

CIBSE TM33 Tests for Software Accreditation and Verification: ESP-r Test Results

Paul Strachan, Georgios Kokogiannakis, Aizaz Samuel and Nick Kelly Energy Systems Research Unit

27 March 2008

Test G1A: Building Material Thermal Property Database

Program: ESP-r Version 11.4, released November 2007

Models

The model is in directory TestG1A/Test_G1A/cfg. There is one configuration file for this test (called test_G1A.cfg).

Simulations

To get results, extract a Quality Assurance (QA) report by setting up the option for databases to "verbose" and then generate the report. This will list the constructions and the materials used for this model together with their thermophysical properties. An example of text taken from the QA report is given here:

```
Multi-layer constructions used:
```

```
      Details of opaque construction: test_G1A_1st

      Layer|Prim|Thick |Conduc-|Density|Specif|IR |Solr|Diffu| R |Descr

      |db | (mm) |tivity | |heat |emis|abs |resis|m^2K/W

      Ext
      1
      10.0
      1.130 2000. 1000. 0.01 0.01
      10. 0.01 cast_concrete_CIBSE_GuideA

      2
      2
      10.0
      0.840 1700. 800. 0.01 0.01
      10. 0.01 Outer_brick_CIBSE_GuideA

      3
      3
      10.0
      1.150 1800. 1000. 0.01 0.01
      10. 0.01 Medium_weight_concrete_BS_EN17

      4
      4
      10.0
      1.650 2000. 1000. 0.01 0.01
      10. 0.01 Medium_no2_weight_concrete_BS_EN17

      5
      5
      10.0
      0.035
      30. 1000. 0.01 0.01
      10. 0.29 Mineral_fibre_CIBSE_GuideA

      6
      6
      10.0
      0.035
      25. 1400. 0.01 0.01
      10. 0.29 Expanded_polysterene_CIBSE_GuideA

      7
      7
      10.0
      0.140
      530. 1800. 0.01 0.01
      10. 0.07 Plywood_sheathing_CIBSE_GuideA

      Int
      8
      10.0
      0.090
      300. 1600. 0.01 0.01
      10. 0.11 Timber_board_BS_EN1745
```

Results

Table 2.1 (materials of Table 2.2 are also available in the QA report)

Material	Source	Density kg m ⁻³		Thermal conducti Wm ⁻¹ K	vity	Specific Jkg ⁻¹ K ⁻¹	c heat
		Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r
Outer brick	CIBSE Guide A	1700	1700	0.84	0.84	800	800
Cast concrete	CIBSE Guide A	2000	2000	1.13	1.13	1000	1000
Medium weight	BS EN 1745	1800-	1800 &	1.15-	1.15 &	1000	1000
concrete		2000	2000	1.65	1.65		
Mineral fibre	CIBSE Guide A	30	30	0.035	0.035	1000	1000
Expanded	CIBSE Guide A	25	25	0.035	0.035	1400	1400
polystyrene							
Plywood sheathing	CIBSE Guide A	530	530	0.14	0.14	1800	1800
Timber board	BS EN 1745	300-	300 &	0.09-	0.09 &	1600	1600
		1000	1000	0.24	0.24		
Asbestos cement	iSBEM	700	700	0.36	0.36	1000	1000
Brick inner leaf	iSBEM	1700	1700	0.56	0.56	1000	1000
Carpet	iSBEM	20	20	0.058	0.058	1000	1000
EPS insul. (50mm)	iSBEM	15	15	0.04	0.04	1300	1300
Sandstone	iSBEM	2600	2600	2.3	2.3	1000	1000

Conclusion

All thermal properties are correctly reported by ESP-r.

Test G1B: Climate data

Program: ESP-r Version 11.4, released November 2007.

Models

There are 3 ESP-r climate files: London_CIBSE.try, Man_CIBSE.try and Edin_CIBSE.try. Simulations

Run the climate module for each climate file and extract monthly averages from the "synoptic analysis" and the rest of the data from "table (one day) analysis".

