
The Development of an Intelligent, Integrated

Building Design System Within the

European COMBINE Project

J A Clarke*, J W Hand*, D F Mac Randal#, P A Strachan*

ABSTRACT

There are two main issues to be resolved in
order that design tools can be used in cooperative
mode, each communicating with the other. Firstly,
there is a need to put in place a consistent product
model of a building and its systems from which
disparate design tools can obtain their inputs and
return their outputs. Secondly, there is the
requirement to manage the transactions between
users and design tools. These issues were
addressed within the European COMBINE project.
This paper is concerned with the latter issue. It
describes the basis and operation of an intelligent,
integrated building design system, or IIBDS,
which is able to coordinate designer-to-designer,
designer-to-application and application-to-
application transactions, against rules which
describe the purpose of a given design session.
The IIBDS is able to address ‘shallow’ control,
where the design tools are sequenced, and ‘deep’
control, where knowledge is introduced in relation
to design purpose so that design tool use is
constrained within a given design session.

INTRODUCTION

To bring real benefit, building performance
modelling must be integrated within the design

* ESRU, Energy Systems Division, Faculty of
Engineering, University of Strathclyde, Glasgow G1 1XJ.
email: esru@strath.ac.uk, phone: +44 141 552 4400 X3986,
fax: +44 141 552 8513.

Informatics Department, Rutherford Appleton
Laboratory, Chilton, Oxon. 0X11 0QX. email:
damian@inf.rl.ac.uk, phone: +44 1235 445403, fax: +44
123541 44589.

process. Traditionally, as summarised in Figure 1,
the use of design tools has followed atool-box
approach in which the designer is expected to
recognise a particular task, locate a suitable
program, run it and translate its outputs to
appropriate changes to the design hypothesis.

Designer
Tool

design
process

Box

Figure 1: Tool-box approach to design.
(After MacCallum 1993)

Clearly this is an inadequate approach in
that the tools are decoupled from the design
process and require the designer to be
knowledgeable about each tool’s capabilities,
control syntax and semantics.

An alternative approach is summarised in
Figure 2. Here the computer resource is
(somehow) integrated within the design process.
In such a Computer-Supported Design
Environment (CSDE), the designer evolves the
design hypothesis in such a way that the tools are
able to automatically access the data describing

the design and give feedback on all aspects of
performance and cost in terms meaningful to the
designer.

design
process

support

environment
designer

decisions

implications

Figure 2: CSDE approaches to design.
(After MacCallum 1993)

The attainment of such a CSDE is a non-
trivial task involving the development of
integrated product models and intelligent
interfaces.

In the former case, the complexity stems
from the temporal dimension of the design
process, i.e. the evolution of the describing data
against an uncertain information context and the
different professional viewpoints and vocabularies.
Within the European Commission’s COMBINE
project (Augenbroe 1992), the objective was to
evolve an integrated data model (IDM) which
could satisfy the needs of a representative set of
design tools (for energy analysis, CAD, lighting,
regulations compliance, layout planning and the
like). The IDM (or strictly speaking the Data
Exchange System, or DES, which is an
implementation of the conceptual IDM) is then
able to receive from, store and deliver data to these
design tools in a manner which ensures that these
data are accompanied by their related semantics:
in the COMBINE project the EXPRESS language
(Spiby 1991) is used to achieve this end. A key
issue is the structure of the data model to ensure
efficient exchange and allow future extension as
additional or more powerful design tools are
added. The decision to base this data model on the
object oriented paradigm and to contain it within
an object oriented database was seen as the way to
achieve these goals.

The development of an intelligent interface,
the subject of this paper, is non-trivial because of
the complexity of the transactions which require to

be managed in terms of:

• supporting design concurrency (designer to
designer and designer(s) to application(s) inter-
communication)

• preserving audit trail (who did what, when and
why)

• supporting a constructive user dialogue (style of
interaction, feedback and tutoring)

• evolving the product model (incremental
problem definition and intelligent defaulting)

• and handling application semantics (application
to product model and application to
application).

