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Abstract

Uncertainty affects all aspects of building simulation: from the development of algo-

rithms, through the implementation of software, to the use of the resulting systems.

This work has focused on the problem of quantifying the effect of uncertainty on the

predictions made by simulation tools. Two approaches to quantifying this effect are

pursued in this thesis: external and internal methods.

The external approach treats the simulation engine as a ‘black box’ and alters

only the input model. Methods within this approach require multiple simulations of

systematically altered models and the subsequent analysis of the differences in the

predictions in order to draw conclusions on the effect of uncertainty. Three methods

were identified for use in the present work: differential, factorial and Monte Carlo.

The differential method alters one parameter at a time to quantify the effect of each

parameter and requires 2N+1 simulations for N uncertain parameters. The factorial

method alters groups of parameters simultaneously to determine interactions between

effects and requires 2N simulations. The Monte Carlo method alters all parameters

simultaneously to quantify the overall effect of uncertainty. The number of simulations

required for the Monte Carlo method is independent of the number of parameters and

is typically 80. Each of these methods require a significant number of simulations.

To quantify the individual contributions, the interactions between these contributions

and the effects overall would require the use of all three methods.

The internal approach represents parameters as a function of uncertainty and alters

the underlying algorithms of the simulation tool so that uncertainty is included at all

computational stages. Methods within this approach require only a single simulation

to quantify the individual and overall effects. Three methods were studied: interval,

fuzzy and affine arithmetic. It was found when forming the energy balance equation

set, correlations between the source of uncertainty and the equation terms should

be maintained. This is necessary so that uncertain parameters have the same value

when used in different terms in the equation set. For example, the uncertainty in



conduction into and out of a homogeneous control volume will be correlated because

the uncertainty is for the materials properties. Only affine arithmetic accounts for

these correlations. To achieve this, uncertainty considerations are embodied within

the underlying conservation equations using a first order polynomial representation

of uncertainty. This polynomial is formed from the mean value of the parameter

with the individual uncertainties defined as separate terms. Each uncertainty term

is represented by an interval number. The resulting predictions (state variables) are

likewise represented by first order polynomials. The measure of individual effects are

the coefficients of these polynomials and the overall effect is the sum of the coefficients.

Specific performance instances can then be created in a post-simulation analysis by

specifying an exact value for each of the uncertainty terms.

To test the applicability of the two approaches the theory was implemented within

the ESP-r system, with the internal approach applied to ESP-r’s core thermal model.

The advantages and disadvantages of each approach are examined. It is shown that

the results of a single internal simulation compare well with the outcomes from the

external methods. Although the affine approach does not always produce a converged

calculation of the effects of uncertainty, the application represents a novel and inte-

grated approach to the assessment of uncertainty in building simulation. Reasons for

the failure are given and approaches to overcoming these are described.

To support the definition of uncertainty at the time of model creation, the uncer-

tainty in key parameters has been quantified. These parameters comprise thermo-

physical properties, casual heat gains and infiltration rates.

The impact of uncertainty assessment on the design process is explored via three

case studies. These examine the use of simulation at the early and detailed design

stages and when used to compare design variants. The implications of uncertainty in

each case are elaborated.

Finally, recommendations for further research are made. These cover the ap-

plication of the internal approach to other technical domains, for example air flow

modelling, and the quantification of uncertainty in relation to additional parameters

such as occupant behaviour.
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Chapter 1

Introduction

Uncertainty affects all aspects of simulation. To quantify

these effects a well-founded physically based model is needed.

Assessing the effects of uncertainties aids understanding of

building performance and, therefore, leads to effective deci-

sion making.

The built environment comprises a complex set of interactions of heat, mass and mo-

mentum transfers. These transfers interact dynamically under the action of occupant

and system control. The problem of representing such time varying interactions in a

manner suitable for prediction and evaluation of alternate designs has been addressed

by many researchers. The work to date, however, has concentrated on the problem of

modelling resolution and integration; in the belief that this will improve accuracy and

applicability respectively. However, the more complex mathematical models require

a greater knowledge of the systems being analysed and an increased quantity of data

to describe the different aspects of the modelled system.

For example, the integration of CFD within building simulation requires additional

data to define the boundary conditions of the flow domain (thermal, momentum

etc), the parameters of the equations to be solved (source terms, turbulence model

parameters etc) and the methods of solution. These aspects increase the burden on

the user: a deeper theoretical knowledge is required, more data is necessary and more
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results have to be analysed and confirmed.

Although uncertainty and sensitivity analyses have been applied in some validation

projects [Jensen 1994, Lomas et al 1997], in practice uncertainty is not considered.

The limited application of uncertainty analysis would indicate that there are signifi-

cant barriers to overcome.

Traditionally uncertainty in the performance of a building has been reduced by

oversizing the installed heating, cooling or ventilating plant. This resulted in sets of

data and calculation methods with inherent safety factors. For example, the declared

values of thermophysical data necessary for simulation work are to be quoted for

the 90% fractile [CEN 1998] (i.e. 90% of possible values are less than or equal to

this value). This means that tabulated data for conductivity will be artificially high.

In addition, calculation methods assume worst case scenarios for plant sizing, e.g.

no occupants, lighting or solar gains in winter for heating plant and full occupant,

lighting and solar gains in summer for cooling plant. It has been estimated that the

use of such safety factors has resulted in plant sizes being typically double and in some

cases treble their necessary size [Parand 1994]. This is clearly an undesirable situation

as large plant incurs increased capital and running costs, can adversely affect space

utilisation and gives rise to unnecessary emissions of greenhouse gasses. Through the

assessment of uncertainties, the natural variation in data is accounted for; thus, the

mean value and a measure of variation should be used, allowing more appropriate

designs.

1.1 Development of integrated building simulation

The simulation community has, over the last 30 years, attempted to combine the var-

ious domain calculations in an attempt to better represent the behaviour of buildings

and thereby to produce better designs. As can be seen in figure 1.1, simulation tools

have evolved in terms of their detail and applicability. Paradoxically, this increased

flexibility has resulted in greater uncertainty in the use of these tools: collating the re-

quired data and in understanding the multi-variate results produced. In general terms

2



1st Generation Handbook oriented Indicative
(1960’s and Simplified Applications limited
early 1970’s) Piecemeal Difficult to use
2nd Generation Dynamics important
(1970’s) Less simplified

Still piecemeal

?

3rd Generation Field problem approach
(1980’s) Numerical methods

Integrated energy sub-systems
Heat and mass transfer considered
Better user interface
Partial CABD integration

4th Generation CABD integration
(1990’s) Advanced numerical methods Predictive

Intelligent Knowledge based Generalised
Advanced software engineering Easy to use

Figure 1.1: The evolution of building energy simulation tools [Clarke and Maver
1991].

the problem of designing well engineered buildings reduces to ensuring an acceptable

indoor environment at an acceptable life cycle cost. This requirement necessitated the

integration of modelling techniques (3rd generation tools) to address the complexities

of real schemes.

Such detailed models require a considerable amount of detailed information to

describe a building to an adequate level of detail. Consider the requirements of

simplified and detailed design tools: the LT method [Baker and Steemers 1994], a

spreadsheet based 1st generation1 tool, and the simulation system ESP-r [ESRU 2001],

a 3rd generation tool. A typical model in LT requires about 20 data items covering

building location, construction, floor and glazing areas. A typical multi-zone model

in ESP-r requires over 4000 data items for the geometry, construction and operation

descriptions alone! Many of these items are held in system databases from which the

user must make a selection. Typically, varying only a few of these parameters will

have a significant effect on the predictions made by the system [Saltelli et al 2000].

This leaves the users of these systems in a difficult position: the predictions are only

sensitive to a few of the input parameters (which ones?) and in the absence of this

1The LT method has been classed a 1st generation tool due to its methodology despite the fact
that it has been developed throughout the 1990s.
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information they have to check all parameters or use their experience to target the

correct ones.

A further effect of the developments depicted in figure 1.1 is that 3rd and 4th

generation simulation tools are generally used during the later design stages where

the necessary information on the building’s form, construction and operation are

known. Typically the efficacy of simulation tools is less at this late stage because

the design decisions with the largest impact on performance occur during the early

design stages [Aho 1995, Holm 1993]. As depicted in figure 1.2, the design process

progresses from whole building considerations towards specific detailing. This results

in the decisions with the largest effect on the performance being made at the beginning

of the design process. However, simulation tools require knowledge about the details

of surface finishes, orientation etc. from which the whole model is created.

Building detail
(e.g. surface
finishes)

R
es

ol
ut

io
n

orientation)
(e.g. form and
Whole building

Simulation
Process

Design Process

Time

E
ffe

ct
 o

n 
bu

ild
in

g 
pe

rf
or

m
an

ce

0

50

100

Figure 1.2: Design and simulation processes.

This means that for simulation to be successfully employed at the early design stage

(to maximise the benefit) knowledge of building details are needed, which in most

cases is unavailable. For the practitioner to progress they must make assumptions

about the missing data. These assumptions introduce uncertainty into the model

and a method of addressing and quantifying this uncertainty is required. As the

design progresses, the uncertainty will generally decrease (as design decisions are

made concerning the uncertain data) although it will be impossible to reduce this
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uncertainty to zero.

Through assessing the uncertainty in simulation outputs it is possible to identify

those parameters that most strongly impact on performance, allowing the appropriate

concentration of design effort. Coupled with this, the overall uncertainty in the

predictions may also be assessed allowing a design to be refined until the uncertainty

reduces to an acceptable level.

Currently there is no building simulation system which allows more than an ad

hoc approach to the quantification of the effects of uncertainty [CIBSE 1999], despite

methods existing in theory for providing a structure for a detailed uncertainty or

sensitivity analysis.

1.2 Uncertainty versus sensitivity analysis

A subtle distinction exists between uncertainty and sensitivity analyses. The aim of

a sensitivity analysis is to discover the (typically few) input parameters to which the

measured output of a model is sensitive, i.e. a change in a design parameter (say 1%

less infiltration) would result in a relatively larger change in a performance metric (say

10% less heating energy required). A crucial aspect of a sensitivity analysis is that it

is unnecessary to quantify the likely variation in the model’s parameters. Conversely,

in an uncertainty analysis the variation in the input parameters is critical to the

analysis, as the aim is to discover the likely variation in the output due to the actual

variations in the input. A side effect of this is that the model may be sensitive to a

specific parameter but, if the parameter is well known, it is not a critical parameter

in an uncertainty analysis.

This work is concerned with calculating the effects of uncertainty on predictions

under realistic parameter variations. Therefore the identification of sensitive param-

eters is not necessary; they may be well known and therefore will not contribute

significantly to the overall uncertainty in the predictions. The real variation in input

parameters is sought so that the consequences of these uncertainties may be quanti-

fied. Coupled with this, the parameters which have the largest contribution to the

5



overall uncertainty in the predictions are also identified.

1.3 Effects of uncertainties

To demonstrate the effects of uncertainties on building performance, and hence design

decisions, consider the single zone office model of figure 1.3.

South

East

  office building
Section through

Figure 1.3: Simple office model.

The office has typical construction materials and occupancy gains for this class of

building. Consider the following two uncertainty scenarios:

1. The casual gains for the IT equipment were assumed to be 1000W (≈ 15W/m2).

What if new energy efficient equipment were used with a casual gain of 750W

(≈ 11W/m2)?

2. The temperature of the ventilation supply to the office is uncertain (+
−1◦C).

What effect will this have on air quality?

These scenarios have been selected to demonstrate the variety of uncertainty

sources and assessment techniques which exist to quantify building performance. Of
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note is that an uncertainty can be the magnitude of a parameter (as in these exam-

ples) or the location of an object (e.g. windows or air supply grills) or the timing

of an event (e.g. occupancy schedules). The effect of an uncertainty can be assessed

by aggregate metrics (e.g. energy consumption), temporal measures (e.g. number of

overheating hours) or spatial measures (e.g. radiant temperature variation through

a space).

0.0 4.0 8.0 12.0 16.0 20.0 24.0
Time (hours)

20.0

21.0

22.0

23.0

24.0

25.0

26.0

27.0

28.0

T
em

pe
ra

tu
re

 (
o C

)

High casual gains
Low casual gains

Room overheating
Slight
overheating

Figure 1.4: Air temperature profile in the simple office.

The air temperature profile of the office for both casual gain scenarios is shown in

figure 1.4 for a typical summer day. As can be seen, with the higher gains from the

computer equipment the office will overheat (T > 25◦C), but with the lower gain the

overheating would be marginal. Over the summer period the office would overheat for

47% of occupied hours for the higher gain while, for the lower gain, the office would

overheat for 11% of the occupied hours. Clearly, the assumption about the casual

gains would have a large impact as in the higher gain case a cooling provision would

be required to address the overheating problem. This use of cooling plant would

require ductwork and space within the building, and increase the capital and running
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costs and emissions. For the lower gain case the slight overheating could perhaps be

accepted so that there would be no requirement for cooling, thus the above impacts

would be avoided.

For the second scenario the intra-zone air flow has to be determined. This requires

the use of computational fluid dynamics (CFD) to permit the effectiveness of the

ventilation strategy to be assessed in terms of the distribution of the local mean age

(LMA) of air. The LMA quantifies the average time taken for the supply air to reach

a specific location with respect to the average time air takes to travel from the inlet

to the extract in a zone. Thus, if the mean age of air is less than one, then the air

in this region is fresh (i.e. has entered the domain recently); where greater than one

the air is older than average.

Figure 1.5 displays the LMA of air in the office for both scenarios. The upper

plot is for the warmest possible air supply temperature where the air flows along the

ceiling and circulates back to the low level extract. The lower plot is for a cooler

supply temperature (2◦C cooler) and shows the supply air flow detaching from the

ceiling and falling to the floor within the first half of the room. Two circulation

regions are also evident: one of fresh air and one of older air. This example shows

the spatial effects of an uncertainty and the possibility that the ventilation system

would fail to provide fresh air to the whole office area, thus affecting the comfort of

the occupants.

These two examples highlight but two of the myriad uncertainty sources encoun-

tered in building energy modelling:

Scenario 1 The magnitude of the casual gain was uncertain. This type of uncer-

tainty applies to many aspects of building energy modelling, e.g. material ther-

mophysical properties and building dimensions. The effect of this uncertainty

was addressed by examining the maximum temperature in the office. This is

a typical analysis metric, others include maximum heating load, total energy

consumption and hours above a certain temperature.

Scenario 2 In this case the supply temperature of the air was uncertain and this
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Figure 1.5: Air distribution in the simple office.

affected the spatial distribution of the fresh air. The assessment of the effects

of this uncertainty were examined spatially. Other spatial uncertainties include

the position of windows in the building and the location of ventilation grills.

These two examples address only the problem of individual uncertainties where

a parameter may adopt one value or the other. In practice uncertain parameters

may take on any value within a range defined by a probability distribution. The
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description of uncertainty in all of the model’s parameters would then be required

and an assessment of the interactions between these uncertain parameters undertaken.

1.4 Sources of uncertainty

There are many sources of uncertainty and it is important to evaluate the risks that

result from these uncertainties. This importance is a direct reflection of the relevance

of assessing uncertainty in a physical experiment. Without quantifying the overall

error in the predictions, the practitioner has little idea of the accuracy of the result.

Uncertainty analysis is an important experimental technique and can be used in

simulation to address the following issues.

• Model realism: How well (and to what resolution) does the model represent

reality?

• Input parameters: What values should be used in the absence of measured

data?

• Stochastic processes: To what extent do the assumptions made regarding future

weather, occupancy and operational factors affect the predictions?

• Simulation program capabilities: What uncertainties are associated with the

particular choice of algorithms for the various heat and mass transfer processes?

• Design variations: What will be the effect of changing one aspect of the design?

Being aware of the inherent uncertainties in the modelling techniques is crucial

but methods must also be available to evaluate their effects.

1.5 Objectives

The need then is to quantify the uncertainty in the outputs from a simulation program

from knowledge of the uncertainties associated with the inputs. To achieve this,

suitable methods have to be identified and implemented. This work aims to:

1. Review uncertainty assessment methods.

10



2. Identify sources of uncertainty as they impact upon building simulation.

3. Identify suitable probability distributions to describe uncertain parameters.

4. Implement quantitative methods for analysing the effect on simulation outputs

in ESP-r.

These aims, if realised, will enable simulation users to:

1. Quantify overall uncertainty in model predictions, enabling

(a) risk based decision making, and

(b) significance testing between design options.

2. Quantify the uncertainty due to individual parameters for the specific building

being analysed, thus enabling

(a) guided quality assurance (QA) procedures to be adopted, i.e. QA can

focus upon the parameters in the model with the largest contribution to

the output uncertainty, and

(b) uncertainty based model development, i.e. modelling resolution choices

can be justified on the basis of reducing the overall uncertainty in predic-

tions.

Such additions to the modelling environment are elaborated in this thesis.

1.6 Summary

Uncertainty impinges on all aspects of building design and particularly in building

performance simulation. The two examples given in section 1.3 elaborate this by

showing the effects of imperfect knowledge on the output from simulation. However,

the examples only show the effect of a single uncertain parameter. How are the

effects of more than one uncertain parameter assessed and what are the uncertain

parameters?

It should be clear that the quantification of uncertainty is necessary for effective

use of building simulation. Furthermore, for the effects to be quantified, and as
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uncertainty is present in all aspects of simulation work, the uncertainties cannot be

addressed in an ad hoc manner.

Before techniques for uncertainty assessment can be applied, the myriad sources

of uncertainty need to be identified. This is the subject matter of the next chapter.
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Chapter 2

Modelling buildings

The ESP-r system, the data required for simulation and the

mathematical models employed are described. This informa-

tion is the prerequisite foundation for the work presented in

subsequent chapters.

The ESP-r system has been used as the mechanism whereby the uncertainty quantifi-

cation techniques presented in chapter 3 can be implemented, applied and assessed.

The system allows an integrated assessment of building performance and is well de-

scribed elsewhere [ESRU 2001]. There are two aspects of ESP-r which are germane

to the current research:

1. the data model, and

2. the mathematical model.

The purpose of the ESP-r data model is to describe, in a method suitable for

simulation, the target system. For example, the target could be a whole building,

a part of a building, the HVAC system, the ventilation system, any aggregate of

these entities and so on. In practice, the usual approach is to model the different

subsystems individually and to then link them and simulate the resulting system in

an integrated manner. A particular feature of ESP-r is that few elements of the

simulation model are pre-determined. This enables the system to model problems
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of arbitrary complexity from traditional buildings to prestige buildings with facade

integrated hybrid photovoltaic panels including ventilation pre-heat. In relation to

the present research ESP-r’s explicit approach permits uncertainty considerations to

be applied to all possible design parameters. The data model required to describe

such systems is necessarily complex. For example:

• building fabric is described in terms of orientation, area, material thickness,

density, conductivity, specific heat capacity, vapour diffusivity, surface short-

wave absorptivity and longwave emissivity to enable calculation of heat and

moisture transfers,

• electrical networks are described in terms of loads, supplies, generating compo-

nents and conductors to enable power flow calculations and embedded renewable

energy studies, and

• occupant behaviour is described in terms of sensible and latent loads to enable

the quantification of heat and moisture gains to a space in support of comfort

and indoor air quality studies.

Entities within the data model are subject to varying degrees of uncertainty. There-

fore the purpose of describing the ESP-r data model is to elucidate the sources of

uncertainty in building simulation.

Section 2.2 of this chapter describes the algorithms employed by ESP-r to solve the

described systems. These algorithms use the information provided in the data model

to produce meaningful predictions of building performance, given suitable boundary

conditions, e.g. a climate data set. As will be presented in chapter 3, uncertainty

quantification methods can be externally wrapped around these algorithms or inte-

grated within them.

2.1 ESP-r data model

The ESP-r data model exhibits a close relationship between building physics and built

reality, i.e. the data required by ESP-r are physically measured values (or derived
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from measurements) and these data items are used in fundamental physical models of

the transport systems in buildings (thermal, moisture, electrical etc). As a result, the

data model of ESP-r can be viewed as a suitable structure on which to base sources

of uncertainty.

Site

Buildings

Fluid flow
networks

Plant systems

Electrical
networks

Control

Node 1

Bus bar 1

Sensor

Actuator

Law
Contiguity

Geometry

Constructions

Operations

Other

Loop 1

Power 1

Air flow 1

Building 1

Location

Context

Water flow 1

System 1

Component 1

Component 1

Component 1

ESP-r model

Zone 1

Latitude

Climate

Figure 2.1: ESP-r data model (synopsis).

Figure 2.1 provides a synopsis of the ESP-r data model decomposition. The solid

lines represent decompositions of higher level entities: the model has a site, which

has a location, which has a latitude and so on. The broken lines represent repetitive

aspects of the model: the building’s HVAC system may have several constituent parts,

which in turn have sub-assemblies. The decomposition does not show an entity’s

individual data items. These are elaborated in the following sections; it is to these

items that uncertainties may be attached.

Uncertainties are described in general terms for the three principle design stages:
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outline, scheme and detailed as described in the RIBA plan of work [RIBA 1995].

The three design stages have the following characteristics:

Outline. This stage is extremely time constrained and has the aim of illustrating

building form and operation and an indication of building and running costs.

Uncertainty is generally large at this stage due to the effectively unconstrained

options available.

Scheme. The external form and fabric of the building will be addressed at this

stage. Internal space usage will also be organised. Typically uncertainties will

be smaller but still significant.

Detailed. The finishes to spaces and equipment to be installed will be specified at

this stage. Building form, fabric and function are all well known and operation

of control systems can be explored. Although uncertainties are minimal they

will still exist as exact building occupation and use is still hypothetical.

The post occupancy operation of a building is generally when uncertainties are least,

as built form and fabric can be examined and building use measured. The uncertain-

ties described in the following sections have been classified on a three point scale for

each stage described above: well known, uncertain, highly uncertain.

2.1.1 Site

The location of the building is expressed in terms of latitude and longitude as well

as an exposure index which is used to determine external view factors for longwave

radiation exchanges. The context descriptor is used to describe relevant parameters

such as climate patterns and ground albedo.

Uncertainty descriptors are presented in table 2.1. Site parameters are generally

well known throughout the design process. However, planned landscaping can affect

the ground albedo and site micro climate. Also future operation of the building

cannot ignore the possibility of neighbouring buildings being constructed or existing

buildings being demolished. These events will effect the site exposure index, micro

climate and ground albedo.
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Table 2.1: Uncertainty descriptors for site parameters.

Parameter Outline Scheme Detailed

Latitude, longitude Well known Well known Well known
Exposure index Well known Well known Well known
Climate parameters Uncertain Uncertain Uncertain
Ground albedo Uncertain Uncertain Well known

2.1.2 Building

The building model employed by ESP-r is zone based, where a zone is defined as a

bounded volume of fluid at a uniform temperature. A zone has geometry to describe

the areas of bounding surfaces and the volume of the contained air. Real physical

spaces may comprise several zones.

The surfaces which define a zone require constructional information (number of

layers and the thickness, conductivity, density, absorptivity, emissivity, vapour resis-

tivity of each) and a boundary condition, which could be another zone, the external

climate or a prescribed condition. A surface is defined by a set of vertices from which

the area and orientation of the surface may be determined.

Each zone has an associated operations schedule. This describes the internal heat

gains and design air change requirements. The heat gains (corresponding to people,

lighting and IT equipment) are expressed as time varying sensible and latent heat

inputs, with the sensible component characterised by convective and radiant fractions.

The design air change rate can be subjected to control action to mimic window

opening or other effects of occupants.

Additional and optional definitions can be applied to a zone. For example, a facade

or window shading device may be added, surface convection coefficients (time varying)

prescribed or a CFD domain attached to enable the simulation of air movement and

indoor air quality. Furthermore, the default unidirectional heat conduction model

may be elevated to full 3D where, for example, thermal bridges are present. Finally

the moisture transfers between the zone air and surfaces and through constructions

can be modelled.

Each of these additional definitions require a set of parameters to support the cor-
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responding mathematical model. For example, in the case of 3D heat conduction and

CFD additional discretisation information is required; while for moisture modelling

the hygrothermal properties of the constructional materials must be specified.

Table 2.2 details the uncertainty descriptors for each category of data required in

the building model. The general trend is that as the design progresses through to

building operation the uncertainty in parameters decreases. This is because as the

design progresses more details are specified and uncertainty in geometry and surface

attribution will therefore decrease. In the case of casual gains the initial uncertainties

will be smaller as zones are generally defined by their usage and hence an indication of

likely heat gains will be known from the early design stages. The zone air change rate

will remain uncertain as initially design values will be prescribed and when operational

the build quality and occupant interactions will effect air flows in the building. The

term detailed modelling encompasses the use of CFD domains, multi-dimensional heat

flow and moisture flow etc, which all require suitably well defined building models

before they can be applied. For example, for CFD and multi-dimensional heat flow

the geometry of the zone (surface areas, window locations etc) must be well defined

before meaningful output can be produced.

Table 2.2: Uncertainty descriptors for building parameters.

Parameter Outline Scheme Detailed

Orientation Highly uncertain Uncertain Well known
Zone volume Highly uncertain Uncertain Well known
Surface areas Highly uncertain Uncertain Well known
Construction materials Highly uncertain Uncertain Well known
Casual gains Uncertain Uncertain Well known
Zone air change rate Uncertain Uncertain Uncertain
Shading devices Highly uncertain Uncertain Well known
Detailed modelling Highly uncertain Uncertain Well known

2.1.3 Fluid flow

A fluid flow network consists of a set of pressure points (nodes) connected by com-

ponents which either resist or induce flow. Boundary nodes are either set to a fixed

pressure or are assigned a wind induced pressure at simulation time. Internal nodes
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are solved to obtain their pressure as a function of their time-evolving temperature

and network boundary pressures. The output from this network can be used in the

building model described in the previous subsection in place of the imposed air change

rates.

The components in a fluid flow network are described by parameters that depend

on their type. For example, a crack is specified by its width and length as required by

a related empirical flow equation. A fan, on the other hand, might require the coeffi-

cients of an empirical quadratic equation that likewise defines its flow characteristics.

Finally, the connection of nodes via components requires the height difference

between each node and the component to be known so that the stack effect can be

included in the simulation.

Uncertainty descriptors are presented in table 2.3. Recent work has characterised

the uncertainty in pressure coefficients [De Wit 2001], which are used to determine the

wind induced pressures of boundary nodes. These coefficients will be highly uncertain

while the building form has not been finalised, i.e. at the earlier design stages. The

temperature of internal nodes will likewise be uncertain until the internal environment

is well described. The main source of uncertainty, though, for flow networks is in

describing all flow paths. Uncertainty will persist in this area as build quality will

affect the ability of air to flow through the building structure. These unintended air

flow paths present two problems to the practitioner: they must be identified and then

characterised.

Table 2.3: Uncertainty descriptors for flow network parameters.

Parameter Outline Scheme Detailed

Boundary pressures Highly uncertain Uncertain Well known
Node temperatures Highly uncertain Uncertain Well known
Flow paths Highly uncertain Highly uncertain Uncertain

Air flow within the building can also be represented by one or more CFD domains.

Each domain represents a volume of air which is discretised and conservation equa-

tions for mass, momentum and energy are formed. These equations are solved based

on prevailing flow and thermal boundary conditions. Uncertainty affects a CFD do-
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main via its geometry and boundary conditions. Therefore, while the building form

is uncertain the geometry of the CFD domain will also be uncertain. Boundary con-

ditions will likewise be highly uncertain while the building performance is not well

defined, e.g. while the flow network is highly uncertain. At the detailed design stage

the domain’s geometry and boundary conditions will be well known.

2.1.4 Plant systems

A plant network is likewise described by a set of connected components where each

component model represents the possible internal heat and fluid flows within the

component and the thermal interaction with environment. Plant components are

defined via templates, which are parameterised models of specific component types

(e.g. heat exchangers, or a water heater, or a pump). For a humidifier, for example,

the required data includes the design (uncontrolled) water flow rate, the mass and

specific heat of the constituent materials and the moisture injection process type.

Uncertainty descriptors are presented in table 2.4. The uncertainties in plant

networks are mainly related to the interaction between the network and the building

and control system. Thus, as with the flow network the boundary conditions and

control signals will be uncertain until the building is well defined.

Table 2.4: Uncertainty descriptors for plant network parameters.

Parameter Outline Scheme Detailed

Boundary temperatures Highly uncertain Uncertain Well known
Boundary flow rates Highly uncertain Uncertain Well known
Control signals Highly uncertain Uncertain Well known
Component data Uncertain Uncertain Well known

2.1.5 Electrical networks

The modelling of electrical power flow in ESP-r is analogous to the modelling of fluid

flow. The electrical equivalent of an internal flow node is a busbar and a boundary flow

node is equivalent to a power consuming or generating component (e.g. a photovoltaic

cell or a connection to the public electricity supply). These are connected to each
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Table 2.5: Uncertainty descriptors for electrical network parameters.

Parameter Outline Scheme Detailed

Boundary loads Highly uncertain Uncertain Well known
Conductor lengths Highly uncertain Uncertain Well known
Component data Uncertain Uncertain Well known

other via conductors and/or transformers.

Each connection’s electrical behaviour has then to be characterised, e.g. the data

required for a conductor includes its length, resistance and inductance.

Uncertainty descriptors are presented in table 2.5. As with plant networks the

main uncertainties are related to the boundary conditions, which will lessen as the

design progresses and loads and generating components become better defined. Other

uncertainties relate to the length of conductors which again will become smaller as

the design progresses and cabling routes through the building are identified.

2.1.6 Control

Control can be applied to any of the parameters within the modelled networks: ther-

mal, flow, plant or electrical. The essence of control is that a property is sensed and

an action taken. The magnitude of the action is determined by a control law which

relates the sensed condition to the actuated state to attain the required effect. For

example, in a flow network for natural ventilation the sensed parameter could be a

zone’s temperature while the actuator could be applied to the opening of a window.

If the temperature is too high such a control law will then open the window.

Uncertainty descriptors are presented in table 2.6. The uncertainties in control

systems are mainly related to the sensed property and the actuator performance. It

is straightforward to sense the state of a modelled parameter but the relationship

between it and a physical sensor is not known e.g. a typical thermostat will generally

not be solely affected by air temperature but also by radiant exchanges. Likewise,

the performance of the actuator is unknown and is often idealised, ignoring hysteresis

effects. As with the networks described above the building has to be well described

before meaningful control performance information can be ascertained. Finally, the

22



data associated with the chosen control law will be uncertain until the building is

well described, so that for example a PID controller can be tuned.

Table 2.6: Uncertainty descriptors for control parameters.

Parameter Outline Scheme Detailed

Sensed condition Highly uncertain Uncertain Well known
Actuator performance Highly uncertain Uncertain Well known
Control law data Uncertain Uncertain Well known

2.1.7 Contiguity

Contiguity relates to how the various aspects of the model interact with each other.

In the control example, above the effect of opening the window will induce more fresh

air into the building and thus increase the infiltration rate. Only if the fluid flow

and building descriptions have been linked will this interaction be quantified. All

interactions between networks are defined in a rigorous manner within ESP-r. For

example, if lighting control is active and there is sufficient daylight then the artificial

lights will be dimmed or switched off, reducing the power demand in the electrical

network and the heat gain to the space. The reduced heat gain in the space would

then impact upon the cooling requirement which, in turn, would impact upon the

chiller load and fan power. Thus, the simple act of lighting control can affect the

thermal, electrical, plant and flow networks.

As with the majority of building parameters, the contiguity will be highly uncertain

in the outline design stage, becoming less uncertain as the design progresses, until at

the detailed design stage it will be well known, as by this stage the internal layout of

the building will be known and the flow networks and control systems defined.

2.2 Control volume conservation equations

The domain models for building simulation comprise a set of conservation equations

for energy, mass and momentum with support equations corresponding to source

terms.
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2.2.1 Thermal modelling

The finite volume approach to building modelling requires the identification of typical

control volume (or node) types [Clarke 2001]. Each of these node types is charac-

terised by the energy transfer mechanisms occurring at the node. In a building there

are three principal node types:

1. solid;

2. surface (solid/ fluid boundaries);

3. fluid.

There are also special cases of these types, e.g. solid nodes can be homogeneous

or non-homogeneous, opaque or transparent. However, the energy balances remain

essentially the same for each node type. Figure 2.2 summarises the various heat

and mass transfer processes that may be included within the conservation equations

corresponding to the three node types.

Surface
nodes

Solid
node

External
convection

Fluid nodes

Solar
radiation

Conduction

Inter-zone
airflow

External
longwave
radiation

convection
InternalZone 2Zone 1

Internal
longwave

radiation

Infiltration

Figure 2.2: Building node types and heat flows.
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The energy balances for each of the three node types are described to further

exhibit the data requirements for building simulation and as a prerequisite for the

inclusive methods of chapter 5.

Energy balance for solid nodes

The available mechanisms for heat transfer in a solid node are shown in figure 2.3. If

the solid construction is opaque then the solar flux will be zero.

Plant

Conduction

Conduction

Solar radiation

Figure 2.3: Heat transfer mechanisms in a solid node.

The energy balance can be stated as:
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The mathematical representation of these mechanisms is

ρCV
∂θ

∂t
=

n∑

i=1

kiAi
∂θ

∂x
+ qplant + qsolar (2.1)

where ρ is the density (kg/m3), C the heat capacity (J/kgK), V the volume of the

node (m3), θ the temperature (K), t time (s), k the thermal conductivity (W/mK),
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A the area normal to heat flow (m2), x the distance between nodes (m) and q∗ is an

additional heat flux (W ) where * is the type of flux1. Each of the conductive flow

paths (i) is treated separately as there may be different material properties in each

direction. For heat flow in one dimension the total number of conductive flow paths

is two.

To facilitate numerical solution, equation 2.1 must be approximated. Rearranging

the equation and ignoring the additional heat fluxes, (q∗), gives the Fourier equation

in one dimension

∂θ

∂t
=

k

ρC

∂2θ

∂x2
. (2.2)

The partial derivatives of equation 2.2 are represented by a truncated Taylor series

for the current time row, t, and the future time row, t + 1. The expression for the

current time row is explicit and conditionally stable, whereas the expression for the

future time row is implicit and unconditionally stable. Combining these expressions

gives rise to the well known and unconditionally stable Crank-Nicolson difference

scheme [Kreyszig 1993], which is given by

(2 + 2r)θi,t+1 − r(θi+1,t+1 + θi−1,t+1) = (2− 2r)θi,t + r(θi+1,t + θi−1,t) (2.3)

where r = k
ρC · δt

(δx)2 , and δt is the size of the temporal discretisation and δx is the

size of the spatial discretisation. The terms on the left hand side correspond to the

future time row (t+ 1) and are all unknown, while the terms on the right hand side

correspond to the present time row (t) and are all known. Improved stability is gained

by multiplying through by ρC to give (after reintroducing plant and solar fluxes)

(
2ρC + 2kδt

(δx)2

)
θi,t+1 − kδt

(δx)2 (θi+1,t+1 + θi−1,t+1)− qplant,t+1δt
V − qsolar,t+1δt

V =
(

2ρC − 2kδt
(δx)2

)
θi,t + kδt

(δx)2 (θi+1,t + θi−1,t) +
qplant,tδt

V +
qsolar,tδt

V . (2.4)

This is the general form of the equation for a solid node, where V is the node volume.

1Note: qsolar is the fraction of the solar flux absorbed at this node, which is a function of the
solar transmissivity of the surrounding layers and any shading of the construction.

26



Energy balance for surface nodes

The available mechanisms for energy transfer at a surface node are as shown in

figure 2.4.

Conduction

Zone 1

radiation
Longwave

Radiation
from lights etc.

Shortwave
radiation

Plant

Convection

Figure 2.4: Energy transfer mechanisms in a surface node.

The energy balance is given by
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The mathematical representation of these mechanisms is given by

ρCV
∂θ

∂t
= kiAi

∂θ

∂x
+

m∑

s=1

qs,longwave + qconvection + qplant + qsolar (2.5)

where s is the receiving surface for longwave radiation. The longwave radiation and

convection terms are additional terms and are expressed as follows for node i. The
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longwave radiative flux for each of the m surfaces in longwave contact is given by

q = hrAi(θs − θi). (2.6)

Here the radiative heat transfer coefficient (W/m2K) has been linearised and is recal-

culated at each simulation time step. The convective heat flux is expressed likewise:

q = hcAi(θfluid − θi). (2.7)

The convective heat transfer coefficients (hc, W/m
2K) are either time invariant, time

varying derived from empirical relationships, or calculated during an explicit simula-

tion of the zone’s air movement.

Updating equation 2.4 to account for the additional flow paths gives rise to the

following expression

(
2ρC +

2kδt

(δx)2
+

m∑

s=1

hr,sAiδt

V
+
hcAiδt

V

)
θi,t+1 −

2kδt

(δx)2
θi+1,t+1−

qplant,t+1δt

V
− qsolar,t+1δt

V
−

m∑

s=1

hr,sAiδt

V
θs,t+1 −

hcAiδt

V
θfluid,t+1 =

(
2ρC − 2kδt

(δx)2
−

m∑

s=1

hr,sAiδt

V
− hcAiδt

V

)
θi,t +

2kδt

(δx)2
θi+1,t +

qplant,tδt

V
+
qsolar,tδt

V
+

m∑

s=1

hr,sAiδt

V
θs,t +

hcAiδt

V
θfluid,t (2.8)

This is the general form of the equation for a surface node, where V is the volume

of the solid section of the control volume2.

Energy balance for fluid nodes

The available mechanisms for energy transfer at a fluid node are as shown in figure 2.5.

2Note that this volume is A× δx
2

.
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Figure 2.5: Energy transfer mechanisms in a fluid node.

The energy balance can be described as:




Heat

stored

in volume




=




Net heat

convected

into volume




+




Net heat

advected

into volume




+




Heat

generated

in volume



.

The mathematical representation of these mechanisms is given by

ρCV
∂θ

∂t
=

m∑

s=1

qs,convection +
n∑

r=1

qadvection + qplant. (2.9)

The advection term is the only additional term and for each flow path maybe ex-

pressed as

q = ṁsrcfluidCfluid(θsrcfluid − θfluid). (2.10)

The mass flow rate (ṁsrcfluid, kg/s) of the source fluid is the rate of fluid entering

the fluid volume at a source temperature of θsrcfluid. Note that within a simulation

this parameter will be simultaneously available as the solved for variable of state of

another finite volume.
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Updating equation 2.8 to account for the additional flow paths gives rise to the

following difference equation

(
2ρC +

m∑

s=1

hc,sAsδt

V
+

n∑

r=1

ṁrCδt

V

)
θi,t+1−

qplant,t+1δt

V
−

m∑

s=1

hc,sAsδt

V
θs,t+1 −

n∑

r=1

ṁrCδt

V
θsrcfluid,t+1 =

(
2ρC −

m∑

s=1

hc,sAsδt

V
−

n∑

r=1

ṁrCδt

V

)
θi,t +

qplant,t+1δt

V
+

m∑

s=1

hc,sAsδt

V
θs,t +

n∑

r=1

ṁrCδt

V
θsrcfluid,t. (2.11)

This is the general form of the equation for a fluid node, where V is the volume of

the fluid contained in the current control volume.

Uncertainty considerations

The parameters in equations 2.4, 2.8 and 2.11 are uncertain. The uncertainties can

be attributed to several sources as summarised in table 2.7. In addition to these

sources, measurement errors will exist for all physical properties and the magnitude

of these uncertainties will vary throughout the design process as described earlier.

The effects of temperature and moisture content can be accounted for through more

detailed simulation, but the associated models include parameters which are them-

selves uncertain. Likewise, the uncertainty in the empirical relationships used for

the calculation of convective heat transfer coefficients can be reduced through more

detailed modelling. The build quality will affect the dimensions of the zones, lead-

ing to uncertainty in V and A, and the thicknesses of walls, in turn leading to the

Table 2.7: Uncertainty sources affecting building parameters.

Source Parameters affected

Temperature k, ρ, C
Moisture k, ρ, C
Material age k, ρ, C, hr
Dimensions V , A, δx
Empirical hc
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uncertainty in δx. Materials degrade with age introducing uncertainty as to the ap-

propriateness of initial properties for older buildings. Finally, the surface finishes will

affect the absorptivity and emissivity, and thus the radiative heat transfer coefficient.

The effect of these uncertainties is that the state variables are also uncertain and

thus information passed between domains will also be uncertain. In fact the only

parameter which is not uncertain is δt, the simulation time step as this is imposed on

the modelled domain.

2.2.2 Other domains

As described in section 2.1 an ESP-r model is composed of several domains other than

the thermal domain described above. It is unnecessary to describe the theoretical

basis of all of these domains. However, to demonstrate the general applicability of

the control volume approach the essence of the flow and CFD domains are elaborated.

The derived expressions are revisited during the application of the internal method

in chapter 5.

Flow modelling

The conservation equations formed in the flow domain are for the preservation of

mass. To enable this requires the representation of energy, mass and momentum

terms. In the network flow approach the mass and momentum terms are embodied

in empirical flow equations, while the energy term is passed from the thermal side.

The mass balance for a given volume may be stated as




Net mass

transferred

into volume




= 0.

The mass flow rate between two connected volumes is described by an empirical

relationship

ṁ = f(∆P ), (2.12)
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where ∆P is the prevailing pressure difference.

The exact realisation of this function depends on the connection type. Generally

the mass flow rate is a non-linear function of the pressure difference. For example, in

the case of a crack the function might correspond to a power law:

ṁ = ρκ(∆P )n, (2.13)

where ρ is the density and κ and n are empirical coefficients.

Uncertainty considerations

The main source of uncertainty in the zonal flow equations is in the specification of

appropriate empirical relationships and the required parameters, for each connection.

The uncertainties in these equations will then affect the predicted mass flow rates

between nodes, which will affect the advection terms in the building equation set.

