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Abstract 

The threat of anthropogenic global warming necessitates decarbonization across society. In the 

UK, the residential sector generates a substantial share of emissions that can largely be 

attributed to space and water heating using fossil fuels. Electrification offers a path away from 

carbon-intensive heating, provided the electricity is renewably generated. Findhorn Ecovillage 

has pursued electrification in recent housing developments. The Woodside neighborhood has 

an electrified district heating network with separate domestic hot water (DHW) and space 

heating (SH) water tanks charged by a single water-source heat pump (WSHP). Woodside has 

solar panels and Findhorn has significant wind generation, but supply-demand mismatches still 

occur frequently. This means surplus renewable electricity is sold cheaply and grid electricity 

is imported expensively. Shifting water tank charging to better align with renewable generation 

could enable increased renewables utilisation and decreased cost and carbon intensity.  

This thesis exploits the load-shifting potential of Woodside thermal storage using alternative 

control strategies and novel tariff structures. A first-principles multi-node thermal storage 

model was adapted from PyLESA to produce separate DHW and SH tank models in Python. 

Empirical heat loss parameters were introduced and calibrated against monitored data to ensure 

accurate system representation. These models were then used to simulate the Woodside heating 

system over a year under three rule-based control (RBC) regimes and five tariffs, including 

dynamic wind tariffs. Key performance indicators (KPIs) and graphical representations were 

applied to reveal differences in system behavior across the simulated scenarios. 

Simulations demonstrate that advanced RBC can achieve moderate reductions in heating costs 

for district heating systems with thermal storage. A 12.0% reduction in operational cost of heat 

(OCOH), from £0.1458/kWhth to £0.1283/kWhth, is calculated using advanced RBC with the 

second dynamic wind tariff (DWT). This corresponds to an annual cost reduction of ~£250, a 

38.4% relative increase in renewables utilisation, and a 21.4% drop in carbon intensity. 

Graphical analysis shows these reductions are achieved by better aligning charging events with 

generation and charging to higher node temperatures.  

These findings suggest that advanced RBC can synergize with dynamic tariffs to decrease 

heating costs and carbon intensity while increasing renewables utilisation within community 

energy schemes. Though not assessed here, predictive controls may offer further benefits. To 

facilitate future work, the thermal storage models and control scripts developed during this 

thesis are shared at https://github.com/eli-d-strath/woodside_control. 
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1.0 Introduction  

This section introduces Findhorn Ecovillage, the Woodside neighborhood, and the energy 

challenges it faces. The project aims and approach are identified and project scope is discussed. 

1.1 Findhorn Ecovillage 

Findhorn Ecovillage (hereafter ‘Findhorn’) is a community located along the Moray Firth with 

homes, offices, shops, and other building types. Findhorn was founded to promote sustainable 

and ecological lifestyles; in line with this ethos, it has invested significantly in energy efficient 

housing, sustainable water treatment, and onsite renewable energy. Interesting aspects of their 

energy system include a privately owned and operated low-voltage distribution network and 

675kW of wind capacity in addition to photovoltaic (PV) panels [1]. This private-wire 

distribution network is connected to the regional Scottish and Southern Energy Networks 

(SSEN) grid via a 975kW substation. Findhorn undergoes a biannual contract negotiation 

process through an energy broker with an energy supply company to establish tariff rates for 

the sale of excess renewables and importation of grid electricity.  

Recent developments such as East Whins, West Whins, and Woodside have incorporated heat 

pumps that facilitate renewable electricity-powered heating. Dwellings have individual heat 

pumps at East Whins, while dwellings are connected to energy centres with a central heat pump 

and thermal stores in a district heating scheme at Woodside and West Whins [1]. Residents can 

choose a standard or day-night tariff scheme. The standard rate is a flat £0.3407/kWh, while 

the day-night rate charges £0.3607/kWh from 7:00-12:00 and £0.3171/kWh otherwise [2].  

Several connected organizations manage the site’s operations. The organizations most relevant 

to the energy system are New Findhorn Directions (NFD) and Findhorn Wind Park (FWP). 

NFD operates the low-voltage distribution network, manages electricity retail, and purchases 

electricity from FWP. FWP sells electricity from onsite renewables, including the three 225kW 

Vestas V29 turbines, and procures external grid electricity for times of renewables shortfall. 

This requires contracting with SSEN and a grid energy supply company for distribution and 

generation to establish tariff rates for site imports and exports [3]. The costs of electricity from 

onsite renewables and grid imports are passed on to NFD, which adds a small distribution 

charge as part of the price offered to residents, complicating the state of onsite tariffs. 

Interest in Findhorn’s unique energy system has previously led to research collaborations 

including Orchestration of Renewable Integrated Generation in Neighbourhoods (ORIGIN) 



   

and an Energy Technology Partnership (ETP) project with the University of Strathclyde. These 

projects studied whether demand shifting could reduce carbon emissions by increasing 

renewables utilisation and will be discussed in the Literature Review. An important legacy of 

these projects is monitoring and logging of various data of interest through 

OpenEnergyMonitor Raspberry Pis and the Emoncms web portal.  

1.1.1 Woodside Neighborhood 

The Woodside neighborhood consists of eight dwellings, half being single-inhabitant studios 

and other half two-bed homes [4]. Construction concluded in 2022 and tenants moved in 

thereafter [5]. A district heating scheme with a single 7 kWe Ochsner Aqua 22 water source 

heat pump (WSHP) was implemented. Heat pump output cannot be modulated, i.e. it only 

operates at 7 kWe. The WSHP separately charges two hot water tanks for space heating (SH) 

and domestic hot water (DHW) that function as thermal storage [6]. The SH tank is a directly 

heated 1500 L Akvaterm AKVA1500E [7]. The DHW tank is an indirectly heated 1000 L 

McCallum Calorifiers Ltd. Stainless Steel Cylinder [8]. During discharging, the SH tank 

receives return water from the SH loop and the DHW tank receives water from Findhorn’s 

“Living Machine” wastewater treatment facility. Woodside also has approximately 8kW of 

onsite PV panel capacity. A site schematic is displayed in Figure 1.  

The entire Woodside site is extensively monitored and logged, with data recorded for domestic 

electrical use, thermal storage node temperatures, DHW and SH tank discharge volumes, and 

other parameters of interest. This data availability makes Woodside an ideal test bed for 

different heat pump and thermal storage controls.  

 



   

 

Figure 1. Woodside plant room and heat network schematic [6]. 

1.2 Problem Definition 

Findhorn’s energy system poses several challenges. Those addressed in this thesis are 

electricity supply-demand mismatch, complex grid import contract negotiation, appropriately 

leveraging onsite data, and incentivizing optimal renewables use.  

Findhorn’s wind and solar PV assets provide sizable generation capacity, but their variable 

generation frequently causes a temporal mismatch between supply and site demand. The lack 

of significant storage assets means that surplus renewables must be exported to a 3rd-party 

supply company at a low rate, while a shortfall necessitates grid imports that are expensive and 

potentially carbon intensive. Furthermore, the negotiation process itself is complex and time-

limited, making it difficult to assess which contracts are preferable for the entities and residents 

at Findhorn. Biannual changes in import and export pricing makes it difficult to project the 

costs of grid imports and plan future electric rates. It is therefore in the financial interest of 

Findhorn to maximize onsite renewables utilisation through either storage or demand shifting. 

Despite the abundance of monitored data available at Woodside and Findhorn, there have been 

only a few efforts to leverage it for improved system controls. The aforementioned ORIGIN 



   

project was the first to show potential benefits, leading to a recent effort to force charging of 

the DHW tank when solar PV generation exceeded a threshold. However, these controls were 

only implemented for a short time and did not focus on space heating or wind utilisation. The 

current controls simply charge the tanks when their top temperatures drop below a threshold, 

ignoring opportunities for renewables use via forced or delayed charging. This suggests there 

is scope for more comprehensive controls that better leverage the available site data.  

Finally, there is a challenge of incentivizing “optimal” renewables use. The main tool for doing 

so is electricity tariffs. As Woodside residents own their PV, that electricity is “free” to them, 

while they must pay the same rate to use NFD electricity regardless of whether Findhorn is 

currently importing or exporting electricity. This does not appropriately prioritize the use of 

onsite wind-generated electricity, which is much less expensive than grid imports to NFD 

(although not free) [9]. NFD has flexibility to set tariffs internally. Therefore, there may be 

scope to implement different tariffs to incentivize onsite wind use, lowering costs for 

consumers. However, the magnitude of these benefits and optimal tariff rates are unclear.  

1.3 Project Aim and Deliverables 

The principal aims of this project are formulated to address the challenges above. They are to: 

1) Develop, calibrate, and validate first-principles models for the Woodside DHW and 

SH thermal storage tanks;  

2) simulate Woodside system behavior under different control regimes and tariffs 

including demand-led rule-based control (RBC), opportunistic PV RBC, and 

advanced RBC; and 

3) compare key performance indicators (KPIs) of operational cost of heat (OCOH), 

gross annual heating cost, renewables utilisation, and carbon intensity to identify 

the optimal control scheme and tariff structure. 