Results

Table 2.3	Climate of	data test	results
-----------	------------	-----------	---------

Variable	Basis		Value f	or stated	l climate	data set	
		Lon	ndon	Manc	hester	Edin	burgh
		Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r
Temperature (°C)	January 6; 10:00 a.m.	6.1	6.1	-1.3	-1.3	6.6	6.6
	July 15; 2:00 p.m.	19.1	19.1	15.3	15.3	14.6	14.6
	February average	4.5	4.5	4.8	4.8	2.7	2.7
Wind speed (m/s)	January 6; 10:00 a.m.	5.66	5.7	2.06	2.1	7.2	7.2
	July 15; 2:00 p.m.	4.63	4.6	4.63	4.6	3.09	3.1
	November average	3.46	3.4	3.24	3.2	4.92	4.9
Global solar radiation (W.m ⁻²)	January 6; 10:00 a.m.	59	59	67	67	54	54
	July 15; 2:00 p.m.	336	336	238	238	210	210
	July average	212	211.7	194	193.8	189	189.5

Table 2.4 (London Test Reference Year, July 15th)

				olar radia		n ⁻²
	Tem	p / °C	Global	horiz	Dif	ffuse
Hour	Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r
1	14	14.0	0	0	0	0
2	13.3	13.3	0	0	0	0
3	12.2	12.2	0	0	0	0
4	11	11.0	0	0	0	0
5	11.5	11.5	30	30	20	20
6	12.1	12.1	155	155	54	54
7	13.2	13.2	332	332	131	131
8	15.1	15.1	420	420	98	98
9	16.9	16.9	619	619	110	110
10	17.8	17.8	385	385	269	269
11	17.5	17.5	239	239	231	231
12	18.3	18.3	379	379	360	360
13	19.2	19.2	610	610	409	409
14	19.1	19.1	336	336	334	334
15	19.4	19.4	287	287	279	279
16	18.9	18.9	218	218	216	216
17	18.8	18.8	238	238	235	235
18	18.8	18.8	110	110	104	104
19	18	18.0	35	35	35	35
20	17	17.0	2	2	1	1
21	13.4	13.4	0	0	0	0
22	13	13.0	0	0	0	0
23	12.9	12.9	0	0	0	0
24	12.8	12.8	0	0	0	0

Conclusion: Results are as specified.

Test G1C: Loads and Schedules

Program

ESP-r version 11.5, released April 2008

Models

There is no model related to this test. This is a test that reports activity values that are read from the SBEM.db1 database or from external files and are used for UK NCM purposes.

Output

To display the data of Tables 2.5 and 2.7, users must first assign zones to the specified activity databases (i.e. link zones to activities in the UK NCM specifications section). A summary of the user choices, including the output needed for these tables, is displayed on the screen when using the "Display information" option. To display the hourly data needed for Table 2.6, users should access the "impose measure/temporal data section", access the related activity entry (for example the entry for the Airport check in area), select to import UK NCM data and finally select the zone that this activity has been linked to. The data will be then loaded and the hourly values will be displayed on the interface for every hour of the year.

Results

Space/activity				Occ	upancy	/	
	Peop	le / m²		Metabolic rate / W		nt heat %	Schedule
	Ref.	ESP-r	Ref.	ESP-r	Ref. ESP-r		
Airport Check	0.25	0.25	140	140	50	50	Airport_Check_ Occ_wkdy_Wk1
Court_lecture	0.5	0.5	140	140 140		39	Court_Lecture_ Occ_Wkdy
Uni_CommStaff	0.11	0.11	100 100 39		39	Uni_CommStaff_ Occ_Wkdy	
Workshop_ IndProcess	0.02	0.02	250	250 250		73	Workshop_IndPro cess_Occ_Wkdy