CFD

In computational fluid dynamics there are several sets of inter-related conservation

equations for mass, momentum, energy balance. The general conservation equation

can be stated as:




Entity

contained

in volume




=




Net entity

diffused/

convected

into volume




+




Net entity

created

in volume




where the entities are: mass, momentum and energy. To represent the effects of

turbulence, it is usual practice to add additional equations relating to turbulence

intensity and its rate of dissipation. These equations can also be made to conform to

the above general form.

The discretisation method employed in ESP-r is the staggered grid approach. With

this approach four sets of control volumes are created: a mass balance set and three
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momentum balance sets (for the momentum equations in the x, y and z directions).

Each momentum control volume is centred on its respective boundary of the mass

control volume: the momentum control volumes in the i direction are offset from the

mass control volumes by 1/2 a cell in the positive x direction. The conservation equa-

tions are then applied to these sets of control volumes, as detailed elsewhere [Negrao

1995, Versteeg and Malalasekera 1995].

Uncertainty considerations

The uncertainty in the solution of a CFD domain is dominated by the definition of

the domain’s geometry and boundary conditions; a discretisation error exists but is

small compared to these two sources. Uncertainty in geometry affects the shape of

the domain and the location of any objects (desks, cabinets etc) within the domain

which will all affect the flow regime. Uncertainty in boundary conditions will likewise

affect the flow regime as was demonstrated in chapter 1.

2.2.3 Solution methods

The previous sections have described how the control volume technique can be applied

to different parts of a building. The derived equations must now to be arranged in a

format suitable for simultaneous solution.

Within ESP-r each technical domain (building, HVAC, electrical etc) employs a

solution method optimised for the specific domain equation types. For example, in the

case of zonal flow modelling the non-linear flow equations are solved by a corrector-

predictor iterative method. In the case of CFD, where the solution is complicated by

the interactions between the conservation equation sets, a more elaborate iterative

scheme is employed based on the SIMPLE-C algorithm [Versteeg and Malalasekera

1995].

Within ESP-r these solution methods are essentially embedded within a higher

level solver built to represent the building and its systems. The building domain

equation set is generated by repeated application of the node type models described

by equations 2.4, 2.8 and 2.11. This domain, along with its constituent domains, is

33



solved simultaneously at each time increment.

The matrix formulation of the system of conservation equations can be expressed

as [Clarke 2001]

A.θt+1 = B.θt + C = Z (2.14)

where:

A is the future time-row (t+ 1) coefficients of the nodal temperatures,

B is as A, but corresponds to the present time-row (t),

C is a vector of known boundary excitations (relating to present and future time-

rows),

θ is a vector of nodal temperatures.

The equations can now be solved directly. In the case of ESP-r a customised solution

method is employed due to the sparse nature of the coefficient matrices. Equation

sets are derived on a zonal basis: one for each surface and one for the fluid volume.

These equation sets are still expressed as described above, but solve more quickly

than the complete matrix representation.

Other solution mechanisms exist, for example, an LU decomposition of the matrix

A to improve the efficiency of the calculation procedure. The equations can also

be solved indirectly by an iterative procedure (e.g. the Gauss-Seidel method). The

choice of solution method is normally determined by efficiency and hence speed. How-

ever, when embedding uncertainty within the conservation equations other properties

become pertinent to achieving a solution. These are explored in chapter 3.

2.3 Impact of uncertainty

Uncertainty is most evident to practitioners when preparing the data used to describe

the system to be modelled. Of no less importance are the uncertainties implicit in the

mathematical models and boundary conditions being employed within the program.

These two aspects of uncertainty are now expanded to enable the characteristics of

an uncertainty assessment method to be elaborated.
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2.3.1 Data model

All data entered into a program is subject to uncertainty; the sources of these uncer-

tainties are elaborated and quantified in chapter 4. To allow the impact of uncertainty

to be assessed, a method must be provided whereby the practitioner can clearly de-

fine the anticipated variation in the input data. At a basic level a typical data item

will require a mean value and two additional data items to define this variation, for

example a minimum and maximum value or a probability distribution type and a

standard deviation. The effect of this could treble the size of the data model. There-

fore, significant alterations to existing data structures will be required to hold the

definition of uncertainties.

2.3.2 Conservation equations

The uncertainties in the input model directly affect the conservation equations and

thus the energy, mass, power, etc transfer and storage processes. However, many

transfer mechanisms are described by empirical relationships, for example the mass

flow rate equations in section 2.2.2, or convective heat transfer coefficients [ETSU

1987]. There will also be discretisation errors associated with the formulation of the

control volumes. These errors occur in the spatial and temporal domains and can be

minimised by the practitioner. In ESP-r this is achieved through an optimised node

placement facility and in the time domain via the user defined simulation time step.

2.3.3 Quantifying the effects

Quantifying the effects of uncertainty is a two stage process: the uncertainties have

to be defined and quantification methods employed. The former process involves data

manipulation and storage procedures to maintain the data model required for use in

the latter. Before this data model can be specified suitable uncertainty quantification

methods must be identified. The characteristics of suitable quantification methods

are:

1. the method should quantify the individual effect on predictions of each uncertain
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data item,

2. the method should be capable of assessing the degree of interaction between the

effects caused by multiple uncertainties,

3. the method should be able to quantify the overall effect of all uncertainties.

These three characteristics allow the program user to, in reverse order, state the

confidence in the predictions made by the simulation, identify which parameters have

synergistic effects and isolate individual parameters that contribute the most to the

overall uncertainty.

2.4 Summary

The ESP-r system employs the control volume conservation approach to model the

technical domains found in buildings. The data required by the system are directly

related to the physical processes being simulated and typically comprise geometry,

material and technical parameters. The building is typically divided into several

technical domains, each described by its own set of conservation equations. The

technical domains are then solved using co-operating solver algorithms.

Uncertainty impacts on all aspects of the simulation, from the input data through

to the solution methods. The magnitude of uncertainties varies through the design

process, generally reducing as the design progresses. To enable effective simulations

at early design stages requires uncertainty to be assessed.
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Chapter 3

Uncertainty quantification

techniques

Two approaches to uncertainty quantification are explored:

external and internal. Methods within each approach are

described.

The quantification of the error in experimental results has long been a standard

procedure: primarily to increase confidence in the reproducibility of the experimental

method and hence the results. These techniques were further refined [Box et al 1978]

to enable the quantification of those controllable aspects of an experiment that had

the largest effect on the results, e.g. to enable increased yields from a chemical

experiment. This refinement is known as sensitivity analysis. The techniques of

experimental analysis have been further refined in the latter half of the 20th century

and applied to computer experiments, or simulations [Saltelli et al 2000].

The major difference between physical and computer experiments is that all as-

pects of a computer experiment are controllable. Methods developed for physical

experiments, where the number of controllable parameters is small, are generally effi-

cient precisely because the number of uncertain parameters is small. When translat-

ing these methods to simulations, where every parameter is controllable, the required

computational effort is a function of the number of uncertain parameters. The exact
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relationship between computational effort and the number of uncertain parameters

depends on the analysis method as described below.

Approaching the problem from the opposite direction is the branch of mathematics

concerned with range arithmetic and self-validating methods [Stolfi and de Figueiredo

1997]. These theories are characterised by the fact that the uncertainty is embodied

in the mathematical representation of the entity and is therefore present throughout

the calculation [Neumaier 1990]. The impact of this is that a single simulation can

represent all possible outcomes of the uncertainties. These methods arose through

the use of finite precision computer arithmetic where inexact results are often encoun-

tered, e.g. the decimal representation of 1/3. The basic form of range arithmetic is

interval arithmetic, which in its generalised form is the well known, and well applied,

fuzzy arithmetic [Ross 1995].

This chapter describes and develops the two approaches to uncertainty quantifica-

tion: external and internal methods.

3.1 External methods

The essence of external methods is that the mathematics of the simulation are not

altered, only the describing model, initial conditions, boundary conditions and solu-

tion methods. This results in the simulation software being treated as a black box,

where different models are analysed and the differences in response examined.

The analogy with physical experiments is relevant as often the interactions within

an experiment are not known but a measurable effect occurs when the experiment is

started at a different location or temperature. Not knowing what is physically hap-

pening in the experiment is not a barrier to understanding the relationship between

the controllable aspects of the experiment and the result of the experiment.

With computer simulation and uncertainty analysis the aim of an external method

is to alter the input parameters and measure the effect this has on the outputs. The

simulation software treats each set of input parameters as a separate model. An

external agent has then to manage the subsequent analysis of each result set and
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infer the intra- and inter-set relationships.

External methods fall into two broad categories: local and global. Local methods

describe how the output of the model varies with respect to changes in individual

parameters, whereas global methods quantify the overall uncertainty with respect to

variations in all parameters.

All methods are based on statistical techniques. Therefore they have specific areas

of application and known weaknesses. It is within this framework that methods have

been characterised and selected for their robustness and ability to quantify effects.

Local methods

Differential sensitivity analysis is perhaps the best known of the local methods and is

generally robust. The method has been described as the backbone of all sensitivity

analysis methods [Hamby 1994] and calculates the effect of uncertainties in each pa-

rameter independently. To calculate the effect of uncertainties an initial simulation

is undertaken. For each uncertain parameter a simulation is then performed with the

uncertain parameter altered to its extreme value, say +3σ, and an optional simula-

tion with the parameter at its other extreme, −3σ. The effect of the uncertainty is

calculated by comparing the results of these simulations against those of the initial

simulation. Its main advantages are the ease of application and results interpretation

as the differences are entirely due to the single parameter that has been perturbed.

Its main weakness is that the effects of uncertainties are assumed to be independent

of all other parameters. Therefore, for the effects of uncertainties to be combined

superposition has to be assumed to hold. This is not always the case in building

physics. For example, assume the infiltration rate and the heat gain from equipment

are both uncertain in a room. The effect of a 50% increase in air change rate on peak

air temperature is a reduction of 1.85◦C, the effect of a 50% increase in heat gain

from the equipment is an increase in peak air temperature of 1.14◦C. If superposition

holds then the net effect of simultaneously making these changes would be a reduction

of 0.71◦C in the peak air temperature; in fact, the simulation shows that the effect

is a larger reduction, 0.96◦C. Generally superposition will not hold when parameters
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are multiplied in an equation, e.g. for surface convective flux q = hcA(θa− θs). If the

convection coefficient and the surface area are uncertain then

∆qA = hc(A+ δA)(θa − θs)− hcA(θa − θs)

= hcδA(θa − θs),

∆qhc = (hc + δhc)A(θa − θs)− hcA(θa − θs)

= δhcA(θa − θs),

∆qA,hc = (hc + δhc)(A+ δA)(θa − θs)− hcA(θa − θs)

= [hcA+ δhcA+ hcδA+ δhcδA](θa − θs)− hcA(θa − θs)

= ∆qA + ∆qhc + δhcδA(θa − θs).

If superposition holds then the combined effect of the uncertainty in area and convec-

tion coefficient would have been ∆qA + ∆qhc. The additional term δhcδA(θa − θs) is

a second order effect and will therefore be smaller in magnitude than the first order

terms ∆qA and ∆qhc. However, the δhcδA(θa− θs) term will have a greater effect for

larger uncertainties, typically encountered at the early design stage.

To overcome the weaknesses of the differential analysis method the factorial method

is sometimes used because it includes the interactions between parameters [Box et al

1978]. The method works by altering all the uncertain parameters between simula-

tions so that a simulation is undertaken for all possible combinations of parameter

values (e.g. +3σ and −3σ). The changes are predetermined and as a result the ef-

fects of uncertainties can be quantified. This method is efficient for small numbers

of uncertain parameters. However, the number of simulations grows factorially with

the number of uncertain parameters (N): e.g. 2N when each parameter is simulated

at a lower and upper value only; if the simulation is undertaken for mean parameter

values as well the number of runs would be 3N .

There are other local methods which were derived from the above methods, e.g.

Cotter’s method and the method of Morris [Saltelli et al 2000]. Cotter’s method re-

quires 2N+2 simulations: an initial simulation is run with all the parameters at their

lower value, then each parameter in turn is altered to its upper value while the other
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parameters remain at their lower values for the next k simulations. This process is

repeated with all the parameters set to their upper values (for a simulation) and then

each parameter is altered to its low value (for the remaining k simulations), again one

at a time. Morris’s method is similar in that only one parameter is changed between

simulations: random starting values are chosen within the defined uncertainty distri-

butions and each of the parameters is increased in value by a random amount between

simulations, this process is repeated several times from different starting values and

with new perturbations each time. These methods, however, are more appropriate

to the identification of critical parameters rather than the quantification of the effect

on the output. Furthermore, if Cotter’s method is incorrectly applied it can fail to

find all of the critical parameters [Saltelli et al 2000]. This is indicative of a general

difficulty encountered with statistically based methods: the correct method has to be

selected and appropriately applied. The selection of a method is therefore a delicate

step.

The differential and factorial methods are deemed suitable for use in building

simulation due to their robustness and ability to accurately quantify the uncertainty

in the model output. Both methods require multiple simulations and in the case of

factorial analysis the required computational effort can be restrictive. However, as

will be shown in sections 3.1.1 and 3.1.2 both methods can be effectively applied in

building simulation applications.

Global methods

Monte Carlo analysis is the umbrella under which all global methods sit, the differ-

ence between different applications being in the sampling and analysis of the results.

The basic premise is that all uncertain parameters are perturbed by random amounts

between simulations. Typically 80 simulations are undertaken (the number of simu-

lations required is independent of the number of uncertain parameters) and the mean

performance and standard deviation can be calculated by analysing all the results

together. Various sampling techniques exist, e.g. stratified and Latin hypercube, to

ensure that the full range of a parameter’s distribution is used. However, the use of
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random sampling1 is advocated as it produces unbiased estimates of the mean and

variance, and requires a straightforward analysis to estimate the overall uncertainty

in predictions. This is an important consideration as it allows the statistical compar-

ison of two simulations via a significance test. Monte Carlo analysis is described in

detail in section 3.1.3.

3.1.1 Differential analysis

The differential method is based on calculating the effect of changing each uncertain

parameter in isolation. The method works by altering a model parameter from its

initial value to orthogonal points surrounding the initial value one at a time, while

all other parameters remain at their initial values. This is displayed graphically in

figure 3.1. The parameter values, x1+, x1−, x2+ and x2− are shown on the x1 and x2

axes. The origin of the axes is the datum or normal value for these parameters. The

uncertain parameters can take any value along their respective axis. The output is

calculated for the datum response RDatum and, in this example, the two parameters

are adjusted one at a time to produce a further four outputs: Rx1+, Rx1−, Rx2+

and Rx2−. In this case both parameters x1 and x2 have been varied by one unit

above and below their normal values. The response of the system can be calculated

by examining the difference between the datum response and each of the four outer

responses in turn. In building modelling an example system response could be energy

demand while the two uncertain parameters could be building occupancy and the

control temperature set point. The resulting performance statistics are thus a direct

measurement of the effect of altering the chosen parameter in isolation.

1Technically pseudo-random when computer-based.
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Figure 3.1: Test points and responses of a differential analysis for 2 parameters.

In building applications the system response is generally time based. This can

be demonstrated graphically by working in two variables, time and a parameter x1,

although in practical applications many more variables would be included as the

method can be extended to any number of variables [Tomovic 1963].

The model is defined as

f(t, x1) = Z(t)

and produces a response at the initial value of x1 as displayed in figure 3.2(a). This

response is referred to as the datum response. To measure the effect on the solution

of an uncertainty, e.g. at x1 + δx1, referred to as the on value of parameter x1, the

model is also solved for (see figure 3.2(b))

f(t, x1 + δx1) = Zδx1(t).

This gives another set of points in the solution space. To calculate the magnitude of
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Figure 3.2: Response of function f(t, x1) = Z(t).

the effect that the uncertainty in x1 has had on the solution, the difference between

the on solution curve and the datum solution curve can be calculated. If more than

one parameter is to be analysed and the effects compared then the rate of change

between the two solutions is calculated:

g(t, x1) =
f(t, x1 + δx1)− f(t, x1)

δx1
. (3.1)

If δx1 tends to zero then g(t, x1) = f ′(t, x1), i.e. the first differential of our model.

This approach assumes that the response to the parameter alteration is linear as

displayed in figure 3.3. Note that the effect of varying x1 varies with time and that

the two curves in figure 3.2 are sections through this surface at specific values of x1.

The curves displayed in figure 3.2 are typical of the temperature in a building

when uncertainties in thermal capacity are present. Generally there is more than one

variable thus equation 3.1 would represent a partial differential with respect to x1;

the total differential being represented by the sum of the partial derivatives, assuming

that the fundamental theorem of superposition holds.
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Figure 3.3: Function f(t, x1, x2) = Z(t) varying in t and x1.

Quantifying the first order effect

The classic method for deriving the first derivative of a function as described above

requires only N + 1 simulations to measure their effects, where N is the number

of uncertain parameters. The first simulation would be carried out at the model’s

initial parameter values to create a datum response and then all further simulations

would alter one parameter at a time to their on value. By calculating only the mean

response and the response at a parameter’s on value it is not possible to test the

linearity assumption; this would require at least three responses.

The method for achieving a linearity test is by taking the differential as a central

difference, thus running all the simulations parameters at their on and off values

(i.e. xi − δxi). Three system responses have now been generated which can be used

for each parameter i: Z(t) (datum), Z(t)i+ (response with parameter xi on) and
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Figure 3.4: Response types due to a perturbation in x

Z(t)i−(response with parameter xi off). If the response is linear then at all times

Z(t) =
Z(t)i+ + Z(t)i−

2
. (3.2)

The difference between the two average responses gives a measure of the non-linearity,

see figure 3.4. A typical non-linear response can be observed with uncertainties in

air change rates. Consider the peak air temperatures in an office with mechanically

supplied fresh air. The model has been simulated for five constant volume supply rate

scenarios: 1, 2, 3, 4 and 5 air changes per hour. As can be seen in figure 3.5 the effect

of increasing the fresh air supply rate has a decreasing benefit. Using equation 3.2 to

test for linearity gives:

θ2 = 36.3 6= θ1 − θ3

2
= 36.9

θ3 = 34.4 6= θ1 − θ3

2
= 34.7

θ4 = 33.1 6= θ1 − θ3

2
= 33.3.

(3.3)
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Figure 3.5: Peak air temperatures for varying fresh air change rates.

An estimation of the second order effect (βi,i) can be found by using a least squares

estimation, thus fitting the model:

Z(t)i = β(t)0 + β(t)ixi + β(t)i,ix
2
i + ε(t). (3.4)

The above least squares estimation of the quadratic effect is rarely calculated. This

is partially due to any generated equation having validity only in the area modelled

for the individual parameters.

However, a dimensionless uncertainty coefficient can be calculated, so that the

quantified first order effects can be compared directly. If it is assumed that the effect

is linear then the uncertainty coefficient can be defined as [Hamby 1994]

φi(t) =
%δZ(t)

%δxi
=

f(t,xi+δxi)−f(t,xi)
f(t,xi)

δxi
xi

. (3.5)

However, in building applications this approach can fail due to responses being zero in

some cases. For example, if the measured system response is plant flux and the datum

value at a particular time is 0W and for parameter x2+ is 10W then the percentage

difference cannot be calculated, rendering the uncertainty coefficient meaningless. A

more pragmatic approach is suggested whereby the range in the calculated response
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of both parameter states is ranked, i.e. the response is not normalised:

Φi(t) = max[Z(t), Zi+(t), Zi−(t)]−min[Z(t), Zi+(t), Zi−(t)]. (3.6)

By this method uncertainties in all aspects of the model can be compared directly,

e.g. climate parameters and algorithm choice.

To quantify uncertainties which produce a positive and negative response at dif-

ferent times (e.g. the response for thermal capacity in figure 3.2), it is necessary

to separately examine the average positive and negative responses and the average

absolute values of the positive and negative responses:

Φi,ave+ =

∑t=T
1 Zi+(t)− Z(t)

T
(3.7)

Φi,|ave+| =

∑t=T
1 |Zi+(t)− Z(t)|

T
(3.8)

Φi,ave− =

∑t=T
1 Z(t)− Z(t)i−

T
(3.9)

Φi,|ave−| =

∑t=T
1 |Z(t)− Z(t)i−|

T
. (3.10)

If the positive average value is the same as the positive average absolute value, and

likewise the negative values, then the system has a constant response to the uncer-

tainty (i.e. always the same sign, positive or negative, rather than a constant value).

The difference between the positive and negative values is a quantification of the

average non-linearity.

Addition of effects

If the effects measured in the analysis are due to independent uncertainties (often not

the case in building simulation), i.e. superposition holds, then the variances of the

effects can be combined [Berry and Lindgren 1990].

The statistical basis for combining the individual effects is that, for the sum of

independent variables, the variance of the sum is the sum of the individual vari-

ances [Kreyszig 1993]:

s2
ΣZ = s2

Z1
+ ...+ s2

ZN
. (3.11)
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Furthermore, for a linear transformation of the form Z = a + bX, the standard

deviations in X and Z will be related by the factor b:

sZ = |b|sX . (3.12)

If the uncertain parameter is perturbed by a known multiple of its standard deviation

then the measured response will represent the same multiple of the output standard

deviation:

ksZ = |b|ksX . (3.13)

The factor b is an effect of the system being modelled and, assuming a linear response,

is constant.

It follows that the first step in a differential analysis is to define the magnitude of

all the variations as the same multiple, k, of standard deviations from the mean. For

example, if k = 3 then the value δx1 = 3s1 would represent a bound encompassing

99.9% of all possible values of x1. Once the various result sets have been generated

then the standard deviations can be combined [Lomas and Eppel 1992]:

δZtot =

√√√√
N∑

i=1

(Z − Zi)2. (3.14)

If the relationship between the input uncertainties and the measured response is

assumed (or has been shown) to be linear then, if the uncertain parameters are varied

by a single standard deviation then the measured response will be equal to a single

standard deviation. It follows that

ksΣZ = k
√
s2
Z1

+ ...+ s2
ZN

=
√

(ksZ1)2 + ...+ (ksZN )2. (3.15)

It has been demonstrated (Section 3.1) that the effects of uncertainties in building

simulation are not independent (i.e. superposition does not hold). Despite this

equation 3.15 will produce an adequate estimate of the overall uncertainty in the
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output given relatively small uncertainties [Lomas and Eppel 1992].

3.1.2 Factorial analysis

One of the restrictions of differential analysis is that parameter interactions are not

accounted for, and this deficiency can lead to an incorrect analysis of a model (e.g.

by not observing a synergistic effect). One way of removing this restriction is through

the use of factorial designs where all possible combinations are investigated [Box et

al 1978, Gardiner and Gettinby 1998].

Typically all variables to be analysed are tested at two values only: the on (x+δx)

and off (x− δx) levels. The concept can be visualised for a two parameter case as in

figure 3.6 (cf. figure 3.1). The two parameters x1 and x2 are tested at all four possible

states, producing four system responses. Note that no datum response (as was the

case for differential analysis) is produced and that responses are only calculated for

parameters at their perturbed values. Two measures of the effect of each individual

parameter uncertainty can be found. For parameter x1, see figure 3.7(a), these are:

(Zx1+,x2+ − Zx1−,x2+)

and

(Zx1+,x2− − Zx1−,x2−).

Datum

X2

X1-,X2+ X1+,X2+

X1+,X2-X1-,X2-
X1

Figure 3.6: Test points for factorial design for 2 parameters.
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X1

X2

(a) First order effect of x1.

X1

X2

(b) Second order effect of x1 and x2.

Figure 3.7: Measures of effect of uncertainties.

The average of these gives the overall measure of the effect,

Zx1 =
1

2
[(Zx1+,x2+ − Zx1−,x2+) + (Zx1+,x2− − Zx1−,x2−)] . (3.16)

Furthermore, as can be seen in figure 3.7(b), there are two measures of the two

parameter interaction (the second order effect). Finally, there is a single measure of

the mean effect, the average of the four responses. Comparing this with the differential

method, which would have required five runs to quantify the first order effects only,

the advantage of this method becomes apparent. However, the number of required

simulations (= 2N where N is the number of parameters to be analysed) soon becomes

overwhelming.

Figure 3.8: Test points for factorial design for 3 parameters.

Efficient methods have been formulated to organise the runs required to achieve

a full analysis. Using a three parameter case as an example the design detailed in

table 3.1 can be generated (23 = 8 runs required). The graphical representation
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of the modelled cases is depicted in figure 3.8, where the filled in circles represent

the simulated models. For each run in table 3.1 the required state of each of the

three variables is displayed, e.g. for run 1 the experiment is conducted with all

parameters at their low or off settings. These parameters could, for example, represent

infiltration rate, heater capacity and casual gains, allowing the examination of the

effect of individual uncertainties and any possible interactions.

Table 3.1: Factorial design for three variables.

Run Uncertain
Parameter
x1 x2 x3

1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

Thus the responses calculated would represent, for the first run, the response of

the building to low infiltration rate, heater capacity and casual gains. In the second

run the model’s response would be for high infiltration rate and low heater capacity

and casual gains.

The analysis procedure for the results of this study is as follows [Box et al 1978].

1. Enter the result of each run to the design table, as shown in table 3.2.

2. The average result is Z̄ =
∑R
i=1 Zi
R , where in this example R = 8.

3. First order effects are given by associating the sign in the individual parameter

column with that run’s result, totalling the resulting figures, then dividing by

R/2. Hence, for parameter x1, the first order (or main) effect is

Φ1 =
(Z2 + Z4 + Z6 + Z8)− (Z1 + Z3 + Z5 + Z7)

4
.

4. Second order effects, e.g. the net effect of varying casual gains and infiltration

rate, are given by associating the sign in the interaction parameter column with
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Table 3.2: Factorial design for three variables, with interactions and results.

Run Parameter Interactions System
x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3 response

1 - - - + + + - Z1

2 + - - - - + + Z2

3 - + - - + - + Z3

4 + + - + - - - Z4

5 - - + + - - + Z5

6 + - + - + - - Z6

7 - + + - - + - Z7

8 + + + + + + + Z8

that run’s result, totalling the resulting figures, then dividing by R/2 as before.

The signs in the interaction column are found by multiplying the signs of the

individual parameters constituting the interaction.

Clearly factorial designs can become impractical, with R the number of runs re-

quired being associated with N parameters via the relationship:

R = 2N . (3.17)

For example, if N = 5 then the required number of runs would be 32. The results

from these runs would give a measure of:

• the average response

• the 5 first order effects,

• the 10 second order effects (the effect of two parameter interactions),

• the 10 third order effects (the effect of three parameter interactions),

• the 5 fourth order effects (the effect of four parameter interactions),

• the fifth order effect.

The number of interactions follows from a combinatorial analysis of the parameters,

five in this case: for example, there are ten possible combinations whereby three
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parameters can be selected (and hence interact) and only one combination whereby

all parameters can be selected.

The interaction effects (second order and above) are generally weaker than the

effects of lower orders. Thus, where only first and second order effects are required,

only a portion of the factorial design needs to be executed, the resulting designs are

known as fractional factorial designs [Box et al 1978].

Fractional Factorial Designs

This is a method by which the total number of runs R can be decreased without

adversely affecting the results of the analysis. Figure 3.9 shows that for a three pa-

rameter design only four simulations, represented by the filled in circles, are required.

Figure 3.9: Test points for half fraction factorial design for 3 parameters.

To illustrate this, table 3.3 has been generated for four uncertain parameters. The

parameter states for variable x4 have been generated by associating, or aliasing, x4

with the x1x2x3 interaction. Aliasing is the mechanism whereby the required states

of the parameter x4 are generated for each of the simulations [Box et al 1978]. In

this example the full factorial design for three parameters is created, the aliasing

mechanism then sets the fourth parameter to the product of the other parameter

perturbations for each run. For example, in run 1 the perturbation for x4 will be

−1×−1×−1× = −1, for run 2 +1×−1×−1× = +1, and so on. This generates a

list of the required states of x4 for each of the R simulations as displayed in table 3.3.

The effect of this aliasing is displayed in table 3.4 where it can be seen that the
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Table 3.3: Fractional factorial design for four variables.

Run Parameter
x1 x2 x3 x4

1 - - - -
2 + - - +
3 - + - +
4 + + - -
5 - - + +
6 + - + -
7 - + + -
8 + + + +

estimation2 of the second order effects will be equal for interactions: x1x4 and x2x3,

x1x3 and x2x4, and x1x2 and x3x4. For example for x1x4 and x2x3:

Φ1,4 =
Z1 + Z2 − Z3 − Z4 − Z5 − Z6 + Z7 + Z8

4

Φ2,3 =
Z1 + Z2 − Z3 − Z4 − Z5 − Z6 + Z7 + Z8

4

so that

Φ1,4 = Φ2,3. (3.18)

Furthermore, the first order effects will have the same value as a corresponding

third order effect, e.g. Φ1,2,3 = Φ4, Φ1,2,4 = Φ3. These results are not surprising

when the method to design the parameter states is recalled. This effect is termed

confounding as the estimates generated are the sum of the individual effects, thus if

third order effects are assumed to be insignificant then the estimate of the effect of

uncertainty in the individual variables will be good. In this case the second order esti-

mates are confounded with each other. Therefore, further runs (e.g. those remaining

to complete the full factorial design) would be required to gain accurate estimates of

their effects.

In general if a fractional factorial design is employed there will be 2p − 1 aliases

for each effect, where 1
2p is the level of fractionation [Gardiner and Gettinby 1998].

2As only a fraction of the full factorial design is being used any results generated will only be
estimates of the effects.
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Table 3.4: Fractional factorial design for four variables, with interactions and results.

Parameter Interaction
Run x1 x2 x3 x4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4 x1x2x3 etc Result

1 - - - - + + + + + + - ... Z1

2 + - - + - - + + - - + ... Z2

3 - + - + - + - - + - + ... Z3

4 + + - - + - - - - + - ... Z4

5 - - + + + - - - - + + ... Z5

6 + - + - - + - - + - - ... Z6

7 - + + - - - + + - - - ... Z7

8 + + + + + + + + + + + ... Z8

The example in table 3.4 is a half fraction, p = 1, indicating that only one alias was

required to create the design. This alias is also called the defining contrast of the

design. The value of p is thus the number of defining contrasts used in creating the

design, e.g. in the example in table 3.4 there was one defining contrast, x4 = x1x2x3.

To create a quarter fraction design would therefore require two defining contrasts. As

higher degrees of fractionation are used the aliasing between effects will become more

complex.

The levels at which aliasing occurs affects the efficacy of this technique. For exam-

ple, in table 3.4 the second order effects are confounded with each other. The nature

of this confounding is the sum of the individual effects; thus if the effect of the x1x4

interaction is +2 and the effect of x2x3 is -2 then the confounded effect would be zero

and, as such, the significance of these interactions is not quantified. For example the

uncertain parameters could represent: conductivity, thickness, specific heat capacity

and density of a material. In this design, the effect of changing conductivity and den-

sity (x1x4), and thickness and specific heat capacity (x2x3) would be confounded and

hence it would not be possible to measure the effect of the second order interaction.

The term design resolution is used to describe at what levels confounding occurs, i.e.

to what level of interaction the effects will be quantified; in the present example the

resolution is IV.

The confoundings encountered for the most common resolutions3 are [Box et al

1978]:

3The design resolution is always given in Roman numerals.
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III First order effects are confounded with second order effects, but not with each

other.

IV Second order effects are confounded with each other, but first order effects are

not confounded with each other or with second order effects.

V First and Second order effects are not confounded with each other, but second

order effects are confounded with third order effects.

For building simulation, if only the main effects of the uncertainties were to be cal-

culated, then a fractional design of resolution at least III and preferably IV would

be required. Two parameter interactions are common in building simulation (see

section 6.4). Therefore a design of resolution V would be the most suitable for the

majority of building simulation studies. Unfortunately, there does not exist a formula

relating the design resolution for the N uncertain variables at a factorisation p [Gar-

diner and Gettinby 1998, Grove and Davis 1992]. Designs for given resolutions and

number of parameters are available in the literature [Box et al 1978].

Finally, the above description of the factorial and fractional factorial method

can be extended into the time domain in an analogous manner to the differential

method 3.1.1. This will allow an examination of how the effects change over time, an

aspect of building simulation which was described in section 3.1.1.

3.1.3 Monte Carlo analysis

The previous techniques have relied on a structured approach generating limits on the

output by combining and analysing the differences between results sets with known

input parameters. The Monte Carlo technique only requires that the model inputs

are described by a probability distribution.

The method proceeds by randomly generating perturbed models which lie within

the distributions defined for the uncertain parameters, i.e. the parameter k is no

longer constant. For the previous methods the perturbed models were generated by

altering the datum model to specific points on the uncertain parameters’ distributions,

e.g. three standard deviations (see sections 3.1.1 and 3.1.2). For Monte-Carlo analysis
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Figure 3.10: Confidence interval on normalised standard deviation

the perturbed models are randomly created by using the probability distributions of

the uncertain parameters. This is a subtle difference but more accurately generates a

probability distribution for the overall system performance as combinations of extreme

responses are by definition unlikely and interactions between parameters are fully

accounted for.

The technique relies upon the central limit theorem to estimate the distribution of

the predictions. Using the same model as before, many simulations are run at various

values of x1 through xN (all variables are varied at the same time). Once a sufficient

number of simulations have been run, the resulting performance will exhibit a nor-

mal distribution, i.e. the central limit theorem, equation 3.19 holds. This theorem

states that the cumulative total of many variables, regardless of their individual dis-

tributions, will be characterised by a normal distribution. This is a generalisation of

the DeMoivre-Laplace approximation [Kreyszig 1993] (that the cumulative binomial

distribution could be represented by a normal distribution).

lim
n→∞

P

(
X̄n − µ
σ/
√
n
≤ z
)

= Φ(z) =
1√
2π

∫ z

−∞
e−u

2/2 du (3.19)

where X̄n is the mean of the n measurements X. In other words, the probability that

the mean of the measurements standardised by the population mean and variance is

less than or equal to z is equal to the integral. Tabulated values of the integral are

widely published [Kreyszig 1993].
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The method usually requires 60 – 80 simulations regardless of the number of in-

put parameters [Lomas and Eppel 1992]. Thus it is well suited for use in building

simulation. Figure 3.10 shows the normalised confidence in the estimation of the

standard deviation against the number simulations used to generate the calculation

of the standard deviation, it can be seen that after 60 simulations the increase in con-

fidence due to extra simulations is marginal. Also, the restrictions of the differential

method do not apply as interactions are fully accounted for. To analyse the results

of the simulations, the arithmetic mean and standard deviation can be calculated at

each time-step:

Z̄ =

∑R
i=1 Zi
R

(3.20)

s =

√√√√ 1

R− 1

(
R∑

i=1

(Zi − Z̄)2

)
. (3.21)

A probability curve of an event occurring can now be created (for example, the

probability of a building overheating in summer can be quantified). Furthermore, the

comparison of different designs can be compared statistically to test the significance

of a design alteration. To date this test has been omitted from the design process

when simulation has been employed.

Significance testing

Currently users of building simulation use the terms ‘significance’ and ‘insignificance’

informally when describing the difference that a design change makes to the building’s

performance. With the ability to quantify the overall uncertainty in the output (via a

Monte Carlo analysis), the significance of a design change can be formally quantified

using a standard test [Gardiner and Gettinby 1998]. This statistical approach enables

the practitioner to differentiate between an apparently significant difference and a

truly significant one.

For a statistical test a hypothesis is required, for example x1 = x2. The statistical

test is then performed to discover whether the hypothesis is true or false.

The hypothesis is referred to as the null hypothesis. This gives rise to a counter
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assumption or alternate hypothesis which is often easier to test. For example if the

hypothesis is x1 = x2 then alternatives would be:

x1 > x2 (3.22)

x1 < x2 (3.23)

x1 6= x2 (3.24)

The statistical test requires a significance level. The significance level determines

the probability of coming to the wrong conclusion. For example, if the significance

level is 5% then one in twenty tests would be rejected even though it was true. Clearly,

the lower the significance level the lower the risk of making the wrong decision.

Various statistical tests exist depending upon the information available and what

is to be tested [Kreyszig 1993]. In the case of comparing two means of normal distri-

butions (as is the case with results of a Monte Carlo analysis) the following formula

is used:

t0 =
√
R
µx − µy√
s2
x + s2

y

, (3.25)

where t0 is the test statistic and provided that there were R simulations for each of

the two Monte Carlo analyses (x and y). The critical value for this test is read from a

table of the t-distribution for R degrees of freedom at the required significance level.

For example, if the annual energy consumption of two designs is to be compared

the null hypothesis would be that the energy consumptions are equal. The alternative

is the energy consumptions are not equal. Thus, if t0 is greater than the critical value

then the alternative hypothesis is true and the energy consumptions are different.

Non-random sampling

Various alternative sampling procedures have been developed for Monte Carlo anal-

yses [Saltelli et al 2000]. Briefly:

Stratified sampling requires the subdivision of the probability distribution of the

input factors. Samples are drawn from each stratum of the distribution thus
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guaranteeing coverage of the whole distribution. However, the analysis is com-

plicated by requiring weighting of the samples in the calculation of mean and

variance.

Latin hypercube sampling is a particular case of stratified sampling where each

stratum has equal probability, thus gaining the benefits of stratified sampling

without the complications of the analysis. However, the estimated variance has

been shown to be biased.

Quasi-random sampling uses a pre-calculated sequence to determine the changes

to be made to the input model. Some of these sequences are more effective than

others but have the aim of increasing the convergence rate of the Monte Carlo

simulations.

However, only random sampling produces unbiased estimates of the mean and stan-

dard deviation.

3.1.4 Summary

External methods were originally employed to assess the effects of uncertainties of

the few controllable parameters on the outcome of an experiment. These techniques

can be applied to computer experiments or simulations and their advantages and dis-

advantages are summarised in table 3.5. When employing these methods in practice

problems of scale and data storage/ retrieval become major issues. The application

of these methods is presented in Chapter 5.

Method Advantages Disadvantages

Differential Easy to implement and under-
stand results

Only measures main effects

Factorial Measures main effects and inter-
actions

Number of simulations required
for large number of uncertain pa-
rameters

Monte Carlo Required number of simulations
independent of number of uncer-
tain parameters

Only measures overall uncer-
tainty

Table 3.5: Advantages and disadvantages of external methods
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3.2 Internal methods

The previous section considered methods of assessing the effects of uncertainty from

the outside of the system. However, the treatment of errors in experiments is always

taught using a few basic arithmetical relationships whereby an upper bound on the

effect of measurement accuracy can be quantified on the result of an experiment. This

is the starting point for this section where arithmetical techniques are reviewed.

The motivation for this analysis is that building simulation uses a deterministic

approach to provide a solution to the governing conservation equations, as described

in chapter 2. If arithmetical methods can be included in the equation-sets themselves

then the uncertainty can be fully quantified during a simulation, negating the re-

quirement for multiple simulations (as the effects of uncertainty will be known at all

stages of the calculation process, no matter how complex).

3.2.1 Basic treatment

The treatment of errors in simple equations is straightforward and is treated in many

texts, e.g. [Kreyszig 1993]. Initially two rules must be formulated which enable the

bounding of subsequent operations. The value of a number is approximated by a and

is represented by the sum of its true value ã and error ε:

a = ã+ ε. (3.26)

The error term has magnitude defined as |ε| ≤ β.

Error propagation

The error bound (β) can be estimated by the following methods. Consider two

approximately known numbers:

x = x̃+ εx; |εx| ≤ βx

y = ỹ + εy; |εy| ≤ βy (3.27)
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Addition and subtraction of x and y behave in a similar manner; subtraction is

expanded here:

|ε(x−y)| = |x− y − (x̃− ỹ)|

= |x− x̃− (y − ỹ)|

= |εx − εy|

≤ |εx|+ |εy|

≤ βx + βy. (3.28)

Thus the error in the operation is less than or equal to the sum of the original errors.

Multiplication and division likewise behave in a similar manner. However a new

term, the relative error, εr, is defined as

εr =
ε

a
=
a− ã
a

; |εr| ≤ βr. (3.29)

When multiplying two numbers x and y as defined above:

|ε(xy)| = |x · y − (x̃ · ỹ)|

= |x · y − ((x− εx) · (y − εy))|

= |yεx + xεy − εxεy|

' |yεx + xεy|

≡ |εr| = |yεx + xεy
xy

|

≤ |εrx|+ |εry|

≤ βrx + βry. (3.30)

Thus the error in the operation is less than or equal to the sum of the original relative

errors.

This is a crude but effective method of analysing the effect of uncertainties in data

and can be effectively employed in algorithm design. Applying these rules to a simple
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linear system the error in the result becomes

|ε| ≤ (βrm + βrx) · (mx) + βc. (3.31)

As can be seen any overestimation in the relative error in the calculation of the

product is scaled by the product itself before being added to the error in the constant

term.

The main limitations with this method are that it only approximates the effect

of the uncertainties (by overestimating the maximum uncertainty) and that every

calculation has to be analysed individually and that relationships between parameters

are ignored thus leading to overestimation. However, alternative methods have been

developed and are now discussed.

3.2.2 Range arithmetic overview

Instead of categorising the error as an inequality, this information can be used di-

rectly, by range arithmetic methods, within the simulation calculations. All of the

methods introduced and subsequently developed in this section are based on interval

arithmetic [Neumaier 1990], which in its generalised form is known as fuzzy arith-

metic.

The need for a mathematical representation of the inherent uncertainty in infor-

mation has been addressed for about 40 years. This approach has necessitated the

alteration of the basic arithmetical operations. A clearly defined branch of math-

ematics has resulted, which can deal with the calculation of equations where the

parameters are not represented by a single number but rather a range of numbers.

By approaching the problem of solving uncertain systems in such a fashion, the

full range of possibilities is being generated at each stage of the solution process and

thus none of the information regarding the range of the uncertain information is lost.