The primary deliverables of the project shall be documented and validated Python-based tank 

models, control scripts, and corresponding results for the control and tariff scenarios. It is 

envisioned that these models and scripts can be adapted for use in other contexts. They are 

made available on GitHub at https://github.com/eli-d-strath/woodside_control to facilitate this. 

The third project aim involves the non-standard KPI of OCOH. OCOH is the total annual cost 

of electricity used to run the heat pump divided by the total annual thermal energy delivered to 

https://github.com/eli-d-strath/woodside_control


   

homes as space heat or hot water. It is measured in units of £/kWhth. OCOH is used instead of 

levelized cost of heat because the analysis is conducted over a single year and it is assumed no 

additional capital costs are incurred. Gross annual heating cost represents the total cost of the 

electricity used to run the heat pump over a year; it has units of £. Renewables utilisation is the 

percent of electricity used by the heat pump that is generated from onsite PV or wind. Carbon 

intensity is the average mass of CO2 equivalents released per kWh of heat energy delivered to 

residents over the year in units of gCO2eq/kWhth. Total annual carbon emissions are first 

calculated assuming intensities of 43, 11.8, and 254 gCO2eq/kWhe for solar [10], wind [11], 

and grid [12] electricity; then, total emissions are divided by the total heat supplied. 

1.4 Methodological Approach and Thesis Structure 

A methodological project approach was devised to meet the project aims. This approach, 

outlined below, roughly mirrors the structure of the thesis.  

1) Review of Woodside’s current energy system and controls. 

2) Literature review of options for system modelling, previous research at Findhorn, 

and research applying control techniques to energy systems. 

3) Selection, adaptation, calibration, and validation of tank models.  

4) Simulation of all control regimes paired with all tariffs. 

5) Analysis of KPIs and graphical representations of system behavior.  

The Woodside review provides information for realistic model design and is reflected in 

Sections 1.1 and 1.2 of the Introduction. The literature review enables an informed modelling 

approach, suggests where the thesis can build upon previous work, and identifies gaps in the 

application of controls to thermal storage. This is reflected in Section 2, the Literature and 

Tools Review. Lessons from the literature review are used to select a modelling approach 

balancing complexity and accuracy. The PyLESA tank models are then adapted to the 

Woodside context, addressing Aim 1. This is reflected in Section 3, Thermal Storage Model 

Development. The models are used to simulate the Woodside heating system as described in 

Section 4, Woodside Simulation Approach, addressing Aim 2. The KPIs of the simulated 

scenarios and underlying system behavior are compared in Section 5, Simulation Result 

Analysis, meeting Aim 3. Finally, an overview of achievements, limitations, and future work 

is presented in Section 6, Discussion, before a brief conclusion in Section 7, Conclusion.  



   

1.5 Scope and Assumptions 

An overview of thesis scope and notable assumptions is provided here. Additional assumptions 

will be stated throughout the thesis sections and summarized in Section 6.2, Limitations.  

The thermal storage models are intended to capture the significant phenomena of charging, 

discharging, node mixing, and heat loss. The larger Woodside model captures the dynamics of 

the Ochsner Aqua 22 WSHP, the DHW and SH tanks, and net electricity flow for all of 

Findhorn. Monthly average water temperatures are considered while calculating WSHP 

coefficient of performance (COP) and a site energy balance using monitored data is used to 

determine when wind surpluses occur. The costs mentioned in the analysis refer to the costs 

directly paid by Woodside residents for electricity used to charge the hot water tanks, without 

a further breakdown into the costs borne by NFD and FWP.  

A detailed analysis of varying losses in the district heat piping system or home internal 

temperatures and thermal comfort is beyond the scope of this work. However, the demand data 

used to calibrate and validate the model includes these considerations, so this will not detract 

from the findings. Site heating demands at each timestep are calculated using monitored 

volumetric discharge, an assumed flow temperature of 45°C, and assumed tank return 

temperatures of 10°C and 35°C for DHW and SH. Any required preheating of WSHP inlet 

wastewater and the scheduled occurrence of tank disinfection cycles are excluded from this 

analysis. Potential changes in DHW and SH demand and potential effects on the electrical 

network are not considered. Beyond the whole-site net electrical balance, the rest of Findhorn 

is beyond the thesis scope.  

 

 

 

 

 

 



   

2.0 Literature and Tools Review 

The literature review has three areas of focus: (1) energy system modelling tools, (2) previous 

research at Findhorn, and (3) previous applications of control to different types of energy 

systems. Following these sections, identified research gaps relevant to Woodside and the thesis 

work are summarised. 

2.1 Energy System Modelling Tools and Selection Strategy 

Tools available for the analysis of local energy systems range from free, open-source tools like 

OSeMOSYS [13] to advanced commercial tools such as HOMER Pro [14]. They differ 

dramatically in cost, complexity, features, and customizability. This section reviews tools of 

potential interest and methods for selecting a tool. It also reviews options specifically for 

modelling thermal storage.  

2.1.1 Tool Selection Methodology 

Available models can be categorized in several ways. Després et al. [15] use the flowchart 

shown in Figure 2, first sorting the tools by availability (open source vs commercial), then by 

purpose, (large-scale vs local) and finally by approach (bottom-up vs top-down) used by the 

tool. They then consider how detailed the model resolution is and the specific technologies and 

economic factors that can be examined. This is useful for categorizing tools but less helpful in 

selecting tools when several features are desired but unavailable in a single software. Lyden et 

al. [16] adopt the alternative approach of first marking features as ‘essential’ or ‘desirable’ and 

then scoring a tool’s capabilities. This approach allows for a more systematic selection of a 

software after categorization of the available options.  



   

 

Figure 2. Després et al. energy system model typology [15]. 

2.1.2 Survey of Available Tools 

Numerous tools are available to suit diverse modelling needs. Ringkjøb et al. [17] identify 75 

different modelling tools used in the literature after 2012 that are appropriate for systems with 

high renewable generation shares. A more recent review [18] focused on district heating 

systems finds 145 modelling tools for local energy systems, identifying 13 as relevant for 

district systems, while Lyden et al. [16] identify 13 tools relevant for community energy 

systems with demand-side management. There are 6 tools (DER-CAM, HOMER, 

EnergyPLAN, energyPro, eTransport, and MARKAL/TIMES) considered tentatively suitable 

by both [16] and [18]. However, [16] apply their selection process for modelling of a heat pump 

and thermal storage system at Findhorn and find that only DER-CAM, energyPro, 

EnergyPLAN, and MARKAL/TIMES meet essential capabilities. Considering the similarity 

between the Woodside analysis and this hypothetical analysis, these four tools are reviewed 

further. Python for Local Energy Systems Analysis (PyLESA) [19], an open-source Python 

tool developed explicitly for the analysis of district heating systems after [16] and [18] were 

published, is also reviewed. A summary of the tools’ attributes relevant to the Woodside 

context is provided in Table 1. 

 



   

Table 1. Energy system modelling tools of interest characterized by relevant attributes [16]. DC – demand curtailment, EV – 
electric vehicles, LS – load shifting, MO – modulating output, NO – non-modulating output, OO – operational optimization 

with financial (F) or emissions (E) objective function, UO – user-defined order, MPC – model predictive control. 

 DER-CAM EnergyPLAN energyPro MARKAL/ 
TIMES 

PyLESA 

Cost (E) Free Free Paid Paid Free 

Learning Period (E) 2 days Two weeks 
[20] 

One day Months [21] Minimal 

Temporal Resolution 
(E) 

5 minutes Hourly Minute Hourly Custom 

Heat Pump (E) Y Y Y Y Y 

District Heat (E) N Y Y N Y 

Availability (D) Closed 
source 

Semi- open 
source 

Closed 
source 

Open source Open 
source 

Thermal Storage 
Model (D) 

SSM SSM MB SSM Multi-
node 

Financial Analysis 
(D) 

Y Y Y Y Y 

Modelling Approach 
(D) 

Bottom-up 
optimization 

Bottom-up 
simulation 

Top-down 
simulation 

Top-down 
financial 

optimization 

Bottom-
up 

simulation 

Available Controls 
(D) 

DC, EV, 
LS, MO, 
OO (F, E) 

FO, LS, MO, 
OO (F) 

EV, MO, 
NO, OO 
(F), UO  

MO, NO, 
OO (F) 

FO, MPC, 
UO  

 

DER-CAM is a closed-source free tool offered by Lawrence Berkeley National Lab. It is a 

least-cost or least-carbon optimizer employing mixed-integer linear programming for 

microgrid systems incorporating distributed energy resources [22]. Its bottom-up approach 

focuses on economic analysis and has been employed for local energy systems [22].  