Table 2.5

Hour	Fraction of maximum for stated schedule												
	Airport_C Occ_wkd		Court_Le Occ_Wko		Uni_Com Occ_Wko			Workshop_IndPro cess_Occ_Wkdy					
	Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r					
0-1	0.1	0.1	0	0	0	0	0	0					
1-2	0.1	0.1	0	0	0	0	0	0					
2-3	0.1	0.1	0	0	0	0	0	0					
3-4	0.1	0.1	0	0	0	0	0	0					
4-5	0.25	0.25	0	0	0	0	0	0					
5-6	0.25	0.25	0	0	0	0	0	0					
6-7	0.5	0.5	0	0	0	0	0	0					
7-8	0.5	0.5	0	0	0.1	0.1	0.5	0.5					
8-9	0.5	0.5	0	0	0.25	0.25	0.75	0.75					
9-10	0.5	0.5	0.25	0.25	0.25	0.25	1	1					
10-11	0.5	0.5	0.5	0.5	0.1	0.1	1	1					
11-12	0.5	0.5	0.5	0.5	0.1	0.1	1	1					
12-13	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5					
13-14	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5					
14-15	0.25	0.25	0.5	0.5	0.1	0.1	1	1					
15-16	0.25	0.25	0.5	0.5	0.1	0.1	1	1					
16-17	0.5	0.5	0.5	0.5	0.1	0.1	1	1					
17-18	0.5	0.5	0	0	0.1	0.1	0.5	0.5					
18-19	0.5	0.5	0	0	0	0	0	0					
19-20	0.5	0.5	0	0	0	0	0	0					
20-21	0.5	0.5	0	0	0	0	0	0					
21-22	0.1	0.1	0	0	0	0	0	0					
22-23	0.1	0.1	0	0	0	0	0	0					
23-24	0.1	0.1	0	0	0	0	0	0					

Table 2.6

Space/activity	-	nting ux		Equip	omen	t	HVAC Systems			
				tal / m ⁻²	Late	nt %	hot w	estic ater / v ⁻¹ m ⁻²	Outsi / L pers	
	Ref.	ESP -r	Ref.	Ref. ESP		ESP -r	Ref.	ESP -r	Ref.	ESP -r
DayCtr_FoodPrep	500	500	40	40	32	32	0.33	0.33	12	12
Office_Openoff	500	500	15	15	0	0	0.33	0.33	8	8
Theatre Lecture	300 300		2	2	0	0	0.15	0.15	8	8
Uni_Bed	80	80	5	5	19	19	8	8	8	8

Table 2.7

Conclusion

The tables show that ESP-r correctly reports the required data.

Test G2: Solar Position

Program

ESP-r version 11.4, released November 2007.

Models

The models are in directory TestG2/simple/cfg. There is a configuration file for each location and date.

Simulations

To get results, run the models with the simulation presets of date, timesteps etc. Turn on the trace in the simulator and select the "solar radiation summary" and output results for timesteps 1 to 48 (includes the pre-simulation day). Extract the solar position from the trace file.

Results

Table 2.8

Time		Lon	don			Manc	hester		Edinburgh				
hh/dd /mm	Ę	51.48N	0.45V	/		53.25N	2.27W	1		55.95N 3.35W			
	Azin	Azimuth Altitude				Azimuth Altitude			Azir	nuth	Alti	tude	
	Ref	ESP- r	Ref	ESP- r	Ref	ESP- r	Ref	ESP- r	Ref	ESP- r	Ref	ESP- r	
1200/ 22/12	180.0	179.8	15.1	15.1	178.3	178.1	13.3	13.3	177.3	177.1	10.6	10.6	
1500/ 27/02	224.1	224.4	20.4	20.7	221.9	222.2	19.9	20.1	220.2	220.5	18.3	18.5	
1200/ 21/06	178.4	178.3	62.0	62.0	175.2	175.0	60.1	60.1	173.7	173.5	57.4	57.4	
1000/ 20/10	151.1	151.2	24.4	23.9	149.6	149.7	22.3	21.8	149.1	149.1	19.7	19.1	

Conclusion

Test G3.1: Static conduction test

Program

ESP-r, Version 11.4 released November 2007

Model

The model is in directory testg3_1_model/cfg. There is one configuration file for this test (called testG3_1.cfg).