By the late 1970’s the limitations of interval arithmetic were well documented. The

main limitation, identified at this time, was that the assumed probability distribution

of the interval is even i.e. all possible values in the range are equally possible. The
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effect of this is that the resulting predictions were generally over pessimistic about the

size of the solution interval. This problem has been addressed, and the generalised

form of interval arithmetic, allowing ranges to be described by a membership function,

was created: fuzzy arithmetic.

Another limitation of interval arithmetic is that relationships between parameters

are ignored. This is of particular importance in building simulation applications as

will be demonstrated.

Of course any implementation of such fundamental alterations to the arithmetical

operations requires significant changes to the calculation procedures employed in a

deterministic simulation tool, as every single operation has to be replaced by an

alternative representation that embodies the range arithmetic constructs.

3.2.3 Interval arithmetic

This method relies on the use of interval numbers which are defined as a range in the

set of real numbers (e.g. π could be represented as 3 ≤ π ≤ 4 or [3, 4]), where each

value of the number has equally probability between the limits of the range. The

underlying arithmetical operations have to be redefined.

Interval arithmetic applied to systems of equations is ideally suited for uncertainty

analysis problems:

“If x is a vector of approximate data and ∆x is a vector containing the

bounds for the error in the components of x, one is often interested in the

influence of these errors on the result Z(x) of a computational process;

i.e. one is interested to find a vector ∆Z such that, for given ∆x,

|Z(x̃)− Z(x)| ≤ ∆Z for |x̃− x| ≤ ∆x.

Sometimes the dependence of ∆Z on ∆x is also sought.” [Neumaier 1990]

Interval Numbers

An interval number x is defined as a range of values, all equally probable, with a

66



lower bound defined as x and its upper bound defined as x. A specific element of x

is defined as x̃, or mathematically,

x ≡ [x, x] := {x̃ ∈ R|x ≤ x̃ ≤ x}. (3.32)

Interval vectors and arrays are defined likewise, with each element consisting of a

lower and upper bound. The comparison and inclusion ranges (≤, <,≥, >,⊆,⊇) are

used componentwise.

Interval Computations

Binary functions

The binary operators, ◦ := {+,−, ∗, /} can be applied to intervals where the largest

interval resulting from the binary operation is to be found:

x ◦ y := {x̃ ◦ ỹ|x̃ ∈ x, ỹ ∈ y} (3.33)

for all x,y defined in the set of real interval numbers. This restricts the division

function to exclude any interval where 0 ∈ y. Representing the interval numbers x

and y as x = [x, x] and y = [y, y], equation 3.33 can be expanded as follows

x ◦ y := 2{x ◦ y, x ◦ y, x ◦ y, x ◦ y} (3.34)

where 2 is a function describing the set containing the four calculated values. It is

possible to calculate the end points of 2 directly in most cases. For addition and

subtraction see equations 3.35, for multiplication see table 3.6, and for division see

table 3.7.

x+ y = [x+ y, x+ y]

x− y = [x− y, x− y] (3.35)
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Table 3.6: Interval multiplication (xy)

y ≥ 0 y 3 0 y ≤ 0

x ≥ 0 [xy, xy] [xy, xy] [xy, xy]

x 3 0 [xy, xy] [min(xy, xy),max(xy, xy)] [xy, xy]

x ≤ 0 [xy, xy] [xy, xy] [xy, xy]

Table 3.7: Interval division (x/y)

y > 0 y < 0

x ≥ 0 [x/y, x/y] [x/y, x/y]

x 3 0 [x/y, x/y] [x/y, x/y]

x ≤ 0 [x/y, x/y] [x/y, x/y]

Unary functions

For any unary function, f , the following has to be solved:

f(x) = [min
x̃∈x

f(x),max
x̃∈x

f(x)]. (3.36)

For monotonic functions4 an explicit representation of equation 3.36 can be generated:

lnx = [lnx, lnx] x ≥ 0

ex = [ex, ex]. (3.37)

This would be employed in the calculation of local discomfort due to the air temper-

ature difference between ankle and head height according to prENV 1752, where:

PPD = 0.7038 + 0.2974δθ2.7810 − 0.084 expδθ . (3.38)

The PPD is the percentage of people dissatisfied due to the temperature difference,

δθ (◦C). For non-monotonic functions5 the periodicity of the function can be used to

define the range of result of the function.

4A monotonic function has a one-to-one relationship between the dependent and independent
variable, e.g. y = x

5A non-monotonic function has a many-to-one relationship between the dependent and indepen-
dent variable, e.g. y = x2 or y = sinx
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Linear Interval Equations

These arithmetic rules can now be applied to the building conservation equations and

their solution. As will be demonstrated, the main problem encountered by a simple

implementation is that the solution bounds grow quicker than the solution is found.

This effect is known as wrapping [Barbarosie 1995] and can be minimised but not

removed.

The wrapping effect

Recalling the zone energy balance equation set of section 2.2.3 the linear system

Ax = b is here assumed to be a linear interval system where

A =




[a11, a11] [a12, a12] · · ·

[a21, a21] · · · · · ·

· · · · · · · · ·

[an1, an1] · · · [ann, ann]



. (3.39)

and the vectors x and b are likewise composed of interval numbers. There are two

main solution methods to the interval equation Ax = b: direct and iterative. The aim

of any solution method is not only to find an enclosure bounding the solution but to

find the hull of the solution set, i.e. the tightest possible bound on the solution.

For example, consider transient conduction in an opaque solid material. Assume

the material (concrete) is well specified, except for the conductivity which is uncertain,

as shown in table 3.8.

Table 3.8: Example thermophysical properties of concrete.

Property Value Unit

Density 2000 kg/m3

Heat capacity 800 J/kgK
Conductivity [1.4,1.6] W/mK

The sample of concrete is initially at a constant temperature of 10◦C and the two

ends of the sample are simultaneously cooled. Recalling equation 2.4, the coefficients
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of the arrays can now be generated. The coefficients for the first row are




2ρC + 2kδt
(δx)2

−2kδt
(δx)2 0

... ... ...

... ... ...







θ1,t+1

θ2,t+1

θ3,t+1




=




2ρC − 2kδt
(δx)2

2kδt
(δx)2 0

... ... ...

... ... ...







θ1,t

θ2,t

θ3,t



.

Enumerating the right hand side of the above results in




3 200 000− [4 032 000, 4 608 000] [4 032 000, 4 608 000] 0

... ... ...

... ... ...







10

10

10




assuming a time step (δt) of 3600s and a distance (δx) of 5cm between nodes. Fol-

lowing the rules of interval arithmetic the result of this matrix multiplication is

[26 240 000, 325 760 000].

In this example, the hull, or smallest solution set is the single value 32 000 000 as the

multiplication can be reformulated as

2ρCθ1,t +
2kδt

(δx)2
(θ2,t − θ1,t)

= 3 200 000× 10 + [4 032 000, 4 608 000] × (10− 10)

= 32 000 000.

Clearly, the initial solution is a considerable overestimation of the smallest possible

solution set. If such overestimations were repeated then the solution of a system of

equations could become unbounded, i.e. the solution would be the set of real numbers.

It should be noted that the initial solution is not incorrect as the correct solution is

still bounded by the large range, i.e. it has wrapped the smallest possible solution in

a larger set.

To minimise this effect requires careful encoding of equations as it is due to interval

arithmetic not recognising relationships between numbers. In the above example, the
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2kδt
(δx)2 term was treated as two independent ranges in the initial calculation: this is

an unwanted effect of interval arithmetic. This is the main reason for the wrapping

effect: at each stage of the calculation the numbers are treated as independent ranges,

thus there can be no cancellation [Neumaier 1990] This lack of correlation between

uncertainties is a crucial aspect of interval arithmetic and will be referred to later.

Direct solution

Direct solution is generally the preferred solution method for a set of linear equations,

as is the case with the building energy conservation equations.

The interval Gaussian elimination method is applied as the normal Gaussian elim-

ination would be, except the arithmetic operations are redefined as described previ-

ously. It has been shown that in some cases this method produces the hull of the

solution set [Ning and Kearfott 1997]. Despite this, the solution bounds still grow

exponentially and with a transient simulation after a few time steps the solution

interval is too large to be of practical use.

A more computationally efficient method is the LU decomposition. This approach

is particularly suitable to transient energy systems as the decomposition is indepen-

dent of the right hand side of the equation, and therfore only needs to be calculated

once. However, it is not possible to get a tight bound on the decomposed arrays due

to the wrapping effect.

Indirect solution

Indirect methods rely on iterative procedures to calculate an approximate solution of

the problem. The Gauss-Seidel method for the system of equations Ax = b is

xn+1
i =

1

aii


bi −

i−1∑

j=1

aijx
n+1
j −

N∑

j=i+1

aijx
n
j




given an initial approximation of the solution x and where n is the iteration number.
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The method has been reformulated for interval calculations [Neumaier 1990]:

xn+1
i = Γ


aii , bi −

i−1∑

j=1

aijx
n+1
j −

N∑

j=i+1

aijx
n
j , x

n
i




where the Gauss-Seidel operator Γ is defined as

Γ(a, b, x) =





b/a ∩ x if 0 3 a,

2(x\]b/a, b/a[) if b > 0 ∈ a,

2(x\]b/a, b/a[) if b < 0 ∈ a,

x if 0 ∈ a, b

where

a = aii

b = bi −
i−1∑

j=1

aijx
n+1
j −

N∑

j=i+1

aijx
n
j

x = xni

and the set operation 2(x\]b/a, b/a[) means that the updated value xn+1
i is equal

to the current xni less the values in the range (b/a, b/a). This method requires an

approximate solution to the problem and calculates successively tighter bounds for

each term in the solution array where applicable. It is therefore suited as a step in the

solution process after the initial solution by an explicit method, as the overestimation

will be reduced by the iterative process. As such, this process can be termed the

iterative improvement of the solution.

The advantage of an iterative approach is that the original matrix is used for

all stages of the calculation. Thus, the disadvantages of the LU factorisation are

removed. However, an iterative approach will require more arithmetical operations

than the LU decomposition.

Summary

All of the above methods for sets of interval equations can be termed pessimistic
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as they contain all the possible solutions plus some additional non-solutions due to

the wrapping of the solution set. There exist methods in geometry theory to define

the shape of the boundary of the solution set as a polytope (a multi-faceted body in

multi-dimensional space) although the data structures associated with these shapes

are cumbersome and not suited to efficient calculations, and hence building energy

system simulation. An interesting solution to this problem is proposed by Neumaier

where the solution set is not defined as a hypercube but as an ellipsoid, resulting in

fewer non-solutions being contained in the solution set [Neumaier 1993]. Again the

data structure is more complex for this representation and is not suitable for building

energy system simulation. Another approach is to use generalised interval arithmetic,

also known as fuzzy arithmetic.

3.2.4 Fuzzy arithmetic

Fuzzy numbers are a direct extension of the principles behind interval numbers.

Whereas the probability of the number existing in an interval is equal at all points

in interval arithmetic, a fuzzy number’s existence is defined as a function: the mem-

bership function that defines the vagueness in the value that the number represents.

Fuzzy numbers

An interval number represents a range of possible values that define an entity: a

value is either within the interval or outside the interval, there is no ambiguity. In

fuzzy arithmetic this representation is termed crisp as the limits are clearly defined.

However information is rarely clearly defined and the concept of membership emerges.

The idea behind membership is to express mathematically the vagueness in a value

more clearly than through the use of a lower and upper bound on that value.
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Figure 3.11: Fuzzy representation of ‘about 6’.

For example, the air supply rate to a room is 6l/s. However, due to variations

in pressure the rate can vary between 5l/s and 7l/s but is usually about 6l/s. In

interval arithmetic terms the flow rate would be defined as the interval [5,7], but in

fuzzy arithmetic the likelihood of a value can be quantified. This means that the

knowledge that the flow rate is usually 6l/s can be described. A representation of the

air supply rate is shown in figure 3.11. As can be seen the flow rate varies between

5l/s and 7l/s (as was the case with interval arithmetic) but the most likely rate is

6l/s.

The y-axis of figure 3.11 represents the degree of membership, which in this case

shows that a membership value of zero applies to flow rates of less than 5l/s and

more than 7l/s, i.e. these states will not occur. The membership value of one for a

flow rate of 6l/s states that this flow rate level will occur.

Calculations using fuzzy numbers take not only the range of values into account

but the membership of the range. The advantage of this style of representation is

that the likelihood of extreme values dominating the calculation is reduced while

still accounting for these extreme values. The resulting output will evaluate the

membership function for all values of the output.
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Fuzzy computations

Again the basic arithmetic operations have to be redefined. The definitions are the

same as for interval numbers but have to be repeated at different levels of membership

to account for the shape of the membership function. The general method is as

follows [Ross 1995].

1. Choose membership levels at which the calculation will be performed.

2. Take α cuts at each of these levels, i.e. solve the membership function for each

of these levels (this results in an interval number).

3. Evaluate each solution of step 2 using interval arithmetic techniques as described

in the previous section.

4. Construct the membership function of the resulting solution.

This process can be computationally intensive if many α cuts are taken. The advan-

tage of adopting this method is that at the early design stage models can be created

with membership functions spanning a large range of possible values. As the de-

sign evolves the membership functions can be refined. As with interval arithmetic,

implementation is non-trivial.

There are two criticism of the fuzzy approach. Primarily the history of values

(hence the correlations between parameters) is not accounted for. Thus, the problem

of wrapping will occur as for interval arithmetic. Secondly, it is not always possible to

obtain the solution of a set of simultaneous equations with fuzzy arithmetic [Buckley

1992].

Summary

While the fuzzy approach offers some advantages over the basic interval arithmetic

approach, most notably the varying expectation of a value via the membership func-

tion, it does not address the major shortcomings of the interval approach. The fuzzy

approach is therefore inappropriate for the solution of the building conservation equa-

tions.
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3.2.5 Affine arithmetic

This method attempts to keep the benefits of the interval arithmetic model as well as

tracking the correlations between data. The affine model is a linear transformation

of the uncertain quantity where the uncertainty associated with the data is held as a

separate token (e.g. π could be represented as 3 ≤ π ≤ 4 or 3.5+0.5ε1 where ε1 is the

first uncertainty token and ε1 = [−1, 1]); each value of the number is equally likely

between the limits of the range as in interval arithmetic [Stolfi and de Figueiredo

1997]. Again the underlying arithmetical operations have to be redefined.

The method was originally developed for ray tracing calculations but is ideally

suited for systems of uncertain equations.

Affine Numbers

An affine number, x̂, is defined as a range of values, all equally probable, via a first-

degree polynomial. A specific element of x̂ is defined as x̃, or mathematically

x̃ := x̂ = x0 + x1ε1 + x2ε2 + xnεn. (3.40)

The xi for i ≥ 1 are uncertainty coefficients (e.g. if x̃ represented conductivity then

x0 would be the average conductivity and xi for i ≥ 1 would be the uncertainty due

to temperature, moisture content etc) and the εi are defined as the interval [−1, 1].

Each εi can thus assume any value between −1 and 1, the overall uncertainty in x

being the linear combination of these uncertainties.

Each xi represents an independent source of uncertainty, either inherently asso-

ciated with the data or as a result of a calculation, e.g. round-off error. Clearly

this representation will result in more complicated arithmetic than ordinary interval

arithmetic.

The total uncertainty in an affine number is the sum of the uncertainty tokens,

∑N
i=1 |xi|, and the effect of the individual sources of uncertainty is the magnitude of

each uncertainty token, xi.
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Conversions between interval and affine arithmetic

Using the above definition of an affine number, the value of x is guaranteed to be in

the range

[x̂] = [x0 − β, x0 + β]; β =
N∑

i=1

|xi|

remembering that the uncertainty tokens are defined as the interval [-1,1].

It is possible to convert an ordinary interval number [x, x] to its affine representa-

tion x̂ = x0 + xkεk:

x0 =
x+ x

2
; xk =

x− x
2

. (3.41)

The uncertainty token, xk, is a new index and, unless specified, is not related to an ex-

isting source of uncertainty, i.e. this conversion represents a new independent source

of uncertainty and k = N + 1. If this uncertainty was related to an existing source

of uncertainty then xk would be assigned the index of that source of uncertainty, e.g.

k = 3.

Affine computations

Arithmetical operations with affine numbers can be either exactly formulated and

hence are purely affine operations or require estimation as a non-affine term is ap-

proximated, e.g. the quadratic term in the product of two affine numbers is linearised.

Affine operations

An affine operation is an operation which can be expanded into an affine combination

of the uncertainty tokens

x̂ ◦ ŷ = x0 ◦ y0 +
N∑

i=1

(xi ◦ yi)εi. (3.42)

Three instances of the above are addition, subtraction and multiplication by a con-

stant:

x+ y = x0 +
N∑

i=1

xiεi + y0 +
N∑

j=1

yjεj
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= x0 + y0 +
N∑

k=1

(xkεk + ykεk) , (3.43)

x− y = x0 +
N∑

i=1

xiεi − y0 +
N∑

j=1

yjεj

= x0 − y0 +
N∑

k=1

(xiεk − yiεk) , (3.44)

αx = α(x0 +
N∑

i=1

xiεi)

= αx0 +
N∑

k=1

αxiεk. (3.45)

For example:

x̂ = 10 + 4ε1 − 2ε3,

ŷ = 3 + 1ε1 + 4ε2,

x̂+ ŷ = 13 + 5ε1 + 4ε2 − 2ε3.

Note that the uncertainty tokens can cancel themselves out, e.g. (ŷ − x̂) + x̂ = ŷ,

which was not the case for interval arithmetic. This is useful for numerical techniques

where factorisations are often made, e.g. an LU decomposition on a matrix is not a

realistic approach with interval arithmetic but is with affine arithmetic.

Non-affine operations

A non-affine operation is a function which cannot be expressed as affine combinations

of the uncertainty tokens, e.g. multiplication of two affine numbers results in a series

of quadratic terms. The process to follow is to map the solution to an affine number;

thus the series of quadratic terms becomes a new uncertainty token:

x̂ ◦ ŷ = x0 ◦ y0 +
N∑

i=1

(xi ◦ yi)εi + δεN+1. (3.46)

Note the inclusion of the new uncertainty token (cf. equation 3.42). This new uncer-

tainty token is now defined to be independent of all of the other uncertainty tokens:
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this is clearly not the case so the evaluation of the non affine operation should produce

the best solution possible in terms of minimizing this new term.

Multiplication of affine numbers

The multiplication of two affine numbers results in a quadratic term:

x̂ · ŷ =

(
x0 +

N∑

i=1

xiεi

)
·


y0 +

N∑

j=1

yjεj




= x0 · y0 +
N∑

i=1

(x0yi + y0xi)εi +

(
N∑

i=1

xiεi

)
·
(

N∑

i=1

yiεi

)
. (3.47)

The quadratic term

Q =

(
N∑

i=1

xiεi

)
·
(

N∑

i=1

yiεi

)

=
N∑

i=1

N∑

j=1

xiyjεiεj (3.48)

is approximated. The best approximation [Stolfi and de Figueiredo 1997] is a constant

function of the maximum and minimum values of the quadratic. If

a = maxQ

b = minQ

then the approximation is

Q ≈ a+ b

2
+
b− a

2
εN+1

= γ + δεN+1 (3.49)

where γ = a+b
2 , δ = b−a

2 , and εN+1 is a new uncertainty token. The affine approxi-

mation of multiplication becomes

x̂ · ŷ = x0 · y0 + γ +
N∑

i=1

(x0yi + y0xi)εi + δεN+1. (3.50)
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Due to the difficulty of calculating the bounds of the quadratic term, it is usually

estimated as [Stolfi and de Figueiredo 1997]

Q ≈
(

N∑

i=1

|xi| · |yi|
)
εN+1. (3.51)

The resulting affine approximation of multiplication becomes

x̂ · ŷ = x0 · y0 +
N∑

i=1

(x0yi + y0xi)εi +QεN+1. (3.52)

Reciprocal of an affine number

Division is most easily treated as multiplication by the reciprocal. This then shifts

the problem to the calculation of the reciprocal of an affine number. As with interval

numbers, division by an affine number which includes zero in its range is not possible.

To calculate the reciprocal, an affine approximation must be made. The reciprocal

is represented as fa(x) = αx + γ+
−δ over the interval of x̂ or range [a, b]. The terms

α, γ and δ are calculated using a min-range approximation [Stolfi and de Figueiredo

1997]:

α = − 1

b2

γ =
(a+ b)2

2ab2

δ =
(a+ b)(a− b)

2ab2
. (3.53)

These factors can now be used with the original affine number and the affine approx-

imation of a reciprocal becomes

1

x̂
= αx0 + γ +

N∑

i=1

(αxi)εi + δεN+1. (3.54)

In a similar approach to calculating the reciprocal of an affine number unary

functions can also be approximated. The most appropriate mechanism may not be a

min-range, but could be a Chebyshev (min-max) approximation or similar.
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Summary

The affine arithmetic representation of uncertain data ensures that any correlations

that exist between parameters are maintained. However, all arithmetical operations

are not represented exactly by affine relationships resulting in new uncertainty tokens

being required to maintain the overall error bound.

3.2.6 Summary

Three arithmetical methods have been presented as possible techniques to integrate

uncertainty analysis within building simulation. The methods each require substan-

tive alterations to the calculation procedures underlying building simulation. The

implementation of these methods is therefore non-trivial.

Of the three methods only affine arithmetic preserves the relationships between

uncertainties. The application of affine arithmetic to building simulation is therefore

expanded in chapter 5.

3.3 Discussion

Two approaches to uncertainty quantification have been explored. The first, external

methods, involves repeated simulations of perturbed models. Using various statistical

techniques, the external methods allow the relationships between the perturbations

and the output to be analysed and the overall uncertainty quantified. The second

approach, internal methods, involves altering the fundamental arithmetic used in the

calculations. As a result only a single simulation is necessary to calculate the total

effect of all uncertainties.

Comparing these capabilities with the functionality required of an assessment

method, as presented in chapter 2, it is clear that no single external method achieves

these objectives. The differential method quantifies individual effects, the factorial

method quantifies individual and interacting effects and the Monte Carlo method

quantifies the overall uncertainty. Internal methods, specifically affine arithmetic,
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can quantify individual and overall effects simultaneously. Therefore, affine arith-

metic would appear to be the most applicable method. However, the implementation

of internal methods is non-trivial while external methods are relatively straightfor-

ward to implement. Thus the choice between methods is not clear. To resolve this

issue both approaches have been applied to the detailed simulation program, ESP-r.

Before the methods are applied to a simulation tool adjustments to the data model

are required. These adjustments are the subject matter of the next chapter and will

permit the use of the analysis methods described in this chapter.
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Chapter 4

Characterising uncertainty in

building simulation

Sources of uncertainty are characterised. This is a two stage

process. Probability distributions which are applicable for

describing parameter variations are sought. The sources of

uncertainty are then attributed with suitably quantified prob-

ability distributions.

The sources of uncertainty in building simulation were described in chapter 2. With

the requirements of the assessment methods as detailed in chapter 3, these sources

can now be described in a form suitable for simulation.

Simulation can be considered analogous to an experiment. In experimental work

measurements are made which are subject to error and in simulation work data sup-

plied to the model is also likewise subject to error. As such, this chapter begins

with a review of measurement theory, deriving an expression of uncertainty in data

for building simulation. This expression is then applied, with suitable probability

distributions, to data used in simulation. The aim of this process is to produce a

mechanism whereby uncertainty limits can be quantified.
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4.1 Measurement theory

Measurements are central to any scientific process, the key aspects of a measurement

being to quantify a property by a measuring device. It is not possible to measure the

true value of a property and thus any measurement is subject to an uncertainty [Ra-

binovich 2000].

The uncertainty in a measurement is typically divided into two categories: sys-

tematic and random. A systematic error is a result of the measurement process and

is constant or changes in a regular manner for repeated measurements of the same

quantity. A random error cannot be attributed to an aspect of the measuring process

and varies in an unknown manner.

This classification of uncertainty in measurements is applicable to data used in

building simulation.

4.1.1 Systematic errors

A systematic error when using building simulation is attributable to two causes:

1. using incorrect data for the given parameter, and

2. employing the wrong or incomplete model of the physical process.

Examples of the former include using thermophysical data measured on a dry sample

to represent a wetted surface (e.g. the brickwork of an exterior facade of a building

during inclement weather) or using occupant heat gains corresponding to a particular

activity level where this is known to vary. An example of the second cause occurs

where thermal bridges are present but the construction heat flow model is restricted

to one dimensional flow.

Systematic errors can be reduced through the correct use of data and available

modelling facilities. That said, it is not always possible for the practitioner to collect

sufficient data or invest the time needed to model all the required processes. An

ability to define the uncertainty incurred by using data and models which are not

entirely adequate is required. For example, using a specified air change rate for a
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natural ventilation study can gain rapid results, but a bulk air flow model may be

more appropriate. What is the induced error due to such a modelling simplification?

In these cases the sources of uncertainty relate to a deficiency in the simulation

process when compared to the real physical processes being modelled.

Modelling uncertainties can arise through a conscious decision to not model heat

flow in three dimensions or to not use an explicit model to calculate air flows. They

can also arise as a result of the limitations of the simulation software in relation to

the assumptions embedded in the underlying mathematical models.

Uncertainties introduced via a lack of suitable data, or imprecisely defined mod-

els, arise in simulation where choice is available, e.g. between different algorithms

to calculate sky temperature for external longwave exchange, or between insulation

products of different conductivity. Again it is possible to know limits to these uncer-

tainties but they cannot be removed without better model definition or data collec-

tion. Uncertainties of this type are common in building simulation, especially when

using detailed simulation at early design stages where aspects of the building are not

well defined.

Systematic uncertainties are not random as they can be removed from the simu-

lation process by increased model resolution or better definition. Unfortunately, it is

not possible to determine the value of the uncertainty introduced, and thus remove

it from the predictions as it is only possible to quantify what is simulated, not what

is not simulated. However, in many cases it is possible to quantify the limits of the

uncertainty, thus bounding the true value.

4.1.2 Random errors

Consider a well defined model. The walls of the buildings are modelled in a three

dimensional thermal and moisture flow network, connected to CFD domains which

represent the internal spaces. Occupants are explicitly modelled with respect to

their thermal, moisture and controlling interactions with the building. Such a model

would require large quantities of data, but has the potential to predict in detail the

performance of the building. Unfortunately, this potentially may not be realised due
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to the random errors within data.

Random errors are discovered by measuring the same quantity repeatedly under

the same conditions. These measurement errors differ from systematic errors in that

they cannot be attributed to a particular cause and every measured quantity contains

random errors.

Such uncertainties arise where a suitable model and suitable data exist but there

is still a variation in the data. For example, these uncertainties are evident in ther-

mophysical properties: even when the correct product has been selected there is still

an uncertainty due to the measurement errors incurred in the derivation of the data.

For simulation purposes the random uncertainty in a parameter will be defined as the

measurement error in that parameter.

4.1.3 Uncertainty in simulation data

With respect to simulation work, the two error types described above provide a con-

venient mechanism whereby the sources of uncertainty can be classified. The overall

uncertainty in a parameter will be the combination of all systematic and random

errors.

Each uncertainty source will have a probability distribution and the overall uncer-

tainty in a parameter used within a simulation will be the sum of these probability

distributions. Therefore, to define the errors in data used in simulation, the sources

of uncertainty for each parameter must be identified and a probability distribution

attributed to each. The following section describes five probability distributions that

are relevant to the needs of building simulation.

Section 4.3 then details the systematic and random uncertainties for the most

frequently used data, and quantifies limits on this data.

4.2 Probability distributions

The following distributions may be used when modelling uncertainty in building en-

ergy systems.
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4.2.1 Discrete distribution

The discrete distribution can either be parametric or non-parametric but for both

cases is bounded (i.e. there are a finite number of options). There are many types

of parametric distribution (e.g. binomial) but the non-parametric general discrete

distribution, as described here, is of most use in building simulation. Consider cases

where many models exist to predict a physical phenomenon, for example:

• the distribution of sky radiation can be predicted by several empirical models,

or

• convective heat transfer coefficients can be predicted by different relationships,

e.g. Alamdari and Hammond or Rodgers and Mayhew [ETSU 1987].

In these cases all of the available models are valid to some degree as they are based on

experimental data, e.g. in the case of sky models their applicability may be related

to the building’s latitude.

a b c

P(
x)

Figure 4.1: Discrete distribution of x.

The discrete distribution requires that each of the possibilities is given a probability

of occurrence and that these probabilities sum to one, see figure 4.1. The difficulty of

using this distribution is in specifying the probabilities of the different choices, e.g.

the Klucher and Perez sky models could be assigned the same probability, but what

happens if a third model is available which may not be as trusted by the practitioner.
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Is the third model half as good, or a third etc. Whatever the choice all the probabilities

will have to be reset.

4.2.2 Even distribution

The even distribution [Evans et al 1993] is a bounded continuous distribution where

the probability of the variable taking a value between the bounds is equal, see fig-

ure 4.2. This is the implicit assumption in interval arithmetic 3.2.3.

a b

P(
x)

Figure 4.2: Even distribution of x.

The distribution places a larger emphasis on extreme values than do the other

continuous distributions and so should be used with care. It is most useful in simula-

tion where attention should be drawn to a poorly defined parameter, say at the early

design stage. The distribution is the most suitable for modelling systematic errors as

these errors are not random and hence the true value is equally probable throughout

the given range. Typical uses of the even distribution could be for casual gains from

occupants, or the conductivity of a hygroscopic material.

The mean value of an even distribution is given by

µ =
a+ b

2
(4.1)

where a is the minimum possible value and b is the maximum possible value. The
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probability distribution function for an uncertain parameter x is constant

P (x) =
1

b− a (4.2)

and the standard deviation is

σ =

√
(b− a)2

12
. (4.3)

4.2.3 Normal distribution

The normal distribution [Evans et al 1993] is the most appropriate distribution for

measured physical data. Typical building simulation examples are measured lengths

or temperatures. From a given sample the average value is given by

µ =
1

n

n∑

i=1

xi (4.4)

where xi are the n observed values in the sample. The unbiased sample variance is

σ2 =

(
1

n− 1

) n∑

i=1

(xi − µ)2. (4.5)

The positive square root of the variance is the standard deviation. Throughout this

thesis the standard deviation is used in preference to the variance since the value of

the standard deviation is expressed in the same units as the mean value and is thus

easier to comprehend.

The probability distribution function for a normally distributed variable, see fig-

ure 4.3, is unbounded and symmetrical:

P (x) =
1

σ(2π)1/2
exp

[−(x− µ)2

2σ2

]
. (4.6)
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x)

Figure 4.3: Normal distribution of x.

As the distribution is unbounded there is a possibility that a normally distributed

parameter could have a non-physical value. For example, a measured length is nor-

mally distributed but cannot be negative. This is generally unlikely provided the

standard deviation is small compared to the mean, as approximately 68% of the

probable values that a variable can take are within one standard deviation of the

mean value, 95% are within two standard deviations of the mean and 99.5% within

3 standard deviations of the mean.

It is possible to scale and transform a normally distributed variable:

Norm : µ, σ ' [(Norm : 0, 1)× σ] + µ (4.7)

where Norm : µ, σ is the normal distribution for a variable defined by its mean (µ)

and standard deviation (σ). Equation 4.7 implies that (for all practical purposes)

if a random number is generated for the standard normal distribution1 it can then

be scaled and transformed by the mean and standard deviation of the uncertain

parameter. This relationship is used in uncertainty quantification techniques.

1The standard normal distribution has a mean value of zero and a standard deviation of one.
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P(
x)

Figure 4.4: Log-normal distribution of x.

4.2.4 Log-normal distribution

The log-normal distribution [Evans et al 1993] is produced when two or more vari-

ables which are normally distributed are combined as a product. For example, area

which is the result of the product of two length measurements will be log-normally

distributed. The distribution cannot produce negative quantities and is unbounded

towards positive infinity, see figure 4.4.

Typical building simulation examples are the metabolic rate and infiltration rate.

Note also that for small standard deviations the log-normal distribution can be ap-

proximated by the normal distribution.

The log-normal distribution is related to the normal distribution as follows

LogN : m,σ ' exp(Norm : µ, σ) ' exp[µ+ σ(Norm : 0, 1)]

' m exp(σNorm : 0, 1) (4.8)

where LogN : m,σ is the log normal distribution for a variable defined by its median

(m) and standard deviation (σ). Thus, if a variable is log-normally distributed then

the distribution of the log of the variable will be normal. The average value is therefore

µ′ =
1

n

n∑

i=1

log xi (4.9)
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where µ′ is the mean of the transformed data. By analogy the variance is [Evans et

al 1993]

σ′2 =

(
1

n− 1

) n∑

i=1

(log xi − µ′)2 (4.10)

where σ′2 is the variance of the transformed data. Thus, for random number gener-

ation, a normal distribution can be used and then transformed. The following relate

the median and variance of the log normal distribution to the distribution of the

transformed values

m = expµ′ (4.11)

where m is the median of the distribution and

σ2 = m2 exp[σ′2(σ′2 − 1)]. (4.12)

4.2.5 Triangular distribution

The triangular distribution [Evans et al 1993] is a bounded continuous distribution,

as shown in figure 4.5. It is often used in fuzzy logic applications and is appropriate

here as an intermediate step between the uniform and normal distributions.

In a building simulation context it is a useful distribution because it is described

by minimum, maximum and most likely values. For example, the typical occupancy

in a space can be augmented by a minimum and maximum occupancy definition to

characterise the possible range.

If the distribution is defined in terms of its minimum, maximum and most likely

value, a, b and m respectively, then the mean is given by

µ =
a+ b+m

3
(4.13)

and the variance by

σ2 =
a2 + b2 +m2 − ab− am− bm

18
. (4.14)

To generate random values two unit even distributions are used and the result aver-
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Figure 4.5: Triangular distribution of x.

aged. This averaged value will fit the standard symmetrical triangular distribution2;

thus, the result should be scaled to fit the general triangular distribution:

Tri : a, b,m =





a+ (2(Tri : 0, 1, 0.5))(m− a) if Tri : 0, 1, 0.5 < 0.5,

m+ (2(Tri : 0, 1, 0.5)− 1)(b−m) if Tri : 0, 1, 0.5 > 0.5,

m if Tri : 0, 1, 0.5 = 0.5

(4.15)

The distribution is useful for modelling design data as the most likely value and the

lower and upper limits can be grouped. However, the distribution over-emphasises

extreme values and as such draws attention to them (although not as much as the

uniform distribution).

4.2.6 Summary

Table 4.1 summarises the applicability, advantages and disadvantages of each of the

described distributions.

2The standard symmetrical triangular distribution has a median of 0.5, minimum value 0 and
maximum value 1.
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Table 4.1: Probability distribution functions

Distribution Advantages Disadvantages

Discrete Flexible Awkward to define

Even Most simple continuous Severe overemphasis of
distribution extremes

Normal Well known Can result in negative values

Log-normal Positive values only Can result in extreme
positive values

Triangular Easy to define Overemphasis of extremes

The sources of uncertainty are now described and probability distributions assigned

to each uncertainty type.

4.3 Sources of uncertainty

As described in chapter 2 all data items used to describe the modelled system are

subject to a degree of uncertainty. As such, it is outwith the scope of this thesis to

describe and quantify the uncertainty sources for all parameters. Rather, the main

parameters used to describe a building have been analysed. These parameters com-

prise the thermophysical properties of constructional materials, casual gains associ-

ated with occupancy and appliances, and infiltration rates: without these parameters

a model could not be constructed. Furthermore, these parameters are required to be

known for effective simulation but at the early design stage they are ‘highly unknown’

as described in chapter 2. Therefore, if the uncertainty limits can be quantified in

these parameters then detailed simulation software can be employed at early design

stages. An additional benefit of this process is that the uncertainties quantified in this

chapter are used to demonstrate and test the chosen analysis methods in subsequent

chapters.

For the three categories existing data is reviewed and analysed. The ranges ex-

hibited in the data will cover all aspects of uncertainty and as such can be used at

the outline design stage when uncertainties are greatest. Where necessary a second

analysis is undertaken and the sources of uncertainty are decomposed into systematic

and random components. The reasons behind this approach are twofold:
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1. by identifying all the sources of uncertainty, systematic sources can be removed

from the quantification if the model description allows this, and

2. it allows data to be used at the earliest possible stage in the design process

when uncertainties are greatest.

The initial approach quantifies the effect of all sources of uncertainty within a pa-

rameter, i.e. the maximum variation. The outcome of this process is that detailed

simulation can be employed during the early design stage.

4.3.1 Thermophysical properties

The following analysis is based on information contained in a report on the har-

monisation of thermophysical properties for use in building simulation [Clarke et al

1990] except where cited otherwise. This report provides a comprehensive review of

available data worldwide and also discusses the inherent variability in the data.

The values for the conductivity, density and specific heat have been analysed and

in many cases the values quoted are identical. This is either due to the value being

known exactly or the reuse of values for similar materials between experimenters.

The latter is most likely to be the case and the report’s authors draw attention to

this likelihood.

The data presented in the report have been analysed by material class, e.g. lightweight

concretes, organic insulation materials. For each class an average value for each of

the three properties has been calculated as well as the standard deviation. These

data will include all sources of error for a given material class.

Theoretical standard deviations are presented in the next section based on mea-

surement accuracy and an error analysis. These values are the minimum variations

that can be expected in the data. For some material classes the variation exhibited

is smaller than the theoretical minimum; this can be attributed to two reasons:

1. too small a sample size, or

2. data sharing between sources.
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Where this occurs, the minimum theoretical variation has been applied to the cate-

gory.

The result of the combined analysis is a list of generic materials where the prop-

erties are described in a form suitable for simulation with uncertainty analysis at an

early design stage. When the design is refined, and specific materials known, the

uncertainty will be less and the theoretical minimum uncertainties can then be used.

Sources of error

Tables 4.2 and 4.3 detail the systematic and random sources of uncertainty respec-

tively in material thermophysical properties. For each source a suitable probability

distribution is identified.

Table 4.2: Systematic uncertainty sources in thermophysical properties.

Uncertainty source Conductivity Density Specific heat Distribution

Data choice X X X Discrete
Temperature X × X Even
Moisture content X X X Even
Age X X X Even

Table 4.3: Random uncertainty sources in thermophysical properties.

Uncertainty source Conductivity Density Specific heat Distribution

Measurement X X X Normal

Systematic errors are typically described by an even distribution, as the error is

not random and can be removed by more detailed modelling. This is the case with

temperature, moisture and age effects. The choice of element will, however, be a dis-

crete choice as only specific entries can be selected. The measurement error is purely

random as it cannot be removed by more detailed modelling, therefore the normal

distribution is suitable. The overall uncertainty in a property is the combination of

systematic and random errors and their associated probability distributions.

Error quantification

The most straightforward of the three properties to measure is density, although
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moisture content may have a significant effect and there is no measurement standard.

Conductivity can be measured with an error of less than 5% for a given moisture

content using recognised test methods, e.g. the guarded hot box method [BS 1987].

Finally, there is no standard for measuring specific heat capacity. This property is

difficult to measure as the conductivity of the material affects the rate at which heat

can be added.

Thermal conductivity

The measurement of thermal conductivity with the guarded hot box or similar equip-

ment provides reasonably accurate measurements, as detailed previously, for a specific

conditioned sample. The condition of a building material can vary considerably with

respect to moisture content and to a lesser extent age and temperature. It has been

estimated that the variation in conductivity due to location and orientation can be

as much as 30-40% [Hyde 1996]. Lesser magnitudes of uncertainty, 30%, have been

noted within samples of the same material, despite a constant density for all the

samples. Therefore, there exists considerable uncertainty in the conductivity of a

material when applied in buildings and subjected to moisture and other effects.

The effect of moisture is to increase the uncertainty in all thermophysical properties

in material categories: non-hygroscopic, inorganic-porous and organic-hygroscopic.

Moisture content of materials in use are quoted [Clarke et al 1990] from two sources:

1% — 5% [CIBSE 2001], and 5% and 10% [Jakob 1949] for inner and external surfaces

respectively. From this information, typical moisture contents for non-hygroscopic,

inorganic-porous and organic-hygroscopic materials have been set at 1%, 4% and 7%

respectively.

The effect of these assumptions on conductivity can be assessed using moisture

conversion coefficients [BS 1998]. The function of these coefficients is to convert a

material’s conductivity for a specific moisture content to the conductivity at another

moisture content:

k′ = kFm (4.16)
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where the moisture conversion factor, Fm, is given by

Fm = expfu(u1−u2) (4.17)

or

Fm = expfψ(ψ1−ψ2) (4.18)

where fu and fψ are the moisture conversion coefficients for mass-by-mass and volume-

by-volume moisture contents respectively. The effect of the above moisture con-

tents would be an additional uncertainty of 5%, 15% and 25% for non-hygroscopic,

inorganic-porous and organic-hygroscopic materials respectively.

The effect of temperature can likewise be described by temperature conversion

coefficients [BS 1998]. A temperature change of 10◦C will result in a 5% change in

conductivity in most materials. For concrete and other inorganic-porous materials

the change can be as low as 1% for the same temperature change. The relationship

is non-linear:

Fθ = expfθ(δθ) (4.19)

where Fθ is the conversion factor for a given temperature change δθ and the material

dependent conversion coefficient fθ. For smaller temperature fluctuations the effect

will be considerably less. The average effect for a temperature change of 10◦C is an

uncertainty of 4% [BS 1998].

Density

Density is normally measured for a dry sample of a material. To achieve this for

hygroscopic materials the sample is heated to 105◦C and its mass measured until

there is less than a 1% difference in successive measurement [IEA 1991].