EnergyPLAN is a free, semi-open-source tool maintained by the Sustainable Energy Planning 

Research Group at Aalborg University. It models several future systems across energy-related 

sectors over a year in 1-hour timesteps [23]. It has been widely used in the literature, including 

for local system analysis, but is intended for modelling at a national or regional scale [24]. 



   

energyPro is a closed-source commercial software originally developed for technoeconomic 

analysis of building energy systems; it has since been applied to local energy projects, 

particularly combined heat and power (CHP) [25] and district heat systems [26]. Various 

renewable energy and energy storage technologies can be modelled [27]. Simulations of up to 

40 years can be run with 1-minute timesteps. 

MARKAL/TIMES is a family of general purpose models developed by the International 

Energy Agency ETSAP [28]. The GAMS source code is open and freely available, but the 

GAMS language must be purchased at high cost. They are generally hybrid models that pair 

top-down economic analysis tools with bottom-up technological models [29]. The models 

conduct least-cost optimization for multiscale energy systems in the long term and are 

commonly used at a national or regional level [30], but can be used locally.  

Finally, PyLESA is a free, open-source software developed in Python capable of modelling 

thermal and electrical loads in integrated energy systems [19]. It was designed to address the 

gaps in modelling tool capabilities identified by [16] including detailed temperature models for 

thermal storage and adaptable source code. PyLESA considers various renewable energy 

technologies, heat pumps, thermal storage, electrical storage, tariffs and smart controls [31].  

2.1.3 Thermal Storage Models 

As flexible charging of thermal storage is the main thrust of this project, thermal storage 

modelling strategies of the selected tools are examined in greater detail. The physics of hot 

water tanks are complex, involving various types of heat and mass flow such as conduction, 

convection, buoyancy, and forced mixing [32]. These produce phenomena such as stratification 

and thermoclines. Capturing these interactions requires high computational complexity, so 

many models opt for simplification at the cost of accuracy [32]. A common approach used by 

industry-standard software such as TRNSYS [33] and academic tools like ESP-r [34] is 

dynamic thermal simulation. This involves defining system inputs and components and then 

solving the system iteratively according to thermal and physical rules [35].  

The simple storage model (SSM) only measures energy charged in and discharged out of the 

store, with no analysis of the complex dynamics or temperatures within the store [16]. The 

SSM is used by EnergyPLAN and the MARKAL/TIMES models. A more complex alternative 

is the moving boundary model (MB). In MB models, the changing temperatures and masses of 

two zones with a thermocline between them are considered. No mixing is modelled; instead, 



   

the position of the thermocline rises or falls as the tank discharges or charges, respectively [36]. 

DER-CAM and energyPro employ MB models.  

Additional model options, in order of increasing complexity, are plug flow, multi-node, zonal, 

and computational fluid dynamics (CFD) [32]. Plug flow creates several disks of constant 

temperature that shift up and down as the tank charges. The disks do not mix, but disks are 

removed and added to be replaced by new disks of different temperatures. The multi-node 

approach also considers several disks, but energy transfer is accounted for by changing node 

temperatures instead of shifting disks up or down [37]. This enables consideration of 

conductive losses, ambient losses, and enthalpy flow in a single dimension. Modelling with 

nodes of differing thickness and regression-based heat loss parameters has been demonstrated 

to reduce the number of nodes needed, reducing computational complexity [38]. The multi-

node approach is employed by PyLESA. Zonal models essentially extend the multi-node 

approach to material and energy balances occurring across three dimensions. This enables 

better capture of boundary layer flow and jets but comes at a computational cost. CFD offers 

very accurate analysis but is extremely computationally intensive and is not typically employed 

in energy system planning models [32]. Figure 3 displays a decision tree for selecting the ideal 

thermal storage modelling approach considering the available data and accuracy needs. 

 

Figure 3. Decision tree for selecting a thermal storage modelling approach from [32]. 



   

2.2 Previous research at Findhorn 

Findhorn has a history of research collaboration with universities across the UK including the 

University of Strathclyde [39], [40], Heriot-Watt University [39], and the University of Sussex 

[41]. This section briefly reviews the research projects previously conducted at Findhorn and 

their relevance to this thesis work.  

2.2.1 ORIGIN 

The ORIGIN project was funded by the EU and involved several European universities. It 

aimed to characterize the electrical and thermal loads of three sustainable communities with 

local renewables, including Findhorn [42]. This required the installation of monitoring and 

control equipment throughout the site. Using the information about load and resident 

behaviour, the project developed an algorithm for demand-side management to increase 

renewables self-consumption. This algorithm predicted weather, generation, and demand over 

a 48-hour time horizon and identified opportunities to either charge storage early or defer loads 

to future periods [39]. After optimizing, a controller then remotely operated heating equipment 

according to the optimized schedule. Uniquely, ORIGIN attempted to actively engage residents 

in participatory demand response using dashboards that signalled the current and predicted 

generation state. This blend of central and user-led load shifting was estimated to increase the 

use of community renewables by 16% [42]. 

As part of its characterization of loads, ORIGIN developed thermal models for residential solar 

thermal storage and a biomass district heat network that were linked to the study’s focus 

buildings [39]. The thermal storage was a physics-based multi-node model with regression 

parameters to align modelled losses and mixing with observed data as seen in Figure 4.  

 

Figure 4. Regression of solar thermal storage tank fitting parameters to improve ORIGIN model prediction, from [39]. (a) 
Solar Energy Regression; (b) Measured Tank Temperatures; (c) Predicted Performance. 



   

The monitoring kit installed at Findhorn during ORIGIN provides much of the data used to 

calculate site wind surplus in this thesis. However, ORIGIN thermal modelling is geared 

towards single-home tanks with low storage capacity (~200-300L). This differs from the needs 

of Woodside, where the large central district heating network offers increased flex due to the 

aggregation of demands on a district heating network.  

2.2.2 ETPs and SIES 

The work during ORIGIN was built upon during an ETP project between NFD, Park Ecovillage 

Trust (PET) and the University of Strathclyde. This project analyzed a variety of topics at 

Findhorn including electric vehicles, additional renewable capacity, and energy storage and 

culminated in Findhorn’s 2021 Energy Masterplan [1]. As part of this project, extensive 

monitoring equipment was installed at the new West Whins development to avoid the 

challenges faced while retrofitting existing homes during ORIGIN [42]. The PET ETP 

concluded that batteries or alternative technologies are not economical options for storing 

surplus generation. However, it built upon ORIGIN’s exploratory work leveraging hot water 

tanks as “thermal batteries” using opportunistic charging and concluded that a 15-20% increase 

in renewables usage could be attainable [1]. It was suggested that dynamic tariffs similar to 

Octopus Agile [43], which ties consumer prices to the wholesale rate, could incentivize this 

opportunistic charging, but a detailed analysis with dynamic tariffs was not conducted.  

The initial PET ETP was followed recently by the EU Smart Integrated Energy Systems (SIES) 

project [44] and Predictive and Opportunistic Control of Renewable Integrated Thermal Stores 

(POCIT) in partnership with Green Leaf Energy Ltd [45]. SIES and POCIT funded the 

deployment of detailed monitoring equipment to Woodside and the use of the Emoncms portal, 

enabling access to node temperature data used for model calibration and validation in Section 

3. SIES focuses broadly on virtual power plants and conducted a case study at Woodside 

assessing the benefits of opportunistic PV charging of the DHW tank. The study found 

significant cost and renewable usage benefits over a summer week [46]. POCIT complements 

the SIES project by specifically focusing on developing opportunistic controls for the 

Woodside heating system as a lesson for use in the rest of Findhorn [45]. POCIT efforts inform 

the work conducted in this thesis.  



   

2.3 Control Techniques Applied to Energy Systems 

This subsection examines the motivation behind controls for energy systems and briefly 

surveys the literature of controls applied to energy systems. Examples of interest are presented. 

2.3.1 Motivations for Control 

Controls are essential for energy systems, as they have inherently high complexity due to the 

number of associated factors. Depending on the scale of the system in question, these factors 

can include mechanical equipment, electrical equipment, generators, distribution lines, 

chemical storage, and stochastic variables like weather and human input [47]. Energy systems 

have traditionally accepted demands as fixed inputs and orchestrated supply to meet these 

demands. In this paradigm, controls are used to most efficiently schedule generation and 

maximize system performance or minimize cost. They are also used in power systems 

engineering to ensure system reliability [48] and prevent service interruptions [49] 

The relationship between supply, demand, and controls is shifting as variable renewable energy 

(VRE) becomes more prevalent [50]. VRE generation can be predicted in the short term but is 

not dispatchable. Conversely, VRE sources may generate at times of low demand and need to 

be curtailed, wasting cheap energy. In this emerging context, detailed monitoring and controls 

are increasingly required to shift demand to times of VRE generation [51], [52], [53]. Thus, a 

major goal of advanced controls is enabling optimal renewables utilization while maintaining 

or improving system performance, such as providing heating for thermal comfort.  