Simulations

To get results, extract a Quality Assurance (QA) report by setting up the option for databases to "verbose" and optionally toggle to export to file and then generate the report. This will report the thermophysical values for every construction and for different heat flow directions. An example of text taken from the QA report is given here:

```
Details of opaque construction: External
Layer|Prim|Thick |Conduc-|Density|Specif|IR |Solr|Diffu| R
                                                                         |Descr
                                      |heat |emis|abs |resis|m^2K/W
850. 0.00 0.80 10. 0.06
     |db |(mm) |tivity| |:
34 55.0 0.990 1800.
Ext
                                                              10. 0.06 Outer layer (zero ext ir)
   2
3
       34
              60.0
                        0.990
                                1800.
                                          850. 0.00 0.80
                                                               10.
                                                                    0.06 Outer layer (zero ext ir)
       22
23
                                30.
1600.
                                          850. 0.01 0.60
850. 0.01 0.60
              60.0
                        0.040
                                                              10.
                                                                    1.50 Mineral wool 1
   4
              30.0
                        0.790
                                                              10.
                                                                    0.04 Masonry
       23
23
                        0.790
                                          850. 0.01 0.60
850. 0.01 0.60
                                                              10.
   5
              60.0
                                1600.
                                                                    0.08 Masonry
                        0.790
0.790
   6
              60.0
                                1600.
                                                              10.
                                                                    0.08 Masonry
                                         850. 0.01 0.60
850. 0.90 0.30
       23
                                                              10.
   7
              25.0
                                1600.
                                                                    0.03 Masonry
Int
       24
             15.0
                        0.700
                                1400.
                                                              10.
                                                                    0.02 Plaster internal
ISO 6946 U values (horiz/upward/downward heat flow)= 0.493 0.500 0.483 (partition) 0.472
Total area of External is
                                    9.00
```

The surface resistances used in these steady state calculations depend on the heat flow direction. The resistances used are those in Table 2.11. For example, in the construction above, the internal surface resistance is $0.13 \text{ m}^2\text{K/W}$ and $0.04 \text{ m}^2\text{K/W}$ respectively.

Results

Table 2.12

Construction		nittance n ⁻² K ⁻¹
	Ref.	ESP-r
External wall	0.49	0.49
Internal wall 1	0.35	0.35
Internal wall 2	1.68	1.68
Floor (upward heat flow)	0.24	0.24
Ceiling (downward heat flow)	0.23	0.24
Roof 1 (Upward heat flow)	0.44	0.44
Window 1	2.94	2.93
Window 2	1.72	1.72

Conclusion

Test G3.2: Dynamic conduction test

Program

ESP-r Version 11.4, released November 2007

Models

The model is in directory testg3_2_model/Test_G3.2/cfg. There is a zone for each construction variant in the test combined into a single model configuration file test_G3_2.cfg.

Simulations

To get results, run the model with the 'default' simulation presets. Use the results analysis module and choose 'Timestep reports->performance metrics->temperatures->Zone db T' and then select the option '! List data'. You may want to toggle the option '> Display to screen' to '> Display to file' in order to capture the results.

Results

Table 2.14

		Air temperature after specified time												
Test No.	2 h	ours	6 hours		12 hours		24 h	ours	1201	nours				
	Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r				
G3.2.1	20.04	20.06	21.26	21.31	23.48	23.48	26.37	26.37	30.00	29.97				
G3.2.2	25.09	24.95	29.63	29.52	30.00	29.99	30.00	30.00	30.00	30.00				
G3.2.3	20.00	20.00	20.26	20.27	21.67	21.67	24.90	24.86	29.95	29.94				
G3.2.4	20.00	20.00	20.06	20.06	20.25	20.24	20.63	20.62	23.17	23.16				

Conclusion

All results obtained by ESP-r are well within the tolerance limits. Note that a 90 day simulation start-up time is used. If 30 days are used, test G3.2.4 results are not so accurate (although still within the tolerance limits) because of the large time constants for this test.

Test G4: Solar shading

Program

ESP-r Version 11.4, released November 2007

Models

The model is in directory testg4_model/cfg. There is a configuration file TM33_g4.cfg which includes each of the shading tests.

Simulations

To get results, run the 'ish' module for each of the zones and export the calculated shading data for each zone. Alternatively, turn on the 'solar trace' in the simulator and select the "solar radiation summary" and output results for timesteps 1 to 48 (includes the pre-simulation day).