One COMBINE task explored the form of
an intelligent, integrated building design system,
the IIBDS, which could handle these issues. This
was done via a rapid prototyping approach by
which different scenarios for design tool
transaction management and data exchange were
explored. The prototyping environment was the
IFe system (Clarke and Mac Randal 1993), the
modules of which are:

BlackboardDialog
Handler

Applications
Handler

Knowledge
Handler

Knowledge
BasesUser

Application
ProgramsData

Handler

Appraisal
Handler

Forms
Maps

Displays
etc.

User
Handler

Figure 3: The IFe System.

• A Blackboard to serve as a communication
centre for its various clients. By this means
concurrency can be supported and traceability
achieved through the collection, organisation
and storage of the session chronicle.

• An Application Handler to control the various
design tools, pass them their data and receive
their returns.

• A Knowledge Handler to control design tool
access to the product model and the

communication with the designer (verification
of entries, supplemental inferencing and
feedback/ guidance).

• A Dialogue Handler to converse with the user
by means of acceptable concepts which relate to
the different user types and levels of expertise.

• A User Handler to track the user’s progress and
ensure the system responds in an appropriate
manner.

• An Appraisal Handler to hold the design tool
control syntax against standard performance
assessment methodologies.

• A Data Handler to extract an application’s data
from the Blackboard and organise these data in
the required format.

The IIBDS is therefore based on a
Blackboard/ Knowledge Handler architecture to
effect purpose-specific design tool control. It
incorporates several real design tools (DTs), which
can be configured to support real design sessions.

IIBDS DESIGN TOOLS

The aim of the IIBDS prototype was to
provide a mix of design tool functions (DTFs) by
which a number of realistic design sessions could
be accommodated, each to a realistic level of
complexity. While some DTFs require substantial
interactions with the user (e.g. a CAD program),
others may be purely computational (e.g. a
regulations compliance program) so that the user
need not be made aware of their existence. The
DTs known to the IIBDS at the present time are as
follows.

Architectural CAD

Two Architectural CAD DTs are supported:
AutoCAD Release 12 (Autodesk 1989) running in
native mode with a constrained set of commands
and drawing entities consistent with the DES and
MicroStation (Conforti 1994) configured as an on-
line interface to the DES.

Geometrical Attribution

The attribution of the problem geometry
generated by AutoCAD is accomplished via the
"Project Manager" module of ESP-r (Hand 1994),
hereinafter called ATTRIBUTE. Attribution is in
terms of construction, occupancy and control.

U-Value Compliance

The regulations compliance of a design is
assessed by BRC (Rode 1993) which relates to
several European national building regulations.

Thermal Energy

ESP-r ’s "Simulator" (Clarke 1985) module
is included to enable performance evaluations such
as summer overheating extent, winter heating
plant sizing and heating energy requirement
estimation.

Daylight/ Visual Impact

RADIANCE (Ward 1994) is included to
enable the quantification of a zone’s illumination
levels and the production of visual impact
information for the overall building. It accepts
problem descriptions as generated by the
ATTRIBUTE DT.

PROCESS MODELLING

In dealing with the design process at the
level at which COMBINE operates, the IIBDS
must support the flow of data/information between
work-steps (or DTFs) and event-handling in terms
of starting and stopping the design tools. The
mechanism adopted to handle these issues within
the IIBDS is as follows.

The required process model is captured in
the form of a Petri-Net (Javor 1993) and then this
is transformed into a file of Prolog facts. This
gives the basis of the process as a formal
description. This file (hereinafter termed the PNF
for Petri-Net File) is then dynamically read into
the IIBDS’ Application Knowledge Handler
(AKH) where it is used by a "process support
inference engine" to animate the process. By
modifying this process knowledge base (as held
within the AKH), it is then possible to control the
rigidity of the system, its handling of parallelism,
etc.

In the current IIBDS, three process models
are available (each with potentially many
instances) corresponding to:

Case 1: where DT invocation is not sequenced
nor functionally constrained so that the
designer is able to invoke the DTs in any
order and activate their internal
functions as required. That is the PNF is
used only for DT access control.

Case 2: where the DTs are sequenced but not
functionally constrained so that DT
selection is prescribed while function
invocation is not. That is the PNF
controls DT ordering but DT use is
opportunistic; concurrency is allowed.