2.3.2 Controls Applied to Building Electrical Demands 

A subsector of the energy industry that has traditionally used controls is building energy 

management systems (BEMS). BEMS are a general category of management tools that operate 

heating, ventilation and air conditioning (HVAC) systems that modulate internal building 

conditions to promote thermal comfort and health [54]. The BEMS is tasked with using 

monitored information such as temperature and weather prediction to efficiently operate these 

HVAC systems and minimize energy losses. A variety of control and optimization strategies 

have been deployed to achieve these aims in the context of large commercial buildings [55]. 

These can be broadly classified as rule-based controls and predictive controls. RBC involves a 

set of rules that are assessed at each timestep. If current conditions violate the rules, the BEMS 

acts to rectify this violation. Conversely, predictive controls estimate future conditions such as 



   

energy demands and weather and adjust the kit they control to optimize system operation with 

these predictions in mind [56]. 

BEMS are increasingly being applied to more complex contexts with renewable generation and 

other technologies. Chellaswamy et al. [57] apply a BEMS predictive control methodology to 

a residence with solar PV to efficiently utilize the PV generation for domestic needs. Gao et al. 

[58] develop a hybrid BEMS MPC approach and use it to optimize the operation of solar PV 

and a battery considering both safety metrics and costs. Srithapon and Månsson [59] find that 

costs can be reduced by applying MPC within a domestic BEMS to coordinate electric vehicle 

charging with thermal demands that are met via thermal storage and a heat pump. Abushnaf et 

al. [60] develop a BEMS that controls household appliances and assess its performance under 

time-of-use, inclining block rate, and real-time pricing tariffs. Other studies [61] have been 

conducted with BEMS to manage domestic electricity use, but these applications are restricted 

to management of individual homes and focus on electrical loads over thermal loads. 

2.3.3 Controls Applied to District Heating Networks 

BEMS has been extended to district heating networks, which are of particular interest for this 

thesis. [56] analyze a district heating system where residents can both contribute to and draw 

heat from a central thermal store. However, the sources of heat in this system are boilers or 

solar thermal collectors as opposed to the WSHP at Woodside. Behzadi and Sadrizabeh [62] 

developed a BEMS with TRNSYS and rule-based controls that are optimized using machine 

learning. This control system is applied to a dual network comprised of a district heat network 

and electrical assets for hydrogen generation. Although the model includes a hot water tank, 

the primary focus of analysis is the generation and use of hydrogen to provide heat. Kuosa et 

al. [63] take the novel approach of directly using a district heating pipe network as a storage 

asset by charging at heightened temperatures during periods dictated by a controller. They 

achieve significant reductions in backup heating use and carbon emissions. While intriguing, 

this is not a desirable strategy at Woodside because the hot water tank capacity is far greater 

than the district heat pipe capacity. Hassan et al.’s [64] optimization of thermal energy storage 

operation within a district heating scheme more closely resembles the Woodside context, as a 

stratified hot water tank is used. However, the district heating scheme is charged using a 

biomass boiler and backup electrical heating, not a heat pump. This review indicates that there 

is a lack of research on district heating systems with thermal energy storage that are charged 

solely by heat pumps. 



   

2.3.4 Wind to Heat Controls 

The large wind generation capacity at Findhorn Ecovillage makes wind-based controls 

particularly appealing. Recent work by Desguer et al. [65] analyzes the potential use of thermal 

storage in electrified district heating systems to mitigate wind power curtailment. Their case 

study finds that a district heating system can operate almost entirely on wind power that is 

otherwise curtailed, but that appropriately designed markets are necessary to achieve this level 

of wind-driven charging. While the Woodside current context differs in that surplus wind 

generation is exported at a flat rate, not curtailed, this situation may change in the future. Third-

party brokers may become unwilling to purchase surplus electricity at times when wind 

generation in nearby locations is also high, leading to loss of value to Findhorn. 

Opportunistically charging thermal storage at Woodside and other locations then offers a way 

to recover value while cheaply providing heat, though it is unclear whether the existing thermal 

storage capacity approaches levels sufficient to capture significant amounts of surplus wind. 

The Desguer et al study [65] suggests that alternative tariffs may be required at Findhorn to 

incentivize use of wind power for charging the Woodside thermal storage.  

2.4 Identified Research Gaps 

Previous research at Findhorn established a rich monitoring infrastructure and examined the 

potential for load shifting using residential thermal storage. Though comprehensive, these 

efforts did not examine the Woodside district heating system because it did not yet exist. Recent 

efforts associated with SIES assessed the cost savings from implementing opportunistic PV 

charging of the DHW tank at Woodside. However, the SIES analysis did not examine 

opportunistic wind charging or charging of the SH tank. There is ample research applying 

BEMS to optimize domestic and community electrical consumption, but less research 

analyzing district heating schemes. No studies could be identified that analyzed district heating 

schemes incorporating hot water tank-based thermal storage charged using a heat pump.  

This thesis addresses the gaps in general energy systems modelling and research conducted at 

Findhorn. The contents build directly upon ORIGIN, SIES and POCIT in two ways. First, this 

project leverages data from monitoring equipment installed for these projects. Second, this 

project extends the controls proposed in SIES and POCIT to a novel context by simulating with 

detailed multi-node tank models, applying controls to both the DHW and SH tanks, and 

simulating operation with dynamic tariffs.  



   

3.0 Thermal Storage Model Development 

To model the Woodside energy system, the multi-node thermal storage model developed as 

part of PyLESA was extracted and modified. Separate control scripts that simulate the 

remainder of the system were then written in Python. This section provides a rationale for this 

approach considering the available tools reviewed in subsection 2.1, further details the multi-

node model used in PyLESA, and explains what modifications were made to the model. 

Finally, model validation was conducted using monitored site data and simple controls 

reflecting the current demand-led control paradigm.  

3.1 Modelling Tool Selection 

This subsection justifies the choice to use the dedicated PyLESA thermal storage model in 

tandem with novel simulation and control scripts instead of the available software mentioned 

in subsection 2.1. The modelling tool attributes that were essential and desirable for the project 

were identified. The tools reviewed in subsection 2.1 were marked against these requirements 

following the selection methodology described in [16].  

Table 2. Energy modelling tool marking against essential (E) and desirable (D) attributes based on [12] 

 DER-CAM EnergyPLAN energyPro MARKAL/ 
TIMES 

PyLESA 

Essential Capabilities Fail Fail Fail Fail Pass 

Total Score 11 10 10 6 14 

Cost (E) 2 2 0 0 2 

Short learning period (E) 2 0 2 0 2 

Sub-hour Resolution (E) 2 2 2 2 2 

Heat Pump (E) 2 2 2 2 2 

District Heat (E) 0 2 2 0 2 

Availability (D) 1 0 0 1 1 

Advanced Thermal 
Storage (D) 

0 0 1 0 1 

Financial Analysis (D) 1 1 1 1 1 

Bottom-Up Model (D) 1 1 0 0 1 

Predictive Controls (D) 1 1 0 0 1 



   

 

The scoring and marks are indicated in Table 2. The project budget and time constraints made 

a low-cost (preferably free) and easily learned tool critical. Sub-hourly resolution was 

necessary to best utilize the onsite data and accurately model a system with variable heating 

demands and renewable generation [66]. Finally, district heat and heat pump modelling 

capabilities were considered essential, as these are defining qualities of the Woodside energy 

system. Attributes that were desirable but not essential included an advanced thermal storage 

model for accurate simulation of the temperatures and useful available energy in the thermal 

stores. Open-source code enables customization, which was desirable because the Woodside 

heating system is unique and likely required adjustment of native capabilities. It also promotes 

transparency and enables future improvement  of this work [67]. A bottom-up approach with 

financial analysis was desired because it enabled technically detailed modelling and produced 

the financial outputs that are key for decisionmakers at Findhorn. 

This marking process eliminated all modelling options except PyLESA. MARKAL/TIMES 

cost several thousand pounds, required extensive training, and did not have district heat 

modelling capability. energyPro was also expensive, though it met other needs and could be 

explored for similar future projects if low-cost licenses could be obtained. EnergyPLAN was 

free but not fully open source and required a long training period. DER-CAM was accessible 

and open source but did not have district heating capability. Beyond satisfying essential 

capabilities, PyLESA also had an advanced thermal storage model and offered a bottom-up 

approach with financial analysis. Because it was written in Python a variety of libraries [68] 

created to work with energy systems could also be imported and applied, if necessary.  