The effect of moisture on density will be more marked for lightweight materials,

for a given moisture content. Non-hygroscopic materials are water permeable and are

typically used in dry conditions. They generally have low densities so the effect of

moisture in a sample of the material will be significant. Inorganic-porous materials
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are generally heavier weight materials and absorb larger amounts of moisture due to

the locations where they are used in buildings, e.g. external walls. Finally, organic-

hygroscopic materials have a strong affinity for moisture and generally have lower

densities. The effect of moisture content on density [IEA 1991] may be calculated

from

ρ′ = ρ+ w (4.20)

where ρ′ is the density of the moist sample, ρ the dry sample and w the mass of

moisture per unit volume of the dry material. Converting this expression to use the

more common dimensionless measure of moisture content gives

ρ′ = ρ+
uρ

100
(4.21)

and

ρ′ = ρ+ 10ψ (4.22)

where u is the mass-by-mass and ψ the volume-by-volume moisture content; both

values are expressed as percentages. Using the moisture contents assumed above

introduces uncertainties of 13%, 4% and 11% for non-hygroscopic, inorganic-porous

and organic-hygroscopic materials respectively.

Specific heat capacity

The standard method of measuring specific heat capacity is to supply a known quan-

tity of heat to a material sample and then measure the temperature rise. A simple

calculation then yields the specific heat capacity:

C =
Q

m∆θ
(4.23)

where Q is the net heat supplied to the sample, m is the sample mass and ∆T is the

measured temperature difference.

There exists a number of error sources relating to the quantity of heat supplied, the

temperature measurement, the temperature distribution within the sample, the mass
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of the sample and heat loss from the sample. Generally, the higher the thermal the

conductivity of a sample the smaller the error in the measurement of the specific heat

capacity. The high thermal conductivity results in the sample exhibiting an even

temperature distribution and allows the sample to be easily insulated. Therefore,

there is a relationship between thermal conductivity and the accuracy to which specific

heat capacity can be measured.

The rate of heat gain to a sample will be determined by the material’s conductiv-

ity as will the heat loss. Therefore, the error will possibly be twice the error in the

conductivity measurement, i.e. 10%. This error estimate may be arrived at by al-

ternative reasoning based on the fact that the required measurements are effectively

the same as for the guarded hot box [BS 1987]: heat supplied, heat lost (through

guard), temperature in several locations and sample size. The guarded hot box stan-

dard defines steady state as the point when the measured temperatures in the plane

normal to the heat flow are within 0.5◦C. Therefore, assuming the sample was raised

in temperature by 10◦C, the error in ∆T would be 10%. The accuracy with which

these measurements can be taken are [BS 1987]: heat supplied 0.25%, heat lost 1%

and sample size 1%. Combining these errors, as described in section 3.2.1, gives an

overall error of 12.25%.

The effect of moisture on the specific heat capacity of a sample may be determined

from [IEA 1991]

C ′ = C + 4187
w

ρ
(4.24)

where C ′ is the specific heat capacity of the moist sample, C the dry sample, w the

mass of moisture per unit volume of the dry material, ρ the density of the dry sample

and 4187J/kgK the specific heat capacity of water. Converting this expression to use

a dimensionless measures of moisture content gives

C ′ = C + 41.87u (4.25)

and

C ′ = C + 4187
10ψ

ρ
(4.26)
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where u is the mass-by-mass and ψ the volume-by-volume moisture content; both

values are expressed as percentages. Using the moisture contents assumed above

introduces uncertainties of 4%, 19% and 8% for non-hygroscopic, inorganic-porous

and organic-hygroscopic materials respectively.

Typical element uncertainties are summarised in table 4.4. These uncertainties

represent the minimum theoretical values for a material in use. It should be noted

that there is a strong correlation between the properties of a material due to sources

of uncertainty. For example, moisture content would impact upon the conductivity,

density and specific heat capacity simultaneously. This relationship is easily defined

with the affine representation of an uncertainty as each property would share an

uncertainty token for each common uncertainty source.

Table 4.4: Uncertainty quantification by material type.

Category Conductivity Density Specific heat

Impermeables 5% + (expfθ(δθ)−1)100% 1% 12.25%

Non-hygroscopic 5% + (expfψ(δψ) + expfθ(δθ)−2)100% 1% + 10δψ
ρ

100% 12.25% + 41870δψ
ρC

100%

Inorganic-porous 5% + (expfu(δu) + expfθ(δθ)−2)100% 1% + uρ
100ρ

100% 12.25% + 41.87δu
C

100%

Organic-hygroscopic 5% + (expfψ(δψ) + expfθ(δθ)−2)100% 1% + 10δψ
ρ

100% 12.25% + 41870δψ
ρC

100%
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Table 4.5: Summary of thermophysical data availability.

Material class Number of Material class Number of
measurements measurements

Asbestos board 5 Float glass 7
Asbestos cement 2 Cellular glass 7
Bitumen 4 Inorganic insulation 84
Asphalt 5 Organic insulation 124
Heavyweight blockwork 6 Non-ferrous metal 11
Mediumweight blockwork 15 Ferrous metal 7
Lightweight blockwork 17 Mortars and sealant 5
Clay brick 21 Plasterboard 18
Silicate brick 2 Plasters 19
Heavyweight aggregate 14 Plastics (PVC’s) 3
Mediumweight aggregate 24 Rubber 5
Lightweight aggregate 28 Render and screed 8
Aerated concrete 30 Soil 12
Lightweight concrete 29 Natural stone 39
Reinforced concrete 5 Ceramic tile 5
Carpet 3 Clay tile 12
Underfelt 9 Timber 27
Glass block 2 Timber board 56

Thermophysical data

The quantity of data available for each material class varies considerably as sum-

marised in table 4.5. In many cases the confidence in the estimation of the mean

and standard deviation will be low. In these cases the standard deviations calculated

from the expressions in table 4.4, using the moisture contents identified previously,

will be more applicable. Table 4.6 shows a typical result of this analysis. Data for all

material classes is presented in appendix A.

As can be seen in table 4.6, the category uncertainty is significantly larger than

the entity standard deviation. This is to be expected, especially when there is a sta-

tistically significant quantity of data available. In this case, the theoretical standard

deviation for specific heat capacity was greater than that calculated from the data.

Therefore, the theoretical standard deviation was used for the category.

The CEN values [CEN 1998], where available, are displayed in Appendix A. No

sources are identified for the data in this standard and it is suspected that these

values are derived from the same data sources as identified by Clarke et al. Typically

the average CEN values are less than two standard deviations of the average material
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Table 4.7: Surface properties of unpainted materials

Absorptivity Std dev Emissivity Std dev

Metals polished 0.32 0.07 0.05 0.01
Metals 0.56 0.12 0.24 0.06
Brick (light) 0.49 0.04 0.90 0.02
Brick (dark) 0.76 0.04 0.90 0.02
Stone (natural) 0.63 0.10 0.91 0.02
Plaster 0.40 0.03 0.90 0.02
Concrete 0.68 0.04 0.90 0.02

values for a given category. This would suggest that the CEN values are based on

the same data sources.

Table 4.6: Thermophysical properties of mediumweight aggregates

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.718 1428 842
Std dev 0.324 376 90

Entity std dev 0.070 24 90

CEN value 1.15-1.35 1800-2000 1000

Surface properties

These can generally be measured with good accuracy. However, there is a lack of

standards relating to measurements in use. It is important for surface measurements

to be made with the material in use as the effects of ageing can be significant [CIBSE

1986].

A review of the data from Clarke et al gives rise to the data in table 4.7. As

can be seen the variation in the values is low. As a result of these low variations no

theoretical minimum values were calculated.

4.3.2 Casual gains

The generic term casual gains refers to the heat produced by the occupants and

equipment within a building. This can be a major source of heat in a modern office.

The following sections identify and quantify the uncertainties in this data.
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Metabolic rate

On reviewing published data [ASHRAE 1989, BS 1995, CIBSE 2001, Fanger 1970,

Galbraith et al 1989, NASA 1973, Parsons and Hamley 1989, Passmore and Durnin

1967], it is evident that no new and publicly available data has been measured since

the early 1970’s, and that most of the sources refer to previous studies. For these

reasons it was concluded that the data presented by Fanger [Fanger 1970] provides

the most applicable basis for this analysis.

Sources of error

There are three principal sources of error in metabolic rate data:

1. Measurement errors related to the accuracy of the equipment and how intrusive

it is on the subject.

2. Task performance related to how the person carries out the task.

3. Activity description related to how accurately the activity is described and how

it is understood by the user of the data.

The measurement error is composed of random and systematic components, whereas

the final two sources are systematic. The metabolic rate can be measured by either

monitoring the heart rate or measuring the oxygen consumption and carbon dioxide

production of a person. The latter method is more accurate [ASHRAE 1989]: 3%

error given a 10% error in calculating the oxygen consumption and carbon dioxide

production. Measuring the respiratory air flows will impede the subject and intro-

duce a systematic error. When applying the data there is usually more than one

person in a building and the combined casual gain’s distribution will tend towards a

normal distribution (section 3.1.3). At low occupancies, say less than ten people, the

triangular distribution will be more appropriate.

The mechanisms by which heat and moisture are transferred to a building from

occupants (convection, radiation and evaporation) also require modelling. Typically,

the heat gains from these mechanisms are specified as fixed percentages of the total
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gain. However, this approach ignores prevailing environmental conditions, which will

dictate the magnitudes of the transfer over time. Therefore, by using a time invariant

percentage for the transfer mechanisms, a systematic uncertainty is introduced. Again

this uncertainty will be evenly distributed for a single person. For small groups the

appropriate distribution will be triangular and for large groups normal.

ASHRAE [1989] estimates that for engineering purposes the combined error is

unimportant for activities with metabolic rates below 165W 3 but rises to ‘as much

as 50%’ for activities with metabolic rates greater than 320W . Parsons and Hamley

[1989] suggest that the error is ‘not greater than 100%’. They conclude that the likely

error is in the region of 50% and that general descriptions of activities should be used.

Error quantification

The initial analysis, as suggested by Parsons and Hamley [1989], identifies general

activity descriptions. To achieve this, the available data [Fanger 1970] was plotted as

shown in figure 4.6. As can be seen, there are four identifiable groups as follows.

1. Sedentary: 70W – 130W corresponding to Sleeping through Standing, relaxed.

2. Light work: 130W – 250W corresponding to Laboratory work through Lock-

smith.

3. Medium work: 200W – 425W corresponding to Walking, on flat at 4.0km/h

through Jogging, on flat at 6.4km/h.

4. Exercising: 425W – 950W corresponding to Moving 50kg bags through Wrestling.

If a task can be well described then the uncertainty in the total gain will be 50%

as indicated above. The sensible gain will be convected and radiated into the space:

the convective portion of this gain will be on average 55% with an uncertainty of

+
−20% [ASHRAE 1989].

Several models of humans have been proposed [ASHRAE 1989] and recently a

model of a human, predicting the magnitude of the heat gains dynamically has been

3All metabolic rates given here assume a DuBois surface area of 1.83m2.
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Figure 4.6: Metabolic rate data (W ).
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developed [Fiala et al 2000]. By implementing a model of this type in a detailed sim-

ulation program, the uncertainty, both in total gain and in heat transfer mechanism,

can be further reduced.

Electrical equipment

The heat gain from electrical equipment can dominate the thermal environment in

many buildings, e.g. IT classrooms, call centres and large offices. Therefore, accurate

knowledge of the heat gains from equipment is required. All electrical equipment

used in buildings converts the power used to heat, therefore by knowing the power

consumption the total heat gain to the space will be known.

Sources of error

The majority of uncertainties will be systematic (the random uncertainty due to the

measuring power consumption will be small). The systematic sources of uncertainty

relate to equipment specification and usage and are typically larger. Therefore, an

even probability distribution should be used when describing the heat gains from

individual items of equipment. As with heat gains from occupants, when more items

of equipment are used then the appropriate distribution will be triangular, and normal

for many items.

Error quantification

The error in heat gain from a measured item of equipment could be less than 1% [Parsloe

and Hejab 1992]. However, at early design stages the make of equipment is unlikely

to have been specified, and in speculative developments will never be known to the

design team. Therefore alternative specifications are required.

A review of data for general heat gains in offices [EEO 1995] shows that the heat

gain to a typical office varies only slightly over the course of a day. However, over

all measured offices the maximum and minimum demands were 32W/m2 and 7W/m2

respectively, between 10am and 5pm. This represents a significant range.

If the office equipment can be quantified but not identified (e.g. ten computers of
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an unknown type) then the data in table 4.8 can be used. This table reproduces the

minimum, mean and maximum small power loads as reported in the best practice

programme guides [EEO 1995, DETR 1996]. As can be seen there is a large variation

in the heat gain from office equipment.

Table 4.8: Heat gains from office equipment.

Equipment Power demand (W )
Minimum Mean Maximum

Computer (PC+VDU) 50 100 185
Photocopier 120 600 1080
Printer — laser 35 110 145
Printer — ink-jet 20 60 100
Printer — dot matrix 10 35 70
Fax machine 15 25 35
Vending machine 300 525 750

Finally, if the equipment power rating is known but the power consumption has

not been measured then the error could be as large as 61% [Parsloe and Hejab 1992].

On reviewing equipment heat gain data produced by ASHRAE [1989], the average

recommended gain was found to be 75% of the maximum gain, with a standard

deviation of 15%. This would suggest that an uncertainty of 61% is extreme.

To summarise: the quantification of heat gain to a space depends on the informa-

tion available. In order of decreasing uncertainty the available options are as follows.

1. Apply 20+
−12W/m2 for a general office.

2. Use the data in table 4.8.

3. Refer to the BSRIA report [Parsloe and Hejab 1992] to determine if the specific

equipment has been measured. This is increasing unlikely as time progresses

and new equipment is manufactured; therefore, use 75% of the maximum power

rating with a standard deviation of 15%.

The heat gain to the space from small power loads will be primarily convected into

the space. The percentage convected will vary between 60% and 80% [CIBSE 2001].
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4.3.3 Infiltration

Infiltration modelling can be achieved through specified air change rates or by detailed

flow simulation as described in chapter 2. At the early design stage the appropriate

modelling choice is the specification of air change rates and the variability in this

parameter is required.

Sources of error

Infiltration is highly correlated to building construction quality and building use. The

construction quality will affect the unintended leakage of air through the buildings

structure and as such will be a systematic error. The usage of the building will

likewise be a systematic error; where an advanced modelling approach is employed

it is necessary to describe the opening and closing of windows etc. The weather and

local micro climate will also effect the infiltration rate. When modelling infiltration

as an air change rate the errors will also be systematic as the error cannot be specified

exactly without more detailed modelling.

Error quantification

The International Energy Agency standards show that in countries such as Sweden

and Norway, where building air tightness is generally higher than in the UK, the

average infiltration rate is 0.15h−1. This may be compared to the UK the average of

0.35h−1 [Johnstone et al 1999] with a variation from 0.15h−1 to 1.25h−1.

The variation in infiltration between buildings in specific categories has been ex-

amined in Sweden [Pettersen 1997]. The results show that the standard deviation

varies from 1/3 to 4/5 of the mean measured infiltration rate and on average is 1/2

of the mean infiltration rate.

Table 4.9: Calculation air change rates.

Construction Air change rate (h−1)
Mean Maximum Std deviation

Standard 0.33 0.81 0.102
Tight 0.21 0.50 0.061

111



Table 4.10: Simulated air change rates.

Building Air change rate (h−1)
Mean Maximum Std deviation

House A 0.13 0.43 0.068
House B 0.10 0.36 0.056
Typical UK 0.35 1.25 0.183

ASHRAE suggest two formulae for estimating infiltration rates in domestic prop-

erties [ASHRAE 1989]. These formulae relate the air change rate to building con-

struction, temperature difference and wind speed. Assuming a constant indoor air

temperature of 21◦C, the data in table 4.9 was generated based on an annual cal-

culation using the UK climate reference year. In this case the standard deviations

observed are about 1/3 of the mean air change rate and the maximum values are

about 2.5 times greater than the mean.

Another approach to quantification is to model the air movement throughout the

building in more detail via a flow network. This involves identifying and describing

all the air flow paths in the building.

Using this approach and measured data from a study by Johnstone et al[1999], a

simple flow network was created. The study presented air change rates as a function

of pressure difference between the inside and outside of the building. All purpose-

built ventilation openings (e.g. window vents and extract fans) were sealed during

the tests. The resulting data was reduced and an average infiltration rate calculated.

Using the presented functions for the two measured houses and a typical UK house

three simple air flow networks were created. These were simulated for a year using

the UK reference climate and the results scaled to match the calculated average air

change rate. Finally, the variation in air change rate calculated as a function of the

average. The results are displayed in table 4.10, where the typical UK air change

rates are as presented above and assuming the range from minimum to maximum

represents six standard deviations.

As can be seen in table 4.10 the maximum air change rate is about 3.5 times larger

than the average and the standard deviation is about half of the average value.
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Figure 4.7: Distribution of air change rate from annual simulations.

Figure 4.7 shows the frequency of air change rates for all five of the above examples

(tables 4.9 and 4.10). Each curve has a normal distribution curve overlayed (in the

same colour, broken line). As can be seen the distributions are approximately normal,

despite the log-normal distribution being the ideal distribution to describe these data.

This would suggest that for standard deviations up to 1/2 of the mean it is possible

to approximate the variation in infiltration rates with the normal distribution.

The current design process focuses on the maximum infiltration rate for heat loss

calculations and as a result guides produce tables of this data [e.g. CIBSE 2001].

Data such as these contains a systematic error because it does not model the pro-

cess it represents. The above simulations have shown that by including temperature

and wind speed in the calculation there is a normal distribution of air change rates

throughout the year with the mean value approximately 1/3 of the maximum and

113



the standard deviation equal to 1/3 of the mean.

4.4 Summary

This chapter has described the process by which uncertainty can be characterised.

The process has been demonstrated on three types of thermal simulation data: ther-

mophysical properties, casual gains and infiltration rates. These three data types are

the minimum data required to describe a building for thermal simulation.

Two analysis procedures were employed: analysis of existing data and the use

of detailed modeling. Analysing existing data provides a suitable mechanism for

quantifying the uncertainty in parameters provided that the data is of good quality.

This is not necessarily the case, for example:

• Most data used in building simulation is old – some of the data predates 1970.

While some processes should not change in principle, better measurement tech-

niques now exist for gathering data, including the inherent variability.

• Many of the measurements are from small sample sizes or unrepresentative

samples. This is particularly true for metabolic heat gains where some sample

sizes reported in the literature are for one or two people, or in the case of NASA

for physically fit young males.

To overcome a lack of data detailed modelling can be usefully employed. This was

demonstrated by using an air flow network to calculate the variation in air change

rates. This approach could be used to bound the uncertainties of other systematic

errors e.g. the effect of thermal bridges when using a one dimensional heat transfer

model.

The next stage in the process is to identify a suitable mechanism whereby the

quantification techniques of chapter 3 can be implemented within a simulation tool.
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Chapter 5

Implementation

Internal and external methods are applied to the ESP-r sys-

tem. Interaction points with the existing computational sys-

tem are identified and the necessary alterations detailed.

This chapter describes the integration of the uncertainty analysis methods selected in

Chapter 3 into the ESP-r system [ESRU 2001]. As described in chapter 2, the system

uses control volume conservation equations to establish the building model. Each

technical domain (thermal, air flow etc) has its own set of conservation equations and

specialised solution engine. This allows each domain to be solved efficiently, and at

an appropriate solution time step. Information is shared between domains at each

time step and, where necessary, an iterative approach is taken to ensure consistency

between the domains. This process is summarised in figure 5.1.

The data model required to describe any building system is large. Before simula-

tions can be undertaken, the data model has to be transformed into a form suitable for

simulation. This process requires the calculation of conservation equation coefficients:

some of these are non-simulation specific and some are simulation specific. Examples

of non-simulation specific coefficients include surface areas and orientations, while an

example of a simulation specific coefficient is the Fourier number, which depends on

the user defined time step. There are also time varying coefficients required in the

conservation equations, for example, heat transfer coefficients. All of these coefficients
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Figure 5.1: Time step solution of modelled domains (from Clarke 2001).
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will be affected by uncertainties and the implementation of uncertainty analysis tech-

niques will be required to interact with the calculation routines at suitable points in

the computational process.

The process followed by ESP-r is depicted in figure 5.2. The system configuration

file is read by the system and then, on a zone-by-zone basis, the zone descriptive files

are read. These files contain geometry data, construction data and operations data.

These data are subject to a degree of pre-calculation, to quantify the time invariant

coefficients, as the files are read by the system. Once all the zones have been read, the

simulation requires further information to proceed, e.g. time step. This allows the

specific coefficients to be calculated and the final decomposition of input data into a

form suitable for simulation. The model is now ready for solution and the simulation

can proceed.

The two approaches to uncertainty quantification described in chapter 3 require

interaction with the system at different levels. The external methods envelope the

simulation engine and all perturbations to the data model are made externally. In

addition to updating the data model, internal methods require the simulation engine

to be enhanced. Therefore, the implementation of the external methods is more

straightforward than for internal methods.

5.1 External methods

Implementation of the external methods is a three stage process:

1. definition of uncertain data;

2. execution of multiple simulations as required by the analysis method;

3. extraction of analysis results to quantify the effects of uncertain data.

The general requirements regarding implementation are now described and the key

processes at each stage of the simulation process elucidated.
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Figure 5.2: Building equation parameter set-up.

5.1.1 General considerations

The definition of a building system for simulation consists of a large set of data,

typically comprising hundreds of parameters. The majority of these parameters are

specific to the modelled building. An uncertainty analysis requires that items of data

within this structure be clearly identified as uncertain and information assigned to

describe the magnitude of this uncertainty.

A probability distribution can be ascribed to each uncertain parameter to deter-

mine how the value of the parameter varies. To enable this definition, a distribution

type is selected and the data associated with the chosen distribution defined, e.g. for

a normal distribution the associated data would be the standard deviation.

Of the chosen methods, only the Monte Carlo technique requires the distribution

to be identified. The differential and factorial analyses require only two test values to
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Table 5.1: Common data requirements for uncertainty analysis methods.

Method Parameter Probability Uncertainty
identification distribution magnitude

Differential X × X
Factorial X × X
Monte Carlo X X X

proceed. However, if the results of the differential method are to be compared then it

is convenient to analyse the model at a known point on the probability distribution

defining the uncertainty, e.g. at three standard deviations from the mean value.

These requirements are summarised in table 5.1.

As noted, the differential and factorial methods do not require a distribution to

be identified. However, if the distribution is identified then in the case of the dif-

ferential method (and assuming that the standard assumptions hold as described in

section 3.1.1) the same distribution type can be assigned to the output of the analysis.

Thus, the three identified data items are necessary for the majority of the methods

and should be held for all definitions as this allows the defined uncertainty to be used

for all analysis methods.

All three methods require repeated simulations to be performed on perturbed

models. The methods treat the simulation engine of the software as a ‘black box’

and therefore the perturbations have to be activated in the data model before each

simulation is initiated.

Each of the methods require specific alterations to the data model between simu-

lations. Specifically:

The differential method requires only one variable at a time to be perturbed; thus the

base case model is recreated before each simulation and one parameter adjusted

to its extreme value, three standard deviations.

The factorial method requires all variables to be adjusted to either their maximum

or minimum extreme values (three standard deviations) for each simulation.

The Monte Carlo method requires all parameters to be adjusted for each simulation

to a random point in their probability distribution.
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Figure 5.3: Integration of uncertainty analysis in ESP-r.

A multiple simulation controller is required to manage this process. The purpose

of this controller is to ensure that the correct perturbations are effected in the data

model and that the correct number of simulations are invoked.

The analysis of the ensuing results sets is clearly method specific. However, the

process will require that multiple results sets can be analysed simultaneously and the

differences between the sets examined.

5.1.2 Integration into ESP-r

The characteristics of an uncertainty analysis tool have been identified in the pre-

vious section. The implementation of these characteristics in the ESP-r system is

summarised in figure 5.3.
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Uncertainty definition

The definition of an uncertainty requires three information aspects:

1. the magnitude of the uncertainty in a parameter;

2. its probability distribution; and

3. the locations (spatial and temporal) where uncertainties are applicable.

These aspects are combined to complete the definition by associating the uncertain

model parameters with particular locations in the building. This definition procedure

allows flexibility for the model user, e.g. the magnitude of an uncertainty can vary

with location or many uncertainties may apply to a single location.

The management of uncertainty definitions is controlled via a single uncertainty

manager. The purpose of the manager is to interrogate the existing model and prompt

the user for uncertainty definitions pertinent to their model and to allow maintenance

of existing uncertainties. For example, uncertainties in the model will generally reduce

as the design progresses and therefore the defined uncertainties have to be revised.

The implementation maintains the definition of uncertainties separately from the

main data model. This enables the portability of uncertainty definitions between

projects, where applicable. In future a rule-based definition procedure could be added

to the uncertainty manager allowing automatic attribution of uncertainties.

The definition process interface is shown in figure 5.4. Initially the user selects the

uncertain parameter and then assigns a distribution. In the example shown here the

conductivity of plate glass has been defined as the uncertain parameter. Note that the

model has been interrogated by the uncertainty manager and only those construction

materials used in the model are presented to the user. A normal distribution has been

assigned to this parameter with the standard deviation expressed as a percentage of

the mean value.

Once the uncertainties throughout the model have been defined, the user can

initiate simulations that include uncertainty.
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Figure 5.4: Attribution of uncertainties in ESP-r.

Multiple simulation controller

Simulating with the defined uncertainties requires the existence of a simulation con-

troller, which implements the necessary parameter changes to the data model and

initiates the simulations. The controller reads the input data model into memory

and all subsequent changes to the model are made to this memory image to avoid

corruption of the original model.

The simulation controller has three principal interactions with the simulation en-

gine:

1. set-up of perturbation array;

2. perturbation of time invariant aspects of the data model;

3. perturbation of time varying aspects of the data model.

The set-up of the perturbation is summarised in figure 5.5. The controller’s task is

to define the perturbation array and commission simulations. The time step solution
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Figure 5.5: Multiple simulation controller: perturbation array set-up.

of modelled domains of figure 5.1 is represented by the ‘run simulation’ action and

the ‘read model description’ action is displayed in figure 5.2.
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Figure 5.6: Building equation parameter set-up, for time invariant uncertainties.

The values in the perturbation array are set according to the analysis method

chosen. For example, only one uncertainty will be perturbed at a time when the

differential method is active. The design look-up table used for the factorial method

is pre-calculated (e.g. see figure 3.1). The perturbation values are independent of the

distribution, they are merely factors to be applied to the specific uncertainties during
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the final two actions of the simulation controller. The perturbations are applied at

two interaction locations with the existing ESP-r code. Time invariant uncertainties

can be set during the loading of the model description into memory and time varying

uncertainties are applied during the simulation.

another day?

another hour?

another time-step?

iterate?

end simulation

per day

begin simulation

per hour

alter parameter

per active
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uncertainties

Y
N
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N

Y

N

establish and solve modelled domains(s)

per domain time step

Y

N

another uncertainty?

N

Y

Figure 5.7: Building equation parameter set-up, for time varying uncertainties.

The simulation controller implements changes to the data model as the problem

description files are reloaded into the system (figure 5.6). This approach guarantees

that all coefficients are initially reset to their base case values before application
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of the perturbation data. Since the data is perturbed before the calculation of the

equation coefficients, the existing equation set-up routines of ESP-r can be used.

This procedure ensures that the perturbed model is imposed upon all the necessary

coefficients in the conservation equations.

Figure 5.7 elaborates the interaction of the simulation controller when temporal

uncertainties are active. The separate domains of figure 5.1 have been combined in the

‘establish and solve modelled domain(s)’ action. The interaction point for temporal

uncertainties is at the beginning of the time step loop ensuring that the perturbed

data is present in the future time row equations.

Figure 5.8: Multiple simulations for uncertainty assessment in ESP-r.

This complexity is hidden from the user and only minimal interaction is required.

As can be seen in figure 5.8, the interface requires only an analysis method to be

chosen (upper left of figure) and the multiple simulations are automatically commis-
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sioned, with progress feedback provided (lower half of the figure).

Results analysis

There are three possible approaches to the storing of the results generated by the

simulations:

1. the performance assessment metric is the only information stored from the sim-

ulations;

2. the full results files for each simulation are stored in separate files; and

3. performance information for each simulation is stored as different ‘sets’ in a

single results file.

The advantages and disadvantages of each approach are listed in table 5.2.

Table 5.2: Comparison of result storage methods.

Method 1 Method 2 Method 3

Disc space
required for
data storage
and breadth
of stored
performance
information

Small as only one se-
lected performance as-
sessment metric time
series data would be
stored for each simula-
tion.

Large as a broad range
of performance assess-
ment metrics would be
stored for each simula-
tion.

Large as a broad range
of performance assess-
ment metrics would be
stored for each simula-
tion.

Results analysis Could cause some
problems due to
minimal amount of
information stored.

Separate files, therefore
the same problems as
currently exist.

Careful data recovery
needed due to all re-
sults being kept in one
file.

Results with
different set
lengths

Overcome in all cases through use of multiple simulation controller
ensuring identical simulation period.

Results handling
procedure

ESP-r’s results analy-
sis facility would be
used after each simula-
tion, but further results
analysis facilities would
be needed to analyse
the individual perfor-
mance assessment met-
rics generated by this
method.

ESP-r’s results analy-
sis facility would need
to be able to read in
multiple results files for
this method or produce
output for a separate
analysis tool.

ESP-r’s results analysis
facility would need to
be able to read in mul-
tiple result sets from
the same file for this
method.
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Figure 5.9: Analysis of uncertainty assessment in ESP-r.

Method 3 was chosen because this allows several metrics to be stored during the

simulation allowing the effects of uncertainty to be quantified against several mea-

sures, e.g. peak temperature, plant load and thermal comfort. This requires ESP-r’s

result analysis facility to examine more than one results set at a time, and perform

comparisons between sets. The analysis of multiple result sets is dependent on the

uncertainty quantification method chosen at simulation time. With full results being

stored for each simulation, the possibility of the full range of analysis currently avail-

able within the ESP-r system is available for each set. This allows the examination

of the causes of extreme results and helps to identify possible parameter values that
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would be detrimental to building performance. As can be seen in figure 5.9, the user is

offered a full range of assessment metrics and output formats. Note the time varying

effects of the uncertainties in the time series plot.

Summary

The external methods have been imbedded within the ESP-r simulator to ensure

that they will stay compatible with future versions of the software. The interac-

tions between the uncertainty analysis routines and the existing software have been

elaborated. The adopted philosophy is to minimise the interactions with ESP-r’s

calculation procedures. This simplifies validation requirements as explained in chap-

ter 6.

To verify the robustness of the implementation mechanism classes of uncertainties

can currently be defined. This ensures that as further sources of uncertainty are

quantified (in addition to those in chapter 4) their effects can be quantified.

Thermophysical properties: conductivity, density, specific heat capacity, absorptiv-

ity, emissivity and vapour diffusivity.

Constructions: layer thickness and composite reference.

Casual gains: total gain, sensible/latent ratio and convective/radiative ratio of sen-

sible portion.

Air flow: Infiltration and ventilation air change rates and ventilation source temper-

ature.

Geometry: zone volume and surface areas.

Climate: ambient temperature, direct and diffuse solar radiation, wind speed and

direction and relative humidity.

Control: Set point and heater/chiller capacity for basic control.

Algorithm: convection coefficients.
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The addition of new parameters to which uncertainty can be applied is a straightfor-

ward process.

The next section elaborates the application of internal methods to the core equa-

tion sets of the simulation engine.

5.2 Internal methods

The previous section considered simulation as a black box and as such did not use

information on the parameter distributions during the calculations. This section

develops the internal methods introduced in chapter 3. The techniques developed

in this section characterise parameters as values and distributions and impose this

information on the calculation procedure. This enables the overall uncertainty to be

quantified, and the parameters causing this uncertainty to be identified, in a single

simulation. Internal methods have been applied to the core equations of the thermal

domain of ESP-r1.

5.2.1 Range arithmetic considerations

There are some basic considerations which will affect the successful embedding of

range arithmetic methods into the control volume conservation equations. The pri-

mary concern of any implementation must be in preserving the relationships between

parameters, otherwise a parameter occurring in the expression of separate matrix

coefficients may take on a high value for one coefficient and simultaneously take on

a low value in the other. Referring back to the definition of subtraction in interval

arithmetic (section 3.2.3), this non-sensible instance can be exemplified:

x− x = [1, 2]− [1, 2] = [−1, 1]. (5.1)

1In integrated modelling there are other technical domains, e.g. CFD, moisture etc. These
domains also require that sets of conservation equations be defined and solved. In this respect they
are analogous to the thermal domain and so the technique described here is equally applicable to
these domains.
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Clearly if the range [1, 2] represented the same data item then the result of the

subtraction would be zero. Relationships of this kind are not easy to identify in a

general application of interval arithmetic. The conductivity, density, specific heat and

thickness of a material appear in multiple locations within the coefficient matrices,

thus the above problem would occur in an interval arithmetic application. The same

equation in affine arithmetic would be:

x− x = (1.5 + 0.5ε1)− (1.5 + 0.5ε1) = 0 (5.2)

where ε1 = [−1, 1].

When considering the solution of the matrix formulation, the choice is between

a direct and indirect method. The solver of choice for a linear equation set (as is

the case in the thermal domain) is a direct method requiring a LU decomposition

of the future time-row coefficient matrix. This approach is computationally efficient

since, given time invariant coefficients, the decomposition is calculated once at the

beginning of a simulation and can be used for all time steps thereafter. However,

when introducing uncertainties into the data, the efficiency of the LU decomposition

results in variables being reused: if correlations between data items are not preserved

then non sensible results will be calculated. This was clearly shown in the example in

section 3.2.3 where the LU decomposition of a matrix using interval arithmetic was

elaborated.

In an attempt to overcome this problem an indirect method can be used to solve

the equations at each time step, for example the Gauss-Seidel method. This method

has the advantage that the original future time-row matrix is used directly at each

time step. However, as noted above, correlations between entries in the original

matrix should still be preserved. For example, the conductivity of a node will appear

three times in the same sum when the product of A.θt+1 and B.θt is calculated.

Of the internal methods presented in chapter 3 only affine arithmetic preserves

the relationship between data items and the source of any uncertainty. The following

sections detail the application of affine arithmetic to the control volume conservation
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equations comprising ESP-r’s thermal energy balance model.

Energy balance for solid nodes

Recall the general equation for transient conduction in a solid node as presented in

section 2.2.1. This equation is now extended to include uncertainties through the use

of affine arithmetic.

The fundamental energy balance for the node is unchanged since no new energy

flow paths are created. Thus, equation 2.4 is the valid starting point. However, the

physical properties affecting the energy transfer mechanisms are now functions of their

inherent uncertainties. Recalling the definition of an affine number, the representation

of, for example, an uncertain conductivity at node i is given by

ki = ki,0 +
ν∑

j=1

ki,jεj (5.3)

where ki,0 is the average value of conductivity and the ki,jεj represent the variation

in conductivity due to each of the ν sources of uncertainty. Likewise all of the other

terms in equation 2.4 can be represented in their affine forms. The length of time

step, δt, is imposed on the solution process by the user and as such has no associated

uncertainty. All of the remaining parameters are functions of the building being

modelled:

ρ, C and k are properties of the materials and are susceptible to measurement errors

and uncertainties due to moisture content etc,

δx is the thickness of the element and is subject to measurement errors and con-

struction uncertainties; likewise the volume of the node V ,

the various fluxes are also uncertain, e.g. plant losses might be less than or greater

than expected, solar gain will reduce over time due to the accumulation of a

dirt film on the glazing. The magnitude of these uncertainties will be calculated

elsewhere, e.g. during the calculation of solar absorbed/transmitted through the

glazing.
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As a result of these uncertainties the temperature of the node will itself be uncertain.

The result of all these uncertainties is that equation 2.4 becomes equation 5.4.


2(ρi,0 +

ν∑

j=1

ρi,jεj)(Ci,0 +

ν∑

j=1

Ci,jεj) +
2(ki,0 +

∑ν
j=1 ki,jεj)δt

(δxi,0 +
∑ν
j=1 δxi,jεj)

2


 (θi,t+1,0 +

ν∑

j=1

θi,t+1,jεj)

−
(ki,0 +

∑ν
j=1 ki,jεj)δt

(δxi,0 +
∑ν
j=1 δxi,jεj)

2


(θi+1,t+1,0 +

ν∑

j=1

θi+1,t+1,jεj) + (θi−1,t+1,0 +

ν∑

j=1

θi−1,t+1,jεj)




−
(qplant,i,t+1,0 +

∑ν
j=1 qplant,i,t+1,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

−
(qsolar,i,t+1,0 +

∑ν
j=1 qsolar,i,t+1,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

=


2(ρi,0 +

ν∑

j=1

ρi,jεj)(Ci,0 +
ν∑

j=1

Ci,jεj)−
2(ki,0 +

∑ν
j=1 ki,jεj)δt

(δxi,0 +
∑ν
j=1 δxi,jεj)

2


 (θi,t,0 +

ν∑

j=1

θi,t,jεj)

+
(ki,0 +

∑ν
j=1 ki,jεj)δt

(δxi,0 +
∑ν
j=1 δxi,jεj)

2


(θi+1,t,0 +

ν∑

j=1

θi+1,t,jεj) + (θi−1,t,0 +
ν∑

j=1

θi−1,t,jεj)




+
(qplant,i,t,0 +

∑ν
j=1 qplant,i,t,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

+
(qsolar,i,t,0 +

∑ν
j=1 qsolar,i,t,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

(5.4)

As can be seen in equation 5.4 the uncertain parameters are now represented by

affine numbers. The state variable, θ, is likewise represented in an affine form. In this

manner the uncertainty in the parameters will be accounted for during the calculation

and will be quantified in the state variables.

This is the general conservation equation for a solid node with uncertainties in-

cluded. It should be noted that for any given set of values for the uncertainty tokens

(εj), equation 5.4 reduces to equation 2.4. Recall that the numbering of uncertainty

tokens is consistent throughout the model; therefore, uncertainty tokens for all prop-

erties can be related. For example, if density and specific heat capacity have a magni-

tude associated with uncertainty token j then both properties are implicitly defined

as being correlated and if an uncertainty is not applicable to a parameter then its

magnitude is zero.

Energy balance for surface nodes

Equation 2.8 is now extended to include uncertainties.
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
2(ρi,0 +

ν∑

j=1

ρi,jεj)(Ci,0 +
ν∑

j=1

Ci,jεj)

+
2(ki,0 +

∑ν
j=1 ki,jεj)δt

(δxi,0 +
∑ν
j=1 δxi,jεj)

2

+
m∑

s=1

(hr,s,0 +
∑ν
j=1 hr,s,jεj)(Ai,0 +

∑ν
j=1 Ai,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

+
(hc,s,0 +

∑ν
j=1 hc,s,jεj)(Ai,0 +

∑ν
j=1 Ai,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θi,t+1,0 +

ν∑

j=1

θi,t+1,jεj)

−
[

2(ki,0 +
∑ν
j=1 ki,jεj)δt

(δxi,0 +
∑ν
j=1 δxi,jεj)

2

]
· (θi+1,t+1,0 +

ν∑

j=1

θi+1,t+1,jεj)

−
(qplant,i,t+1,0 +

∑ν
j=1 qplant,i,t+1,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

−
(qsolar,i,t+1,0 +

∑ν
j=1 qsolar,i,t+1,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

−
[
m∑

s=1

(hr,s,0 +
∑ν
j=1 hr,s,jεj)(Ai,0 +

∑ν
j=1 Ai,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θs,t+1,0 +

ν∑

j=1

θs,t+1,jεj)

−
[

(hc,0 +
∑ν
j=1 hc,jεj)(Ai,0 +

∑ν
j=1 Ai,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θfluid,t+1,0 +

ν∑

j=1

θfluid,t+1,jεj) =


2(ρi,0 +

ν∑

j=1

ρi,jεj)(Ci,0 +

ν∑

j=1

Ci,jεj)

−
2(ki,0 +

∑ν
j=1 ki,jεj)δt

(δxi,0 +
∑ν
j=1 δxi,jεj)

2

−
m∑

s=1

(hr,s,0 +
∑ν
j=1 hr,s,jεj)(Ai,0 +

∑ν
j=1 Ai,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

−
(hc,s,0 +

∑ν
j=1 hc,s,jεj)(Ai,0 +

∑ν
j=1 Ai,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θi,t,0 +

ν∑

j=1

θi,t,jεj)

+

[
2(ki,0 +

∑ν
j=1 ki,jεj)δt

(δxi,0 +
∑ν
j=1 δxi,jεj)

2

]
· (θi+1,t,0 +

ν∑

j=1

θi+1,t,jεj)

+
(qplant,i,t,0 +

∑ν
j=1 qplant,i,t,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

+
(qsolar,i,t,0 +

∑ν
j=1 qsolar,i,t,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

+

[
m∑

s=1

(hr,s,0 +
∑ν
j=1 hr,s,jεj)(Ai,0 +

∑ν
j=1 Ai,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θs,t,0 +

ν∑

j=1

θs,t,jεj)

+

[
(hc,0 +

∑ν
j=1 hc,jεj)(Ai,0 +

∑ν
j=1 Ai,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θfluid,t,0 +

ν∑

j=1

θfluid,t,jεj) (5.5)
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In this case there are additional uncertainties associated with the longwave radia-

tion and convection terms:

hr is a property of the zone’s surface materials and areas and so is susceptible to

measurement errors and uncertainties due to dirt etc,

hc is an empirical coefficient and is therefore susceptible to measurement errors.

The resulting expansion of the general equation for a surface node gives rise to equa-

tion 5.5, where the uncertain parameters and state variables are again represented as

affine numbers. This is the general equation for a surface node where uncertainties

exist. Again it should be noted that for any given set of values for the uncertainty

tokens (εj) equation 5.5 reduces to equation 2.8.