Case 3: where the DTs are both sequenced and
functionally constrained so that the
system, not the designer, controls the
order of DT selection and the invocation
of the DTF. (But note that it is the DTFs
that are being automated, not the design
evolution. The designer remains in
control of the process and whether the
outcome of a DTF is acceptable or
otherwise.) In this way the PNF
enforces rigid DT use but no
concurrency is allowed.

The process model corresponding to Case 1
therefore relates to the ‘shallow’ control issue, by
which DT transactions are managed, while the
model corresponding to Case 3 relates also to the
‘deep’ control issue, by which knowledge is
introduced in relation to design purpose so that the
use of the DTFs is constrained within a specific
design session.

The PNF can be changed in mid-process,
should it become necessary to adapt the rigidity of
the design process. The external Petri-Net
description and the dynamic loading makes it easy
to change the process being enacted. Note
however that at the present time no tools are
available for process model design or to check that
any new process model is consistent with the
current state.

Each node in the Petri-Net corresponds to a
a design function and triggers a knowledge
predicate which "knows" what should be done at
this point in the process, i.e. it handles the
internals of the design function. This is where the
problematic issue of concurrency is handled. The
knowledge base has access to the IIBDS’
Blackboard (i.e. the design process state) and to
the DES (i.e. the state of the problem description).
This knowledge base will either be established to
react only to the Petri-Net (when in prescriptive
mode of operation), or to react to the design
process state (when in reactive mode of operation).
At the present time these two state are mutually
exclusive since they are controlled by preventing
the knowledge base from examining the
Blackboard’s Journal area in the former case.
After deciding to carry out the design function, the
knowledge base ensures that a) the data required

for the task is available, b) starts the appropriate
design tool at the appropriate point and then c)
hands control to the user. It then monitors what
the design tool is doing and finally ensures that the
results of the tool are captured and propagated.
While the DES is responsible for the handling of
the data, the AKH is responsible for driving the
process (i.e triggering state changes in the Petri-
Net), propagating information to other knowledge
bases and keeping track of the design status and
history.

The process and design tool knowledge
bases are event driven and operate
asynchronously. This enables concurrency. Event
driven controllers can handle any amount of
concurrency, subject only to their ability to
"understand" what the other controllers are
"saying". In practice, unconstrained concurrency
is of little value as it is inherently unstable and
unpredictable. The design tool knowledge base is
therefore made subordinate to the process
knowledge base, which activates/de-activates the
former as appropriate. By activating more than
one at a time, Petri-Net handling can effectively
move from single token passing to coloured token
based. Furthermore, design tool knowledge bases
can be forced to listen only to the Petri-Net, giving
a slavish compliance to the specified process, or
encouraged to react to other tools giving a more
dynamic, context sensitive system.

IIBDS EXTERNAL VIEW

Figure 4 shows the arrangement of the
IIBDS DTs corresponding to a Case 2 process
model (DT invocation sequenced but use
unconstrained). On entering the design session the
user is required to use AutoCAD to create a new
problem geometry (while complying with a set of
entity and topological constraints). On exiting
AutoCAD, ATTRIBUTE is used to complete the
site, composition and operational characteristics of
the problem. On completing attribution the user is
presented with a choice of compliance checking or
thermal/ lighting performance appraisal. In the
case of compliance checking the conclusions
provided will influence a user’s choice to modify
the problems geometry (via AutoCAD), its
composition (via ATTRIBUTE) or invoke either
an energy/ comfort assessment via ESP-r or a
lighting/ visual evaluation via RADIANCE.
Finally, the user can either revisit AutoCAD or
ATTRIBUTE or exit the design session. It is
emphasised that although the IIBDS supports a
cooperative dialogue between the user and the
above DTs, this design session, though sequenced,
possesses no knowledge about design purpose.

Figure 5 summarises the functionality of
AutoCAD as deployed within the IIBDS. Because
this tool is not "on-line" with the DES, its use
must be constrained so that, for example, an
isolated line cannot be defined which would have
no meaning within ATTRIBUTE.

Figure 6: Initial AutoCAD session geometry.

The result of an initial AutoCAD session
might result in a problem representation such as
that shown in Figure 6. This contains a simple
cubic space bounded on two sides by an ‘L’
shaped space which includes a window. This
geometry is passed to the DES before the
ATTRIBUTE DT is invoked. Upon entry to
ATTRIBUTE, the geometry as described within
AutoCAD is recovered from the DES and the
following functionality is activated.