The entire PyLESA software package offered various capabilities that exceeded the needs of 

the current project. These included renewable generation estimators, demand generators, and a 

detailed tariff assessment tool [19]. Additionally, PyLESA only modeled a single thermal 

storage tank that assumeed direct water charging; this was problematic because the DHW and 

SH tanks at Woodside were separate and heated differently. Therefore, this project used the 

multi-node tank model module from PyLESA as the basis for developing Woodside-specific 

DHW and SH thermal storage models. The contents of the heat pump module were also adapted 

for heat pump modelling within the control scripts. Extracting the essential aspects of the 

PyLESA tool reduced computational burden while maintaining the advantages of being freely 

available, open source, and thermally detailed.  



   

3.2 PyLESA Thermal Storage Model 

This subsection briefly reviews the PyLESA thermal storage model, underlying assumptions, 

and its validation.  

3.2.1 Model Approach 

PyLESA used a first-principles multi-node (MN) thermal storage model [19]. The MN 

approach could track node temperatures and considered phenomena such as internal 

conduction, node mixing, and ambient heat loss [32]. Tracking node temperature, not just state 

of charge, was important to ensure that tank outlet temperatures at the top node were sufficient 

for domestic hot water and space heating. MN had a far lower computational cost than other 

approaches with temperature tracking such as a zonal model or CFD [32].  

The MN approach employed by PyLESA divided the tank into nodes of equal mass and applies 

material and energy balances to compute temperature changes across model timesteps. 

PyLESA’s balances accounted for ambient heat loss to the tank surroundings; flow during tank 

charging; flow during tank discharging; and mixing of the node masses [69]. Ambient losses 

included conductive losses through the cylinder and connection losses through insulation 

openings. The connection losses were calculated depending on insulation k-value and ambient 

air temperature. Mass flowed into the top of the tank during charging and out of the bottom 

node. Mass flowed into the bottom of the tank during discharging and out of the top node. The 

direction of node mixing was determined by the tank state, with downwards mixing during 

charging and upward mixing during discharging. When the tank was on standby, no mixing 

was calculated. These flows of energy and mass are shown in Figure 5.  

An overall energy balance for the currently analyzed node i was developed considering these 

terms and shown in Equation 1.  

Equation 1. Overall energy balance for node i in PyLESA thermal storage model. mx – mass flow in x direction; cp – heat 
capacity of water; Tx – temperature at node or source x; Fc – function of charging (0 or 1); Fd – function of discharging (0 

or 1); Fe – empirical overall correction factor; Fcorr – empirical insulation correction factor; k – insulation k-value; r1 – 
internal tank radius; ; r2 – external tank radius; h – node height; c.l. – connection losses [69]. 
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Figure 5. Schematic of the energy and mass flows accounted for in the PyLESA thermal storage model [69]. 

Equation (1) was simplified by sorting terms into those dependent on the current node 

temperature (Ti), above node temperature (Ti-1), below node temperature (Ti+1), and no node 

temperature, assuming nodes are numbered from the top. These were represented by the 

coefficients A, B, C, and D, respectively. During each model timestep, the tank underwent N 

(number of nodes) internal timesteps in case the desired charge or discharge mass exceeded 

that of the nodes. Node coefficients were calculated at each timestep and the change in node 

temperature was computed with an ordinary differential equation solver in the SciPy library 

[70]. New node temperatures were then produced and used for the subsequent model timestep. 

The model took inputs of tank capacity, insulation type, number of modelled nodes, and 

insulation thickness. Five nodes were used by default. Additional inputs included the number 

of tank openings and connections; the size of these openings; and empirical correction factors 

for flaws in insulation and any necessary overall adjustments to heat loss. Using a preset factor, 

model width and height were calculated relative to tank capacity. The tank internal radius was 

calculated assuming insulation was internal to the calculated tank width.  



   

This tank model was implemented in Python using an object-oriented approach. A Hot Water 

Tank class was defined with numerous internal methods to carry out the node temperature 

update process and methods that are called in the main operation script. For a more detailed 

description of the thermal tank model and its implementation in Python, refer to [69] and [19].  

3.2.2 Assumptions 

The assumptions underlying the PyLESA thermal storage model are listed below. 

• The tank was a perfect cylinder 

• Heat transfer occurred only through side and top/bottom walls, not corners 

• Insulation provided the only thermal resistance between the tank and ambient air 

• The tank was at steady state conditions 

• Node mixing did not occur when tank was in standby mode 

• Turbulent effects were not considered 

• Tank charging inlet and discharging outlet were in the top node  

• Return water outlet and inlet were in the bottom node 

3.2.3 Validation 

Validation was conducted by comparing modelled node temperatures to monitored data for a 

district heat system over a charging period, discharging period, and period of mixed operation. 

This comparison indicated that the time taken for complete tank charging is accurate, but that 

the model misses some aspects of stratification, as it simulates node temperatures increasing 

evenly instead of sequentially and rapidly [69]. The observed mean absolute error (MAE) and 

mean absolute percentage error (MAPE) were greatest for the bottom node during charging 

due to accelerated node mixing caused by internal tank timesteps. The discharging validation 

similarly showed more gradual simulated node temperature declines compared to monitored 

data. Over a two-day period the simulated tank node temperatures roughly followed the pattern 

of observed data with an MAE of 2.5°C and maximum error of 12°C [69]. This was taken to 

indicate that the model could not precisely predict node temperatures at each timestep, but 

could realistically reproduce general charging/discharging behavior and temperature changes.  

3.3 Model Adaptations for Woodside 

This subsection discusses the modifications made to the PyLESA thermal storage model to 

produce useful models of the Woodside DHW and SH tanks. Graeme Flett made preliminary 



   

changes to produce distinct DHW and SH tank models, but these models were not fully 

documented or validated. This thesis thoroughly documented the Flett models and used them 

as a starting point for additional changes. The initial changes by Flett and later changes for this 

thesis are introduced and discussed. The original PyLESA model is referred to as the base 

model; the preliminary models are referred to as the Flett DHW and SH models; and the models 

produced during the thesis work are referred to as the thesis DHW and SH models. 

3.3.1 Domestic Hot Water 

The changes introduced to the base model to produce the Flett DHW model were uneven node 

masses; direct use of volumetric demand data as the tank discharge mass; and an empirical 

calculation of heat loss. [32] indicated that using uneven nodes could reduce the number of 

nodes needed to capture phenomena like thermoclines. In the Flett DHW model, more node 

mass were assigned to the bottom node than the top, while the middle nodes were assigned a 

mass between the top and bottom node mass. The empirical heat loss model was derived from 

tank temperature data during periods without charge or discharge. It involved a heat loss factor 

specified for each node that was used to calculate coefficients A and D. This approach to heat 

loss was like that used in ORIGIN [39]  

The changes introduced to the Flett DHW model to produce the thesis DHW model were 

altering the approach to charging and node mixing; using a 0.66 scaling factor for the calculated 

discharging mass; changing the assumed return temperature to 10°C; and calibrating node mass 

and heat loss factors. The Flett model maintained that charging water enters the top node and 

drives downward mass and energy flow, with water leaving the bottom node to return to the 

heat pump. However, the actual Woodside DHW thermal storage is indirectly charged midway 

down the tank. The model of tank charging and node mixing was altered to address this as 

shown in Figure 6. In the thesis DHW model, charging water entered the 4th node down from 

the top. All nodes above the charging node received water from below while sending an 

equivalent mass of water in the opposite direction. Finally, the charging node sent a mass 

equivalent to the charging mass “out” of the tank, simulating the function of the heat exchanger. 

The bottom node therefore did not directly mix or interact with any other nodes and was 

assigned a small share of the total tank mass. The 0.66 scaling factor was introduced because 

the calculated tank energy loss, as calculated by a change in node temperature, was consistently 

greater than the calculated discharge energy by a factor of ~1.5. A return temperature of 10°C 

more accurately reflects the water temperatures coming from the Living Machine to the tank 



   

during discharging. The final DHW tank model had node masses of [150, 200, 250, 275, 125] 

kg. Empirical heat transfer coefficients of [2.5, 2.0, 2.5, 8, 30] were used, reflecting the bottom 

node’s sensitivity to ambient conditions because it is not directly charged or mixed with the 

other nodes. The thesis DHW model used the same discharging approach as the Flett DHW 

model and base model. 

An alternative discharging approach, in which mass flows solely upwards and “out” of the tank 

at the top node, was considered and analyzed. However, validation attempts revealed poor 

alignment between model and monitored node temperatures. The first approach for modified 

charging and mixing was therefore implemented.  

 

Figure 6. Schematic of the energy and mass flows in the modified Woodside DHW thermal storage model, based on [69]. 

3.3.2 Space Heating 

The sole initial change to create a Woodside SH model was the introduction of uneven node 

masses, with more mass in the upper nodes. As mentioned, this can improve the ability of the 

model to capture thermoclines and stratification effects [32]. The focus of Graeme Flett’s 

previous work was forced DHW charging, explaining the lack of changes to the SH model. 