Various expressions for the convective heat transfer coefficient exist [Beausoleil-

Morrison 2001]. One such expression used in ESP-r is the Alamdari and Hammond

correlation

hc =



[
a

(
∆θ

d

)1/4
]6

+
[
b(∆θ)1/3

]6




1/6

(5.6)

where a and b are empirical coefficients and ∆θ is the temperature difference between

the solid and fluid and d is a characteristic dimension. This equation would be used

at each time step to calculate the time varying heat transfer coefficient. The four pa-

rameters described above can be replaced by affine terms. In the case of temperature

difference the solid and fluid terms will have uncertainty tokens associated with all

sources of uncertainty. The characteristic dimension will only have an uncertainty

associated with its size. The empirical coefficients can be assigned uncertainty tokens

relating to the spread of experimental data. Therefore, the resulting affine expres-

sion of hc will include all possible values for a specific temperature difference and

characteristic dimension (due to the inclusion of uncertainty in a and b), the uncer-

tainty due to the size of the characteristic dimension and the uncertainty due to the

prevailing temperature difference. Note it is only possible to know the uncertainty

in the prevailing temperature difference by integrating the effects of uncertainty into

the conservation equations.
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Energy balance for fluid nodes

Equation 2.11 is now extended to include uncertainties. In this case there are addi-

tional uncertainties associated with the advection term:

ṁ is a function of uncertain parameters including wind direction, speed, pressure

coefficients, temperature; and

C is a property of air and is subject to measurement errors.

The expansion of the general equation for a fluid node gives rise to the equation 5.7.


2(ρi,0 +

ν∑

j=1

ρi,jεj)(Ci,0 +
ν∑

j=1

Ci,jεj)

+

m∑

s=1

(hc,s,0 +
∑ν
j=1 hc,s,jεj)(As,0 +

∑ν
j=1 As,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

+

p∑

r=1

(ṁr,0 +
∑ν
j=1 ṁr,jεj)(Cr,0 +

∑ν
j=1 Cr,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θi,t+1,0 +

ν∑

j=1

θi,t+1,jεj)

−
(qplant,t+1,0 +

∑ν
j=1 qplant,t+1,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

−
[
m∑

s=1

(hc,s,0 +
∑ν
j=1 hc,s,jεj)(As,0 +

∑ν
j=1 As,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θs,t+1,0 +

ν∑

j=1

θs,t+1,jεj)

−
[

p∑

r=1

(ṁr,0 +
∑ν
j=1 ṁr,jεj)(Ci,0 +

∑ν
j=1 Ci,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θsrcfluid,t+1,0 +

ν∑

j=1

θsrcfluid,t+1,jεj) =


2(ρi,0 +

ν∑

j=1

ρi,jεj)(Ci,0 +
ν∑

j=1

Ci,jεj)

−
m∑

s=1

(hc,s,0 +
∑ν
j=1 hc,s,jεj)(As,0 +

∑ν
j=1 As,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

−
p∑

r=1

(ṁr,0 +
∑ν
j=1 ṁr,jεj)(Cr,0 +

∑ν
j=1 Cr,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θi,t,0 +

ν∑

j=1

θi,t,jεj)

+
(qplant,t+1,0 +

∑ν
j=1 qplant,t+1,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

+

[
m∑

s=1

(hc,s,0 +
∑ν
j=1 hc,s,jεj)(As,0 +

∑ν
j=1 As,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θs,t,0 +

ν∑

j=1

θs,t,jεj)

+

[
p∑

r=1

(ṁr,0 +
∑ν
j=1 ṁr,jεj)(Ci,0 +

∑ν
j=1 Ci,jεj)δt

(Vi,0 +
∑ν
j=1 Vi,jεj)

]
· (θsrcfluid,t,0 +

ν∑

j=1

θsrcfluid,t,jεj) (5.7)
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This is the general equation for a fluid node where uncertainties exist. Again

it should be noted that for any given set of values for the uncertainty tokens (εj)

equation 5.7 reduces to equation 2.11.

5.2.2 Solution methods including uncertainties

For a given building an equation set can be established using equations 5.4, 5.5

and 5.7. These equations must then be solved for each required time step. The so-

lution procedure will require non-affine operations (e.g. multiplication and division),

resulting in temperature terms for future time steps being expressed in terms of un-

certainties in the input data and calculation uncertainties. These calculation uncer-

tainties can now propagate through the simulation and potentially dominate. Thus,

any implementation of affine arithmetic must preserve the initial descriptions and

minimise the use of non-affine calculations. This has two immediate consequences:

1. The LU decomposition of the future time row coefficients matrix is not appro-

priate due to the repeated multiplications and divisions necessary to gain the

decomposed matrix. Thus an iterative approach is necessary.

2. The fundamental solution algorithms should be re-appraised. Initially these

algorithms were optimised in order to minimise the number of operations un-

dertaken to obtain a solution. Now the algorithms should be optimised in order

to minimise the number of non-affine operations required.

For these reasons a Gauss-Seidel iterative solver has been employed. Within the

Gauss-Seidel method each row of coefficients is divided by the diagonal element of the

future time step coefficients matrix for that row. In normal arithmetic this results in

the diagonal elements having a value of one. The result of these divisions in an affine

arithmetic implementation is the creation of multiple new uncertainty tokens (one for

each division). These aspects of the affine arithmetic implementation are elaborated

in chapter 6 via numerical examples.
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5.2.3 Other domains

Affine arithmetic can also be applied to the other aspects of the building relating to

HVAC, control systems, renewable energy components and lighting. To achieve this

the affine approach should be applied to the mathematical models for the air flow,

moisture and electrical domains.

In the case of air flow, for example, as described in section 2.2.2 two approaches

are possible: network air flow and CFD. In the case of network air flow the mass

flow rate between two volumes was given by the general relationship ṁ = f(∆P ).

In the case of a crack this function can be represented by a expression involving two

empirical coefficients (see equation 2.13). Both of these coefficients will be uncertain

due to measurement errors. The density of air will also be uncertain as it is a function

of the fluid’s temperature and is empirically measured. The source of uncertainty in

pressure difference will depend on wind velocity and pressure coefficient for boundary

control volumes and, for non-boundary control volumes, the uncertainty will be a

function of the uncertain mass flow rates into the control volume. The resulting

affine expression for flow through a crack, based on the power law representation of

equation 2.13, is

ṁi,0 +
ν∑

j=1

ṁi,jεj =

(ρb,0 +
ν∑

j=1

ρb,jεj) · (κi,0 +
ν∑

j=1

κi,jεj) ·


(Pa,0 +

ν∑

j=1

Pa,jεj)− (Pb,0 +
ν∑

j=1

Pb,jεj)




(ni,0+
∑ν
j=1 ni,jεj)

(5.8)

for connection i between fluid volumes a and b. This expression for flow through a

crack is non-linear. Therefore, an iterative solution procedure is required and the

method presented in the previous section could be usefully employed.

Likewise, the affine representation could be applied to continuity and the conser-

vation of momentum, energy and concentration equations which comprise the CFD

approach. This would entail the replacement of the parameters of these equations by
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affine representations. For example, consider the momentum equation. The governing

parameter for the diffusion term is

µef = µt + µ

where µt is the eddy viscosity and µ the molecular viscosity (both kgm−1s−1). The

eddy viscosity is a function of both the fluid properties and the flow conditions. One

expression for the eddy viscosity is [Munson et al 1998]

µt = ρl2m

∣∣∣dūdy
∣∣∣ .

The fluid density, ρ, will be subject to uncertainty as a result of any uncertainties in

temperature For example, from a boundary condition where the surface temperature

is represented as described in section 5.2.1. The mean velocity, ū, will be subject to

uncertainty derived from the flow field, including boundary conditions. The mixing

length, lm, will likewise be uncertain. All of these terms should be replaced by affine

representations. The same modifications should be made to the source term of the

momentum equation set which includes pressure, density, temperature and thermal

expansion terms which are all subject to uncertainty. It would also be necessary to

introduce affine terms into the continuity, energy and concentration equations so as

the effects of uncertainty are calculated throughout the CFD domain.

In both of these approaches to flow modelling there would be a significant increase

in the number of non-affine operations, due to the use of non-linear expressions.

Careful consideration must be given to avoid the new affine terms created by these

operations dominating the solution.

5.3 Summary

The integration of uncertainty quantification methods into an existing simulation en-

vironment has been described. The integration of external methods requires only

the data model to be altered, whereas the internal methods require the conservation

equations to be updated as well. External methods, however, require multiple sim-

ulations and as a result careful data management for the perturbed model creation

and results analysis.
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Chapter 6

Verification and applicability

The implementations of the selected methods are verified.

This requires a suitable testing method. The appropriateness

of the uncertainty method to accommodate specific design

issues is identified.

The uncertainty analysis methods as implemented in ESP-r require to be verified

and their applicability confirmed. The verification process, however, does not need to

validate the methods themselves. The external methods have been verified previously

and are in general use [Saltelli et al 2000]. The applied internal method is self-

validating in that the correct answer will always be bounded by the solution, given

the initial bounds. However, the implementation of each method has to be verified.

The verification method is applied to the external and internal methods via example

thermal models.

6.1 Verification method

The process employed is based on validation techniques used previously in building

simulation.

There are three traditional validation procedures used in building simulation: com-

parison with analytical solutions, comparison with other models and comparison with
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measured data. These methods are, in the order given, increasingly expensive to ap-

ply although increasingly comprehensive. To collect measured data of the required

quality for comparisons with simulations is difficult and hence expensive, but will

test models under realistic conditions. Analytical comparisons are easily made but

are generally not representative of realistic conditions, e.g. adiabatic boundary con-

ditions are easily defined in a numerical model but are not realised in practice. Inter-

model comparisons offer the developer the benefits of realistic test conditions with

the ease of application of analytical tests. However, such comparisons could show

good agreement between the models even when all models are invalid.

ESP-r has been tested using all three validation methods [e.g. CEN 1997, Jud-

koff and Neymark 1995, Lomas 1996]; a comprehensive list of studies has also been

produced [Strachan 2000]. Therefore, ESP-r can be used as a valid model against

which to test the internal method due to the necessary changes to the conservation

equations.

External methods are implemented within ESP-r as a wrapper around the simu-

lation engine. Therefore, the process has to verify:

1. the correct variables are being modified for each simulation; and

2. the solution of the perturbed model is identical to that of an identically per-

turbed independent model.

The first item above can be checked by examining code and through proper reporting

during simulations. The second item can be checked by running an independent sim-

ulation of a perturbed model to compare against the automatically perturbed model.

A successful result of the second test will imply that the first test is also satisfied. An

inter-model comparison is therefore the most appropriate test mechanism for assess-

ing the implementation of external methods. To check that the correct results are

obtained for the external methods requires the checking of only a few lines of code,

as test two will have confirmed that the correct data is being recovered from each of

the multiple simulations, all that remains is the determination of differences, averages

etc.
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For the internal method the procedure has to test:

1. that the solution with no uncertainties applied is the same as that from the

existing version of ESP-r;

2. the quantified uncertainties are similar to those generated by the external meth-

ods.

Again, an inter-model comparison is the most appropriate test mechanism.

Therefore, the verification process adopted takes the form of an inter-model com-

parison. Each perturbed model simulated by an external method is equivalent to

a reference model which can be created and simulated independently. The results

from both models should then be identical. The internal method should produce

answers comparable to the external methods but in a single simulation. Therefore,

the internal method can be verified against the solution of the external methods.

Three models are referred to throughout this chapter:

base case model is the unperturbed model;

perturbed model is the model automatically perturbed by the multiple simulation

controller; and

reference model is an independently created model (equivalent to a perturbed

model) for the inter-model comparison.

To focus on the pertinent aspects of the tests, basic models have been selected that

encapsulate the principal thermal processes occurring in a building. The verification

procedure also has to ensure that the differences in the models are clearly reported

and that the results recovery is suitably comprehensive. These three aspects of the

test are elaborated in the following sections with the comparisons made at each stage

reported in sections 6.2 and 6.3.

6.1.1 Test models

The criteria for a test model is that it should be representative of the physical process

for which uncertainties are to be tested and that the model should be simple so as
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not to confuse the test results. To achieve these criteria two models were employed

in the current work. For the external methods the model must have the relevant

parameters defined for the uncertainty implementation to be tested. For the internal

method the model has to focus on transient conduction as the equations developed

for this method focus on this aspect of the building conservation equation set.

The first model used (figure 6.1) is representative of an office building. The model

allows uncertainty quantification in the following parameters to be verified:

1. conductivity,

2. density,

3. specific heat capacity,

4. layer thickness,

5. casual gains,

6. infiltration and ventilation rates,

7. climate conditions,

8. control parameters.

For the second model the CEN transient conduction test has been selected [CEN

1997]. The model is of a cube, where heat is conducted through the walls. The model

details are given in appendix B. The model allows the implementation of uncertainties

in the following parameters to be verified:

1. conductivity,

2. heat capacity,

3. thickness.

The details of these two models is of less importance than an ability to examine

the difference between the required models and the results from simulations over the

same period.
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Figure 6.1: Three zone example model.

6.1.2 Model reporting

Abstracted
buildingAbstraction

Data
entry

to software

Simulated
building

representation?
Intended

building
Real

Figure 6.2: Simulation models.
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To ensure that the base case model and the perturbed model have only the intended

differences, a comprehensive reporting facility was added to ESP-r. Three versions of a

building exist, one real and two virtual: the real building, the abstracted building (i.e.

the building the practitioner intends to simulate) and the simulated building (i.e. the

building represented by the data entered into the software). The translation process

between the real building and the two models is shown in figure 6.2. As can be seen

the only differences between models 2 and 3 are due to user input errors. Therefore,

if the simulation software can report back to the practitioner details of their model,

the practitioner can identify where errors exist and the intended representation of the

real building can be checked.

By using this facility two models can be compared and the differences between

them identified as shown in figure 6.3. A reference model is created with intentional

differences from the base case model. This stage is a manual process and is represented

by a broken line (automatic processes are represented by a solid line). Reports are

generated for both models and the differences in these reports identified. The final

check is to ensure that the differences between the reports are identical to the intended

perturbations, i.e. the correct reference model has been created. Individual reference

models are required for every set of perturbations that are to be tested.

The advantage of using this system is that the software is generating the reports,

hence minimizing the likelihood of human error.

6.1.3 Results reporting

Ensuring that the data model has been correctly altered (see section 5.1.2) requires

simulations to be compared as the multiple simulation controller automatically resets

and updates the data model during the simulation process. This check is made by

comparing the results of two simulations.

The simulation run of the model using an external method will contain result

sets from each of the perturbed models. The simulation of the reference model will

represent one of the models created during the multiple simulations. The output of

the corresponding models (perturbed and reference) is then compared. This process
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Figure 6.3: Checking correct application of perturbations.

is repeated for each uncertainty type.

The comparison process is depicted in figure 6.4. As can be seen, the model is

simulated with uncertainties active and the results for each individual simulation

are extracted (perturbed model results). This is an automatic process (represented

by solid lines). For each perturbed model a reference model is created. This is a

manual process (represented by broken lines) and the model is therefore checked by

the method described in the previous section. Each reference model is simulated

separately and reference result sets created (an automatic process). If the multiple

simulation controller is resetting and updating the data model correctly there should

be no differences between the corresponding result sets.

To reduce the likelihood of human error the simulation and results extraction

processes were automated.
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Figure 6.4: Checking correct simulation of perturbations.

6.2 External methods

The office model introduced above was used to verify that the correct data was ma-

nipulated for each of the three external methods and for each type of uncertainty.

6.2.1 Differential analysis

Uncertainties of the eight previously listed types were analysed. The uncertainties

are listed in table 6.1. Note that these uncertainties have been arbitrarily selected

for the purpose of verification.

The differential analysis of this model requires 57 simulations and therefore 56

reference models have to be created (as the first simulation is of the base case model).
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Table 6.1: Uncertainties defined for verification model

Parameter Uncertainty

Climate parameter: Dry bulb temperature 2.00◦C
Climate parameter: Direct normal solar 10.00%
Climate parameter: Diffuse horiz solar 10.00%
Climate parameter: Wind speed 10.00%
Climate parameter: Wind direction 10.00◦

Climate parameter: Relative humidity 10.00%
Material: Heavy mix concrete conductivity 10.00%
Material: Heavy mix concrete density 10.00%
Material: Heavy mix concrete specific 10.00%
Material: Breeze block emissivity 10.00%
Material: Breeze block absorptivity 10.00%
Comp constr: ‘extern wall’ insulation layer thickness 10.00%
Total casual gain, type: occupants 10.00%
Sensible casual gain, type: occupants 10.00%
Latent casual gain, type: occupants 10.00%
Radiant fraction casual gain, type: occupants 0.20
Total casual gain, type: lighting 10.00%
Sensible casual gain, type: lighting 10.00%
Latent casual gain, type: lighting 10.00%
Radiant fraction casual gain, type: lighting 0.20
Total casual gain, type: equipment 10.00%
Sensible casual gain, type: equipment 10.00%
Latent casual gain, type: equipment 10.00%
Radiant fraction casual gain, type: equipment 0.20
Scheduled infiltration 10.00%
Scheduled ventilation 10.00%
Control: Max heating flux 10.00%
Control: Heating set point 2.00◦C

Each of the 56 reference models represents a perturbed model created during the

differential analysis.

These models have been created and added to the ESP-r suite of benchmark mod-

els. The analysis process within this suite is automated, allowing a user to verify the

implementation. In all cases exactly the same output is generated from the perturbed

model and the corresponding reference model. Therefore, the implementation of the

listed parameters has been successfully verified.

To demonstrate the efficacy of this procedure, the direct solar irradiance was delib-

erately set high in the reference model by 1W/m2 for a single time step. The results

of the verification test are displayed in figure 6.5. The highlighted lines in the figure

151



show where the difference between the two models occurs. The differences are small:

0.01◦C in average air temperature, 0.01W in average and maximum infiltration load,

and smaller differences in ventilation loads and relative humidity.

Although these differences are insignificant in terms of building performance, they

should not exist if the two models are identical. If the direct solar radiation is reset to

its correct value the models produce identical output. Clearly, the testing procedure

is sensitive to errors in the model and therefore, if the multiple simulation controller

did not manipulate the data model correctly the test would have failed.

Figure 6.5: Verification comparison - failure (differences highlighted).

All 56 reference models produced identical results to the perturbed models created

automatically by the multiple simulation controller.

6.2.2 Factorial analysis

The process for verifying the implementation of the factorial method is essentially the

same as for the differential method. The main difference is that multiple parameters

are perturbed simultaneously by the multiple simulation controller.

In the implementation employed, the data perturbation routines are independent

of the analysis method (see section 5.1.2). The implication of this is that if the data

model is correctly updated for a specific uncertainty then this will be true for all

methods. Therefore, it is only necessary to verify that the correct perturbations are
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made to verify the factorial method. Nevertheless, the same verification process was

undertaken, as this will confirm that the correct perturbations and simulations have

been enabled by the multiple simulation controller. As can be seen in table 6.2, a

subset of the uncertainties in table 6.1 was used in the process due to the limitations

of the factorial method: the required number of simulations being a function of the

uncertainties defined. In this case the full factorial analysis was undertaken resulting

in 16 simulations.

Table 6.2: Uncertainties defined for verification model

Parameter Uncertainty

Climate parameter: Dry bulb temperature 2.00◦C
Material: Heavy mix concrete conductivity 10.00%
Total casual gain, type: occupancy 10.00%
Scheduled infiltration 10.00%

The models for the factorial analysis have also been added to the ESP-r suite of

benchmark models. The multiple simulation controller steps through the required

model changes for the factorial method and the output was compared to that of the

reference models as before. Again there are no differences between the results sets

indicating that the correct perturbations are made to the data model.

6.2.3 Monte Carlo analysis

Given the successful verification of the differential and factorial methods it is unnec-

essary to embark on a full verification of the Monte Carlo implementation. However,

the distributions for the perturbation of each uncertain parameter should be checked.

The same uncertainties as for the differential method were used in the verification

test (table 6.1) with a normal distribution applied to each parameter.

Table 6.3 shows a comparison of the uncertainty definition and the perturbed

values used during the simulations. As expected, the mean and standard deviation

of the values used in the 80 simulation runs do not match the defined value and

uncertainty magnitude exactly. Figure 6.6 shows a histogram of the thickness values

with the ideal distribution overlaid. The mean values are not statistically different at

a 95% confidence level and therefore verify this aspect of the implementation.
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Table 6.3: Uncertainty definitions and perturbed parameters

Parameter Defined Uncertainty Sample Standard
value magnitude mean deviation

Insulation thickness (m) 0.075 10% 0.0738 0.0064
Sensible heat gain 1 (W ) 800 10% 801.9 75.7
Sensible heat gain 2 (W ) 540 10% 539.4 48.8

0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 6.6: Perturbed thickness values including ideal distribution

6.2.4 Summary

For each of the tests the results were as expected, i.e. the correct data was identified

and altered by the multiple simulation controller and the results from a perturbed

model are identical to a reference model. From this it can be concluded that the three

external methods have been correctly implemented.

6.3 Internal methods

The theory developed for the internal method focused on transient conduction and

therefore the CEN standard for transient conduction was selected as a suitable test

model.
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6.3.1 Matrix formulation and solution

The CEN test model [CEN 1997] (see also Appendix B) comprises a cube (1m×1m×

1m) which is subjected to a step change in external air temperature. The response

of the internal air temperature is measured for three different construction types in

the following simulations.

To enable solution the cube is discretised into control volumes. Control volumes

are identified as representing the following:

1. external boundary air,

2. external surface,

3. mid-construction,

4. internal surface, and

5. internal air.

Item one in the above list is known at all times and the four unknown temperatures

are calculated over time. As the boundary conditions are identical for all surfaces and

the construction of each surface is also identical, the problem can be reduced to that

of heat conduction through a slab of cross section area 6m2 exposed to an enclosed

air volume of 1m3. This is shown in figure 6.7, where the nodes are numbered one

through five from the external boundary node.

54321

Figure 6.7: Discretisation of CEN conduction model
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As can be seen in figure 6.7 there are three control volume types in this model:

• two fluid control volumes (numbers 1 and 5);

• two surface control volumes (numbers 2 and 4); and

• one solid control volumes (number 3).

Energy balance matrix equation

The equation set requires the establishment of the coefficients for the general equation:

A · θt+1 = B · θt (6.1)

The expanded matrices showing the individual elements are (note that all of these

terms are affine numbers):




a1,1 a1,2

a2,1 a2,2 a2,3

a3,2 a3,3 a3,4

a4,3 a4,4 a4,5

a5,4 a5,5







θ1,t+1

θ2,t+1

θ3,t+1

θ4,t+1

θ5,t+1




=




b1,1 b1,2

b2,1 b2,2 b2,3

b3,2 b3,3 b3,4

b4,3 b4,4 b4,5

b5,4 b5,5







θ1,t

θ2,t

θ3,t

θ4,t

θ5,t




External boundary node

As the temperature for this node is known at all times the coefficients for the first

row of the matrices are:

a1,1 = 1.0

a1,2 = 0.0 (6.2)

b1,1 = 1.0

b1,2 = 0.0 (6.3)
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The convection exchange between this node and the surface node is added to the

terms for the surface node. This ensures that the temperature at the boundary node

is treated as a known parameter.

External surface node

The external surface node is an expression of equation 5.5. The coefficients are as

follows:

a2,1 = −
(hc,0 +

∑ν
j=1 hc,jεj)(A2,0 +

∑ν
j=1A2,jεj)δt

(V2,0 +
∑ν

j=1 V2,jεj)

a2,2 = 2(ρ2,0 +
ν∑

j=1

ρ2,jεj)(C2,0 +
ν∑

j=1

C2,jεj) +
(k2,0 +

∑ν
j=1 k2,jεj)δt

(δx2,0 +
∑ν

j=1 δx2,jεj)
2

+
(hc,0 +

∑ν
j=1 hc,jεj)(A2,0 +

∑ν
j=1A2,jεj)δt

(V2,0 +
∑ν

j=1 V2,jεj)

a2,3 = −
(k2,0 +

∑ν
j=1 k2,jεj)δt

(δx2,0 +
∑ν

j=1 δx2,jεj)
2 (6.4)

b2,1 =
(hc,0 +

∑ν
j=1 hc,jεj)(A2,0 +

∑ν
j=1A2,jεj)δt

(V2,0 +
∑ν

j=1 V2,jεj)

b2,2 = 2(ρ2,0 +
ν∑

j=1

ρ2,jεj)(C2,0 +
ν∑

j=1

C2,jεj)−
(k2,0 +

∑ν
j=1 k2,jεj)δt

(δx2,0 +
∑ν

j=1 δx2,jεj)
2

−
(hc,0 +

∑ν
j=1 hc,jεj)(A2,0 +

∑ν
j=1A2,jεj)δt

(V2,0 +
∑ν

j=1 V2,jεj)

b2,3 =
(k2,0 +

∑ν
j=1 k2,jεj)δt

(δx2,0 +
∑ν

j=1 δx2,jεj)
2 (6.5)

Note that in this example there are no radiative exchange, solar or plant flux terms.

Solid opaque node

The solid opaque node is an expression of equation 5.4. The coefficients are as follows:
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a3,2 = −
(k3,0 +

∑ν
j=1 k3,jεj)δt

(δx3,0 +
∑ν

j=1 δx3,jεj)
2

a3,3 = 2(ρ3,0 +
ν∑

j=1

ρ3,jεj)(C3,0 +
ν∑

j=1

C3,jεj) +
2(k3,0 +

∑ν
j=1 k3,jεj)δt

(δx3,0 +
∑ν

j=1 δx3,jεj)
2

a3,4 = −
(k3,0 +

∑ν
j=1 k3,jεj)δt

(δx3,0 +
∑ν

j=1 δx3,jεj)
2 (6.6)

b3,2 =
(k3,0 +

∑ν
j=1 k3,jεj)δt

(δx3,0 +
∑ν

j=1 δx3,jεj)
2

b3,3 = 2(ρ3,0 +
ν∑

j=1

ρ3,jεj)(C3,0 +
ν∑

j=1

C3,jεj)−
2(k3,0 +

∑ν
j=1 k3,jεj)δt

(δx3,0 +
∑ν

j=1 δx3,jεj)
2

b3,4 =
(k3,0 +

∑ν
j=1 k3,jεj)δt

(δx3,0 +
∑ν

j=1 δx3,jεj)
2 (6.7)

Note that in this example there are no solar or plant flux terms.

Internal surface node

The internal surface node is an expression of equation 5.5. The coefficients are as

follows:

a4,3 = −
(k4,0 +

∑ν
j=1 k4,jεj)δt

(δx4,0 +
∑ν

j=1 δx4,jεj)
2

a4,4 = 2(ρ4,0 +
ν∑

j=1

ρ4,jεj)(C4,0 +
ν∑

j=1

C4,jεj) +
(k4,0 +

∑ν
j=1 k4,jεj)δt

(δx4,0 +
∑ν

j=1 δx4,jεj)
2

+
(hc,0 +

∑ν
j=1 hc,jεj)(A4,0 +

∑ν
j=1A4,jεj)δt

(V4,0 +
∑ν

j=1 V4,jεj)

a4,5 = −
(hc,0 +

∑ν
j=1 hc,jεj)(A4,0 +

∑ν
j=1A4,jεj)δt

(V4,0 +
∑ν

j=1 V4,jεj)
(6.8)
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b4,3 =
(k4,0 +

∑ν
j=1 k4,jεj)δt

(δx4,0 +
∑ν

j=1 δx4,jεj)
2

b4,4 = 2(ρ4,0 +
ν∑

j=1

ρ4,jεj)(C4,0 +
ν∑

j=1

C4,jεj)−
(k4,0 +

∑ν
j=1 k4,jεj)δt

(δx4,0 +
∑ν

j=1 δx4,jεj)
2

−
(hc,0 +

∑ν
j=1 hc,jεj)(A4,0 +

∑ν
j=1A4,jεj)δt

(V4,0 +
∑ν

j=1 V4,jεj)

b4,5 =
(hc,0 +

∑ν
j=1 hc,jεj)(A4,0 +

∑ν
j=1A4,jεj)δt

(V4,0 +
∑ν

j=1 V4,jεj)
(6.9)

Note that in this example there are no radiative exchange, solar or plant flux terms.

Internal air node

The internal air node is an expression of equation 5.7. The coefficients are as follows:

a5,4 = −
(hc,5,0 +

∑ν
j=1 hc,5,jεj)(A5,0 +

∑ν
j=1A5,jεj)δt

(V5,0 +
∑ν

j=1 V5,jεj)

a5,5 = 2(ρ5,0 +
ν∑

j=1

ρ5,jεj)(C5,0 +
ν∑

j=1

C5,jεj)

+
(hc,5,0 +

∑ν
j=1 hc,5,jεj)(A5,0 +

∑ν
j=1A5,jεj)δt

(V5,0 +
∑ν

j=1 V5,jεj)
(6.10)

b5,4 =
(hc,5,0 +

∑ν
j=1 hc,5,jεj)(A5,0 +

∑ν
j=1A5,jεj)δt

(V5,0 +
∑ν

j=1 V5,jεj)

b5,5 = 2(ρ5,0 +
ν∑

j=1

ρ5,jεj)(C5,0 +
ν∑

j=1

C5,jεj)

−
(hc,5,0 +

∑ν
j=1 hc,5,jεj)(A5,0 +

∑ν
j=1A5,jεj)δt

(V5,0 +
∑ν

j=1 V5,jεj)
(6.11)

Note that in this example there are no advection or plant flux terms.

This equation set can now be solved over time. The node temperatures and un-

certainty will be calculated directly.
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6.3.2 Verification of affine model

Two simulation process have been used at this stage:

1. The original ESP-r program, and

2. The affine version of the program.

For both simulation options the model used has been simulated with and without

uncertainties applied. Recall that the affine approach only requires a single simulation

for a given set of uncertainties compared with the multiple simulations and analyses

(i.e. differential and Monte Carlo) required by external methods for the same set of

uncertainties.

Comparison of solutions without uncertainties

Tables 6.4 and 6.5, and figure 6.8 show the results of the simulations without un-

certainty. The affine model was run for an extended period of time and the final

results, typically after 250hrs are given as the time ∞ (this was primarily to verify

that the affine solution remained stable). The results of the affine model in table 6.4

compare well with the ESP-r data in table 6.5. As can be seen in figure 6.8 the

difference between the ESP-r and affine simulations is less than 0.2◦C at all times.

There are several sources of the differences between models, including: rounding dif-

ferences (probable cause of bias shown), slight differences in model configuration (e.g.

ESP-r cannot have an air heat capacity of zero), and in averaging of results to get

data at hourly intervals. In the solution of the building conservation equation set

the state variable (temperature) will be solved for each time row. Therefore, for a

simulation with a one hour time step the temperature will be known at half past the

hour. Thus to calculate temperatures at hourly intervals requires the data from two

time rows to be averaged, regardless of how small the time step is made. Therefore,

larger differences will occur when the time step is longer and the second derivative

of temperature with respect to time is greater. As the CEN standard [CEN 1997]

allows a maximum variation of 0.5◦C. these results were taken as verification of the

affine model of transient thermal conduction without uncertainty.
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Table 6.4: Affine solution without uncertainty.

Time Case
(hours) 1 2 3

1 20.017 21.432 27.647
2 20.101 25.105 29.972
6 21.287 29.599 30.000
12 23.444 29.991 30.000
24 26.364 30.000 30.000
120 29.968 30.000 30.000
∞ 29.973 30.000 30.000

Table 6.5: Original ESP-r predictions without uncertainty.

Time Case
(hours) 1 2 3

1 19.99 21.35 27.80
2 20.04 25.14 29.96
6 21.31 29.61 29.99
12 23.48 29.98 29.99
24 26.37 29.99 29.99
120 29.99 29.99 29.99
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Figure 6.8: Air temperature for standard tests.
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Comparison of solutions with uncertainties

A systematic test of the effects of including uncertainties was undertaken. A factorial

design provides the best test methodology as all possible combinations of the test

states are analysed. Such a process involves many tests for all possible parameters

and their combinations. The following test sequence was devised.

1. Test each parameter individually at uncertainties of 1%, 5% and 10%.

2. Test combinations of two parameters at the same uncertainty levels.

3. Continue with more parameters being included.

There are only three parameters that are available for assigning uncertainties in

the base case model: conductivity, heat capacity (either the density or specific heat

capacity) and thickness. In total 64 simulations were executed and analysed. This

includes the simulation with zero uncertainty in all parameters. The results of all 63

simulations (which include uncertainties) are reported in Appendix C.

The results can be categorised as follows:

1. Fully converged: the individual uncertainty tokens and the sum of the uncer-

tainty tokens tend to zero as the simulation time tends to infinity for all three

cases, for example table C.49 in Appendix C. Two simulations fall into this

category.

2. Partially converged: the individual uncertainty tokens converge but the sum of

the tokens does not, for example table C.2. Fifty of the simulations fall into

this category.

3. Divergent solutions: neither the individual uncertainty tokens nor the sum of

the tokens converge, for example table C.44. Eleven simulations fall into this

category.

Typical examples from each of these categories are now discussed and compared with

results from appropriate external methods.
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Fully converged solutions

The results from a fully converged solution are presented in table 6.6. As can be seen

for each case the uncertainty token θcon and the sum of the uncertainty tokens (these

include the results of non affine operations) tends to zero as time tends to infinity.

These results are commensurate with expectations of the behaviour of the physical

system.
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Figure 6.9: Air temperature for case 1.

If the conductivity were to increase by 1% then εcon = 1 and the resulting air

temperatures would then be θ0 + θcon at all times. This is a sensible result. The

value of θcon represents the uncertainty in temperature due to the first order effects

of the uncertainty in conductivity. The total uncertainty includes the effects due to

non affine operations. As expected, the total uncertainty is greater than the first

order effects. It should also be observed that the integrity of the physical system

is maintained i.e. no temperatures greater than 30◦C are possible for all values of

εi and the uncertainty in temperature reduces to zero as the system reaches steady
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Table 6.6: Affine solution for conductivity uncertainty of 1%.

Time Case 1
(hours) θ0 θcon

∑
θi

∑ |θi|
1 20.0172 0.0003 0.0003 0.0003
2 20.1009 0.0014 0.0014 0.0015
6 21.2866 0.0114 0.0117 0.0118
12 23.4442 0.0172 0.0180 0.0184
24 26.3645 0.0170 0.0187 0.0195
120 29.9676 0.0007 0.0013 0.0015
∞ 29.9734 0.0006 0.0011 0.0013

Time Case 2
(hours) θ0 θcon

∑
θi

∑ |θi|
1 21.4323 0.0166 0.0169 0.0171
2 25.1049 0.0401 0.0415 0.0421
6 29.5986 0.0126 0.0144 0.0150
12 29.9906 0.0006 0.0008 0.0009
24 30.0000 0.0000 0.0000 0.0000
∞ 30.0000 0.0000 0.0000 0.0000

Time Case 3
(hours) θ0 θcon

∑
θi

∑ |θi|
1 27.6470 0.0028 0.0060 0.0077
2 29.9723 0.0001 0.0046 0.0068
6 30.0000 0.0000 0.0023 0.0034
12 30.0000 0.0000 0.0006 0.0010
∞ 30.0000 0.0000 0.0004 0.0007

state. Finally, if the uncertainty in conductivity was zero (i.e. εcon = 0) then the

same results as the normal calculation (table 6.4) are achieved.

Differential and Monte Carlo analysis were undertaken to enable a comparison

with these results. Table 6.7 shows the results of these simulations: the δθ+ and δθ−

values relate to the differential analysis and the σ values relate to the Monte Carlo

analysis; as expected the two analysis methods produce effectively the same results.

As can be seen in figure 6.9 the total affine error (
∑ |θi|) is of the same magnitude as

the standard deviation predicted by an 80 run Monte Carlo analysis. The individual

effect of the uncertainty in conductivity (θcon in table 6.6) is also similar to the

variation predicted by the differential analysis (δθ+ and δθ− in table 6.7).

From this data it can be concluded that the affine solution for a single uncertain

parameter shows good agreement with the traditional external methods.
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Table 6.7: External method solutions for conductivity uncertainty of 1%.

Time Case 1
(hours) θ0 δθ+ δθ− σ
1 20.0003 0.0003 -0.0003 0.0002
2 20.0510 0.0017 -0.0010 0.0015
6 21.3119 0.0130 -0.0121 0.0125
12 23.4826 0.0177 -0.0164 0.0170
24 26.3728 0.0176 -0.0155 0.0165
120 29.9364 0.0026 -0.0011 0.0011

Time Case 2
(hours) θ0 δθ+ δθ− σ
1 21.3572 0.0194 -0.0195 0.0200
2 25.1434 0.0408 -0.0414 0.0421
6 29.6194 0.0117 -0.0122 0.0122
12 29.9889 0.0005 -0.0006 0.0006
24 29.9972 0.0001 -0.0001 0.0001
120 29.9973 0.0000 0.0000 0.0000

Time Case 3
(hours) θ0 δθ+ δθ− σ
1 27.8043 0.0027 -0.0028 0.0028
2 29.9699 0.0002 -0.0001 0.0002
6 29.9969 0.0000 0.0000 0.0000
12 29.9970 0.0000 0.0000 0.0000
24 29.9972 0.0000 0.0000 0.0000
120 29.9973 0.0000 -0.0001 0.0000

Partially converged solutions

Table 6.8 shows data from a typical partially converged affine simulation. The individ-

ual uncertainty tokens have tended to zero as the simulation progresses (as expected)

but the overall uncertainty, represented by the sum of the uncertainty tokens has

continued to expand for cases 1 and 3. Figure 6.10 shows the overall uncertainty

diverging for the affine solution of case 1.

Comparing these individual uncertainty tokens with the affine simulations for sin-

gle uncertainties: for conductivity see table 6.6 and for density see table C.13. From

these comparisons it can be seen that the affine simulations produce the same re-

sponse for the individual uncertainty tokens regardless of the number of uncertainties

defined. Further comparisons of the data in appendix C will confirm that this is not

an isolated result.
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Figure 6.10: Air temperature for case 1.

Table 6.8: Affine solution for density and conductivity uncertainty of 1%.

Time Case 1
(hours) θ0 θden θcon

∑
θ

∑ |θ|
1 20.0172 -0.0004 0.0003 -0.0001 0.0007
2 20.1009 -0.0023 0.0014 -0.0006 0.0040
6 21.2866 -0.0207 0.0114 -0.0044 0.0375
12 23.4442 -0.0369 0.0172 -0.0013 0.0741
24 26.3645 -0.0421 0.0170 0.0262 0.1148
120 29.9676 -0.0019 0.0007 0.1769 0.1962
∞ 29.9734 -0.0016 0.0006 0.1791 0.1981

Time Case 2
(hours) θ0 θden θcon

∑
θ

∑ |θ|
1 21.4323 -0.0189 0.0166 -0.0002 0.0380
2 25.1049 -0.0442 0.0401 0.0046 0.0944
6 29.5986 -0.0138 0.0127 0.0103 0.0396
12 29.9906 -0.0007 0.0006 0.0016 0.0032
24 30.0000 -0.0000 0.0000 0.0000 0.0000
∞ 30.0000 0.0000 0.0000 0.0000 0.0000

Time Case 3
(hours) θ0 θden θcon

∑
θ

∑ |θ|
1 27.6470 -0.0223 0.0028 0.0316 0.0999
2 29.9723 -0.0015 0.0001 0.1042 0.1539
6 30.0000 0.0000 0.0000 0.2119 0.3046
12 30.0000 0.0000 0.0000 0.3258 0.4684
∞ 30.0000 0.0000 0.0000 0.3715 0.5342
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Table 6.9: External method solutions for conductivity and density uncertainty of 1%.

Time Case 1
(hours) θ0 σ
1 20.0003 0.0002
2 20.0510 0.0025
6 21.3119 0.0260
12 23.4826 0.0420
24 26.3728 0.0467
120 29.9364 0.0023

Time Case 2
(hours) θ0 σ
1 21.3572 0.0278
2 25.1434 0.0587
6 29.6194 0.0171
12 29.9889 0.0008
24 29.9972 0.0001
120 29.9973 0.0000

Time Case 3
(hours) θ0 σ
1 27.8043 0.0218
2 29.9699 0.0015
6 29.9969 0.0000
12 29.9970 0.0000
24 29.9972 0.0000
120 29.9973 0.0000

Furthermore, if the converged solutions (cases 1 and 2) are compared with the

output from the Monte Carlo simulations (tables 6.8 and 6.9) it can be seen that the

solution for case 2 bounds the Monte Carlo results. The reason for the overestimation

of the overall bound is due to the estimation of non-affine operations and is discussed

in the next section.

From this data it can be concluded that the affine solution for multiple uncertain

parameters shows good agreement with the differential method in all cases and for

some cases with the Monte Carlo method.

Divergent solutions

The simulation of uncertainties using affine arithmetic does not always produce

bounded results. As can be seen in table 6.10, the uncertainty tokens sometimes

diverge and an unbounded solution occurs. The reasons for this are now examined.

Examining all of the tables in appendix C it is clear that there are two consistent

threads to the cases where the solution becomes unbounded.
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Table 6.10: Uncertainties: density 10%, thickness 10%, conductivity 10%.