• Description of the site in terms of location and
climate.

• Checking of each of the geometric entities for
significant errors. If any are found they can be
corrected and reported back to the DES.

• Contiguity checking for all zones.

• Constructional attribution of the geometric
entities. A typical session is shown in Figure 7.

• Operational attribution by zone.

• Control attribution by zone.

• Zone quantification in terms of areas, volumes,
U-values, etc.

• Zone view factor estimation.

After the problem is attributed, the current
problem state is returned to the DES. Depending

Figure 7: Constructional attribution of a surface.

on the complexity of the problem and working
preference, the Figure 4 Petri-Net allows the
designer to revisit this DT to add further
attribution as design information becomes
available.

Figure 8: An ESP-r simulation in progress.

Figure 8 was captured during the operation
of the thermal evaluation DT and indicates a slight
overheating problem.

Finally, Figure 9 shows a typical image as
generated by the visualisation DT.

IIBDS INTERNAL VIEW

Figure 10 shows the internal structure of the
IIBDS. There are two knowledge handlers,
corresponding to user and application control,
communicating through the Blackboard areas as

Figure 9: Visual assessment via RADIANCE.

Black-
boardD

H

A
H

DtH

UKH

DTF KBUser KB

COMBINE
Developer

DES

DTF a

DTF b

DTF c

Petri
networks

DTF based on
current Petri

network

AKH

Process
monitor

DTF ...

DTF list

message
monitor

Figure 10: Structure of the IIBDS.

indicated. The message passing between the user
and application domains has been isolated within a
"transaction" area of the Blackboard. The aim of
introducing knowledge in relating to design
purpose is further supported by the addition of a
"journal" area on the Blackboard. This is a
repository for the aggregate log of transactions
within the system and is used to feed the Prolog
predicates of the design session knowledge base.
In particular, the nature of the DTs presented to the
user, and how they are sequenced and constrained,
is supported by the addition of design process
knowledge to the AKH. This has been achieved
by arranging for the AKH to load the Petri-Net
representations as implied by the user’s choice of
design session.

Between the AKH and the Data
Handler/ DES resides the Process Monitor which
presents the current position of the token in the
Petri-Net and the passing of STEP files to and
from the DES.

Also shown in Figure 10 is the Transaction
Monitor (TM) which observes the transactions
between the knowledge handlers, the DTFs and
DES. While the TM is an aide to IIBDS
development, it can also be used to observe and
analyse an active design session.

In order to explain the working of the
IIBDS, a series of snap-shots follow which record
a user ’s progress with the active design session
corresponding to Case 2 as outlined previously. In
the snap-shots the arrows show the potential flows
of information: a single arrow indicates a
notification while double arrows indicate sending
and listening. The "user_dialog" area of the
Blackboard is reserved for user interaction
transactions, while the "application_dialog" area is
reserved for transactions related to the DTFs. The
"journal" area receives messages from the various
knowledge handlers and organises these for
subsequent analysis and process control.

Blackboard

D
H A

H

AKHUKH

user_
dialog

journal

user

DES

DataH

application_
dialog

transaction

DTF_1

DTF_n

Figure 11: State of the IIBDS after user action.

Figure 11 defines the state of the system
after the user has selected a DTF and the actions
triggered:

1) a message passes to the Dialogue Handler
(DH) indicating the requested interaction;

2) the DH passes the message to the
"user_dialog" area;

3) and the User Knowledge Handler (UKH) tells
the Blackboard to "start DT".

Blackboard

D
H A

H

AKHUKH

user_
dialog

journal

user

DES

DataH

application_
dialog

transaction

DTF_1

DTF_n

Figure 12: User knowledge handler requesting
a DTF.

Figure 12 is the state of the Blackboard after
the UKH has issued a message "application_dialog
start DT" to the transaction area. The Application
Knowledge Handler (AKH) finds the actual
application and posts the message
"new_application DTx" to the
"application_dialog" area. The Data Handler
(DtH) then queries the DES - "get_data_for DTx"
- and the DES returns the appropriate data for DTx
as "data_for DTx file".