Results

Table 2.15

Time	Te	st 1	Te	st 2	Te	est 3	T	est 4	Т	est 5	Te	est 6
	Ref.	ESP-r										
07:00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00
07:30	0.32		0.68		1.00		0.00		0.04		1.00	
08:00	0.44	0.43	0.56	0.57	1.00	1.00	0.00	0.00	0.10	0.10	1.00	1.00
08:30	0.58		0.42		1.00		0.00		0.17		1.00	
09:00	0.72	0.71	0.27	0.26	0.99	0.99	0.00	0.00	0.26	0.25	0.98	1.00
09:30	0.74		0.14		0.88		0.00		0.38		0.74	
10:00	0.72	0.69	0.04	0.04	0.76	0.73	0.04	0.08	0.55	0.55	0.40	0.40
10:30	0.67		0.00		0.67		0.17		0.82		0.00	
11:00	0.63	0.60	0.00	0.00	0.63	0.60	0.24	0.25	0.96	0.96	0.00	0.00
11:30	0.61		0.00		0.61		0.28		0.96		0.00	
12:00	0.60	0.60	0.00	0.00	0.60	0.60	0.30	0.30	0.95	0.95	0.00	0.00
12:30	0.60		0.00		0.60		0.29		1.00		1.00	
13:00	0.62	0.60	0.00	0.00	0.62	0.60	0.26	0.30	1.00	1.00	1.00	1.00

Conclusion

Test G5: Glazing Properties

Program

ESP-r Version 11.4, released November 2007

Models

The model is testg5_model/cfg/G5.cfg

Testing

To get results, choose database maintenance from main ESP-r menu, then choose multilayered construction database and choose to "browse or edit" this database. The ten glazing systems are contained in this multi-layered construction database. Choose option to view gvalue and choose required glazing system. The U-value will be displayed in the text feedback area of ESP-r interface (along with other construction information). Choose additional pane properties from the menu or provide your own. Upon exiting from this menu the system gvalue will be displayed.

If running in a UNIX environment, run the shell script testg5_model/cfg/show_gval.sh from the command line to display g-values. Note that construction U-values have been set in accordance with the results table and hence these are predefined to be exact.

Note that ESP-r does not use g-value or U-value, as it calculates time-varying convective and radiative fluxes at the inside and outside surfaces. However, these values can be reported based on standard surface coefficients.

System (outside to inside)		g-va	alue		U-value			
	Air		Argon		Air		Arg	gon
	Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r
Clear/clear	0.72	0.71	0.72	0.72	2.83	2.83	2.68	2.68
Clear/low emissivity	0.68	0.68	0.68	0.69	1.92	1.92	1.64	1.64
Absorbing/low emissivity	0.44	0.43	0.44	0.43	1.92	1.92	1.64	1.64
High performance/low emissivity	0.37	0.37	0.37	0.37	1.58	1.58	1.24	1.24
Clear/clear	0.64	0.64	0.64	0.64	1.88	1.88	1.74	1.74

Results

Conclusion

Test G6: Steady State Heat Loss from Rooms

Program

ESP-r Version 11.4, released November 2007

Models

The models are in directory TestG6/Test_G6/cfg. There are four configuration files for this test corresponding to tests A1, A2, B1 and B2.

In the models, the internal long-wave radiation is calculated by ESP-r. The internal convective coefficients and the external radiative and convective coefficients are fixed as prescribed.

Simulations

To get results, use the scripts run_A1 etc. Results are presented directly. Note that the heating load is presented in kW, but the infiltration is in -W. Alternatively, the models can be run with the simulation pre-sets of period, timesteps etc. Surface temperatures, air temperatures, heating load and infiltration can be displayed graphically or as timestep listings.