Time Case 1
(hours) θ0 θden θthk θcon

∑
θ

∑ |θ|
1 20.0172 -0.0056 -0.0213 0.0041 0.4900 1.5551
2 20.1009 -0.0311 -0.1169 0.0224 9.3625 22.1748
6 21.2866 -0.3277 -1.1375 0.1960 > 1000. > 1000.
12 23.4442 -0.8508 -2.6781 0.3903 > 1000. > 1000.
24 26.3645 -2.3562 -6.9613 0.8847 > 1000. > 1000.
120 29.9676 < −1000. < −1000. 423.7654 ∞ ∞
∞ 29.9734 < −1000. < −1000. 547.7548 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θ

∑ |θ|
1 21.4323 -0.5724 -2.5921 0.6033 > 1000. > 1000.
2 25.1049 -2.3644 -10.8479 2.5526 ∞ ∞
6 29.5986 -47.2850 -217.3026 51.2034 ∞ ∞
12 29.9906 < −1000. < −1000. > 1000. ∞ ∞
24 30.0000 < −1000. < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θ

∑ |θ|
1 27.6470 ∞ ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞

1. The magnitudes of the uncertainties are large.

2. Uncertainties in thickness cause failure more often than for the same magnitude

of uncertainty in density or conductivity.

These characteristics are resolved by referring to the solution procedure. In the

first case the coefficients of the A matrix (see equation 6.1) become dominated by the

magnitude of the uncertainty tokens with respect to the magnitude of the constant

value, i.e. ∑ν
i=1 ai
a0

> x (6.12)

where a is an element of the coefficient matrix A.

On analysing the divergent cases, failure will occur when x is greater than ∼ 0.45.

This figure is quite large considering that in all the cases analysed the largest uncer-

tainties defined are 10% in any one parameter. The second observation identifies the

cause of the problem.
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When calculating some of the coefficients of the A array new uncertainty tokens

are generated due to non affine operations. For example, the node thickness is 1
δx2 in

the coefficient (recall equation 2.4). This two stage process increases the magnitude

of the sum of the uncertainty tokens considerably, especially the division stage. The

initial increase in error token is due to the estimation of the new error token as

part of the multiplication process (recall equation 3.52 where the non-linear term

is approximated). The new term is independent of the existing terms; thus the

correlations between it and the existing uncertainty tokens are lost. In the case of

division the new error token is calculated based on the range of the maximum interval

of the affine number. Recall equation 3.54, where the magnitude of the new error

token is

(a+ b)(a− b)
2ab2

given a the minimum value of the affine number; b the maximum. Again this new

term is independent of the existing error tokens. To reduce these effects the number

of non-affine operations were minimised and the order of operations was examined

to achieve the current implementation. Further improvements could be made in this

respect.

6.3.3 Summary

The power of a carefully implemented range arithmetic implementation for assessing

uncertainty has been demonstrated: in one simulation individual contributions and

overall uncertainty can be quantified. For single uncertainties the results showed

good agreement with the differential and Monte Carlo methods. For more than one

uncertainty the results again showed good agreement with the differential method.

However, in some cases (generally larger uncertainties and uncertainty in thickness)

the overall error estimation became unbounded. This was due to the creation of new

affine terms as a result of non-affine operations. Perhaps the greatest benefit of the

affine approach is that, as uncertainties are known at all times, action can be taken

during the simulation based on the current effects of uncertainty, for example, in

building control laws or in adaptive solution processing between algorithms to reduce
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the overall uncertainty.

6.4 Applicability

All of the methods studied have their weaknesses and areas where they are not ap-

plicable. Individual external methods are only applicable for specific problems, and

are summarised again:

• Differential analysis is only suitable for calculating individual parameter uncer-

tainties.

• Factorial analysis is suitable for calculating parameter sensitivities and interac-

tions.

• Monte Carlo analysis is only useful for generating overall error bands in the

predictions.

• Affine approach quantifies first order effects (comparable to differential) and

overall uncertainty (comparable to Monte Carlo).

No one method provides an answer to the questions of what is the total error/ uncer-

tainty in the predictions and which parameters have the greatest influence upon this

error. To answer these questions requires not only multiple simulations but multiple

analyses.

6.4.1 General approach

The three external methods can be applied in buildings based on the assumptions

described in chapter 3. As the internal method is deterministic, not statistical, there

are no similar assumptions as to its application.

As described, the three external methods answer separate questions related to the

behaviour of the modelled building. Once uncertainties have been defined the differ-

ential method can be used for an initial analysis. This would identify the parameters

whose uncertainties significantly affect the simulation output. These critical param-

eters can then be used in a factorial analysis to identify any synergistic effects. The
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Figure 6.11: Three zone example model.

Monte Carlo method would be used to quantify the overall uncertainty in the simu-

lation predictions with all the uncertain input parameters active. However, a second

Monte Carlo simulation can be run with only the critical parameters identified in the

differential method active. The results of this second Monte Carlo simulation should

be effectively the same as for the first simulation if all the critical parameters have

been identified.

6.4.2 Test model

To elaborate the above discussion of the implementation of uncertainty analysis in

ESP-r the use of the methods is now demonstrated on a simple model as shown in

figure 6.11.

The model corresponds to a small office. The construction of the external walls is of

a traditional insulated brick type and the internal partitions are dry lined blockwork.

The space is occupied and heated between 9am and 5pm. In addition to the casual
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Table 6.11: Uncertainties defined for model

Parameter Uncertainty

Conductivity of external wall insulation 20%
Conductivity of external wall brick facing 20%
Capacity of external wall internal block 20%
Solar absorptivity of internal walls 20%
Longwave emissivity of internal walls 20%
Ambient temperature 3◦C
Direct solar radiation 20%
Equipment casual gains 20%
Infiltration 20%

gains from people and equipment, there is a 24hr base load from equipment left on

overnight.

Uncertainties

Uncertainties have been defined for a cross-section of the parameters used to de-

fine this model and are listed in table 6.11. These uncertainties have been assigned

large values for the purpose of demonstrating the methods (typical magnitudes of

uncertainties were elaborated in chapter 4).

Simulations

The model was simulated for a seven day period in winter and the effect of the above

uncertainties on the required heating energy quantified. Three sets of simulations

were undertaken: differential analysis, factorial analysis and a Monte Carlo analysis

as described in the general approach.

6.4.3 Results and discussion

The results from the three analyses are presented separately.

Differential analysis

The base case energy consumption for the reception space is 14.03kWh for the sim-

ulated week. Table 6.12 shows the results from the differential analysis. There is no
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Table 6.12: Differential analysis results

Parameter Status Energy
consumption

(kWh)

Base case 14.03

Conductivity of external wall insulation high 15.65
low 12.45

Conductivity of external wall brick facing high 14.08
low 13.97

Capacity of external wall internal block high 14.26
low 13.73

Solar absorptivity of internal walls high 14.03
low 14.03

Longwave emissivity of internal walls high 14.07
low 13.93

Ambient temperature high 9.61
low 21.16

Direct solar radiation high 13.84
low 14.27

Equipment casual gains high 10.48
low 19.80

Infiltration high 15.77
low 12.46

measurable effect due to the change in solar absorptivity although large effects occur

due to changes in the conductivity of the external wall insulation and infiltration rate.

As previously suggested the calculation of dimensionless sensitivity coefficients can

result in non-sensible outcomes. In this example the ambient temperature is close or

equal to 0◦C for a large period during the simulation; thus, the percentage change in

temperature would be large or undefinable. Therefore relative differences have been

calculated as given in table 6.13.

It is clear from table 6.13 that the parameters to which the required heating

energy is most sensitive are: conductivity of the external wall insulation; ambient

temperature; equipment casual gains and infiltration rate.

It can also be seen that the uncertainties have a non-linear effect. For example,

the effect of increasing ambient temperatures by 3◦C is a reduction of the required

heating energy by 4.42kWh and the effect of reducing ambient temperatures by 3◦C

is an increase of the required heating energy by 7.13kWh. This observation is typical
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Table 6.13: Differential analysis results - relative change

Parameter Status Energy
consumption

(kWh)

Conductivity of external wall insulation high 1.62
low -1.58

Conductivity of external wall brick facing high 0.05
low -0.06

Capacity of external wall internal block high 0.23
low -0.30

Solar absorptivity of internal walls high 0.00
low 0.00

Longwave emissivity of internal walls high 0.04
low -0.10

Ambient temperature high -4.42
low 7.13

Direct solar radiation high -0.19
low 0.24

Equipment casual gains high -3.55
low 5.77

Infiltration high 1.74
low -1.57

of building systems.

Averaging the effects and calculating the standard deviation (assuming that all the

effects are independent) results in an energy consumption of 14.03+
−7.78kWh. The

independence of each parameter’s effects is now analysed.

Factorial analysis

The four most sensitive parameters from the differential analysis were tested using a

factorial analysis. The parameters have been labelled as follows:

A conductivity of external wall insulation;

B ambient temperature;

C equipment casual gains; and

D infiltration rate.

The results of this analysis are presented in table 6.14.
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Table 6.14: Factorial analysis results

Effect Estimate (kWh)

Average 15.73

Main effect A 2.95
Main effect B -11.48
Main effect C -9.17
Main effect D 2.97

Interaction AB -1.03
Interaction AC -0.38
Interaction AD 0.12
Interaction BC 2.96
Interaction BD -0.99
Interaction CD -0.37

Interaction ABC 0.01
Interaction ABD 0.02
Interaction ACD 0.03
Interaction BCD -0.06

Interaction ABCD -0.02

Comparing the relative importance of the main effects with the differential analysis

shows the same order of importance of the four parameters analysed.

The interactions between the uncertainties show that the combined effect of un-

certainties in ambient temperature and the other uncertain parameters is significant

but the interactions between other parameters (excluding ambient temperature) are

not significant. The interactions between three and four parameters is also not sig-

nificant. This is typical of building simulation in that only the main effects and two

factor interactions are important.

A fractional factorial simulation where all the uncertainties were active was un-

dertaken. To identify main effects and two factor interactions without confounding a

design resolution of IV is required. This required 128 simulations for the 9 uncertain

parameters.

The results displayed in table 6.15 confirm that the initially selected four param-

eters were the only important parameters and that no other synergistic effects occur

in this model.
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Table 6.15: Fractional factorial analysis, significant results

Effect Estimate (kWh)

Average 15.74

Main effect A 2.94
Main effect B -11.48
Main effect C -9.17
Main effect D 2.97

Interaction AB -1.03
Interaction BC 2.95
Interaction BD -0.99

Monte Carlo analysis

Finally the model was analysed using the Monte Carlo method. The results show that

the average energy consumption is 16.05+
−7.77kWh. The average energy consumption

predicted by this method is higher than both the differential method’s base case and

the factorial method. This would indicate that there is a non-linear relationship

between the uncertainties and the heating energy required.

6.4.4 Summary

The example of the use of the three external methods showed that the differential

analysis identified the four parameters which most influenced the energy consumption.

The factorial method was then used to check for interactions between the parameters

- three interactions were identified as having an effect. Finally a Monte Carlo analysis

was undertaken to quantify the overall uncertainty in the energy consumption. This

showed that the effect of the interactions was minimal as the standard deviation

calculated was only slightly different from that calculated via the differential method

(7.77kWh for the Monte Carlo method compared with 7.78kWh for the differential

method).

In a design context the engineer could then focus on: the estimation of the heat

gains in the space, the infiltration rate, the conductivity of the insulation and the

choice of an appropriate climate file with respect to temperature, to improve the

accuracy of the simulation
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Affine arithmetic techniques have been shown to produce a bounded solution for

an uncertain system in a single simulation. The solution compares well with those of

the multiple simulations of the external methods for some cases only. The successful

solutions are generally for cases with small uncertainties. Reasons for the failed

solutions were given and suggested modifications are given in chapter 8.

It can be concluded that the affine approach works well for small uncertainties,

however the external methods are more robust. Despite this the affine approach pro-

vides information on individual and overall effect of uncertainties in a single simula-

tion. To achieve this using external methods would require two analyses, each involv-

ing multiple simulations. In addition to this efficiency the affine approach quantifies

the effects of uncertainties during the simulation; therefore, allowing control actions

to be taken or information on prevailing uncertainties to be passed between domains.
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Chapter 7

Case studies

The insights gained from uncertainty analysis are now ex-

plored in the context of real buildings.

To demonstrate the external uncertainty quantification methods (see also Macdon-

ald and Strachan [2001]) and the effect of assessing uncertainty on the design process

the following case studies are presented.

1. Early design stage use of detailed simulation.

2. Critical plant sizing at the detailed design stage.

3. Comparison of designs.

The first case examines the impact of uncertainty on the performance of a build-

ing at the early design stage, where the impact of decision making is greatest and

the information necessary is highly uncertain. By including uncertainty more useful

information can be delivered.

The second case is crucial in design as the plant size in a building has a direct

impact on capital and running costs. For example, the author was involved in a

project where the required cooling load for the building was such that large diameter

ductwork and hence large steel structure would be required. A slight reduction (in

the region of 1W/m2) in cooling load would enable the use of smaller ductwork and

structure. The cost implication of the smaller structure was a saving of £1.2M.
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Clearly, if the plant could be critically designed and the risk of overheating quantified

the design team could make an informed decision on whether to risk the smaller

structure.

In the final case the significance of a design alteration is tested. Discussions with

engineers have shown that a reduction in peak summer temperatures of 1◦C is seen as

significant by some and insignificant by others. By using a significance test the effect

of a design change can be quantified and this could resolve such arguments based on

practitioners viewpoints.

All three cases are based on consultancy or research projects undertaken by the

author.

7.1 Early design stage

Glasgow City Council initiated a programme of upgrading their secondary schools in

1998. The purpose of the modelling work was to quantify the peak summer temper-

atures and to assess if cooling plant was required. The maximum allowable resultant

temperature was 26◦C.

15m
12m

IT Classroom

Figure 7.1: Model of typical IT classroom.

A model of a typical classroom was created. For the purposes of this comparison

only the IT rooms are considered. Figure 7.1 shows a representation of the model

created. The following information was available.
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• Geometry: the floor area was known and a planned glazed area (35%) based on

architectural considerations. The orientation of the building was specified and

a 0.5m wide shading device was to be installed above the south facing window.

• Construction: the overall construction was lightweight with double glazing. The

external construction U-value was to be < 0.4W/m2K.

• Occupancy: the maximum number of occupants was specified as 35.

• Equipment: one computer per person and 8W/m2 lighting.

• Fresh air: the rooms were to be naturally ventilated or if cooling was necessary

supplied with minimum fresh air for the occupants.

The largest uncertainties were associated with the construction properties, as no

specific materials were specified, and the internal gains as maximum, not typical,

usage was known.

As the model is for the early design stage specific data should not be used; rather

the highly unknown data of chapter 4 should be used. By using this data with

uncertainties the range of data will extend over all possible materials and usage levels.

The details of these elements are presented in tables 7.1, 7.2, 7.3 and 7.4.

Table 7.1: Scheduled operations in school model.

Infiltration information
Day type Period Infiltration Ventilation

(ac/h) (ac/h)
Weekday 0 – 8 0.50 0.00
Weekday 8 – 16 3.00 0.00
Weekday 16 – 24 0.50 0.00
Saturday 0 – 24 0.50 0.00
Sunday 0 – 24 0.50 0.00

Casual gains information
Gain type Period Sensible gain Convective

(W ) fraction (−)
Computers 9 – 12 3500.0 0.70
Computers 13 – 16 3500.0 0.70
Lights 8 – 16 1440.0 0.50
Occupants 8 – 16 3500.0 0.50

181



Table 7.2: Construction materials used in school model with uncertainties.

Details of opaque composite: external wall
Description Thick Conduct Density Spec heat Absorb Emiss

(m) (W/mK) (kg/m3) (J/kgK) (−) (−)
BRICK clay average 0.1000 0.789 1720. 837. 0.90 0.76
INSULATION average 0.0880 0.039 38. 1072. — —
air 0.0500 — — — — —
PLASTERBOARD average 0.0120 0.191 704. 1359. 0.91 0.22

Details of opaque composite: internal partition
Description Thick Conduct Density Spec heat Absorb Emiss

(m) (W/mK) (kg/m3) (J/kgK) (−) (−)
PLASTERBOARD average 0.0120 0.191 704. 1359. 0.91 0.22
air 0.17 0.17 0.17 0.0500 — — — — —
PLASTERBOARD average 0.0120 0.191 704. 1359. 0.91 0.22

Details of opaque composite: double glazing
Description Thick Conduct Density Spec heat Absorb Emiss

(m) (W/mK) (kg/m3) (J/kgK) (−) (−)
GLASS float average 0.0060 1.294 2509. 820. 0.83 0.06
air 0.0120 — — — — —
GLASS float average 0.0060 1.294 2509. 820. 0.83 0.06

Details of opaque composite: roof
Description Thick Conduct Density Spec heat Absorb Emiss

(m) (W/mK) (kg/m3) (J/kgK) (−) (−)
METAL non ferrous average 0.0030 224.000 6278. 544. 0.24 0.56
air 0.0250 — — — — —
INSULATION average 0.0930 0.039 38. 1072. — —
PLASTERBOARD average 0.0120 0.191 704. 1359. 0.91 0.22

Details of opaque composite: floor
Description Thick Conduct Density Spec heat Absorb Emiss

(m) (W/mK) (kg/m3) (J/kgK) (−) (−)
CONCRETE heavy average 0.1400 1.491 2179. 864. 0.90 0.40
air 0.0500 — — . — — —
TIMBER boards average 0.0190 0.201 648. 1845. — —
CARPET average 0.0060 0.060 183. 1740. 0.90 0.78

Table 7.3: Uncertainty (3σ) in casual gains and infiltration.

Parameter Variation
Computer gain 1000—6475 W
Occupancy sensible gain 1400—4550 W
Infiltration rate +

−50%
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Table 7.4: Uncertainty (1σ) in thermophysical properties.

Parameter Property Average value Standard deviation
BRICK clay average k(W/mK) 0.789 0.261

ρ(kg/m3) 1720. 301.
C(J/kgK) 837. 90.

INSULATION average k(W/mK) 0.039 0.014
ρ(kg/m3) 38. 27.
C(J/kgK) 1072. 298.

PLASTERBOARD average k(W/mK) 0.191 0.150
ρ(kg/m3) 704. 379.
C(J/kgK) 1359. 615.

GLASS float average k(W/mK) 1.294 0.690
ρ(kg/m3) 2509. 105.
C(J/kgK) 820. 50.

METAL non ferrous average k(W/mK) 1.294 107.
ρ(kg/m3) 2509. 2876.
C(J/kgK) 820. 223.

CONCRETE heavy average k(W/mK) 1.491 0.300
ρ(kg/m3) 2179. 149.
C(J/kgK) 864. 92.

TIMBER boards average k(W/mK) 0.201 0.274
ρ(kg/m3) 648. 254.
C(J/kgK) 1845. 870.

CARPET average k(W/mK) 0.060 0.006
ρ(kg/m3) 183. 21.
C(J/kgK) 1740. 658.

The resultant temperature profile with error bars for the classroom can be seen in

figure 7.2. These results are from a Monte Carlo simulation.

Table 7.5: Risk of overheating.

Probability Hours
level > 26◦C
16% 9
50% 36
84% 54

An analysis of the risk of overheating can be seen in table 7.5. The probability

levels reported correspond to the average prediction (P = 50%), one standard devi-

ation below the average (P = 16%) and one standard deviation above the average

(P = 84%). From this it can be concluded that there is a 50% probability that

there will be 36 hours when overheating occurs. Figure 7.3 shows how the number

of overheating hours varies against deviations from the average performance. The

overheating hours were calculated in steps of 1/2 a standard deviation. It can be
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Figure 7.2: Resultant temperature profile with uncertainties.

seen that overheating would be eliminated by reducing the average performance by

between 1 and 1.5 standard deviations.

To discover the critical parameters affecting the resultant temperature a differential

analysis was conducted. The purpose of this analysis is to identify which elements of

the model should be critically specified to achieve the necessary performance change

to eliminate overheating.

The results of the differential analysis can be seen in table 7.6, the parameters con-

tributing most to the uncertainty in the predictions are the infiltration, occupancy

gain, equipment gain and the choice of some construction materials. Parameters

which resulted in a change of less than 0.2◦C have been removed from the table. The

average effects are calculated from equation 3.7. As can be seen in the case of plas-

terboard the average change in temperature is quite small (typically < 0.05◦C) but

the average absolute change is much larger (typically ≈ 0.5◦C). This is a standard

result for an uncertainty in thermal capacity: by decreasing or increasing the thermal
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Figure 7.3: Overheating hours for given deviations from mean performance.

capacity (either density or specific heat) the magnitude of the daily temperature vari-

ation is greater or smaller respectively but the average remains essentially the same.

This shows the need for both measurements of the average effect when quantifying

uncertainty in building simulation.

Table 7.6: Results from differential analysis (Resultant temperature, ◦C).

Parameter Low change effect High change effect
mean mean(abs diff) mean mean(abs diff)

Insulation conductivity 0.389 0.391 -0.302 0.305
Plaster density -0.059 0.568 0.010 0.419
Plaster specific heat -0.040 0.467 0.011 0.361
Timber conductivity 0.339 1.347 -0.014 0.145
Infiltration 0.881 0.881 -0.690 0.690
Occupancy gain -1.522 1.522 0.764 0.764
Computer gain -1.318 1.318 1.597 1.597

It is clear that the majority of the construction materials have little effect on the

risk of overheating. However, the plasterboard does have an effect which is slightly

less than that of the ventilation. The architect could now be given freedom over

materials’ choice except for the plasterboard, insulation and timber . The preferred

properties would be higher then average conductivity for the insulation, and a plaster

with higher density and specific heat capacity is probably preferable to reduce the
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magnitude of daily temperature variations; the conductivity of timber should likewise

be higher.

The main sources of uncertainty in the predictions will be from the heat gains in

computers and from the occupants. The effect of lower occupancy and heat gains

from computers is as expected i.e. the room becomes cooler by 1.5◦C and 1.3◦C

respectively for a change in heat gain of one standard deviation. This information

can, in the case of computers, be used for specifying low heat gain equipment and is

maybe an indication that automatic energy saving capabilities should be enabled to

minimise the heat gain.

A model without uncertainty was also created. The purpose of this model is to

compare the performance using current simulation capabilities against the perfor-

mance of the model with uncertainties. The attribution of this model was achieved

by selecting specific materials from the construction materials database and assuming

full occupancy and computer use. The model data are presented in tables 7.1 and 7.7

Comparing figure 7.2 with figure 7.4, it can be seen that the average temperature

from the uncertain model is greater. This would indicate that the model chosen

without uncertainties performed better than could be expected, i.e. it underpredicted

the overheating. Quantifying the difference there are 26 hours of overheating in

the model without uncertainty compared to 36 hours in the uncertain model, an

underestimation of 28% or 1/2 a standard deviation.

On examining the energy balance for the classroom the three largest gains were

found to be:

• opaque internal surfaces convective gain (29%).

• computer heat gain (28%),

• occupancy heat gain (27%), and

The classroom is clearly dominated by casual gains. However, the large gain from

the internal surfaces would suggest that there is a significant solar gain (which is

absorbed in the surface and then convected to the air).
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Table 7.7: Construction materials used in school model.

Details of opaque composite: external wall
Description Thick Conduct Density Spec heat Absorb Emiss

(m) (W/mK) (kg/m3) (J/kgK) (−) (−)
Lt brown brick 0.1000 0.960 2000. 650. 0.90 0.70
Glasswool 0.0880 0.040 250. 840. — —
air 0.0500 — — — — —
White painted plaster 0.0120 0.190 950. 840. 0.91 0.22

Details of opaque composite: internal partition
Description Thick Conduct Density Spec heat Absorb Emiss

(m) (W/mK) (kg/m3) (J/kgK) (−) (−)
White painted plaster 0.0120 0.190 950. 840. 0.91 0.22
air 0.0500 — — — — —
White painted plaster 0.0120 0.190 950. 840. 0.91 0.22

Details of opaque composite: double glazing
Description Thick Conduct Density Spec heat Absorb Emiss

(m) (W/mK) (kg/m3) (J/kgK) (−) (−)
Plate glass 0.0060 0.760 2710. 837. 0.83 0.05
air 0.0120 — — — — —
Plate glass 0.0060 0.760 2710. 837. 0.83 0.05

Details of opaque composite: roof
Description Thick Conduct Density Spec heat Absorb Emiss

(m) (W/mK) (kg/m3) (J/kgK) (−) (−)
aluminium 0.0030 210.000 2700. 880. 0.22 0.20
air 0.0250 — — — — —
Glass fibre quilt 0.0950 0.040 12. 840. — —
White painted plaster 0.0120 0.190 950. 840. 0.91 0.22

Details of opaque composite: floor
Description Thick Conduct Density Spec heat Absorb Emiss

(m) (W/mK) (kg/m3) (J/kgK) (−) (−)
Heavy mix concrete 0.1400 1.400 2100. 653. 0.90 0.65
air 0.0500 — — — — —
Chipboard 0.0190 0.150 800. 2093. — —
Carpet 0.0060 0.060 186. 1360. 0.90 0.60

A comparison of the analyses shows that there is a degree of consistency. In both

cases the high internal gains were identified as major contributers to the overheating.

However, by including uncertainties extra information has been generated as follows.

1. The risk of overheating was quantified and showed that there was a high proba-

bility that the room would overheat and that the simulation without uncertainty

was optimistic in its estimate of 26 hours greater than 26◦C.

2. Three materials (plasterboard, timber and insulation) were identified as having

a noticeable effect on the overheating. The outcome of this is twofold: for these
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Figure 7.4: Resultant temperature profile without uncertainties.

materials the final selection should be considered carefully with respect to the

thermal properties; and for other materials the architect now has the freedom

to choose these based on other constraints (e.g. cost, environmental impact),

provided the thermal properties are within the simulated ranges.

3. Areas of specific concern have been identified from the uncertain model: the

heat gain from computers and occupants, the minimum air supply rate to the

room. These areas should be the focus of increased attention during the next

stage of the design process.

The inclusion of uncertainty in the early design stage has increased the quality of

the simulation process with respect to the information generated about the design.

The additional benefits were the quantification of large uncertainties present at this

design stage and the identification of critical parameters in the design. The next

example shows how uncertainty analysis can be employed at a later design stage,

where uncertainties are less.
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7.2 Critical plant sizing

As the centrepiece of Glasgow’s celebrations as UK City of Architecture and Design

in 1999, a city centre building of architectural significance was refurbished: the Light-

house Building by Charles Rennie Mackintosh, constructed in 1896 (figure 7.5). The

refurbishment concentrated on maintaining the good design practice shown by the

original architect while introducing modern services to the building, including many

new sources of heat: computer terminals, halogen lighting, escalators and lifts etc.

Figure 7.5: Lighthouse viewing gallery.

The purpose of this study was to quantify the annual heating energy consumption

and maximum load in the viewing gallery. The maximum load was calculated includ-

ing uncertainties in thermophysical properties, occupancy and infiltration. A second

simulation was undertaken with a deliberately undersized plant to quantify the risk

of underheating and the potential savings due to smaller capital and running costs.

A model of the viewing gallery was created as shown in figure 7.5
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Table 7.8: Thermophysical property distributions.

Parameter Property Average Standard
value deviation

Heavy mix concrete k(W/mK) 1.68 0.144
ρ(kg/m3) 2304 36
C(J/kgK) 869 91

Copper k(W/mK) 333 3.7
ρ(kg/m3) 8858 21
C(J/kgK) 398 22

Steel k(W/mK) 46 0.7
ρ(kg/m3) 7800 26
C(J/kgK) 497 20

Aluminium k(W/mK) 211 3.7
ρ(kg/m3) 2733 21
C(J/kgK) 880 22

Plywood k(W/mK) 0.16 0.028
ρ(kg/m3) 622 26
C(J/kgK) 1718 128

Slate k(W/mK) 1.72 0.245
ρ(kg/m3) 2150 42
C(J/kgK) 1110 90

Gypsum plasterboard k(W/mK) 0.28 0.019
ρ(kg/m3) 950 12
C(J/kgK) 882 111

Cement screed k(W/mK) 0.9 0.077
ρ(kg/m3) 1452 25
C(J/kgK) 910 93

EPS k(W/mK) 0.035 0.003
ρ(kg/m3) 28 3
C(J/kgK) 1328 57

Plate glass k(W/mK) 0.95 0.067
ρ(kg/m3) 2515 8
C(J/kgK) 828 33

Glass Fibre quilt k(W/mK) 0.035 0.003
ρ(kg/m3) 32 3
C(J/kgK) 851 57

Table 7.9: Operations profile distributions.

Parameter Standard
deviation

Occupancy sensible gain 16 %
Infiltration rate 33 %

For this case study, uncertainties were defined for constructions (table 7.8), and

scheduled operations (table 7.9) based on the information presented in chapter 4.

The construction uncertainties (table 7.8) were restricted to those affecting only the

viewing gallery, and the time-varying uncertainties (table 7.9) were valid throughout
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Figure 7.6: Viewing gallery heater load with error bands.

the simulation period.

The heating demand and associated uncertainty was calculated as shown in fig-

ure 7.6. As can be seen the standard deviation varies with time (in this example the

standard deviation tends to be larger in the afternoon). The peak heating demand

was 1.58kW for the average performance.

Assuming that only 1kW heaters were available one design option would be to in-

stall two units. However, to examine the probability of underheating a further analy-

sis was undertaken with the maximum heater load restricted to 1kW : approximately

2/3 of the maximum load from the initial analysis. This figure represents insufficient

heater power to achieve the setpoint temperature for 25 hours in figure 7.6.

Table 7.10: Annual energy consumption for heating (kWh).

Mean −1σ Mean Mean +1σ

Unlimited heater power 2396 2865 3335
Limited heater power 2208 2477 2747

The annual heating energy consumption was calculated again and is displayed in

table 7.10 together with the data for the unlimited heater power case. The average

energy saving is 13% by adopting the limited heater power (not including any gain

in running at higher part load efficiencies).
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Figure 7.7: Viewing gallery temperature with error bands.

By limiting heater power there will be periods when underheating occurs. The

temperature profile of the viewing gallery is shown in figure 7.7. As can be seen, the

average temperature seldomly reaches the control set point of 20◦C, i.e. underheating

occurs.

Table 7.11: Risk of underheating during occupied hours.

Probability Percent hours
level < 19◦C
16% 45
50% 26
84% 16
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Figure 7.8: Underheating for given deviations from mean performance.

The degree of underheating is quantified as the percentage of occupied hours when

the temperature is below 19◦C, table 7.11. The probability levels reported correspond

to the average prediction (P = 50%), one standard deviation below the average (P =

16%) and one standard deviation above the average (P = 84%). Figure 7.8 shows

how the percentage of underheating hours varies against deviations from the average

performance. From this it can be concluded that there is a 50% probability that there

will be at least 26% of occupied hours when underheating occurs. Alternatively, the

probability of temperatures less than 19◦C occurring for 50% of occupied hours is

10%.

The client is now capable of making an informed decision on plant size taking the

possible energy savings (one unit instead of two and 13% annual energy savings) and

the risk of potential underheating into consideration.

7.3 Comparison of designs

For the final case study a speculative office development was selected. The purpose of

the model was to quantify the peak summer temperatures for two alternative designs.

The design change modelled replaced the clear float double glazing in the building
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with antisun double glazing. The visible transmission of the glazing units was 76% and

63% respectively. The significance of the difference in the air temperature predictions

was calculated. A model of the whole building was created as shown in figure 7.9.

 Unit A

 Unit F

 Unit B

 corridor
 Unit E

Figure 7.9: Model of office development.

Table 7.12: Uncertainty in material properties.

Material Conductivity Density Specific Heat
(W/mk) (kg/m3) (J/kgK)

Aluminium 3.7 21 22
Block white painted inner 0.025 12 96
Chipboard 0.021 25 134
Common earth 0.107 31 92
Glass Fibre quilt 0.003 3 57
Gravel based 0.107 31 92
Gypsum plaster 0.052 21 92
Heavy mix concrete 0.144 36 91
Oak (radial) 0.021 25 134
Plate glass 0.067 8 33
Steel 0.7 26 20
White marble 0.245 42 90
White painted Gypboard 0.019 12 111
Wilton carpet 0.008 4 79

The uncertainties in the construction materials are given in table 7.12. As the

specific materials were known the uncertainty was based on the material’s category

as described in chapter 4, see table 4.4 for details. The uncertainties in infiltra-

tion, occupancy and heat gains from equipment were defined as 33%, 16% and 15%
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Table 7.13: Peak air temperatures and standard deviations (◦C).

Space Double glazing Solar control glazing ∆θ
θ σ θ σ

Unit A 26.05 1.66 25.41 1.64 0.64
Unit B 25.08 1.128 24.53 0.89 0.55
Unit E 26.77 1.45 25.87 1.17 0.90
Unit F 24.17 0.75 23.48 0.56 0.69
Corridor 28.14 1.65 26.19 1.47 1.95

respectively. Importantly, the uncertainties were the same for both designs.

The difference in peak summer air temperature due to the design change for five

spaces in the building were calculated, as displayed in table 7.13. As can be seen the

temperature reduction is between 0.55◦C and 1.95◦C.

The significance statistic (t0) of the temperature difference was calculated and is

presented in table 7.14. See section 3.1.3 for details on significance testing.

Table 7.14: Significance of reduction in peak air temperatures.

Space ∆θ (◦C) t0 (–)

Unit A 0.64 2.71
Unit B 0.55 3.09
Unit E 0.90 4.31
Unit F 0.69 6.65
Corridor 1.95 7.89

If the value of the significance statistic, t0, is greater than a critical value then

the modification is said to be significantly different. The critical value depends on

the number of degrees of freedom and the significance level chosen. The number of

degrees of freedom is equal to the number of runs used in the Monte Carlo analysis

and typical significance levels are 95%, 99% and 99.9%. The greater the significance

level the greater the confidence that the result is correct.

If a significance level of 99.9% is chosen then the critical value of the significance

statistic for this case is 3.17. This would indicate that only the corridor, Units E and F

were significantly affected by the change in glazing type. Examining the temperature

differences in the spaces, table 7.14, it can be seen that Units A and F have similar

temperature reductions. Despite this the design change is significant in Unit A but not
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in Unit F. This exemplifies the importance of significance testing: apparently similar

changes can be significant or insignificant due to the impact of equal uncertainties in

different spaces.

Another choice of significance level, 95%, gives t0 = 1.66 in which case all of the

spaces are significantly affected by the change in glazing type.

The importance of significance testing has been demonstrated. It is impossible

to ascertain the significance of a design change on the basis of a single value: the

standard deviation in that value must be calculated as well.

7.4 Summary

The benefits of uncertainty analysis have been demonstrated via the three case stud-

ies. The first case study illustrated how simulation can be used at the early design

stages with increased efficacy (as more information pertaining to the building perfor-

mance was generated). The additional benefits were that highly uncertain information

was used to create the model and that the main parameters contributing to the over-

all uncertainty were identified. This allowed modelling effort to be concentrated on

the critical areas. An extension of this focusing would be during construction where

quality control could likewise be concentrated on these aspects of the building. Also

of note was that by not accounting for uncertainties the risk of overheating was un-

derestimated. The second study showed how plant size could be dramatically reduced

at a risk of underperformance. This underperformance was quantified and could be

acceptable to the design team. The final case study demonstrated the importance

of significance testing between designs. Despite the effect of the design change being

approximately equal in two of the examined spaces the significance of the change

varied considerably. Only by assessing uncertainty can this increased knowledge of

the building’s performance be gained.
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Chapter 8

Conclusions and future work

The aims of this thesis were as follows.

1. Review uncertainty assessment methods.

2. Identify the sources of uncertainty as they impact upon building simulation.

3. Identify suitable probability distributions to describe the uncertain parameters.

4. Implement quantitative methods for analysing the effect on simulation outputs.

These aims have been addressed by identifying and integrating three external methods

within the ESP-r system, namely: differential analysis; factorial analysis and Monte

Carlo analysis. An alternative, internal, approach has been developed and is advo-

cated as superior to the external methods as only a single simulation is required and

the uncertainty information is available throughout the simulation. Common data

used in building simulation programs has been reviewed to quantify the uncertainty

within the data.

These advances enable simulation users to:

1. quantify overall uncertainty in model predictions. This enables risk based deci-

sion making, and significance testing between design options; and

2. quantify the uncertainty due to individual parameters for the specific building

being analysed. This will enable guided quality assurance (QA) procedures to
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be adopted, i.e. QA can focus upon the parameters in the model with the

largest contribution to the output uncertainty.

These aspects of the efficacy of uncertainty based simulations were demonstrated in

a number of case studies.

Overall, this thesis represents a contribution towards the inclusive and routine

treatment of uncertainty in building simulation.

External methods

Quantification methods from experimental techniques and sensitivity analysis were se-

lected to quantify the effect of uncertainties in simulation. These methods comprise

the differential, factorial and Monte Carlo techniques. The advantages and disad-

vantages of the three methods are summarised in table 8.1. Each method requires

multiple simulations of deliberately perturbed models: given N uncertain parameters

the differential method requires 2N + 1 simulations, the factorial N 2 simulations and

the Monte Carlo 80 simulations regardless of the number of uncertain parameters.

Method Advantages Disadvantages

Differential Easy to implement and under-
stand results

Only measures main effects

Factorial Measures main effects and inter-
actions

Number of simulations required
for large number of uncertain pa-
rameters

Monte Carlo Required number of simulations
independent of number of uncer-
tain parameters

Only measures overall uncer-
tainty

Table 8.1: Advantages and disadvantages of external methods

To apply these methods to a mature simulation environment (ESP-r) required

updating the data model and identifying where the methods interact with the sim-

ulation process. This required the creation of a simulation controller which enables

the required perturbations to the data model between simulations, depending on the

chosen analysis method. The results created when simulating with uncertainties re-

quire to be examined in a manner consistent with the analysis method chosen. This

required modifications to the results analysis module of ESP-r to enable differences
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between simulation run results to be analysed.

The implementation of the external methods was verified via an inter-model com-

parison with separate reference models. The reference models were created to rep-

resent the perturbed models created by the simulation controller. To verify that the

intended perturbation had been made to the reference model required updating ESP-

r to produce a status report of the current model. Differences in these reports could

then be analysed. These reports have proven useful in general simulation work as an

aid to model quality assurance.

Internal methods

Several techniques exist within mathematics to embody imprecise information within

a deterministic calculation procedure, including interval and fuzzy arithmetic. It was

discovered that these techniques are unsuitable for use in building simulation as the

relationships between uncertainties in matrix coefficients are not preserved, leading

to overestimation of the effects of uncertainty. A correlation sensitive modification to

interval arithmetic was investigated, namely affine arithmetic.

Affine arithmetic was applied to the building thermal energy conservation equation

set and demonstrated to produce quantification of individual and overall uncertainty.

To achieve these quantifications with the external methods requires a differential and

a Monte Carlo analysis, i.e. multiple simulations and analyses are replaced by a single

simulation.

The implementation required the careful analysis of the calculation procedure in

order to minimise the number of non-affine operations. These operations produce a

new uncertainty token which is not correlated to any of the existing tokens. In the

cases where the method failed these new tokens dominated the solution. In general

all addition and subtraction operations were computed before multiplication, division

and other non-affine operations. It was discovered that using an iterative approach

to matrix solution was better than using a direct method. This was attributed to

the original coefficients remaining unaltered in the iterative scheme (hence no new

uncertainty tokens) and fewer non-affine operations (although the total number of
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operations may increase).

The results of the affine simulations were verified by an inter-model comparison

with the external methods. For small uncertainties the predictions made by the affine

method agreed with those of a differential and Monte Carlo analysis. However, for

larger uncertainties the method failed to produce useful bounds on the predictions.

Reasons for this were identified and include issues such as matrix multiplication where

new (unnecessary) uncertainty tokens are currently produced. Future work aims to

remove these and improve the performance of the method. For current applications a

combination of internal and external methods will be required until these limitations

are overcome for the affine approach.

In addition to only requiring a single analysis to quantify the first order and overall

effects of uncertainty the effects of uncertainty are known throughout the calculation

procedure. This allows information exchange between technical domains with respect

to the effects of uncertainty and uncertainty based control actions to be enabled. In

principle the method should be applied to building simulation programs although

there are several technical issues to overcome, principally the convergence of overall

error bounds and alternative probability distributions for uncertainty tokens.

The internal method has been demonstrated on the ESP-r system and will be

applicable to any other set of conservation equations using the control volume method.

Simulation data

Current design methods employ data for worst conditions: maximum occupancy,

peak solar gain and ambient temperature etc for a summer design condition and the

opposite for a winter design condition. This approach does not allow consideration

of the variability of the data used in simulation.

When simulating with uncertainties the variability in the simulation data is re-

quired. To this end the thermophysical properties of building materials, casual gains

from people and equipment, and infiltration rates were examined.

The quantification process showed that data available for simulation is typically

quite old. However, expressions to quantify the uncertainty were generated and ap-
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plied to the current data.

Analysis approach

The use of uncertainty analysis in building simulation allows effective simulation use

at earlier design stages. The resulting simulations will produce results encompassing

all possible outcomes based on the defined uncertainties. The analysis will also inform

the design team on which aspects of their design are critical to the occupant’s comfort

and building’s energy consumption; for example, building form, construction or as-

sumptions on occupancy levels. Therefore, the design constraints are clearly defined

at the early design stage. The converse of this is also true in that the elements of

the design which are not critical to the building’s environmental performance can be

chosen on the basis of other considerations, for example architectural merit or cost.

Future work

Three main areas have been identified for future research as follows.

• External methods. The methods chosen were selected for their robustness and

ease of understanding (for the user). With their application future researchers

will be able to test other, more efficient, methods (for example, with respect to

simulation runs).

• Internal methods. The affine arithmetic approach has been shown to produce

bounded results. However, refinements to the method could increase its robust-

ness, as described below.

• Data. The review of the common data for simulation highlighted the lack of

good data for building simulation and the lack of documentation as to the

variability inherent in this data.