   

The SH model implemented the energy and mass flow approach found in the native PyLESA 

model as described in Figure 4. Accordingly, the overall model was first principles based with 

empirical adjustment to improve alignment with monitored node temperatures. The final SH 

tank model has node masses of [300, 250, 250, 300, 400] kg. 

3.4 Model Calibration and Validation 

This subsection discusses the calibration and validation of the modified thermal storage 

models. Simulated DHW and SH tank node temperatures were validated against monitored 

Emoncms node temperature data between November 1 to November 14, 2023. Various 

versions of the model were assessed to identify suitable node masses and, for the DHW tank, 

empirical heat loss factors. Only the final models are discussed. The standard statistical metrics 

of MAE, MAPE [71], and CVRMSE [72] alongside visual methods were used to assess how 

well the model corresponds to monitored data and charging/discharging trends.  

3.4.1 Domestic Hot Water  

The final DHW tank model had node masses of [150, 200, 250, 275, 125] kg from top to 

bottom. The empirical heat transfer coefficients used were [2.5, 2.0, 2.5, 8, 30], reflecting the 

bottom node’s sensitivity to ambient conditions because it did not directly charged or mixed 

with the other nodes. The calibration graphs for each node temperature are shown in Appendix 

1 (Figures 15-19). 

Calculated node temperatures above the heat pump source temperature (51°C) were set back 

to the source temperature, with the “lost” energy resulting from the temperature decrease 

transferred to the node below. The basic demand-led controls triggered charging when the 3rd 

node temperature dropped below 46°C and stopped charging when the top node temperature 

exceeded 50.5°C. These values were selected based on observed patterns in the monitored data. 

MAE, MAPE, CV RMSE, and maximum error of the modelled vs monitored node 

temperatures over the 672 half-hourly validation timesteps are presented in Table 3. Nodes 1 

and 2 display low MAE, MAPE, and CV RMSE, indicating accurate modelling of these 

temperatures. Node 3 values are acceptably accurate, while Node 4 and 5 temperatures are less 

accurate as indicated by the large MAE, MAPE, and CVRMSE. 

 



   

Table 3. Statistical outputs of DHW tank model validation against monitored node temperature data. 

 Node 1 (Top) Node 2 Node 3 Node 4 Node 5 (Bottom) Average 

MAE [°C] 0.70 0.71 1.55 6.04 4.92 2.78 

MAPE 1.42% 1.45% 3.17% 16.63% 32.12% 10.96% 

CVRMSE 2.01% 2.04% 4.14% 19.02% 32.00% 11.84% 

Maximum error 
[°C] 

3.30 3.70 10.20 22.18 8.40 9.56 

 

The graphical representation of the first 96 validation timesteps in Figure 7 gives context to 

these statistical findings. This period included charging, standby, and discharging periods. 

Model temperatures closely followed monitored temperatures for the first two nodes across 

charging and discharging periods. The third nodes charged to the expected maximum 

temperature, but its temperature dropped more rapidly than the monitored temperature during 

discharging periods. As the controlling node, this meant charging cycles were initiated at 

different timesteps than in the monitored data. Node 4 model temperatures did not always reach 

the expected maximum during charging, but dropped less during discharge periods, accounting 

for the large maximum error, MAE, and MAPE. This charging behavior can be attributed to 

the use of a mass flow “exiting” the charging node in the model to maintain steady-state tank 

mass. Future analyses may wish to explore a scaling coefficient to reduce the magnitude of this 

energy loss. The large error is magnified by the temporal mismatch in charging cycles. Node 5 

shows an inverse relationship in which modelled temperatures exceed monitored temperatures, 

which may be caused by poor capture of stratification [69]. 



   

 

Figure 7. Modelled and monitored DHW tank node temperatures across the first 96 validation timesteps 

The DHW model’s average MAE of 2.78°C and MAPE of 10.96%, as well as 3°C+ maximum 

error for each node, indicate it is not appropriate for precise tracking of node temperatures. 

However, the top three nodes are adequately tracked, which is most relevant for the purposes 

of approximating when charging will occur and whether the top node is able to meet demand 

at the required outlet flow temperature. Worse tracking of lower node temperatures is 

commonly seen and associated with imperfect capture of stratification and the movement of 

the thermocline [19]. Furthermore, the average CVRMSE of 11.84% falls below the 20% 

threshold in ASHRAE Guideline 14 to consider a model calibrated [72] and the general charge-

discharge dynamics of a thermal store are captured. Taken together, the validation indicates the 

thesis DHW model is suitable as a basis for system analysis.  

3.4.2 Space Heating  

The final SH tank model has node masses of [300, 250, 250, 300, 400] kg from top to bottom. 

Only top and bottom node temperature data is available for the SH tank in the Emoncms portal. 

This limits validation and analysis to these nodes and restricts control options. However, the 

model is still run with five nodes. Basic demand-led controls trigger charging when the top 

node temperature drops below 50°C and stop charging when the top node temperature exceeds 

56°C. This approach is based on observed patterns in monitored data; however, temperature 

data occasionally show charging at different threshold temperatures. The exact details of onsite 

controls used at this time are unavailable, so the stated approximation is made. MAE, MAPE, 
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CVRMSE and maximum error of the modelled vs monitored node temperatures over the 672 

half-hourly validation timesteps are presented in Table 4.  

Table 4. Statistical outputs of SH tank model validation against monitored node temperature data. 

 Node 1 (Top) Node 5 (Bottom) Average 

MAE [°C] 1.64 8.52 5.08 

MAPE 3.07% 17.72% 10.40% 

CVRMSE 3.92% 20.69% 12.31% 

Maximum error [°C] 7.46 17.46 12.46 

 

Node 1 has low error across metrics, indicating the model accurately tracked Node 1 

temperatures. However, Node 5’s high error suggested it was poorly tracked. The validation of 

the DHW model suggested that intermediate nodes would have lower error than the bottom 

node. Therefore, the lack of available data from temperature sensors midway along the tank for 

comparison with model node temperatures was likely to inflate the average MAE and MAPE. 

A graphical representation of the first 96 validation timesteps encompassing charging standby, 

and discharging periods is shown in Figure 8. Modelled temperatures for intermediate nodes 

were included for completeness. There is an inconsistent relationship between modelled and 

monitored node temperatures during discharging; at times the modelled temperatures decreased 

more slowly, at others more rapidly. This caused more frequent charging in the model. The 

selection of node masses in the model may be responsible, although the behavior was observed 

across a suite of tested node mass distributions. Furthermore, monitored temperatures for the 

bottom node were significantly higher than modelled temperatures after charging. This 

suggests that the magnitude of node mixing between the top and bottom of the tank is 

unaccounted for in the model. The general cycle of node temperatures rising and falling during 

charging and discharging is observed and no node temperature inversions occur.  



   

 

Figure 8. Modelled and monitored SH tank node temperatures across the first 96 validation timesteps. 

Like the DHW model, the average MAE of 5.08°C, MAPE of 10.40%, and maximum errors 

exceeding 7°C indicate the model does not precisely track node temperatures. The graphical 

analysis corroborates this assessment and demonstrates that the precise timing of charging 

events differs. However, the average CVRMSE of 12.31% is below the standard calibration 

threshold of 20% [72], the top node temperature is well tracked, and the expected charge-

discharge trends are observed. These validation results suggest the modified SH model is 

suitable for the purposes of this analysis.  
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4.0 Woodside Simulation Approach 

This section describes the simulation of the Woodside heating system over a full year in half-

hourly timesteps. The site demand and generation data used during simulation and methods for 

data preprocessing are discussed. The selected simulation approach is then introduced. To 

conclude, the control regimes and tariffs examined during simulation are listed and explained.  

4.1 Data Sources and Cleaning 

This subsection reviews the sources of heat and electrical demand data for Findhorn and the 

steps taken to process this data. 

Several datasets were used during simulation of the Woodside heating system. These included 

onsite PV generation; SH and DHW volumetric demand; daily average air temperature; and 

net power draw from West Whins, the wind turbines, and the rest of Findhorn. The datasets 

covered the period from January 1, 2023, to December 31, 2023. Monitoring gaps present in 

some datasets during this period were addressed using synthetic data. Datasets were created by 

aggregating Emoncms data reported in 10-seconds intervals into half-hourly values. These 

represented either a sum for energy and volume units or an average for power units. Table 5 

reviews the source of these datasets, their level of resolution, and whether they contain only 

monitored data or are a hybrid of monitored and synthetic data. 

Table 5. Datasets used in simulation described by source, temporal resolution, and naturalness of data. 