Results

Test			Tempe	Air temp (deg C)					
		1	2	3	4	5	6	7	
A1	Ref	20.5	20.6	20.5	19.4	20.9	20.2	11.1	22.2
	ESP-r	20.6	20.7	20.6	19.4	20.9	20.1	11.0	22.2
A2	Ref	20.8	21.0	20.8	19.7	20.9	20.8	11.2	21.3
	ESP-r	20.7	20.9	20.7	19.6	20.8	20.6	11.1	21.2
B1	Ref	20.2	19.0	19.0	19.2	20.8	19.7	11.0	22.8
	ESP-r	20.3	19.0	19.0	19.2	20.8	19.7	10.8	22.9
B2	Ref	20.9	19.6	19.5	19.8	21.0	20.9	11.3	21.2
	ESP-r	21.0	19.7	19.6	19.9	21.1	20.9	11.3	21.3

Table 2.21: Predicted temperatures

Table 2.22: Predicted heat loss

Test		Heat loss (W)		(W)	Test		H	eat loss	(W)
		Fabric	Infilt	Total			Fabric	Infilt	Total
A1	Ref	542	121	663	B1	Ref	831	496	1327
	ESP-r	550	120	670		ESP-r	829	491	1320
A2	Ref	556	117	673	B2	Ref	862	465	1327
	ESP-r	555	115	670		ESP-r	867	463	1330

Conclusion

All temperatures are within +/-0.2 degC and predicted heat losses are within +/-2.5% as required.

Test G7: Annual Cooling and Heating Demand

Program

ESP-r Version 11.4, released November 2007.

Models

The models are in directory TestG7/Test_G7/cfg.

All tests are included in one model. Two zones are created for each case, labelled T7a* and T7b*

Simulations

To get results, run a simulation with the given simulation presets for annual simulation. Results can be obtained from the results analysis module by listing the energy delivered. The total heating and cooling for each case are found by adding the two zones together for each case.

Results

Test	Heating Demand (kWh)		Cooling Demand (kWh)		
	Ref	ESP-r	Ref	ESP-r	
Case G7.1	2592	2500	1025	1003	
Case G7.2	3257	3170	449	461	
Case G7.3	2653	2516	1236	1168	
Case G7.4	3155	3051	474	485	

Table 2.28: Predicted heating and cooling loads

Conclusion

All heating loads are within +/-8% and all cooling loads are within +/-12% as required.

Test G8: Overheating Risk

Program

ESP-r Version 11.4, released November 2007.

Models

The models are in directory TestG8/Test_G8/cfg.

All tests are included in one model. The model is same as for test G7, except design summer year climate is used, model is free floating, and infiltration rate is increased to 1ac/h.

Simulations

To get results, run a simulation with the given simulation presets for annual simulation. Results can be obtained from the results analysis module by selecting frequency table, then selecting both the "a" and "b" zones for each case in turn. Then select temperatures and resultant temperature and set the bins: choose 27 to 40 with 13 bins to cover all cases. Simple processing gives the data tabulated below. Alternatively choose "hours above a value" and set each temperature limit in turn to list the required data.

Results

Table listing results given in Figure 2.4.

Test	st Case G8.1		Case	G8.2	Case	G8.3	Case C	68.4
	Ref	ESP-r	Ref	ESP-r	Ref	ESP-r	Ref	ESP-r
Hours >27			>600	937				
Hours >28			340-600	513			500-~650	625
Hours >29			170-350	241			300-440	375
Hours >30	510- ~700	677	100-200	151			160-270	212
Hours >31	300-430	364	20-110	50	525-600	561	80-150	117
Hours >32	150-270	183	0-50	0	350-420	380	40-80	50
Hours >33	75-150	106	0-20	0	200-300	230	15-40	20
Hours >34	20-75	24	0	0	120-175	125	0-20	0
Hours >35	0-30	0			50-110	65	0-10	0
Hours >36	0-15	0			20-70	25	0	0
Hours >37	0	0			0-25	9		
Hours >38					0-20	0		
Hours >39					0	0		

Conclusion

All resultant temperatures are within the specified limits.

Test G9: Infiltration and Ventilation

Program

ESP-r Version 11.4, released November 2007.

Models

The model is in directory TestG9/Test_G9/cfg. There is one configuration file for this test (called CIBSE_flow.cfg).