It is the author’s view that the quantitative information delivered from the routine

use of uncertainty quantification can be used to guide future research into building

simulation: why devote resources to measuring an unimportant parameter in relation

to building performance? For example, if it is shown that convection coefficients are
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critical to the performance of all buildings then research resource should be directed

at providing suitable new correlations.

Potential extensions to affine arithmetic

It has been shown that the affine approach is a feasible solution to the treatment

of uncertainties within building simulation. However, the approach adopted can be

improved in a number of ways.

Affine array operations

Affine array addition is an affine process. Therefore, it can be calculated on a term

by term basis as is the case with normal array addition. Affine array multiplication,

however, is a non-affine process.

Consider two affine arrays A and θ, and their product. Calculating on a term by

term basis, the non-affine terms of each multiplication are approximated, and then

totalled. There will be a new error term created for each multiplication. For an array

of dimension n× n this would create n2 new independent error terms.

However, if the non-affine terms are not approximated before the addition step,

then additional correlations will be preserved. If and only if any non-affine terms

remain (as they could cancel) then an approximation would be made and only a

single new error term would result from the operation, resulting in only n new error

terms. This is a non-trivial calculation and adjustment to the implementation of

affine arithmetic because matrix multiplication would have to be separately encoded

from normal multiplication.

Non-linear polynomial calculations

A further extension would be to extend the description of the affine number to higher

degrees. The resulting polynomial would no longer be an affine number, due to the

εn terms. This would allow increased accuracy in the calculation of the uncertainties.

The definition of the basic operations would have to be revisited and new ap-

proximating equations for the higher order terms developed. This approach could
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overcome the problems identified in the cases of unbounded solutions.

A useful analysis would be to measure the effect that each higher order uncertainty

token has on the solution. Perhaps a quadratic representation would be sufficient as

typically factorial analyses show that two parameter interactions are important but

higher order interactions are less so.

Fuzzy affine terms

Another alteration to the affine representation would be to redefine the uncertainty

token ε as a fuzzy number instead of an interval number. This would introduce the

advantages of the fuzzy representations but would entail a large increase in compu-

tational effort. Again the basic operations would have to be revisited, especially the

new uncertainty tokens introduced in non-affine operations: how will the membership

function be defined?

Introducing uncertainty considerations to design practices

During this research the author made several informal enquiries of practitioners as to

their perception of the variability in data used in simulation. The responses were not

surprising in that the design had to achieve a certain target and current worst case

design data would be used, with no variation from this stance.

This belief poses two barriers to the use of uncertain data in design work:

1. Current practitioners are trained to use single values for parameters and thus

the idea of variability is alien and difficult for them to accept.

2. As they are unable to accept variability in modelling data they are unable to

consider quantifying the data.

These barriers must be overcome. This could be achieved through training and suit-

able demonstrations of the process.

An initial step would be a formal survey of practitioners’ views and treatment of

uncertainty. This should be followed by seminars or articles in industry publications,

e.g. the Scottish Energy Systems Group’s newsletter or the CIBSE Journal.
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The interpretation of the results of an uncertainty analysis should also be explored

in a design context. It is suspected that different professions within the design process

could use uncertainty assessments differently: perhaps services engineers would be

mainly interested in the risk of the building failing to provide comfortable conditions,

whereas architects may be more interested in creating a robust design.

Extensions to uncertainty analysis approach

Finally, the overall approach could be refined in several aspects, generally related to

uncertainty definition. Typical uncertainties could be defined in a system database

and as a data item is defined an uncertainty could be automatically applied to the

data item. This would ease the definition procedure but would incur data model

management problems as items are added and deleted from the model, e.g. surfaces.

An alternative approach would be to use the current definition procedure (post model

creation) and to automatically assign uncertainties based on a set of attribution

rules. A prototype of this method has been applied for construction materials based

on the material type: impermeable, non-hygroscopic, inorganic-porous and organic-

hygroscopic. The rules could be expanded to cover issues such as surface orientation,

location (external wall, internal wall, etc), and zone usage.
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Appendix A

Thermophysical properties

For the entity standard deviations given here the following assumptions were used.

Moisture contents: 1%, 4% and 7% for non-hygroscopic, inorganic-porous and organic-

hygroscopic materials respectively;

Temperature: 10◦C variation for all materials.

Asbestos

Table A.1: Thermophysical properties of boards

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.430 1488 958
Std dev 0.153 501 109

Entity std dev 0.042 18 95

Table A.2: Thermophysical properties of cements

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.775 1750 840
Std dev 0.346 29 90

Entity std dev 0.075 29 90
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Bitumen and Asphalt

Table A.3: Thermophysical properties of bitumen

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.237 1188 1135
Std dev 0.186 346 384

Entity std dev 0.012 4 46

CEN value 0.17-0.23 1050-1100 1000

Table A.4: Thermophysical properties of asphalt

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 1.050 2146 1232
Std dev 0.308 266 431

Entity std dev 0.055 7 50

CEN value 0.700 2100 1000

Blockwork

Table A.5: Thermophysical properties of heavyweight blockwork

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.922 1925 840
Std dev 0.243 189 90

Entity std dev 0.089 32 90
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Table A.6: Thermophysical properties of mediumweight blockwork

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.513 1299 827
Std dev 0.259 258 89

Entity std dev 0.049 22 89

Table A.7: Thermophysical properties of lightweight blockwork

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.258 695 981
Std dev 0.040 147 399

Entity std dev 0.025 12 96

Bricks

Table A.8: Thermophysical properties of clay bricks

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.789 1720 837
Std dev 0.261 301 90

Entity std dev 0.077 25 90

Table A.9: Thermophysical properties of silicate bricks

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 1.250 2000 840
Std dev 0.354 33 90

Entity std dev 0.121 33 90
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Concrete

Table A.11: Thermophysical properties of heavyweight aggregates

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 1.491 2179 864
Std dev 0.300 149 92

Entity std dev 0.144 36 91

CEN value 1.65-2.00 2200-2400 1000

Table A.10: Thermophysical properties of mediumweight aggregates

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.718 1428 842
Std dev 0.324 376 90

Entity std dev 0.070 24 90

CEN value 1.15-1.35 1800-2000 1000

Table A.12: Thermophysical properties of lightweight aggregates

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.480 1177 851
Std dev 0.185 301 90

Entity std dev 0.046 20 90

Table A.13: Thermophysical properties of aerated concrete

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.267 676 915
Std dev 0.229 304 241

Entity std dev 0.026 11 93
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Table A.14: Thermophysical properties of lightweight concrete

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.313 891 839
Std dev 0.144 309 90

Entity std dev 0.030 15 90

Table A.15: Thermophysical properties of reinforced concrete

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 1.680 2310 840
Std dev 0.540 225 90

Entity std dev 0.162 38 90

CEN value 2.3-2.5 2300-2400 1000

Floor coverings

Table A.16: Thermophysical properties of carpets

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.060 183 1740
Std dev 0.008 21 658

Entity std dev 0.008 4 79

CEN value 0.06 200 1300

Table A.17: Thermophysical properties of underfelts

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.052 132 843
Std dev 0.015 107 233

Entity std dev 0.007 4 51

CEN value 0.05-0.01 120-270 1300-1500
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Glass

Table A.19: Thermophysical properties of glass blocks

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 1.050 3000 840
Std dev 0.495 707 34

Entity std dev 0.055 10 34

CEN value 1.2 2000 750

Table A.18: Thermophysical properties of float glass

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 1.294 2509 820
Std dev 0.690 105 50

Entity std dev 0.067 8 33

CEN value 1.0 2500 750

Table A.20: Thermophysical properties of cellular glass

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.054 149 814
Std dev 0.008 19 44

Entity std dev 0.003 1 33

Insulation

Table A.21: Thermophysical properties of inorganic insulation

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.039 38 1072
Std dev 0.014 27 298

Entity std dev 0.003 3 57
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Table A.22: Thermophysical properties of organic insulation

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.054 84 796
Std dev 0.022 59 153

Entity std dev 0.004 4 50

Metals

Table A.23: Thermophysical properties of non-ferrous metals

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 224 6278 544
Std dev 107 2876 223

Entity std dev 3.7 21 22

CEN value 65-380 2800-8900 380-880

Table A.24: Thermophysical properties of ferrous metals

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 44 7807 501
Std dev 18 154 27

Entity std dev 0.7 26 20

CEN value 17-50 7500-7900 450-460
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Mortars and sealants

Table A.25: Thermophysical properties of mortars and sealants

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.914 1782 856
Std dev 0.341 145 91

Entity std dev 0.088 30 91

CEN value 0.12-0.50 720-1450 1000

Plaster and boards

Table A.26: Thermophysical properties of boards and sheets

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.191 704 1359
Std dev 0.150 379 615

Entity std dev 0.019 12 111

CEN value 0.25 900 1000

Table A.27: Thermophysical properties of plasters

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.534 1264 889
Std dev 0.252 425 122

Entity std dev 0.052 21 92

CEN value 0.18-0.70 600-1600 1000
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Plastics and rubbers

Table A.28: Thermophysical properties of PVC’s

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.283 1210 1103
Std dev 0.188 165 327

Entity std dev 0.015 4 45

CEN value 0.16-0.50 910-1400 900-2200

Table A.29: Thermophysical properties of rubbers

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.137 894 1524
Std dev 0.111 753 364

Entity std dev 0.007 3 62

CEN value 0.06-0.25 60-1700 1000-2140

Renders and screeds

Table A.30: Thermophysical properties of renders and screeds

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.787 1481 904
Std dev 0.341 390 125

Entity std dev 0.077 25 93
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Soils

Table A.31: Thermophysical properties of soils

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 1.106 1878 885
Std dev 0.469 402 324

Entity std dev 0.107 31 92

CEN value 1.5-2.0 1200-2200 910-2500

Stone

Table A.32: Thermophysical properties of stone

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 2.536 2545 829
Std dev 0.862 323 162

Entity std dev 0.245 42 90

CEN value 1.1-3.5 1600-2800 1000

Tiles

Table A.33: Thermophysical properties of ceramic tiles

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 1.060 1920 844
Std dev 0.261 349 34

Entity std dev 0.055 6 34

CEN value 1.3 2300 840
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Table A.34: Thermophysical properties of clay tiles

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.932 1610 818
Std dev 0.406 436 89

Entity std dev 0.090 27 89

CEN value 1.0 2000 800

Timber

Table A.35: Thermophysical properties of timber

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.151 578 2162
Std dev 0.042 148 646

Entity std dev 0.021 25 134

CEN value 0.13-0.18 500-700 1600

Table A.36: Thermophysical properties of timber boards

Conductivity Density Specific Heat
Capacity

(W/mK) (kg/m3) (J/kgK)

Average 0.201 684 1845
Std dev 0.274 254 870

Entity std dev 0.028 26 128

CEN value 0.09-0.24 300-1000 1600
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Appendix B

Standard transient conduction

test

The following is based on a report [Macdonald] on the documentation for the CEN

standard and the compliance of the ESP-r system.

Conduction through opaque surfaces

This test requires the prediction of internal air temperatures at several time intervals

after a step change has been made to the ambient air temperature.

Test assumptions

The following assumptions were made:

1. The test is for unidirectional heat flow only.

2. There are no short-wave exchanges in the model.

3. There are no exchanges due to infiltration or ventilation.

4. Surface emissivities (εi, εe) ≤ 0.001 and absorptivities (αi, αe) ≤ 0.001.

5. The thermal capacity of the internal air is zero.
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Geometry

The test zone shall have internal dimensions: 1.0× 1.0× 1.0(m)

Constructions

Three different constructions were tested. In each test all surfaces in the zone were

given the same construction. The material properties are as follows:

Table B.1: Constructions used in tests

Material Conductivity Density Specific heat Layer
capacity thickness

λ(W/mK) ρ(kg/m3) C(kJ/kgK) s(m)

Render 1.20 2000 1.0 0.20

Insulation 0.04 50 1.0 0.10

Paper 0.14 800 1.5 0.005

Convection coefficients

Time invarient convection coefficients were used as detailed in table B.2.

Table B.2: Convective heat transfer coefficients

Property Value

Internal, hc,i 2.5 W/m2K

External, hc,e 8.0 W/m2K

Boundary conditions

Each boundary in the zone has identical conditions as described below.

The zone will be subjected to a step change of 10◦C in ambient air temperature

as depicted in Figure B.1.
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Figure B.1: Variation of ambient air temperature.

ESP-r predictions

The results of the ESP-r simulations are in table B.3. These results were used in the

following sections as the correct solution to each of the problems. The requirement for

compliance with the CEN standard was that the simulation results should be within

0.5◦C of the correct (analytical) solution.

Table B.3: ESP-r predictions

Test Time (hrs)
no. 1 2 6 12 24 120

1 19.99 20.04 21.31 23.48 26.37 29.99

2 21.35 25.14 29.61 29.98 29.99 29.99

3 27.80 29.96 29.99 29.99 29.99 29.99

219



References

Macdonald I A, Review of European Standard prEN ISO 13791 (draft) and its Ap-

plication to the ESP-r system, ESRU project report, 1997

220



Appendix C

Affine arithmetic simulations

results tables

The tables presented here are for the complete set of simulations using the affine

arithmetic approach to uncertainty quantification. The tests were all centered on ap-

praising transient conduction through three single layer constructions: heavyweight,

mediumweight and lightweight, test 1, 2 and 3 respectively. The conductivity, den-

sity and thickness of the layer were simulated, for all combinations, at four levels of

uncertainty: 0%, 1%, 5% and 10%.
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Table C.1: Uncertainties: density 1%, conductivity 1%.
Time Case 1
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 20.0172 -0.0004 0.0003 -0.0001 0.0007
2 20.1009 -0.0023 0.0014 -0.0006 0.0040
6 21.2866 -0.0207 0.0114 -0.0044 0.0375
12 23.4442 -0.0369 0.0172 -0.0013 0.0741
24 26.3645 -0.0421 0.0170 0.0262 0.1148
120 29.9676 -0.0019 0.0007 0.1769 0.1962
∞ 29.9734 -0.0016 0.0006 0.1791 0.1981

Time Case 2
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 21.4323 -0.0189 0.0166 -0.0002 0.0380
2 25.1049 -0.0442 0.0401 0.0046 0.0944
6 29.5986 -0.0138 0.0127 0.0103 0.0396
12 29.9906 -0.0007 0.0006 0.0016 0.0032
24 30.0000 -0.0000 0.0000 0.0000 0.0000
∞ 30.0000 0.0000 0.0000 0.0000 0.0000

Time Case 3
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 27.6470 -0.0223 0.0028 0.0316 0.0999
2 29.9723 -0.0015 0.0001 0.1042 0.1539
6 30.0000 0.0000 0.0000 0.2119 0.3046
12 30.0000 0.0000 0.0000 0.3258 0.4684
∞ 30.0000 0.0000 0.0000 0.3715 0.5342

Table C.2: Uncertainties: density 1%, thickness 1%, conductivity 1%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0004 -0.0014 0.0003 -0.0011 0.0028
2 20.1009 -0.0023 -0.0075 0.0014 -0.0057 0.0156
6 21.2866 -0.0207 -0.0645 0.0115 -0.0270 0.1586
12 23.4442 -0.0370 -0.1085 0.0173 0.0533 0.3956
24 26.3645 -0.0422 -0.1187 0.0171 0.6250 1.1549
120 29.9676 -0.0020 -0.0053 0.0007 > 1000. > 1000.
∞ 29.9734 -0.0017 -0.0045 0.0006 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0189 -0.0713 0.0167 -0.0082 0.2157
2 25.1049 -0.0443 -0.1694 0.0403 0.1769 0.7862
6 29.5986 -0.0140 -0.0536 0.0128 3.9405 5.9930
12 29.9906 -0.0007 -0.0027 0.0006 81.6700 120.9659
24 30.0000 -0.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.0232 -0.0522 0.0029 > 1000. > 1000.
2 29.9723 -0.0017 -0.0037 0.0002 > 1000. > 1000.
6 30.0000 0.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
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Table C.3: Uncertainties: density 1%, thickness 5%, conductivity 1%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0004 -0.0073 0.0003 0.0027 0.0339
2 20.1009 -0.0024 -0.0398 0.0015 0.0428 0.2101
6 21.2866 -0.0214 -0.3426 0.0123 3.3100 5.6871
12 23.4442 -0.0387 -0.5838 0.0186 113.9151 153.2107
24 26.3645 -0.0458 -0.6596 0.0190 > 1000. > 1000.
120 29.9676 -0.0029 -0.0398 0.0010 > 1000. > 1000.
∞ 29.9734 -0.0025 -0.0343 0.0009 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0207 -0.4062 0.0191 > 1000. > 1000.
2 25.1049 -0.0499 -0.9929 0.0473 > 1000. > 1000.
6 29.5986 -0.0193 -0.3846 0.0184 ∞ ∞
12 29.9906 -0.0013 -0.0268 0.0013 ∞ ∞
24 30.0000 -0.0000 -0.0001 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.6232 -6.8547 0.0541 ∞ ∞
2 29.9723 -16.1516 -177.3959 1.3774 ∞ ∞
6 30.0000 < −1000. < −1000. > 1000. ∞ ∞
12 30.0000 < −1000. < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞

Table C.4: Uncertainties: density 1%, thickness 10%, conductivity 1%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0005 -0.0193 0.0004 0.1363 0.5041
2 20.1009 -0.0027 -0.1045 0.0020 2.0215 4.8552
6 21.2866 -0.0257 -0.9207 0.0166 > 1000. > 1000.
12 23.4442 -0.0524 -1.7308 0.0276 > 1000. > 1000.
24 26.3645 -0.0812 -2.5218 0.0358 > 1000. > 1000.
120 29.9676 -0.0862 -2.5730 0.0333 ∞ ∞
∞ 29.9734 -0.0847 -2.5235 0.0326 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0400 -1.8240 0.0427 > 1000. > 1000.
2 25.1049 -0.1282 -5.9375 0.1408 ∞ ∞
6 29.5986 -0.4394 -20.4100 0.4852 ∞ ∞
12 29.9906 -1.7030 -79.1114 1.8807 ∞ ∞
24 30.0000 -18.1336 -842.3913 20.0261 ∞ ∞
∞ 30.0000 < −1000. < −1000. > 1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞
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Table C.5: Uncertainties: density 1%, conductivity 5%.
Time Case 1
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 20.0172 -0.0004 0.0013 0.0010 0.0020
2 20.1009 -0.0023 0.0072 0.0057 0.0109
6 21.2866 -0.0207 0.0572 0.0567 0.1045
12 23.4442 -0.0369 0.0861 0.1347 0.2315
24 26.3645 -0.0422 0.0851 0.3524 0.5176
120 29.9676 -0.0019 0.0034 62.9072 79.4939
∞ 29.9734 -0.0017 0.0029 77.4327 97.8478

Time Case 2
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 21.4323 -0.0189 0.0833 0.0780 0.1232
2 25.1049 -0.0442 0.2007 0.2244 0.3362
6 29.5986 -0.0139 0.0635 0.1919 0.2612
12 29.9906 -0.0007 0.0032 0.0524 0.0682
24 30.0000 -0.0000 0.0000 0.0035 0.0046
∞ 30.0000 0.0000 0.0000 0.0000 0.0000

Time Case 3
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 27.6470 -0.0229 0.0144 > 1000. > 1000.
2 29.9723 -0.0017 0.0008 > 1000. > 1000.
6 30.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞

Table C.6: Uncertainties: density 1%, thickness 1%, conductivity 5%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0004 -0.0014 0.0013 0.0002 0.0046
2 20.1009 -0.0023 -0.0075 0.0072 0.0023 0.0257
6 21.2866 -0.0208 -0.0646 0.0574 0.0701 0.2788
12 23.4442 -0.0371 -0.1087 0.0864 0.3912 0.8421
24 26.3645 -0.0424 -0.1192 0.0856 2.7672 4.0818
120 29.9676 -0.0020 -0.0054 0.0035 > 1000. > 1000.
∞ 29.9734 -0.0017 -0.0046 0.0030 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0190 -0.0715 0.0837 0.1364 0.4148
2 25.1049 -0.0445 -0.1699 0.2021 0.8600 1.7537
6 29.5986 -0.0141 -0.0540 0.0645 22.5949 34.0566
12 29.9906 -0.0007 -0.0027 0.0033 > 1000. > 1000.
24 30.0000 -0.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.0253 -0.0568 0.0155 ∞ ∞
2 29.9723 -0.0022 -0.0047 0.0010 ∞ ∞
6 30.0000 0.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
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Table C.7: Uncertainties: density 1%, thickness 5%, conductivity 5%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0004 -0.0073 0.0014 0.0062 0.0426
2 20.1009 -0.0024 -0.0399 0.0077 0.0720 0.2689
6 21.2866 -0.0215 -0.3446 0.0615 5.1443 8.5511
12 23.4442 -0.0392 -0.5905 0.0940 223.8296 311.2855
24 26.3645 -0.0470 -0.6753 0.0969 > 1000. > 1000.
120 29.9676 -0.0033 -0.0456 0.0059 > 1000. > 1000.
∞ 29.9734 -0.0029 -0.0395 0.0051 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0210 -0.4113 0.0964 > 1000. > 1000.
2 25.1049 -0.0508 -1.0112 0.2406 > 1000. > 1000.
6 29.5986 -0.0204 -0.4077 0.0974 ∞ ∞
12 29.9906 -0.0015 -0.0304 0.0073 ∞ ∞
24 30.0000 -0.0000 -0.0001 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -30.3422 -330.8660 11.7855 ∞ ∞
2 29.9723 < −1000. < −1000. > 1000. ∞ ∞
6 30.0000 < −1000. < −1000. < −1000. ∞ ∞
12 30.0000 < −1000. < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞

Table C.8: Uncertainties: density 1%, thickness 10%, conductivity 5%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0005 -0.0195 0.0019 0.1771 0.6375
2 20.1009 -0.0028 -0.1058 0.0104 2.7197 6.5504
6 21.2866 -0.0264 -0.9424 0.0847 > 1000. > 1000.
12 23.4442 -0.0552 -1.8134 0.1430 > 1000. > 1000.
24 26.3645 -0.0908 -2.7997 0.1958 > 1000. > 1000.
120 29.9676 -0.1865 -5.5477 0.3580 ∞ ∞
∞ 29.9734 -0.1892 -5.6260 0.3624 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0430 -1.9612 0.2294 > 1000. > 1000.
2 25.1049 -0.1449 -6.6999 0.7932 ∞ ∞
6 29.5986 -0.7066 -32.7478 3.8852 ∞ ∞
12 29.9906 -4.9903 -231.2975 27.4422 ∞ ∞
24 30.0000 -150.8759 < −1000. 829.6814 ∞ ∞
∞ 30.0000 < −1000. < −1000. > 1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞
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Table C.9: Uncertainties: density 1%, conductivity 10%.
Time Case 1
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 20.0172 -0.0004 0.0026 0.0024 0.0037
2 20.1009 -0.0023 0.0144 0.0140 0.0208
6 21.2866 -0.0208 0.1146 0.1517 0.2181
12 23.4442 -0.0370 0.1725 0.4279 0.6099
24 26.3645 -0.0424 0.1709 1.8235 2.5222
120 29.9676 -0.0020 0.0070 > 1000. > 1000.
∞ 29.9734 -0.0017 0.0060 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 21.4323 -0.0189 0.1668 0.1933 0.2613
2 25.1049 -0.0443 0.4023 0.6107 0.8062
6 29.5986 -0.0140 0.1278 1.1608 1.5718
12 29.9906 -0.0007 0.0064 1.6951 2.3113
24 30.0000 -0.0000 0.0000 3.3299 4.5371
∞ 30.0000 0.0000 0.0000 12.5433 17.0770

Time Case 3
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 27.6470 -0.0252 0.0308 ∞ ∞
2 29.9723 -0.0021 0.0020 ∞ ∞
6 30.0000 0.0000 -0.0000 ∞ ∞
12 30.0000 0.0000 -0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞

Table C.10: Uncertainties: density 1%, thickness 1%, conductivity 10%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0004 -0.0014 0.0027 0.0020 0.0071
2 20.1009 -0.0023 -0.0075 0.0144 0.0130 0.0404
6 21.2866 -0.0208 -0.0647 0.1150 0.2278 0.4893
12 23.4442 -0.0372 -0.1092 0.1734 1.1945 1.9793
24 26.3645 -0.0428 -0.1202 0.1725 13.8112 19.9421
120 29.9676 -0.0021 -0.0057 0.0074 > 1000. > 1000.
∞ 29.9734 -0.0018 -0.0048 0.0063 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0190 -0.0717 0.1680 0.3730 0.7660
2 25.1049 -0.0447 -0.1707 0.4061 2.3478 3.9945
6 29.5986 -0.0143 -0.0548 0.1310 186.0227 286.1891
12 29.9906 -0.0007 -0.0028 0.0067 > 1000. > 1000.
24 30.0000 -0.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.0309 -0.0690 0.0358 ∞ ∞
2 29.9723 -0.0039 -0.0085 0.0035 ∞ ∞
6 30.0000 0.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
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Table C.11: Uncertainties: density 1%, thickness 5%, conductivity 10%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0004 -0.0073 0.0029 0.0109 0.0552
2 20.1009 -0.0024 -0.0401 0.0155 0.1146 0.3589
6 21.2866 -0.0217 -0.3476 0.1239 8.6445 14.2236
12 23.4442 -0.0399 -0.6004 0.1905 544.9329 793.8455
24 26.3645 -0.0488 -0.6991 0.1996 > 1000. > 1000.
120 29.9676 -0.0041 -0.0560 0.0145 > 1000. > 1000.
∞ 29.9734 -0.0035 -0.0489 0.0126 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0214 -0.4186 0.1962 > 1000. > 1000.
2 25.1049 -0.0522 -1.0379 0.4936 > 1000. > 1000.
6 29.5986 -0.0222 -0.4438 0.2119 ∞ ∞
12 29.9906 -0.0018 -0.0368 0.0176 ∞ ∞
24 30.0000 -0.0000 -0.0002 0.0001 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 < −1000. < −1000. < −1000. ∞ ∞
2 29.9723 < −1000. < −1000. < −1000. ∞ ∞
6 30.0000 < −1000. ∞ < −1000. ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞

Table C.12: Uncertainties: density 1%, thickness 10%, conductivity 10%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0005 -0.0198 0.0039 0.2441 0.8597
2 20.1009 -0.0028 -0.1076 0.0210 3.9796 9.7003
6 21.2866 -0.0274 -0.9732 0.1737 > 1000. > 1000.
12 23.4442 -0.0594 -1.9354 0.3011 > 1000. > 1000.
24 26.3645 -0.1061 -3.2462 0.4460 > 1000. > 1000.
120 29.9676 -0.5521 -16.3577 2.0915 ∞ ∞
∞ 29.9734 -0.5850 -17.3284 2.2145 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0478 -2.1745 0.5077 > 1000. > 1000.
2 25.1049 -0.1732 -7.9834 1.8860 ∞ ∞
6 29.5986 -1.4119 -65.2303 15.4377 ∞ ∞
12 29.9906 -23.4128 < −1000. 256.0038 ∞ ∞
24 30.0000 < −1000. < −1000. > 1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞
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Table C.13: Uncertainties: density 1%.
Time Case 1
(hours) θ0 θden

∑
θi

∑ |θi|
1 20.0172 -0.0004 -0.0004 0.0004
2 20.1009 -0.0023 -0.0022 0.0024
6 21.2866 -0.0207 -0.0181 0.0234
12 23.4442 -0.0369 -0.0268 0.0469
24 26.3645 -0.0420 -0.0147 0.0694
120 29.9676 -0.0019 0.0393 0.0431
∞ 29.9734 -0.0016 0.0382 0.0414

Time Case 2
(hours) θ0 θden

∑
θi

∑ |θi|
1 21.4323 -0.0189 -0.0181 0.0196
2 25.1049 -0.0442 -0.0412 0.0471
6 29.5986 -0.0138 -0.0105 0.0172
12 29.9906 -0.0007 -0.0003 0.0011
24 30.0000 -0.0000 0.0000 0.0000
∞ 30.0000 0.0000 0.0000 0.0000

Time Case 3
(hours) θ0 θden

∑
θi

∑ |θi|
1 27.6470 -0.0223 -0.0199 0.0246
2 29.9723 -0.0015 -0.0010 0.0021
6 30.0000 0.0000 0.0000 0.0000
12 30.0000 0.0000 0.0000 0.0000
∞ 30.0000 0.0000 0.0000 0.0000

Table C.14: Uncertainties: density 1%, thickness 1%.
Time Case 1
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 20.0172 -0.0004 -0.0014 -0.0015 0.0024
2 20.1009 -0.0023 -0.0075 -0.0076 0.0133
6 21.2866 -0.0207 -0.0645 -0.0481 0.1337
12 23.4442 -0.0369 -0.1084 -0.0062 0.3210
24 26.3645 -0.0422 -0.1185 0.3844 0.8401
120 29.9676 -0.0019 -0.0053 > 1000. > 1000.
∞ 29.9734 -0.0017 -0.0045 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 21.4323 -0.0189 -0.0713 -0.0396 0.1745
2 25.1049 -0.0443 -0.1693 0.0499 0.6139
6 29.5986 -0.0140 -0.0535 2.4411 3.7712
12 29.9906 -0.0007 -0.0027 38.9170 57.5456
24 30.0000 -0.0000 -0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 27.6470 -0.0228 -0.0515 > 1000. > 1000.
2 29.9723 -0.0016 -0.0036 > 1000. > 1000.
6 30.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
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Table C.15: Uncertainties: density 1%, thickness 5%.
Time Case 1
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 20.0172 -0.0004 -0.0073 0.0019 0.0320
2 20.1009 -0.0024 -0.0398 0.0361 0.1970
6 21.2866 -0.0213 -0.3421 2.9470 5.1326
12 23.4442 -0.0386 -0.5823 96.6809 129.0629
24 26.3645 -0.0456 -0.6561 > 1000. > 1000.
120 29.9676 -0.0028 -0.0386 > 1000. > 1000.
∞ 29.9734 -0.0024 -0.0332 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 21.4323 -0.0206 -0.4051 > 1000. > 1000.
2 25.1049 -0.0497 -0.9887 > 1000. > 1000.
6 29.5986 -0.0190 -0.3795 ∞ ∞
12 29.9906 -0.0013 -0.0260 ∞ ∞
24 30.0000 -0.0000 -0.0001 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 27.6470 -0.3509 -3.8670 ∞ ∞
2 29.9723 -3.8205 -41.9919 ∞ ∞
6 30.0000 < −1000. < −1000. ∞ ∞
12 30.0000 < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. ∞ ∞

Table C.16: Uncertainties: density 1%, thickness 10%.
Time Case 1
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 20.0172 -0.0005 -0.0192 0.1275 0.4755
2 20.1009 -0.0027 -0.1041 1.8777 4.5117
6 21.2866 -0.0255 -0.9156 > 1000. > 1000.
12 23.4442 -0.0517 -1.7119 > 1000. > 1000.
24 26.3645 -0.0791 -2.4611 > 1000. > 1000.
120 29.9676 -0.0721 -2.1488 ∞ ∞
∞ 29.9734 -0.0702 -2.0888 ∞ ∞
Time Case 2
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 21.4323 -0.0393 -1.7935 > 1000. > 1000.
2 25.1049 -0.1246 -5.7743 ∞ ∞
6 29.5986 -0.3940 -18.3106 ∞ ∞
12 29.9906 -1.3281 -61.7282 ∞ ∞
24 30.0000 -11.0681 -514.4369 ∞ ∞
∞ 30.0000 -482.8711 < −1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞
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Table C.17: Uncertainties: density 5%, conductivity 1%.
Time Case 1
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 20.0172 -0.0021 0.0003 -0.0013 0.0030
2 20.1009 -0.0116 0.0014 -0.0061 0.0173
6 21.2866 -0.1043 0.0115 0.0078 0.2193
12 23.4442 -0.1867 0.0174 0.4153 0.8023
24 26.3645 -0.2156 0.0173 4.6671 5.2091
120 29.9676 -0.0109 0.0008 > 1000. > 1000.
∞ 29.9734 -0.0093 0.0006 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 21.4323 -0.0945 0.0167 -0.0519 0.1388
2 25.1049 -0.2213 0.0402 -0.0664 0.3817
6 29.5986 -0.0696 0.0127 0.1908 0.3404
12 29.9906 -0.0035 0.0006 0.1038 0.1152
24 30.0000 -0.0000 0.0000 0.0125 0.0130
∞ 30.0000 0.0000 0.0000 0.0002 0.0002

Time Case 3
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 27.6470 -0.1117 0.0028 0.8079 1.3077
2 29.9723 -0.0077 0.0001 9.9101 12.8592
6 30.0000 0.0000 0.0000 > 1000. > 1000.
12 30.0000 0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Table C.18: Uncertainties: density 5%, thickness 1%, conductivity 1%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0021 -0.0014 0.0003 -0.0018 0.0059
2 20.1009 -0.0116 -0.0075 0.0014 -0.0079 0.0341
6 21.2866 -0.1047 -0.0650 0.0115 0.0874 0.4690
12 23.4442 -0.1879 -0.1102 0.0175 1.3950 2.2300
24 26.3645 -0.2183 -0.1224 0.0175 24.8164 28.9674
120 29.9676 -0.0115 -0.0062 0.0008 > 1000. > 1000.
∞ 29.9734 -0.0099 -0.0053 0.0007 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0949 -0.0716 0.0168 0.0117 0.4293
2 25.1049 -0.2227 -0.1702 0.0405 0.6433 1.8376
6 29.5986 -0.0709 -0.0544 0.0130 28.1880 39.2674
12 29.9906 -0.0036 -0.0028 0.0007 > 1000. > 1000.
24 30.0000 -0.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.1170 -0.0527 0.0029 > 1000. > 1000.
2 29.9723 -0.0087 -0.0038 0.0002 > 1000. > 1000.
6 30.0000 0.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
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Table C.19: Uncertainties: density 5%, thickness 5%, conductivity 1%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0022 -0.0074 0.0003 0.0060 0.0462
2 20.1009 -0.0120 -0.0403 0.0015 0.0793 0.3002
6 21.2866 -0.1093 -0.3497 0.0124 7.1532 11.2897
12 23.4442 -0.2021 -0.6070 0.0192 396.9647 536.9802
24 26.3645 -0.2499 -0.7153 0.0203 > 1000. > 1000.
120 29.9676 -0.0234 -0.0645 0.0017 > 1000. > 1000.
∞ 29.9734 -0.0205 -0.0565 0.0015 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.1050 -0.4119 0.0193 > 1000. > 1000.
2 25.1049 -0.2548 -1.0135 0.0482 > 1000. > 1000.
6 29.5986 -0.1029 -0.4108 0.0196 ∞ ∞
12 29.9906 -0.0077 -0.0309 0.0015 ∞ ∞
24 30.0000 -0.0000 -0.0001 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -4.2298 -9.2977 0.0728 ∞ ∞
2 29.9723 -170.2542 -373.8277 2.8887 ∞ ∞
6 30.0000 < −1000. < −1000. > 1000. ∞ ∞
12 30.0000 < −1000. < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞

Table C.20: Uncertainties: density 5%, thickness 10%, conductivity 1%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0026 -0.0198 0.0004 0.1866 0.6452
2 20.1009 -0.0141 -0.1074 0.0021 2.8737 6.7171
6 21.2866 -0.1362 -0.9692 0.0173 > 1000. > 1000.
12 23.4442 -0.2940 -1.9190 0.0299 > 1000. > 1000.
24 26.3645 -0.5199 -3.1836 0.0438 > 1000. > 1000.
120 29.9676 -2.3948 -14.1917 0.1817 ∞ ∞
∞ 29.9734 -2.5233 -14.9485 0.1913 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.2117 -1.9296 0.0452 > 1000. > 1000.
2 25.1049 -0.7049 -6.5199 0.1544 ∞ ∞
6 29.5986 -3.1732 -29.4288 0.6986 ∞ ∞
12 29.9906 -19.5905 -181.6927 4.3132 ∞ ∞
24 30.0000 -469.3584 < −1000. 103.3371 ∞ ∞
∞ 30.0000 < −1000. < −1000. > 1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞
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Table C.21: Uncertainties: density 5%, conductivity 5%.
Time Case 1
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 20.0172 -0.0021 0.0013 0.0000 0.0046
2 20.1009 -0.0116 0.0072 0.0018 0.0267
6 21.2866 -0.1046 0.0576 0.1260 0.3560
12 23.4442 -0.1876 0.0871 1.0678 1.5631
24 26.3645 -0.2177 0.0872 14.9810 16.9449
120 29.9676 -0.0114 0.0040 > 1000. > 1000.
∞ 29.9734 -0.0097 0.0034 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 21.4323 -0.0946 0.0835 0.0471 0.2515
2 25.1049 -0.2218 0.2014 0.2724 0.7679
6 29.5986 -0.0702 0.0642 1.1119 1.4277
12 29.9906 -0.0035 0.0032 1.6441 1.9080
24 30.0000 -0.0000 0.0000 2.6977 3.1182
∞ 30.0000 0.0000 0.0000 7.0657 8.1648

Time Case 3
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 27.6470 -0.1158 0.0145 > 1000. > 1000.
2 29.9723 -0.0085 0.0008 > 1000. > 1000.
6 30.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞

Table C.22: Uncertainties: density 5%, thickness 1%, conductivity 5%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0021 -0.0014 0.0013 -0.0003 0.0081
2 20.1009 -0.0116 -0.0076 0.0072 0.0021 0.0477
6 21.2866 -0.1050 -0.0652 0.0579 0.2801 0.7134
12 23.4442 -0.1891 -0.1108 0.0877 3.0391 4.3052
24 26.3645 -0.2211 -0.1239 0.0884 83.8296 101.4945
120 29.9676 -0.0123 -0.0067 0.0043 > 1000. > 1000.
∞ 29.9734 -0.0106 -0.0057 0.0037 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0952 -0.0718 0.0841 0.2090 0.7068
2 25.1049 -0.2237 -0.1709 0.2033 1.8734 3.5768
6 29.5986 -0.0718 -0.0551 0.0658 150.3908 213.7605
12 29.9906 -0.0037 -0.0028 0.0034 > 1000. > 1000.
24 30.0000 -0.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.1289 -0.0579 0.0157 ∞ ∞
2 29.9723 -0.0115 -0.0050 0.0011 ∞ ∞
6 30.0000 0.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
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Table C.23: Uncertainties: density 5%, thickness 5%, conductivity 5%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0022 -0.0074 0.0014 0.0102 0.0570
2 20.1009 -0.0121 -0.0404 0.0078 0.1181 0.3786
6 21.2866 -0.1104 -0.3527 0.0626 10.8218 16.9711
12 23.4442 -0.2059 -0.6172 0.0973 818.0381 > 1000.
24 26.3645 -0.2593 -0.7406 0.1048 > 1000. > 1000.
120 29.9676 -0.0292 -0.0801 0.0103 > 1000. > 1000.
∞ 29.9734 -0.0258 -0.0709 0.0091 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.1065 -0.4178 0.0979 > 1000. > 1000.
2 25.1049 -0.2602 -1.0349 0.2461 > 1000. > 1000.
6 29.5986 -0.1101 -0.4396 0.1049 ∞ ∞
12 29.9906 -0.0090 -0.0360 0.0086 ∞ ∞
24 30.0000 -0.0000 -0.0002 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -299.6561 -652.3724 22.7209 ∞ ∞
2 29.9723 < −1000. < −1000. > 1000. ∞ ∞
6 30.0000 < −1000. < −1000. < −1000. ∞ ∞
12 30.0000 < −1000. < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞

Table C.24: Uncertainties: density 5%, thickness 10%, conductivity 5%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0026 -0.0200 0.0020 0.2413 0.8196
2 20.1009 -0.0144 -0.1090 0.0106 3.8923 9.1743
6 21.2866 -0.1407 -0.9967 0.0885 > 1000. > 1000.
12 23.4442 -0.3134 -2.0318 0.1565 > 1000. > 1000.
24 26.3645 -0.5970 -3.6299 0.2462 > 1000. > 1000.
120 29.9676 -6.2197 -36.7309 2.3306 ∞ ∞
∞ 29.9734 -6.7980 -40.1433 2.5465 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.2296 -2.0889 0.2440 > 1000. > 1000.
2 25.1049 -0.8076 -7.4541 0.8813 ∞ ∞
6 29.5986 -5.3829 -49.7998 5.8989 ∞ ∞
12 29.9906 -64.0725 -592.7786 70.2173 ∞ ∞
24 30.0000 < −1000. < −1000. > 1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞
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Table C.25: Uncertainties: density 5%, conductivity 10%.
Time Case 1
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 20.0172 -0.0021 0.0027 0.0017 0.0068
2 20.1009 -0.0116 0.0144 0.0122 0.0401
6 21.2866 -0.1050 0.1155 0.3140 0.5880
12 23.4442 -0.1890 0.1750 2.5355 3.3778
24 26.3645 -0.2207 0.1764 60.6709 72.0456
120 29.9676 -0.0122 0.0086 > 1000. > 1000.
∞ 29.9734 -0.0105 0.0073 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 21.4323 -0.0949 0.1674 0.1947 0.4341
2 25.1049 -0.2227 0.4043 0.8851 1.5252
6 29.5986 -0.0711 0.1299 6.2125 7.8894
12 29.9906 -0.0036 0.0066 50.2984 62.8281
24 30.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 27.6470 -0.1282 0.0312 ∞ ∞
2 29.9723 -0.0113 0.0021 ∞ ∞
6 30.0000 0.0000 -0.0000 ∞ ∞
12 30.0000 0.0000 -0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞

Table C.26: Uncertainties: density 5%, thickness 1%, conductivity 10%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0021 -0.0014 0.0027 0.0018 0.0114
2 20.1009 -0.0117 -0.0076 0.0145 0.0157 0.0675
6 21.2866 -0.1056 -0.0655 0.1161 0.5994 1.1421
12 23.4442 -0.1909 -0.1118 0.1766 7.0101 9.5606
24 26.3645 -0.2252 -0.1261 0.1795 381.2774 485.2646
120 29.9676 -0.0136 -0.0073 0.0095 > 1000. > 1000.
∞ 29.9734 -0.0117 -0.0063 0.0081 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0956 -0.0721 0.1689 0.5403 1.2025
2 25.1049 -0.2252 -0.1721 0.4093 4.6611 7.7165
6 29.5986 -0.0734 -0.0562 0.1343 > 1000. > 1000.
12 29.9906 -0.0039 -0.0030 0.0071 > 1000. > 1000.
24 30.0000 -0.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.1599 -0.0714 0.0367 ∞ ∞
2 29.9723 -0.0216 -0.0094 0.0039 ∞ ∞
6 30.0000 -0.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
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Table C.27: Uncertainties: density 5%, thickness 5%, conductivity 10%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0022 -0.0074 0.0029 0.0161 0.0729
2 20.1009 -0.0122 -0.0407 0.0156 0.1750 0.4989
6 21.2866 -0.1119 -0.3570 0.1265 17.9095 28.3466
12 23.4442 -0.2112 -0.6318 0.1982 > 1000. > 1000.
24 26.3645 -0.2732 -0.7780 0.2185 > 1000. > 1000.
120 29.9676 -0.0402 -0.1101 0.0280 ∞ ∞
∞ 29.9734 -0.0360 -0.0987 0.0251 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.1087 -0.4261 0.1996 > 1000. > 1000.
2 25.1049 -0.2681 -1.0658 0.5067 > 1000. > 1000.
6 29.5986 -0.1215 -0.4846 0.2312 ∞ ∞
12 29.9906 -0.0113 -0.0450 0.0215 ∞ ∞
24 30.0000 -0.0001 -0.0003 0.0002 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 < −1000. < −1000. < −1000. ∞ ∞
2 29.9723 < −1000. < −1000. < −1000. ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞

Table C.28: Uncertainties: density 5%, thickness 10%, conductivity 10%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0027 -0.0204 0.0040 0.3331 1.1153
2 20.1009 -0.0147 -0.1113 0.0216 5.7833 13.8758
6 21.2866 -0.1471 -1.0357 0.1823 > 1000. > 1000.
12 23.4442 -0.3422 -2.1992 0.3333 > 1000. > 1000.
24 26.3645 -0.7243 -4.3637 0.5801 > 1000. > 1000.
120 29.9676 -23.3132 -136.9727 17.1700 ∞ ∞
∞ 29.9734 -26.7727 -157.2959 19.7166 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.2578 -2.3398 0.5456 > 1000. > 1000.
2 25.1049 -0.9848 -9.0611 2.1371 ∞ ∞
6 29.5986 -11.6417 -107.3292 25.3544 ∞ ∞
12 29.9906 -352.8982 < −1000. 768.5956 ∞ ∞
24 30.0000 < −1000. < −1000. > 1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞
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Table C.29: Uncertainties: density 5%.
Time Case 1
(hours) θ0 θden

∑
θi

∑ |θi|
1 20.0172 -0.0021 -0.0016 0.0026
2 20.1009 -0.0116 -0.0080 0.0152
6 21.2866 -0.1043 -0.0180 0.1905
12 23.4442 -0.1865 0.2979 0.6709
24 26.3645 -0.2151 3.4302 3.8605
120 29.9676 -0.0107 > 1000. > 1000.
∞ 29.9734 -0.0092 > 1000. > 1000.