Dataset Source Resolution Data Type 

PV Generation [kWh] Emoncms  Hourly Monitored 

DHW Demand [L] Emoncms Hourly Monitored 

SH Demand [L] Emoncms Hourly Monitored 

West Whins-Southside 
Active Power [kW] 

Emoncms Hourly Hybrid 

CB001 Active Power 
(Wind) [kW] 

Emoncms Hourly Hybrid 

CB002 Active Power 
(Findhorn) [kW] 

Emoncms Hourly Hybrid 

Daily Ambient 
Temperatures [°C] 

Kinloss Met 
Office [73] 

Daily Monitored 



   

 

Generation data for the Woodside PV panels, DHW volumetric demand, and SH volumetric 

demand were obtained from Emoncms and aggregated to half-hourly values. Daily ambient 

temperatures measured at the nearby Kinloss Met Office were obtained via their website [73]. 

The West Whins-Southside (WW-SS), CB001, and CB002 feeds monitor nearly all the sites at 

Findhorn, including the FWP turbines, distributed PV, commercial buildings, and residences. 

Therefore, it was assumed that the balance of these streams represents net onsite consumption 

and indicates when a renewable surplus occurs. These datasets were partially synthetic due to 

a lack of continuous monitoring during 2023. Electrical demand was only monitored at WWSS 

during the last 3 months of 2023; therefore, the first half of the dataset was filled with monitored 

2024 data, with the remaining gap filled by repeating the demand values from the end of 2023. 

The CB001 and CB002 feeds contained three gaps in monitoring from half-hourly timesteps 1 

to 1374, 2899 to 3582, and 6217 to 6798. These recording gaps totalling approximately 55 days 

were filled with 2024 electrical feed data.  

The decision was made to integrate 2024 into 2023 data gaps because it was assumed that 

monitored data, regardless of year, was more accurate than generated load profiles. This was 

justified by a lack of notable changes to the Findhorn site from 2023 to 2024 and relative 

consistency in year-to-year user electrical demand behavior. Any discrepancies caused, for 

example, by extended cold snaps in one year will have a small effect on results, as the WWSS 

feed is much smaller in magnitude than CB001 and CB002, and only 15% of timesteps were 

filled with 2024 data for CB001 and CB002.  

These streams were cleaned by the control scripts as they are read in to remove any sensing 

errors giving extreme positive or negative values. Particularly, DHW and SH volumetric 

demand that was negative or exceeded 500 L was set to 0, as were negative values for Woodside 

PV. Net site renewable power was capped at 750 kW and negative values were set to 0. The 

cleaned DHW and SH volumetric demand data were then used to calculate heating energy 

demand as shown in Equation 2. A 45°C flow temperature was assumed for both the DHW and 

SH tanks. Return temperatures of 10°C and 35°C were assumed for the DHW and SH tanks, 

respectively. The 45°C DHW flow temperature was assumed because DHW delivery 

temperature typically varies between 35 and 46°C [74] in real systems. The Woodside DHW 

tank also lacks a mixing valve, so temperatures above 46°C run the risk of scalding residents. 

The 10°C DHW return temperature was based on the assumed temperature of water in the 



   

Living Machine wastewater treatment facility that replenishes the DHW tank. The 45°C SH 

flow temperature and 35°C return temperature were selected based on the Flett controls to 

mirror the current system. 

Equation 2. Calculating timestep heat demand from volumetric demand. Q – heat energy; V – volume demand in timestep; Cp 
– water specific heat of 4.181 kJ/kg- ΔK; ΔT – difference between flow and return temperatures. 

𝑄𝑄 = 𝑉𝑉 ∗ 𝐶𝐶𝑝𝑝 ∗ ∆𝑇𝑇     (2) 

4.2 Simulation Approach  

This subsection outlines the approach to simulate Woodside heating system operation over the 

2023 calendar year. Python files that declared a control-specific class, demand_led_rbc.py, 

opp_pv_rbc, and advanced_rbc, were written for each of the three controls. A main.py control 

script was written that instantiated these classes and executed model simulation. Two additional 

scripts, sim_tools.py and result_tools.py, contained methods used during simulation or results 

outputs. Each of the four control approaches (described in Section 4.3) was simulated with all 

five tariff structures (described in Section 4.4) for a total of twenty scenarios.  

This project simulated over a 365-day period with half-hour timesteps. Control values were 

specified in accordance with those used in Section 3.4. Briefly, minimum top node 

temperatures of 46°C and 50°C, maximum top node temperatures of 50.5°C and 56°C, and 

heat pump source temperatures of 51°C and 57°C were used for DHW and SH, respectively. 

During opportunistic renewable charging, maximum top node temperatures were raised to 

52°C and 57°C and heat pump source temperatures were raised to 53°C and 58°C for DHW 

and SH, respectively. DHW was prioritized over SH and simultaneous charging of both tanks 

was not allowed. Opportunistic renewable charging status was determined using a PV threshold 

of 4 kW and wind threshold of 50 kW. The 4 kW PV threshold was used because the heat pump 

is non-modulable and forced charging is only desirable when most of the electricity is freely 

derived from PV. A net wind threshold of 50 kW was used because previous studies of the data 

indicate net generation above that threshold is more consistent and likely to endure, meaning 

the heat pump does not have to be turned on and off as frequently.  

 

 

 



   

The main.py script was responsible for simulation. Once executed, main.py read in input data, 

specified initial simulation timestep and simulation length, and created year-long arrays of 

control temperatures, WSHP COP, opportunistic charging status, and prices. main.py then ran 

an iterative loop across the specified simulation period. In each loop, month and day of year 

counters were incremented and control values were reset. Tank temperatures were then 

calculated after meeting discharge demands during the timestep. After discharging was 

accounted for, an instance of the appropriate control class was initialized and used to calculate 

the node temperatures and charging status of each tank. Finally, main.py stored these 

temperatures with other metrics and exported them to three CSV files following the conclusion 

of the simulation loop.  

4.3 Controls 

This subsection describes the three control approaches used during simulation of the Woodside 

heating system. The controls were (1) demand-led RBC reflecting controls currently in place 

at Woodside; (2) opportunistic PV RBC that opportunistically charged tanks when PV 

generation exceeded a threshold; and (3) advanced RBC with opportunistic PV and wind 

charging and other control improvements. Efforts were made to adapt the MPC module in 

PyLESA for the purposes of this analysis, but they were unsuccessful and halted due to time 

limitations. These controls are described in greater detail below with an overview of general 

characteristics provided in Table 6.  

Table 6. Overview of general control characteristics for the four control schemes implemented during simulations. 

 Demand-Led 
RBC 

Opportunistic 
PV RBC 

Advanced 
RBC 

Forced PV 
Charge 

No Yes Yes 

Forced Wind 
Charge 

No No Yes 

Night Offset No No Yes 

SH Shutdown No No Yes 

 



   

4.3.1 Demand-Led RBC 

The demand-led RBC reflected current Woodside thermal storage and heat pump controls to 

the best knowledge of the author. This control was entirely demand-led; the tanks discharged 

to meet demand and charged immediately when node temperatures dropped below the charging 

threshold. There was no forced charging using renewables or adjustment of tank setpoint 

temperatures.  

4.3.2 Opportunistic PV RBC 

The opportunistic PV RBC implemented opportunistic PV charging. Opportunistic charging 

was triggered when (1) there was a PV surplus exceeding the 4 kW threshold and (2) the top 

node temperature did not exceed a limit of 50°C or 55°C for DHW or SH, respectively. During 

opportunistic charging, maximum top node temperatures were increased to 52°C and 57°C and 

heat pump source temperatures were increased to 53°C and 58°C for DHW and SH, 

respectively. The heightened storage temperature accelerated ambient losses, and greater heat 

pump output temperature decreased COP; however, it was expected that the benefit of cheaply 

storing energy using renewables outweighed these drawbacks.  

4.3.3 Advanced RBC  

The advanced RBC implemented forced PV and added forced wind charging, a nighttime offset 

in minimum node temperatures, and seasonal shutdown of the SH system. These features were 

proposed in pseudocode drafted by Paddy Atkinson as part of the POCIT project and adapted 

for this thesis. The other proposed features of a weather compensation curve for SH flow 

temperatures and smart DHW disinfection cycle charging were not implemented, as 

thermostatic mixing valves and the disinfection cycle were excluded from the analysis. Two 

control scenarios with advanced RBC were simulated, one with seasonal shutdown of the SH 

system and the other without, to determine the cost savings enabled by the shutdown.  

 Opportunistic charging was triggered when (1) there was a PV surplus exceeding the 4 kW 

threshold or wind surplus exceeding the 50 kW threshold and (2) the top node temperature did 

not exceed a limit of 50°C or 55°C for DHW or SH, respectively. During opportunistic 

charging, maximum top node temperatures were increased to 52°C and 57°C and heat pump 

source temperatures were increased to 53°C and 58°C for DHW and SH, respectively. As with 

the opportunistic PV RBC script, it was anticipated that the benefit of cheaply storing energy 

via renewable electricity would outweigh the drawbacks increased losses and worsened COP.  