Blackboard

D
H A

H

AKHUKH

user_
dialog

journal

user

DES

DataH

application_
dialog

transaction

DTF_1

DTF_n

Figure 13: DES returns STEP file and DTF starts.

In Figure 13, after the DES issues "data_for
DTx file":

1) The DtH posts "new_application application
parameters" to the application dialog area.

2) The Application Handler (AH) starts the
application and establishes a pipe to receive

the performance return(s).

3) When the application is complete the AH
records this and sends "closed DTx
revised_data_file" to the application_dialog
area. The AKH posts "closed DTx" to the
transaction area, which is receives by the UKH
for transmission (not shown) back to the user
interface.

INTRODUCING DESIGN PURPOSE

Consider now a session which incorporates
knowledge in relation to design purpose (Case 3).
With reference to the Petri-Net in Figure 14, the
initial portion of the design session might proceed
as in the previous unconstrained session in terms
of geometric specifications and attribution. For
those users who enter the summer overheating
design session with an existing problem there is a
direct path to the overheating assessment.

Simulation environments, such as ESP-r,
have traditionally provided facilities to enable
direct access to their internal DTFs. In the current
example some of these ESP-r DTFs are accessed,
with the user involved as the arbitrator of
acceptability or otherwise of the performance
returns. Here, the process model involves the
determination of the climate patterns which would
constitute an acceptable test of summer
overheating risk. While such a decision is implicit
in most simulation based studies, here it has been
made explicit. Next, the focus is shifted to a
simulation of the current problem and then
determination of what constitutes the worst spaces
in terms of overheating. The search rules operate
on the basis of the highest resultant temperature in
an occupied space as determined from a series of
inquiries of the database of simulation results. It is
quite possible to have alternative rules governing
this DTF.

Assuming that overheating has been
detected, two presentations are made to the user.
Firstly, a frequency binning of temperatures and a
graph of temperatures in the worst zone. This sets
the context which violated the ‘rules’ of the
assessment. The process model then calls for the
presentation of information on the likely causal
factors. For example, if high internal gains were
the cause of the overheating then only this
information would be provided. The user can then
either exit the design session or return to the
architectural CAD or to the ATTRIBUTE DTF. A
typical design session is shown in Figure 15.

Figure 15: Summer overheating design session.

CONCLUSIONS

Technology has now reached a stage where
it is possible to bring together product modelling
and intelligent interfaces. The COMBINE project
has undertaken developments in these areas,
resulting in an Integrated Data Model (IDM) and
Intelligent Integrated Building Design System
(IIBDS). The former is able to service the
building description requirements of several
disparate design tools; the latter is able to control
the operation of these same tools against rules
which define the purpose of their use. Taken
together, these developments are helping to evolve
the prospects for a Computer-Supported Design
Environment by which the analytical power of the
computer can better complement the creative
power of the designer.

REFERENCES

Augenbroe G (1992) ‘Integrated Building
Performance Evaluation in the Early Design
Stages’ Building and EnvironmentV27 N2
pp149-61.

Autodesk Ltd (1989) ‘AutoCAD Release 10
Reference Manual’Autodesk Ltd.Exeter

Clarke J A (1985) Energy Simulation in Building
DesignAdam HilgerBristol and Boston.

Conforti F (1994) Inside MicroStationOnWorld
PressSanta Fe.

Hand J W (1994) ‘Enabling Project Management
Within Simulation Programmes’ESRU Pub
T94/14.

Javor A ‘Petri Nets in Simulation’EUROSIM -
Simulation News EuropeNovember 1993 pp6-7.

MacCallum K (1993) Private communication.

Rode C (1993) ‘Specification of the Generic Tool:
BRC, the Building Regulations Compliance
Checker ’ Danish Building Research Institute
Horlsholm Denmark.

Spiby P (Ed) (1991) ‘EXPRESS Language
Reference Manual’ ISO TC184/SC4/WG5
Document N14.

Ward G (1993) ‘The RADIANCE 2.3 Imaging
System’Univ. of CaliforniaBerkeley.

Figure 4: Case 2 process model Petri-Net.

Figure 5: Arch_CAD Petri-Net.

Figure 14: Summer overheating Petri-Net.