Time Case 2
(hours) θ0 θden

∑
θi

∑ |θi|
1 21.4323 -0.0944 -0.0744 0.1145
2 25.1049 -0.2212 -0.1360 0.3064
6 29.5986 -0.0695 0.0917 0.2308
12 29.9906 -0.0035 0.0495 0.0564
24 30.0000 -0.0000 0.0033 0.0033
∞ 30.0000 0.0000 0.0000 0.0000

Time Case 3
(hours) θ0 θden

∑
θi

∑ |θi|
1 27.6470 -0.1114 -0.0202 0.2026
2 29.9723 -0.0076 0.0389 0.0541
6 30.0000 0.0000 0.0003 0.0003
12 30.0000 0.0000 0.0000 0.0000
∞ 30.0000 0.0000 0.0000 0.0000

Table C.30: Uncertainties: density 5%, thickness 1%.
Time Case 1
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 20.0172 -0.0021 -0.0014 -0.0022 0.0053
2 20.1009 -0.0116 -0.0075 -0.0103 0.0309
6 21.2866 -0.1046 -0.0650 0.0462 0.4185
12 23.4442 -0.1877 -0.1100 1.1115 1.8834
24 26.3645 -0.2176 -0.1221 18.2545 21.1716
120 29.9676 -0.0114 -0.0061 > 1000. > 1000.
∞ 29.9734 -0.0097 -0.0052 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 21.4323 -0.0948 -0.0715 -0.0306 0.3721
2 25.1049 -0.2225 -0.1701 0.4194 1.5314
6 29.5986 -0.0707 -0.0542 18.4662 25.6670
12 29.9906 -0.0036 -0.0027 > 1000. > 1000.
24 30.0000 -0.0000 -0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 27.6470 -0.1152 -0.0519 > 1000. > 1000.
2 29.9723 -0.0084 -0.0037 > 1000. > 1000.
6 30.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
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Table C.31: Uncertainties: density 5%, thickness 5%.
Time Case 1
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 20.0172 -0.0022 -0.0073 0.0049 0.0438
2 20.1009 -0.0120 -0.0402 0.0705 0.2827
6 21.2866 -0.1091 -0.3489 6.4321 10.1959
12 23.4442 -0.2012 -0.6047 332.7754 446.4390
24 26.3645 -0.2477 -0.7096 > 1000. > 1000.
120 29.9676 -0.0223 -0.0613 > 1000. > 1000.
∞ 29.9734 -0.0195 -0.0537 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 21.4323 -0.1047 -0.4106 > 1000. > 1000.
2 25.1049 -0.2535 -1.0086 > 1000. > 1000.
6 29.5986 -0.1013 -0.4044 ∞ ∞
12 29.9906 -0.0075 -0.0299 ∞ ∞
24 30.0000 -0.0000 -0.0001 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 27.6470 -2.2525 -4.9602 ∞ ∞
2 29.9723 -36.0187 -79.1535 ∞ ∞
6 30.0000 < −1000. < −1000. ∞ ∞
12 30.0000 < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. ∞ ∞

Table C.32: Uncertainties: density 5%, thickness 10%.
Time Case 1
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 20.0172 -0.0026 -0.0197 0.1748 0.6082
2 20.1009 -0.0140 -0.1070 2.6669 6.2264
6 21.2866 -0.1351 -0.9628 > 1000. > 1000.
12 23.4442 -0.2897 -1.8934 > 1000. > 1000.
24 26.3645 -0.5033 -3.0873 > 1000. > 1000.
120 29.9676 -1.9128 -11.3493 ∞ ∞
∞ 29.9734 -1.9977 -11.8503 ∞ ∞
Time Case 2
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 21.4323 -0.2077 -1.8943 > 1000. > 1000.
2 25.1049 -0.6831 -6.3220 ∞ ∞
6 29.5986 -2.8108 -26.0824 ∞ ∞
12 29.9906 -14.8952 -138.2261 ∞ ∞
24 30.0000 -273.7918 < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞
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Table C.33: Uncertainties: density 10%, conductivity 1%.
Time Case 1
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 20.0172 -0.0042 0.0003 -0.0017 0.0069
2 20.1009 -0.0234 0.0015 -0.0053 0.0421
6 21.2866 -0.2129 0.0117 0.3387 0.7731
12 23.4442 -0.3880 0.0178 5.5218 6.3773
24 26.3645 -0.4652 0.0184 271.2383 275.7828
120 29.9676 -0.0325 0.0011 > 1000. > 1000.
∞ 29.9734 -0.0281 0.0010 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 21.4323 -0.1897 0.0167 -0.0710 0.3123
2 25.1049 -0.4453 0.0404 0.0970 1.0011
6 29.5986 -0.1420 0.0130 2.3610 2.7052
12 29.9906 -0.0072 0.0007 6.8071 6.9859
24 30.0000 -0.0000 0.0000 38.2468 39.1642
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 27.6470 -0.2245 0.0028 12.0114 15.1327
2 29.9723 -0.0156 0.0001 > 1000. > 1000.
6 30.0000 0.0000 0.0000 > 1000. > 1000.
12 30.0000 0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Table C.34: Uncertainties: density 10%, thickness 1%, conductivity 1%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0043 -0.0014 0.0003 -0.0016 0.0110
2 20.1009 -0.0235 -0.0076 0.0015 -0.0020 0.0674
6 21.2866 -0.2143 -0.0664 0.0117 0.6966 1.3726
12 23.4442 -0.3927 -0.1146 0.0180 12.8408 15.2029
24 26.3645 -0.4761 -0.1328 0.0188 > 1000. > 1000.
120 29.9676 -0.0369 -0.0099 0.0013 > 1000. > 1000.
∞ 29.9734 -0.0321 -0.0086 0.0011 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.1910 -0.0720 0.0169 0.1340 0.8183
2 25.1049 -0.4496 -0.1718 0.0409 2.2281 4.4106
6 29.5986 -0.1459 -0.0559 0.0134 290.2156 382.8534
12 29.9906 -0.0076 -0.0029 0.0007 > 1000. > 1000.
24 30.0000 -0.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.2376 -0.0535 0.0030 > 1000. > 1000.
2 29.9723 -0.0182 -0.0040 0.0002 ∞ ∞
6 30.0000 0.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
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Table C.35: Uncertainties: density 10%, thickness 5%, conductivity 1%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0044 -0.0075 0.0003 0.0122 0.0656
2 20.1009 -0.0245 -0.0411 0.0016 0.1502 0.4533
6 21.2866 -0.2280 -0.3628 0.0128 17.5726 26.0916
12 23.4442 -0.4374 -0.6519 0.0203 > 1000. > 1000.
24 26.3645 -0.5865 -0.8317 0.0231 > 1000. > 1000.
120 29.9676 -0.1259 -0.1721 0.0043 ∞ ∞
∞ 29.9734 -0.1150 -0.1572 0.0040 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.2144 -0.4203 0.0197 > 1000. > 1000.
2 25.1049 -0.5252 -1.0442 0.0497 > 1000. > 1000.
6 29.5986 -0.2269 -0.4527 0.0216 ∞ ∞
12 29.9906 -0.0193 -0.0385 0.0018 ∞ ∞
24 30.0000 -0.0001 -0.0002 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -12.9268 -14.1933 0.1098 ∞ ∞
2 29.9723 -938.8314 < −1000. 7.9033 ∞ ∞
6 30.0000 < −1000. < −1000. > 1000. ∞ ∞
12 30.0000 < −1000. < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞

Table C.36: Uncertainties: density 10%, thickness 10%, conductivity 1%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0054 -0.0205 0.0004 0.2717 0.8775
2 20.1009 -0.0296 -0.1120 0.0022 4.4543 10.1536
6 21.2866 -0.2982 -1.0483 0.0184 > 1000. > 1000.
12 23.4442 -0.7038 -2.2550 0.0340 > 1000. > 1000.
24 26.3645 -1.5405 -4.6280 0.0612 > 1000. > 1000.
120 29.9676 -70.7631 -207.5482 2.5918 ∞ ∞
∞ 29.9734 -82.5259 -242.0447 3.0225 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.4584 -2.0857 0.0487 > 1000. > 1000.
2 25.1049 -1.6110 -7.4349 0.1758 ∞ ∞
6 29.5986 -10.6565 -49.2962 1.1679 ∞ ∞
12 29.9906 -125.2615 -579.4664 13.7286 ∞ ∞
24 30.0000 < −1000. < −1000. 995.1362 ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞
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Table C.37: Uncertainties: density 10%, conductivity 5%.
Time Case 1
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 20.0172 -0.0043 0.0013 -0.0001 0.0091
2 20.1009 -0.0235 0.0073 0.0050 0.0556
6 21.2866 -0.2140 0.0585 0.6147 1.1002
12 23.4442 -0.3916 0.0898 9.9000 11.3383
24 26.3645 -0.4738 0.0933 785.6683 836.5917
120 29.9676 -0.0360 0.0062 > 1000. > 1000.
∞ 29.9734 -0.0313 0.0054 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 21.4323 -0.1902 0.0839 0.0631 0.4711
2 25.1049 -0.4472 0.2029 0.6950 1.6974
6 29.5986 -0.1438 0.0657 9.2259 10.4937
12 29.9906 -0.0074 0.0034 101.1050 111.7560
24 30.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 27.6470 -0.2347 0.0147 > 1000. > 1000.
2 29.9723 -0.0176 0.0008 > 1000. > 1000.
6 30.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞

Table C.38: Uncertainties: density 10%, thickness 1%, conductivity 5%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0043 -0.0014 0.0013 0.0003 0.0141
2 20.1009 -0.0236 -0.0076 0.0073 0.0115 0.0870
6 21.2866 -0.2156 -0.0667 0.0589 1.1538 1.9540
12 23.4442 -0.3972 -0.1158 0.0908 23.5887 28.2090
24 26.3645 -0.4871 -0.1357 0.0956 > 1000. > 1000.
120 29.9676 -0.0421 -0.0113 0.0072 > 1000. > 1000.
∞ 29.9734 -0.0368 -0.0099 0.0063 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.1918 -0.0723 0.0847 0.4322 1.2428
2 25.1049 -0.4524 -0.1728 0.2055 4.8864 8.1239
6 29.5986 -0.1488 -0.0570 0.0681 > 1000. > 1000.
12 29.9906 -0.0079 -0.0030 0.0036 > 1000. > 1000.
24 30.0000 -0.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.2648 -0.0594 0.0160 ∞ ∞
2 29.9723 -0.0248 -0.0054 0.0011 ∞ ∞
6 30.0000 0.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
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Table C.39: Uncertainties: density 10%, thickness 5%, conductivity 5%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0045 -0.0075 0.0015 0.0178 0.0798
2 20.1009 -0.0247 -0.0414 0.0079 0.2053 0.5649
6 21.2866 -0.2312 -0.3672 0.0646 26.2146 39.3717
12 23.4442 -0.4490 -0.6676 0.1035 > 1000. > 1000.
24 26.3645 -0.6189 -0.8751 0.1208 > 1000. > 1000.
120 29.9676 -0.1788 -0.2439 0.0306 ∞ ∞
∞ 29.9734 -0.1657 -0.2260 0.0283 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.2180 -0.4272 0.1001 > 1000. > 1000.
2 25.1049 -0.5383 -1.0698 0.2543 > 1000. > 1000.
6 29.5986 -0.2461 -0.4907 0.1171 ∞ ∞
12 29.9906 -0.0232 -0.0463 0.0111 ∞ ∞
24 30.0000 -0.0002 -0.0003 0.0001 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 < −1000. < −1000. 56.3538 ∞ ∞
2 29.9723 < −1000. < −1000. < −1000. ∞ ∞
6 30.0000 < −1000. < −1000. < −1000. ∞ ∞
12 30.0000 < −1000. < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞

Table C.40: Uncertainties: density 10%, thickness 10%, conductivity 5%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0055 -0.0208 0.0020 0.3519 1.1248
2 20.1009 -0.0302 -0.1140 0.0110 6.1248 14.1610
6 21.2866 -0.3104 -1.0851 0.0945 > 1000. > 1000.
12 23.4442 -0.7624 -2.4241 0.1801 > 1000. > 1000.
24 26.3645 -1.8408 -5.4894 0.3566 > 1000. > 1000.
120 29.9676 -234.2539 -684.0790 42.2521 ∞ ∞
∞ 29.9734 -285.4333 -833.5333 51.4827 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.5022 -2.2802 0.2660 > 1000. > 1000.
2 25.1049 -1.8819 -8.6641 1.0223 ∞ ∞
6 29.5986 -19.5083 -89.9979 10.6370 ∞ ∞
12 29.9906 -478.3202 < −1000. 260.8132 ∞ ∞
24 30.0000 < −1000. < −1000. > 1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞
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Table C.41: Uncertainties: density 10%, conductivity 10%.
Time Case 1
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 20.0172 -0.0043 0.0027 0.0019 0.0121
2 20.1009 -0.0236 0.0146 0.0188 0.0749
6 21.2866 -0.2154 0.1175 1.0611 1.6542
12 23.4442 -0.3966 0.1812 19.6968 22.9230
24 26.3645 -0.4859 0.1905 > 1000. > 1000.
120 29.9676 -0.0416 0.0142 > 1000. > 1000.
∞ 29.9734 -0.0363 0.0124 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 21.4323 -0.1910 0.1684 0.2668 0.7296
2 25.1049 -0.4500 0.4082 1.8146 3.0857
6 29.5986 -0.1467 0.1340 48.2733 57.5410
12 29.9906 -0.0077 0.0071 > 1000. > 1000.
24 30.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θcon

∑
θi

∑ |θi|
1 27.6470 -0.2632 0.0318 ∞ ∞
2 29.9723 -0.0244 0.0022 ∞ ∞
6 30.0000 0.0000 -0.0000 ∞ ∞
12 30.0000 0.0000 -0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞

Table C.42: Uncertainties: density 10%, thickness 1%, conductivity 10%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0043 -0.0014 0.0027 0.0027 0.0184
2 20.1009 -0.0237 -0.0077 0.0147 0.0297 0.1152
6 21.2866 -0.2174 -0.0672 0.1185 1.9217 2.9735
12 23.4442 -0.4035 -0.1175 0.1837 49.3508 60.6677
24 26.3645 -0.5028 -0.1398 0.1960 > 1000. > 1000.
120 29.9676 -0.0507 -0.0136 0.0172 > 1000. > 1000.
∞ 29.9734 -0.0446 -0.0120 0.0151 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.1931 -0.0728 0.1704 0.9516 2.0191
2 25.1049 -0.4567 -0.1744 0.4148 11.2567 17.3820
6 29.5986 -0.1532 -0.0587 0.1402 > 1000. > 1000.
12 29.9906 -0.0084 -0.0032 0.0077 > 1000. > 1000.
24 30.0000 -0.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.3353 -0.0747 0.0381 ∞ ∞
2 29.9723 -0.0499 -0.0109 0.0044 ∞ ∞
6 30.0000 -0.0000 -0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞

242



Table C.43: Uncertainties: density 10%, thickness 5%, conductivity 10%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0045 -0.0076 0.0029 0.0255 0.1006
2 20.1009 -0.0250 -0.0417 0.0159 0.2869 0.7369
6 21.2866 -0.2355 -0.3733 0.1309 43.1817 66.3765
12 23.4442 -0.4653 -0.6896 0.2123 > 1000. > 1000.
24 26.3645 -0.6665 -0.9387 0.2566 > 1000. > 1000.
120 29.9676 -0.2931 -0.3989 0.0993 ∞ ∞
∞ 29.9734 -0.2772 -0.3772 0.0939 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.2231 -0.4370 0.2046 > 1000. > 1000.
2 25.1049 -0.5573 -1.1068 0.5258 > 1000. > 1000.
6 29.5986 -0.2763 -0.5506 0.2625 ∞ ∞
12 29.9906 -0.0303 -0.0604 0.0288 ∞ ∞
24 30.0000 -0.0003 -0.0006 0.0003 ∞ ∞
∞ 30.0000 0.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 < −1000. < −1000. < −1000. ∞ ∞
2 29.9723 < −1000. < −1000. < −1000. ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞

Table C.44: Uncertainties: density 10%, thickness 10%, conductivity 10%.
Time Case 1
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0056 -0.0213 0.0041 0.4900 1.5551
2 20.1009 -0.0311 -0.1169 0.0224 9.3625 22.1748
6 21.2866 -0.3277 -1.1375 0.1960 > 1000. > 1000.
12 23.4442 -0.8508 -2.6781 0.3903 > 1000. > 1000.
24 26.3645 -2.3562 -6.9613 0.8847 > 1000. > 1000.
120 29.9676 < −1000. < −1000. 423.7654 ∞ ∞
∞ 29.9734 < −1000. < −1000. 547.7548 ∞ ∞
Time Case 2
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.5724 -2.5921 0.6033 > 1000. > 1000.
2 25.1049 -2.3644 -10.8479 2.5526 ∞ ∞
6 29.5986 -47.2850 -217.3026 51.2034 ∞ ∞
12 29.9906 < −1000. < −1000. > 1000. ∞ ∞
24 30.0000 < −1000. < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. < −1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞ ∞
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Table C.45: Uncertainties: density 10%.
Time Case 1
(hours) θ0 θden

∑
θi

∑ |θi|
1 20.0172 -0.0042 -0.0021 0.0064
2 20.1009 -0.0234 -0.0078 0.0390
6 21.2866 -0.2127 0.2788 0.7042
12 23.4442 -0.3872 4.7348 5.5092
24 26.3645 -0.4631 207.7717 208.6980
120 29.9676 -0.0317 > 1000. > 1000.
∞ 29.9734 -0.0274 > 1000. > 1000.

Time Case 2
(hours) θ0 θden

∑
θi

∑ |θi|
1 21.4323 -0.1896 -0.1012 0.2779
2 25.1049 -0.4449 -0.0235 0.8664
6 29.5986 -0.1416 1.6384 1.9216
12 29.9906 -0.0072 3.4821 3.4964
24 30.0000 -0.0000 10.1916 10.1916
∞ 30.0000 0.0000 82.8140 82.8140

Time Case 3
(hours) θ0 θden

∑
θi

∑ |θi|
1 27.6470 -0.2234 0.5803 1.0271
2 29.9723 -0.0154 1.9253 1.9562
6 30.0000 0.0000 7.2806 7.2807
12 30.0000 0.0000 23.2087 23.2087
∞ 30.0000 0.0000 33.0713 33.0713

Table C.46: Uncertainties: density 10%, thickness 1%.
Time Case 1
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 20.0172 -0.0043 -0.0014 -0.0021 0.0103
2 20.1009 -0.0235 -0.0076 -0.0052 0.0630
6 21.2866 -0.2140 -0.0663 0.5996 1.2524
12 23.4442 -0.3916 -0.1144 10.9830 13.0103
24 26.3645 -0.4735 -0.1322 891.2002 969.9600
120 29.9676 -0.0358 -0.0096 > 1000. > 1000.
∞ 29.9734 -0.0311 -0.0084 > 1000. > 1000.

Time Case 2
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 21.4323 -0.1908 -0.0719 0.0713 0.7318
2 25.1049 -0.4490 -0.1715 1.7578 3.7705
6 29.5986 -0.1452 -0.0557 191.1622 250.3090
12 29.9906 -0.0076 -0.0029 > 1000. > 1000.
24 30.0000 -0.0000 -0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 27.6470 -0.2333 -0.0525 > 1000. > 1000.
2 29.9723 -0.0173 -0.0038 > 1000. > 1000.
6 30.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
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Table C.47: Uncertainties: density 10%, thickness 5%.
Time Case 1
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 20.0172 -0.0044 -0.0075 0.0109 0.0623
2 20.1009 -0.0245 -0.0410 0.1376 0.4284
6 21.2866 -0.2273 -0.3617 15.8885 23.5551
12 23.4442 -0.4347 -0.6483 > 1000. > 1000.
24 26.3645 -0.5791 -0.8218 > 1000. > 1000.
120 29.9676 -0.1160 -0.1587 ∞ ∞
∞ 29.9734 -0.1056 -0.1444 ∞ ∞
Time Case 2
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 21.4323 -0.2135 -0.4187 > 1000. > 1000.
2 25.1049 -0.5222 -1.0383 > 1000. > 1000.
6 29.5986 -0.2227 -0.4443 ∞ ∞
12 29.9906 -0.0185 -0.0369 ∞ ∞
24 30.0000 -0.0001 -0.0002 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 27.6470 -6.3723 -7.0089 ∞ ∞
2 29.9723 -170.6324 -187.4029 ∞ ∞
6 30.0000 < −1000. < −1000. ∞ ∞
12 30.0000 < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. ∞ ∞

Table C.48: Uncertainties: density 10%, thickness 10%.
Time Case 1
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 20.0172 -0.0053 -0.0204 0.2547 0.8256
2 20.1009 -0.0295 -0.1115 4.1223 9.3706
6 21.2866 -0.2954 -1.0397 > 1000. > 1000.
12 23.4442 -0.6905 -2.2168 > 1000. > 1000.
24 26.3645 -1.4771 -4.4459 > 1000. > 1000.
120 29.9676 -53.2443 -156.3341 ∞ ∞
∞ 29.9734 -61.4465 -180.4140 ∞ ∞
Time Case 2
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 21.4323 -0.4488 -2.0431 > 1000. > 1000.
2 25.1049 -1.5546 -7.1785 ∞ ∞
6 29.5986 -9.2773 -42.9434 ∞ ∞
12 29.9906 -91.9198 -425.4991 ∞ ∞
24 30.0000 < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. ∞ ∞
Time Case 3
(hours) θ0 θden θthk

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞
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Table C.49: Uncertainties: conductivity 1%.
Time Case 1
(hours) θ0 θcon

∑
θi

∑ |θi|
1 20.0172 0.0003 0.0003 0.0003
2 20.1009 0.0014 0.0014 0.0015
6 21.2866 0.0114 0.0117 0.0118
12 23.4442 0.0172 0.0180 0.0184
24 26.3645 0.0170 0.0187 0.0195
120 29.9676 0.0007 0.0013 0.0015
∞ 29.9734 0.0006 0.0011 0.0013

Time Case 2
(hours) θ0 θcon

∑
θi

∑ |θi|
1 21.4323 0.0166 0.0169 0.0171
2 25.1049 0.0401 0.0415 0.0421
6 29.5986 0.0126 0.0144 0.0150
12 29.9906 0.0006 0.0008 0.0009
24 30.0000 0.0000 0.0000 0.0000
∞ 30.0000 0.0000 0.0000 0.0000

Time Case 3
(hours) θ0 θcon

∑
θi

∑ |θi|
1 27.6470 0.0028 0.0060 0.0077
2 29.9723 0.0001 0.0046 0.0068
6 30.0000 0.0000 0.0023 0.0034
12 30.0000 0.0000 0.0006 0.0010
∞ 30.0000 0.0000 0.0004 0.0007

Table C.50: Uncertainties: thickness 1%, conductivity 1%.
Time Case 1
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0014 0.0003 -0.0008 0.0022
2 20.1009 -0.0075 0.0014 -0.0043 0.0120
6 21.2866 -0.0644 0.0115 -0.0271 0.1126
12 23.4442 -0.1083 0.0172 -0.0085 0.2409
24 26.3645 -0.1183 0.0170 0.1679 0.5068
120 29.9676 -0.0052 0.0007 556.4725 674.6095
∞ 29.9734 -0.0044 0.0006 784.1979 950.5992

Time Case 2
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0713 0.0167 -0.0049 0.1726
2 25.1049 -0.1693 0.0403 0.1262 0.6067
6 29.5986 -0.0535 0.0128 2.3133 3.6344
12 29.9906 -0.0027 0.0006 35.3982 53.6744
24 30.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.0521 0.0029 > 1000. > 1000.
2 29.9723 -0.0037 0.0002 > 1000. > 1000.
6 30.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
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Table C.51: Uncertainties: thickness 5%, conductivity 1%.
Time Case 1
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0073 0.0003 0.0021 0.0313
2 20.1009 -0.0397 0.0015 0.0360 0.1913
6 21.2866 -0.3413 0.0122 2.7040 4.7796
12 23.4442 -0.5795 0.0185 84.2380 113.1334
24 26.3645 -0.6497 0.0188 > 1000. > 1000.
120 29.9676 -0.0365 0.0010 > 1000. > 1000.
∞ 29.9734 -0.0313 0.0008 > 1000. > 1000.

Time Case 2
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.4049 0.0190 > 1000. > 1000.
2 25.1049 -0.9882 0.0470 > 1000. > 1000.
6 29.5986 -0.3789 0.0181 ∞ ∞
12 29.9906 -0.0259 0.0012 ∞ ∞
24 30.0000 -0.0001 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 27.6470 -6.3791 0.0505 ∞ ∞
2 29.9723 -148.4900 1.1543 ∞ ∞
6 30.0000 < −1000. > 1000. ∞ ∞
12 30.0000 < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. ∞ ∞

Table C.52: Uncertainties: thickness 10%, conductivity 1%.
Time Case 1
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0192 0.0004 0.1257 0.4737
2 20.1009 -0.1038 0.0020 1.8497 4.4781
6 21.2866 -0.9103 0.0165 > 1000. > 1000.
12 23.4442 -1.6921 0.0271 > 1000. > 1000.
24 26.3645 -2.3983 0.0342 > 1000. > 1000.
120 29.9676 -1.7776 0.0231 ∞ ∞
∞ 29.9734 -1.7128 0.0221 ∞ ∞
Time Case 2
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 21.4323 -1.7999 0.0422 > 1000. > 1000.
2 25.1049 -5.8085 0.1378 ∞ ∞
6 29.5986 -18.7360 0.4455 ∞ ∞
12 29.9906 -65.0597 1.5472 ∞ ∞
24 30.0000 -571.1641 13.5828 ∞ ∞
∞ 30.0000 < −1000. 649.3210 ∞ ∞
Time Case 3
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞
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Table C.53: Uncertainties: conductivity 5%.
Time Case 1
(hours) θ0 θcon

∑
θi

∑ |θi|
1 20.0172 0.0013 0.0013 0.0014
2 20.1009 0.0072 0.0074 0.0078
6 21.2866 0.0572 0.0639 0.0679
12 23.4442 0.0860 0.1116 0.1245
24 26.3645 0.0849 0.1547 0.1883
120 29.9676 0.0034 0.5485 0.8166
∞ 29.9734 0.0029 0.5796 0.8633

Time Case 2
(hours) θ0 θcon

∑
θi

∑ |θi|
1 21.4323 0.0832 0.0907 0.0965
2 25.1049 0.2006 0.2393 0.2572
6 29.5986 0.0634 0.1360 0.1638
12 29.9906 0.0031 0.0220 0.0291
24 30.0000 0.0000 0.0006 0.0009
∞ 30.0000 0.0000 0.0000 0.0000

Time Case 3
(hours) θ0 θcon

∑
θi

∑ |θi|
1 27.6470 0.0144 > 1000. > 1000.
2 29.9723 0.0008 > 1000. > 1000.
6 30.0000 0.0000 ∞ ∞
12 30.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 ∞ ∞

Table C.54: Uncertainties: thickness 1%, conductivity 5%.
Time Case 1
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0014 0.0013 0.0005 0.0038
2 20.1009 -0.0075 0.0072 0.0032 0.0213
6 21.2866 -0.0645 0.0574 0.0551 0.2131
12 23.4442 -0.1085 0.0863 0.2189 0.5438
24 26.3645 -0.1186 0.0853 1.0716 1.8002
120 29.9676 -0.0053 0.0034 > 1000. > 1000.
∞ 29.9734 -0.0045 0.0029 > 1000. > 1000.

Time Case 2
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0714 0.0837 0.1291 0.3559
2 25.1049 -0.1697 0.2019 0.7180 1.4438
6 29.5986 -0.0538 0.0643 13.9417 21.4301
12 29.9906 -0.0027 0.0032 718.2672 > 1000.
24 30.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.0565 0.0154 ∞ ∞
2 29.9723 -0.0047 0.0010 ∞ ∞
6 30.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
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Table C.55: Uncertainties: thickness 5%, conductivity 5%.
Time Case 1
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0073 0.0014 0.0054 0.0394
2 20.1009 -0.0398 0.0077 0.0632 0.2459
6 21.2866 -0.3431 0.0613 4.2447 7.1908
12 23.4442 -0.5854 0.0934 163.1586 226.3923
24 26.3645 -0.6634 0.0955 > 1000. > 1000.
120 29.9676 -0.0411 0.0054 > 1000. > 1000.
∞ 29.9734 -0.0354 0.0046 > 1000. > 1000.

Time Case 2
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.4098 0.0961 > 1000. > 1000.
2 25.1049 -1.0058 0.2393 > 1000. > 1000.
6 29.5986 -0.4008 0.0957 ∞ ∞
12 29.9906 -0.0293 0.0070 ∞ ∞
24 30.0000 -0.0001 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 27.6470 -281.9321 10.0927 ∞ ∞
2 29.9723 < −1000. > 1000. ∞ ∞
6 30.0000 < −1000. < −1000. ∞ ∞
12 30.0000 < −1000. < −1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. ∞ ∞

Table C.56: Uncertainties: thickness 10%, conductivity 5%.
Time Case 1
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0194 0.0019 0.1636 0.5986
2 20.1009 -0.1051 0.0103 2.4863 6.0265
6 21.2866 -0.9307 0.0839 > 1000. > 1000.
12 23.4442 -1.7686 0.1402 > 1000. > 1000.
24 26.3645 -2.6466 0.1865 > 1000. > 1000.
120 29.9676 -3.6693 0.2376 ∞ ∞
∞ 29.9734 -3.6553 0.2361 ∞ ∞
Time Case 2
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 21.4323 -1.9322 0.2261 > 1000. > 1000.
2 25.1049 -6.5347 0.7739 ∞ ∞
6 29.5986 -29.6916 3.5239 ∞ ∞
12 29.9906 -185.3827 22.0030 ∞ ∞
24 30.0000 < −1000. 537.5000 ∞ ∞
∞ 30.0000 < −1000. > 1000. ∞ ∞
Time Case 3
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞

249



Table C.57: Uncertainties: conductivity 10%.
Time Case 1
(hours) θ0 θcon

∑
θi

∑ |θi|
1 20.0172 0.0026 0.0027 0.0031
2 20.1009 0.0144 0.0153 0.0169
6 21.2866 0.1145 0.1443 0.1627
12 23.4442 0.1722 0.3073 0.3783
24 26.3645 0.1702 0.7372 1.0273
120 29.9676 0.0069 > 1000. > 1000.
∞ 29.9734 0.0058 > 1000. > 1000.

Time Case 2
(hours) θ0 θcon

∑
θi

∑ |θi|
1 21.4323 0.1667 0.1992 0.2251
2 25.1049 0.4019 0.5846 0.6747
6 29.5986 0.1275 0.7716 1.0419
12 29.9906 0.0064 0.7110 1.0044
24 30.0000 0.0000 0.6246 0.8848
∞ 30.0000 0.0000 0.4830 0.6841

Time Case 3
(hours) θ0 θcon

∑
θi

∑ |θi|
1 27.6470 0.0307 ∞ ∞
2 29.9723 0.0020 ∞ ∞
6 30.0000 -0.0000 ∞ ∞
12 30.0000 -0.0000 ∞ ∞
∞ 30.0000 0.0000 ∞ ∞

Table C.58: Uncertainties: thickness 1%, conductivity 10%.
Time Case 1
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0014 0.0027 0.0021 0.0062
2 20.1009 -0.0075 0.0144 0.0133 0.0349
6 21.2866 -0.0646 0.1149 0.1875 0.3890
12 23.4442 -0.1088 0.1729 0.7511 1.3133
24 26.3645 -0.1194 0.1714 5.6850 8.7592
120 29.9676 -0.0055 0.0071 > 1000. > 1000.
∞ 29.9734 -0.0046 0.0060 > 1000. > 1000.

Time Case 2
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.0716 0.1678 0.3472 0.6785
2 25.1049 -0.1704 0.4054 1.9950 3.3721
6 29.5986 -0.0546 0.1303 115.1295 179.7947
12 29.9906 -0.0028 0.0066 > 1000. > 1000.
24 30.0000 -0.0000 0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 27.6470 -0.0684 0.0356 ∞ ∞
2 29.9723 -0.0083 0.0034 ∞ ∞
6 30.0000 0.0000 0.0000 ∞ ∞
12 30.0000 0.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
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Table C.59: Uncertainties: thickness 5%, conductivity 10%.
Time Case 1
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0073 0.0028 0.0099 0.0514
2 20.1009 -0.0400 0.0154 0.1027 0.3296
6 21.2866 -0.3458 0.1234 7.1754 11.9537
12 23.4442 -0.5943 0.1890 390.6725 567.9432
24 26.3645 -0.6843 0.1960 > 1000. > 1000.
120 29.9676 -0.0493 0.0128 > 1000. > 1000.
∞ 29.9734 -0.0428 0.0111 > 1000. > 1000.

Time Case 2
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 21.4323 -0.4169 0.1954 > 1000. > 1000.
2 25.1049 -1.0315 0.4907 > 1000. > 1000.
6 29.5986 -0.4350 0.2077 ∞ ∞
12 29.9906 -0.0352 0.0168 ∞ ∞
24 30.0000 -0.0002 0.0001 ∞ ∞
∞ 30.0000 0.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 27.6470 < −1000. < −1000. ∞ ∞
2 29.9723 < −1000. < −1000. ∞ ∞
6 30.0000 < −1000. < −1000. ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞

Table C.60: Uncertainties: thickness 10%, conductivity 10%.
Time Case 1
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 20.0172 -0.0197 0.0039 0.2256 0.8059
2 20.1009 -0.1068 0.0209 3.6275 8.8847
6 21.2866 -0.9598 0.1719 > 1000. > 1000.
12 23.4442 -1.8815 0.2944 > 1000. > 1000.
24 26.3645 -3.0436 0.4214 > 1000. > 1000.
120 29.9676 -10.2216 1.3132 ∞ ∞
∞ 29.9734 -10.6260 1.3644 ∞ ∞
Time Case 2
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 21.4323 -2.1373 0.4992 > 1000. > 1000.
2 25.1049 -7.7510 1.8318 ∞ ∞
6 29.5986 -58.0724 13.7496 ∞ ∞
12 29.9906 -835.2187 197.7559 ∞ ∞
24 30.0000 < −1000. > 1000. ∞ ∞
∞ 30.0000 < −1000. < −1000. ∞ ∞
Time Case 3
(hours) θ0 θthk θcon

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞ ∞
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Table C.61: Uncertainties: thickness 1%.
Time Case 1
(hours) θ0 θthk

∑
θi

∑ |θi|
1 20.0172 -0.0014 -0.0012 0.0018
2 20.1009 -0.0075 -0.0061 0.0099
6 21.2866 -0.0644 -0.0450 0.0917
12 23.4442 -0.1083 -0.0491 0.1900
24 26.3645 -0.1182 0.0633 0.3651
120 29.9676 -0.0052 345.5625 411.8077
∞ 29.9734 -0.0044 485.7220 578.8713

Time Case 2
(hours) θ0 θthk

∑
θi

∑ |θi|
1 21.4323 -0.0713 -0.0341 0.1347
2 25.1049 -0.1692 0.0156 0.4573
6 29.5986 -0.0534 1.3807 2.2257
12 29.9906 -0.0027 16.8400 25.5267
24 30.0000 -0.0000 > 1000. > 1000.
∞ 30.0000 0.0000 > 1000. > 1000.

Time Case 3
(hours) θ0 θthk

∑
θi

∑ |θi|
1 27.6470 -0.0514 > 1000. > 1000.
2 29.9723 -0.0036 > 1000. > 1000.
6 30.0000 0.0000 > 1000. > 1000.
12 30.0000 0.0000 ∞ ∞
∞ 30.0000 0.0000 ∞ ∞

Table C.62: Uncertainties: thickness 5%.
Time Case 1
(hours) θ0 θthk

∑
θi

∑ |θi|
1 20.0172 -0.0073 0.0013 0.0294
2 20.1009 -0.0397 0.0297 0.1791
6 21.2866 -0.3408 2.3984 4.3120
12 23.4442 -0.5781 71.7490 95.6820
24 26.3645 -0.6466 > 1000. > 1000.
120 29.9676 -0.0356 > 1000. > 1000.
∞ 29.9734 -0.0305 > 1000. > 1000.

Time Case 2
(hours) θ0 θthk

∑
θi

∑ |θi|
1 21.4323 -0.4038 > 1000. > 1000.
2 25.1049 -0.9842 > 1000. > 1000.
6 29.5986 -0.3741 ∞ ∞
12 29.9906 -0.0252 ∞ ∞
24 30.0000 -0.0001 ∞ ∞
∞ 30.0000 0.0000 ∞ ∞
Time Case 3
(hours) θ0 θthk

∑
θi

∑ |θi|
1 27.6470 -3.6464 ∞ ∞
2 29.9723 -36.0971 ∞ ∞
6 30.0000 < −1000. ∞ ∞
12 30.0000 < −1000. ∞ ∞
∞ 30.0000 < −1000. ∞ ∞
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Table C.63: Uncertainties: thickness 10%.
Time Case 1
(hours) θ0 θthk

∑
θi

∑ |θi|
1 20.0172 -0.0191 0.1175 0.4469
2 20.1009 -0.1035 1.7183 4.1634
6 21.2866 -0.9056 > 1000. > 1000.
12 23.4442 -1.6747 > 1000. > 1000.
24 26.3645 -2.3441 > 1000. > 1000.
120 29.9676 -1.5048 ∞ ∞
∞ 29.9734 -1.4394 ∞ ∞
Time Case 2
(hours) θ0 θthk

∑
θi

∑ |θi|
1 21.4323 -1.7704 > 1000. > 1000.
2 25.1049 -5.6528 ∞ ∞
6 29.5986 -16.8566 ∞ ∞
12 29.9906 -51.0671 ∞ ∞
24 30.0000 -352.5547 ∞ ∞
∞ 30.0000 < −1000. ∞ ∞
Time Case 3
(hours) θ0 θthk

∑
θi

∑ |θi|
1 27.6470 ∞ ∞ ∞
2 29.9723 ∞ ∞ ∞
6 30.0000 ∞ ∞ ∞
12 30.0000 ∞ ∞ ∞
∞ 30.0000 ∞ ∞ ∞
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