Simulations

To get results, simulate the models with the simulation pre-sets of date, timesteps etc. Run the results analysis, select timestep reports, performance metrics and then "Network air/water flow". Open the flow results (CIBSE_flow.mfr), select the results to be displayed in a file (instead of the screen), select the volume flow rate option and display results for all the individual connections. Close results analysis and open the file with the volume flow rate results (default name: data.grt). In this file results are displayed in m³/s. Results for Test 1 can be taken between the hours 1-6, results for test 2 can be taken between the hours 7-12, results for test 3 can be taken between the hours 13-18 and results for test 4 can be taken between the hours 19-24.

Results

Table 2.32

Connection	Air flow rate/L's ⁻¹							
	Test 1		Test 2		Test 3		Test 4	
	Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r	Ref.	ESP-r
Entering room 1 via B1	-11.6	-11.6	-20.6	-20.6	-36.0	-36.0	-20.4	-20.4
Entering room 1 via B2	16.6	16.6	17.1	17.2	29.9	29.9	28.7	28.7
Entering room 1 via D1	-5.5	-5.5	3.4	3.4	6.0	6.0	-9.2	-9.2
Entering room 2 via B6	26.4	26.4	11.6	11.6	13.6	13.7	39.4	39.4
Entering room 2 via R1	-27.3	-27.3	-11.7	-11.7	-14.0	-13.9	-40.7	-40.7
Entering room 3 via B3	13.8	13.8	5.3	5.3	9.0	8.9	23.4	23.4
Entering room 3 via B4	-7.2	-7.2	10.5	10.6	18.0	17.9	-17.4	-17.3
Entering room 3 via D2	-12.7	-12.7	-12.8	-12.8	-21.4	-21.5	-16.2	-16.1
Entering room 4 via R2	-21.1	-21.2	-23.4	-23.4	-38.7	-38.7	-23.7	-23.8
Entering room 4 via B5	8.3	8.3	10.6	10.6	17.2	17.2	7.2	7.2

Conclusion

Test G10: Air Handling Unit Test

Program

ESP-r version 11.5, released April 2008.

Models

The models are in directory TestG10/Test_G10/cfg. There are three configuration files for this test (called G10-1.cfg, G10-2.cfg and G10-3.cfg) corresponding to the three different system configurations set out in the test specifications: AHU 1, AHU2 and AHU3

Simulations

To get results for system AHU 1, run the script "script-1", the results from the simulation will be placed in two files test_G1.dat and energy-G1.dat. To get the results for system AHU 2 run the script "script-2", the results will be places in two files test_G2.dat and energy_G2.dat. Finally, to get the results for system AHU 3 run the script "script-3". Again results will be placed in the files test_G3.dat and energy_G3.dat. Specific results for temperatures will be placed in file <date_time>_T.dat and humidities will be placed in file <date_time>_g.dat.

Results

Table 2.33			
AHU 1		Energy 1	Demand kWh
Component	Ref.	ESP-r	%Error
Cooling Coil	12348	12601	2.0
Heating Coil	5461	5499	0.7
Fans	1132	1132	0
Humidifier	0	0	0

Table 2.34

AHU 2		Energy Demand kWh					
Component	Ref.	ESP-r	%Error				
Cooling Coil	11744	11682	0.5				
Heating Coil	5579	5544	0.6				
Fans	1698	1698	0				
Humidifier	0	0	0				

Table 2.35a

AHU 3	Energy Demand kWh						
Component	Ref.	Ref. ESP-r %Error					
Cooling Coil	0	0	0				
Heating Coil	10914	10854	0.5				
Fans	1698	1698	0				
Humidifier	4083	4084	0				

Table 2.35b								
AHU 3	Temperat	Temperatures and Humidities (g/kg)						
	Condition	Conditions at selected nodes (to be within +/- 0.2)						
			Date & time :	5/1 06:00				
	Ref.	Ref. ESP-r Ref. ESP-r						
Component	Temp	Temp	Hum	Hum.				
inlet duct	-2.1	-2.1	3.1	3.1				
heat exch. outlet	14.4	14.4	6.7	6.7				
supply fan outlet	25.9	25.9	6.7	6.7				
humidifier outlet	26.2	26.2	8.5	8.5				
return fan outlet	21.5	21.5 21.5 9.1 9.1						
heat exch. exit	5.0	5.2	5.5	5.5				

