description please refer to Chapter 2 of Versioning control with Subversion, by Collins-Sussman,
Fitzpatrick and Pilato:
http://svnbook.red-bean.com/en/1.1/ch02.html
Obtaining a Subversion Client
Command line clients for various operating systems can be downloaded from the subversion website:
http://subversion.tigris.org/project_packages.html
There are also a number of graphical user interfaces that can be used to access a Subversion repository. Due to

variations in their use, they are not documented here. Most of these tools also provide a command line mode,
and this documentation is still applicable.

2. Anonymous access for Non-Developers

If you do not plan to modify ESP-r source code, you may download a working copy using anonymous access.
This is convenient for students and professionals who simply wish to download and compile the latest version of
ESP-r or make minor modifications such as increasing the maximum geometric complexity by adjusting param-
eters in the source code header files.

The following command will download ESP-1’s source code from the ESP-r Central repository to the current
working directory of your local computer:

svn checkout https://esp-r.net/espr/esp-r/trunk/

With this working directory, you will be able to compile ESP-r on your own computer. Though you will also be
able to alter the source code, you, will be unable to make changes to the ESP-r Central repository. The trunk is
the official release that is updated a few times per year. If you want the latest version you would use an alterna-
tive checkout command:



svn checkout https://esp-r.net/espr/esp-r/development branch/

If you’re contemplating modifying ESP-r, are strongly encouraged to obtain a developer’s account. The GNU
public license includes a provision that changes you make to ESP-r should be shared with the community and
such contributions are made via subversion commands described in this document and the other documents in
the archive’ folder.

3. ESP-r Development with Subversion.

If you wish to make changes to the ESP-r Central repository, you must become familiar with the concepts of
working on “branches”, merging your changes back into your branch in the repository and documenting your
work so that others in the community can take advantage of the changes that you contribute. These concepts are
not trivial, and it is very important that you become comfortable with them.

For a complete description of branches and merging, please refer to chapter 4 of Versioning control with Subver-
sion, by Collins-Sussman, Fitzpatrick and Pilato:

http://svnbook.red-bean.com/en/1.1/ch04.html

ESP-r development occurs on separate “‘sub-branches’ that are assigned to individual contributors or teams of
contributors. Contributors modify and commit their code on to these sub-branches, where they can be inspected
by others. After completing a rigourous testing process, the ESP-r archivist merges contributions from a sub-
branch on to the main development branch, where they can be accessed by all developers.

A complete description of the ESP-r Subversion branch structure is available in the document ‘“Structure of the
ESP-r source code archive” which also includes further suggestions for how development work is managed
within the ESP-r development community.

Obtaining a Developer’s Account and Sub-branch

In order to work on a sub-branch, you must first have an ESP-r developer’s account and a sub-branch name
assigned to you. To obtain an account and sub-branch, contact Alex Ferguson (aferguso@nrcan.gc.ca).

Checking out a Sub-branch

You must perform a repository ‘“‘checkout” to obtain a working copy of your sub-branch. A ““checkout” will
download the module into your current working directory, where you can compile, alter the source code, and
“commit” your changes back to your developer-specific sub-branch for others to view. To perform a checkout,
use the following command:

svn checkout https://esp-r.net/espr/esp-r/branches/<sub-branch name>

Provide your developer’s account name and password when prompted.

Note that changes that you make in your working directory are NOT recorded in your branch of the repository
until you issue a relevant subversion command.

4. Common Subversion Commands

There are many commands available in Subversion; the following are the most common commands you will
use. For a more extensive list, please refer to Chapter 3 of the book Versioning control with Subversion:

http://svnbook.red-bean.com/en/1.1/ch03s05.html

None of these commands will affect other developer-specific sub-branches, they only affect the sub-branch you
have been assigned to work with.

ADD and DELETE files

Use these commands to schedule adding/removing files or directories to/from the sub-branch you are working
on. Additions and deletions will only take effect in the repository once you perform a “‘commit” command.

svn add <path to file to be added>
svn delete <path to file to be deleted>

Check the STATUS of your workspace.

This command will list all the files you have changed relative to the sub-branch you are working on, which is
handy to use before a ““commit” or an “update”.

svn status <directory or filename>



If the status list is long you may wish to re-direct the output to a file named current_status.txt use the following
command:

svn status <directory or filename> >current status.txt

If you see a file marked with a ’?’ in the status list this signals that it is not known within the repository. If you
want the file to be known then issue the following sequence of commands:

svn add <path to file or folder to be added>
svn commit <path to file or folder to be added>

If the file or files to be added are the only pending tasks then you could issue a more general command:

svn add <path to file or folder to be added>
svn commit

Remember that files within the working directory which are not part of the repository risk being lost. Some files
should not be included in the repository - for example, object files and executables created during the compile
process are not part of the repository. Typically only the ASCII version of databases are included in the reposi-
tory (binary versions are created during the Install process).

UPDATE files/directories of your workspace.

While you’ll initially work on your own personal branch, you may also be involved in collaborative projects
requiring several developers to share the same branch. In these projects, you will need to periodically update
your working copy with changes other developers have committed to the project branch. The “update” com-
mand will update your local copy with any changes that other developers have committed to the project branch
since your last checkout/update. But be careful! It automatically merges code into your files, so inspect all
updated files and ensure your code still works correctly. Some developers create a local archive or backup copies
of files which are work-in-progress prior to issuing “‘update” commands.

svn update <directory or file to be updated>

A conflict may occur if changes in the repository affect the same files you’ve modified in your local copy. Con-
flicts are discussed in detail below.

COMMIT your changes to the repository.

This command will commit all file changes, as well as Adds and Removes, to the branch you are working on.
See the repository document for further advise on how to plan your commits. Only valid ESP-r developer
account holders can use this command to update their branch of the repository or joint branches which they may
be working on.

svn commit <directory or filename>

A text editor will be opened after you issue the above command. You can nominate which editor to use by set-
ting the SVN_EDITOR environment variable. Enter a detailed message that elaborates the reasons for your cod-
ing change/addition, the intent of your code, and the testing that you have conducted. You should indicate in
detail what impact this change has upon ESP-r functionality, and in particular, the impact it has upon calculation
results. This message will be permanently recorded in ESP-r Central’s repository log and will act as a reference
for other developers and for yourself in the future. Use proper sentence structure and grammar to effectively
communicate this critical information to your colleagues.

Within 24 hours of committing your changes, you will receive an automatically-generated test report comparing
the new version you’ve submitted with the previous version on your sub-branch. This test report will tell you if
your new version compiles correctly in various configurations, and will also highlight any questionable syntax
and potentially erroneous code introduced by your commit. Note that this report is based on differences
between your current commit and the previous state of your branch. To review the full syntax report you will
have to run the syntax checking software yourself.

5. Conflicts

Conflicts arise when changes received from another developer, during an update or merge, overlap with local
changes that you have in your working copy. You must resolve these conflicts before committing your changes
to the repository. Subversion will flag files in conflict with a ““C” after an update or merge:

svn update



—————————————————————— (OUTPUT) = mmm e e e e e e e
U Install <-— Uindicates the file Install updated
C esrubps/bps.F <-- Cindicates conflicts exist in esrubps/bps.F

Updated to revision 3. <-- Notification of update to revision nunber

Subversion will not allow you to commit any files until the conflict is manually resolved. A full discussion on
resolving conflicts can be found in Chapter 3 of Versioning control with Subversion, by Collins-Sussman, Fitz-
patrick and Pilato:

http://svnbook.red-bean.com/en/1.1/ch03s05.html#svn-ch-3-sect-5.4

6. Merging changes from the development branch

ESP-r Central’s development branch will be updated periodically as developers submit new features and bug
fixes for inclusion in ESP-r. As the maintainer of your sub-branch, it’s your responsibility to merge these
changes into your sub-branch. Your contributions will not be accepted into the development branch until you’ve
synchronized your branch with the development branch, proving your code is compatible with the current source
from the development branch.

It is very important to use a clean working copy when merging changes from development branch. The archivist
cannot correctly incorporate your contributions onto development branch if you commit them along with
merged changes from development branch. If you do not use a clean working copy when merging changes from
development branch, the archivist may ask you to revert the changes on your sub-branch, and perform the merge
again using a clean working copy!

The following example illustrates the steps involved in updating your sub-branch with changes in the develop-
ment branch for the first time:

1. Determine the revision number at which your branch was created:
svn log --verbose --stop-on-copy \

https://esp-r.net/espr/esp-r/branches/<sub-branch name>

---------------------- (OUTPUT) = — e e e e
r12 | author | 2006-04-25 10:31:38 -0400 (Tue, 25 Apr 2006) | 3 lines

This update make some more changes....

rll | author | 2006-04-25 10:26:58 -0400 (Tue, 25 Apr 2006) | 3 lines

This update makes some changes

rl0 | ibeausol | 2006-04-25 08:53:27 -0400 (Tue, 25 Apr 2006) | 3 lines

This update makes a copy of the development branch for use by
Author.

Note revision r10. This is the revision number at which your sub-branch was created.

2. Check out a clean copy of your work:

svn checkout https://esp-r.net/espr/esp-r/branches/<sub-branch name>

3. Determine the most recent revision (i.e. the highest number) on the development_branch.

svn info https://esp-r.net/espr/esp-r/branches/development branch
—————————————————————— (OUTPUT) == o m oo e e e
Path: development branch



URL: https://esp-r.net/espr/esp-r/branches/development branch
Repository Root: https://esp-r.net/espr/esp-r

Repository UUID: 7d53e970-dell-0410-8a54-3d01b9da36ct

Revision: 385

Node Kind: directory

Last Changed Author: ibeausol

Last Changed Rev: 355

Last Changed Date: 2006-07-28 08:03:06 -0400 (Fri, 28 Jul 2006)

Note the current revision number (385).

4. Merge the changes that have occurred on development_branch from r10 (when your sub-branch was cre-
ated) to r385.

cd <your working copy from step 2>

svn merge -r 10:385 https://esp-r.net/espr/esp-r/branches/development branch
—————————————————————— (OUTPUT) === o m o e

U integer.c

U button.c

U Makefile

6. Check to see if there are any conflicts and check the changes that have been merged. In the case that there
are conflicts between the local changes and those on the development branch subversion will create a left
and right version of the source file and it will embed in the source files markings <<<<<<< or >>>>>>>
indicating where the conflict is located. Manually edit the source file and if you are happy with the result
issue a "svn resolved" command. If you want to take the development branch version execute an "svn
revert". To check the status of your work issue the command:

svn status

M integer.c
M button.c
M Makefile

7. Commit the merged changes into your sub-branch and provide an appropriate log message. You will rely
on this message the next time you merge in changes from development_branch; rather than merging from
the creation point of your sub-branch (r10 in the example above) you will merge from the last point at
which your synchronized (r385 in this example).

svn commit -m "Merged development branch changes rl10:385 into <sub-branch name>."
—————————————————————— (OUTPUT) = e oo e e

Sending integer.c

Sending button.c

Sending Makefile

Transmitting file data

Committed revision 386.

For more information on Subversion Merging, read Chapter 4: Branching and Merging of Versioning control
with Subversion, by Collins-Sussman, Fitzpatrick and Pilato:

http://svnbook.red-bean.com/en/1.1/svn-book.html#svn-ch-4