Table 2.35c

AHU 3	Temperat	Temperatures and Humidities (g/kg)					
	Condition	ns at selected n	odes (to be with	nin +/- 0.2)			
			Date & time 6	/1 04:00			
Component	Ref.	ESP-r	Ref.	ESP-r			
-	Temp	Temp	Hum	Hum.			
inlet duct	6.2	6.2	5.1	5.1			
heat exch. outlet	16.9	16.9	7.5	7.5			
supply fan outlet	25.9	25.9	7.5	7.5			
humidifier outlet	26.1	26.1	8.5	8.5			
return fan outlet	21.5	21.5	9.1	9.1			
heat exch. exit	10.8	10.9	6.7	6.7			

Table 2.35d

AHU 3	Tempera	Temperatures and Humidities (g/kg)						
	Condition	ns at selected no	odes (to be within	n +/- 0.2)				
		Date & time 10/1 14:00						
Component	Ref.	Ref. ESP-r Ref. ESP-r						
	Temp	Temp	Hum	Hum.				
inlet duct	3.3	3.3	4.1	4.1				
heat exch. outlet	16.0	16.0	7.1	7.1				
supply fan outlet	25.9	25.9	7.1	7.1				
humidifier outlet	26.2	26.1	8.5	8.5				
return fan outlet	21.5	21.5	9.1	9.1				
heat exch. exit	8.7	8.9	6.1	6.1				

Conclusion

TM33: Empirical Validation Test

Program

ESP-r Version 11.5, released April 2008.

Models

The models are in directories emptest_AC/cfg (there are two configuration files corresponding to case E1A and case E1C), emptest_B/cfg, emptest_DF/cfg (there are two configuration files corresponding to case E1D and case E1F), and emptest_E/cfg.

Simulations

To get results, run the models with simulation presets of start-up days, timesteps and simulation period. For cases E1A, E1B and E1C, internal convective heat transfer coefficient was set to be default. This is due to the facts that there is no heating control for the three cases and the ESP-r default internal convective coefficient is used for calculating convection which is driven primarily by buoyancy. External convective coefficient was chosen to be CIBSE Guide coefficient. For cases E1D, E1E and E1F, both internal and external convective coefficients were set to be CIBSE Guide coefficients.

For cases E1D, E1E and E1F, the heating system was modelled by using PID control. Both zone-side and plant-side time steps were set to be 60 per hour. Note that test results are sensitive to time steps and PID parameters. With different time steps, the test results presented in the following table would be slightly changed.

Results

Table1 Predicted heating energy consumption, plus average hourly max and min temperatures.

Test	Parameter	Measured value	ESP-r	Tolerance
Case E1A	Energy (kWh)	0.0	0.0	± 0.0
	Max. temp.(C)	31.0	32.1	± 2.5
	Min. temp. (C)	12.2	13.2	± 2.5
Case E1B	Energy (kWh)	0.0	0.0	± 0.0
	Max. temp.(C)	16.8	17.6	± 1.5
	Min. temp. (C)	9.2	9.5	± 1.5
Case E1C	Energy (kWh)	0.0	0.0	± 0.0
	Max. temp.(C)	32.6	32.4	± 2.5
	Min. temp. (C)	12.1	12	± 2.5
Case E1D	Energy (kWh)	24.8	21.1	± 15%
	Max. temp.(C)	37.8	38.5	± 2.5
	Min. temp. (C)	11.9	11.6	± 2.5
Case E1E	Energy (kWh)	32.5	30.2	± 15%

Test	Parameter	Measured value	ESP-r	Tolerance
	Max. temp.(C)	29.8	30.4	± 1.0
	Min. temp. (C)	14.6	12.6	± 2.5
Case E1F	Energy (kWh)	25.0	24.1	± 15%
	Max. temp.(C)	37.0	37.9	± 2.5
	Min. temp. (C)	9.1	9.9	± 2.5

Conclusion