   

The night offset reduced the minimum node temperature that triggered tank charging. The 

rationale for the offset was that overnight demand, particularly for DHW, is likely minimal. 

Therefore, there is little need to maintain multiple nodes’ worth of reserve water above the flow 

temperature and sustain higher losses. Offset minimum DHW and SH setpoints were set to 

43°C and 45°C, respectively, for timesteps ranging from 19:00 to 9:00 each day.  

The SH shutdown stopped the heat pump from charging the SH tank regardless of node 

temperatures during the summer months and select days of the shoulder season. The rationale 

for the shutdown was the lack of SH discharge in the Emoncms dataset between timesteps 7694 

and 12400, approximately early June to mid-September. Repeatedly charging the tank and 

dissipating all the energy as heat loss would be inefficient. SH was disabled during June, July, 

and August, and enabled from October to April. During May, a counter tracked the number of 

days that experienced average ambient temperatures above 14°C. SH was disabled once the 

counter reached 6 days. During September, a counter tracked the number of days that 

experienced average ambient temperatures below 16°C. SH was enabled once the counter 

reached 6 days.  

4.4 Tariffs 

This subsection describes the tariff structures used while simulating the Woodside heating 

system. The tariffs were a simple flat-rate tariff currently offered to Findhorn residents; a day-

night time-of-use tariff currently offered to Findhorn residents; and a selection of hypothetical 

dynamic wind-based tariffs. Table 7 provides an overview of these tariff structures.  

4.4.1 Simple Tariff 

The simple electricity tariff assumed PV electricity was free to Woodside and assigned a flat 

rate of £0.3407/kWh for all other consumed electricity. This was based on the flat rate option 

available at the park [2]. 

4.4.1 Day-Night Tariff 

The day-night time-of-use tariff assumed PV electricity was free to Woodside and assigned 

variable rates for different times of day. Between 7:00 and 12:00, the rate was £0.3607/kWh. 

At all other times the rate was £0.3171/kWh. These were based on the time-of-use rate option 

available at the park [2]. 

 



   

Table 7. Overview of rates for PV, wind, and grid electricity under each tariff structure. 

 Simple 
Tariff 

Day-Night 
Tariff 

Dynamic 
Wind Tariff 1 

Dynamic 
Wind Tariff 

2 

Dynamic 
Wind 

Tariff 3 

PV Rate 
(£/kWh) 

0 0 0 0 0 

Wind Rate 
(£/kWh) 

0.3407 0.3607 
morning / 

0.3171 rest of 
day 

0.18 0.15 0.12 

Grid Rate 
(£/kWh) 

0.3407 0.3607 
morning / 

0.3171 rest of 
day 

0.45 0.45 0.475 

 

4.4.2 Dynamic Wind Tariff 

Three different dynamic wind tariffs (DWT) were assessed to probe the sensitivity of outcomes 

to specific wind and grid rates. This reflected uncertainty in the way a dynamic wind tariff may 

be implemented at Findhorn and for electrified heating systems in general. It was assumed that 

PV electricity was free to Woodside. Non-PV electricity rates changed dynamically depending 

on whether Findhorn was importing or exporting electricity. This was akin to the Agile pricing 

strategy introduced by Octopus Energy [43] that raises prices at peak demand periods and 

lowers prices when demand is low. In DWT 1, surplus wind electricity was priced at 

£0.18/kWh in line with FWP’s estimated valuation [9]. Imported grid electricity was priced at 

£0.45/kWh to approximately average to the current standard rate of £0.3407/kWh over the year. 

In DWT 2, the wind rate dropped to £0.15/kWh, representing a situation in which NFD more 

actively incentivizes wind use. In DWT 3, the wind rate was lowered to £0.12/kWh and the 

import rate was raised to £0.475/kWh.  

 

 

 



   

5.0 Simulation Result Analysis 

This section describes the results and KPIs obtained from simulations of the Woodside heating 

system. OCOH, annual total cost, renewables utilisation, and carbon intensity are compared for 

each combination of controls and tariffs. Then, a graphical analysis of node temperatures and 

renewable generation is conducted for each control regime over a windy period, a sunny period, 

and a period with low renewables generation.  

5.1 Quantitative Result Analysis 

This subsection details the KPIs for the simulated control and tariff scenarios. The OCOH, 

gross annual heating cost, renewables utilisation, and carbon intensity are presented in Table 

8. These metrics are briefly discussed and compared across simulated scenarios. 

Table 8. KPIs for the four simulated controls with each of the five simulated tariffs. 

Control Tariff OCOH 
(£/kWhth) 

Annual 
Cost (£) 

Renewables 
Utilisation (%) 

Carbon Intensity 
(gCO2eq / kWhth) 

 

 

Demand-Led 
RBC 

Standard 0.1458 2161 37.0 81.2 

Day-night 0.1422 2108 37.0 81.2 

DWT 1 0.1593 2361 37.0 81.2 

DWT 2 0.1556 2306 37.0 81.2 

DWT 3 0.1595 2364 37.0 81.2 

 

 

Opportunistic 
PV RBC 

Standard 0.1365 2023 41.3 78.1 

Day-night 0.1335 1978 41.3 78.1 

DWT 1 0.1496 2218 41.3 78.1 

DWT 2 0.1462 2167 41.3 78.1 

DWT 3 0.1500 2223 41.3 78.1 

 

Advanced RBC 
(SH seasonally 

disabled) 

Standard 0.1344 1992 51.2 63.8 

Day-night 0.1326 1966 51.2 63.8 

DWT 1 0.1332 1974 51.2 63.8 

DWT 2 0.1283 1901 51.2 63.8 

DWT 3 0.1291 1913 51.2 63.8 



   

 

Advanced RBC 
(SH not 

seasonally 
disabled) 

Standard 0.1350 2001 52.5 64.2 

Day-night 0.1333 1976 52.5 64.2 

DWT 1 0.1335 1978 52.5 64.2 

DWT 2 0.1285 1905 52.5 64.2 

DWT 3 0.1293 1916 52.5 64.2 

 

5.1.1 Renewables Utilisation 

Renewables utilisation did not vary as the tariff changed because the opportunistic controls did 

not explicitly consider the price of electricity. Instead, operation was controlled based on 

renewables availability. As the controls became more complex, renewables utilisation 

increased substantially. The demand-led RBC utilisation of 37.0% increased to 41.3% when 

opportunistic charging with PV was implemented, an absolute increase of 4.3% and relative 

increase of 11.6%. Advanced RBC’s introduction of opportunistic wind charging further 

increased renewables utilisation to 51.2%, an absolute increase of 14.2% and relative increase 

of 38.4% compared to the demand-led RBC. This indicated that advanced RBC could 

substantially increase renewables utilisation for thermal store charging. Raising the heat pump 

charging temperatures during opportunistic charging may enable increased renewables 

utilization. This is because the tank can “coast” at a higher temperature for longer before forced 

charging, increasing the likelihood that an opportunistic charging period will present itself.  

Renewables utilisation was marginally higher for advanced RBC when SH was not seasonally 

disabled. This can be explained by increased total electrical use in the summer, when PV was 

abundant and frequently output more than the 4 kW charging threshold. When SH was not 

seasonally disabled, total PV consumption increased 14.4% relatively and 166 kWh in total, 

while wind use increased by only 1.1% or 28 kWh and grid use decreased marginally by 2 kWh 

(Table 12, Appendix 2). This boosted renewables utilisation but marginally increased OCOH 

because the end-use heat provided to Woodside residents remained constant while the increase 

in wind consumption had to be paid for.  

5.1.2 Carbon Intensity 

Carbon intensity was correlated to renewables utilisation and varied between control regimes. 

However, changes in tariffs had no impact on carbon intensity. Decreasing carbon intensity 



   

was correlated with increased control complexity and opportunistic charging. The baseline 

intensity of 81.2 gCO2eq/kWhth decreased 3.8% to 78.1 gCO2eq/kWhth under the opportunistic 

PV RBC; this was less than the 11.6% relative increase in renewables utilisation. Using 

advanced RBC, carbon intensity dropped further to 63.8 gCO2eq/kWhth, a 21.4% decrease 

compared to the demand-led RBC. Again, this was less than the 38.4% increase in renewables. 

These results suggest that increased renewables utilisation via opportunistic charging is an 

effective way to lower heating carbon intensity. However, the relationship between increased 

renewables share and decreased carbon intensity was not direct; this may be attributable to 

different carbon intensities of wind and PV constituting the whole renewable supply. 

5.1.3 OCOH and Gross Cost 

The lowest simulated OCOH was £0.1283/kWhth using advanced RBC with DWT 2, and the 

highest was £0.1595/kWhth using demand-led RBC with the DWT 3. A more realistic 

comparison was between demand-led RBC with the standard tariff and advanced RBC with 

DWT 2. These scenarios had OCOH of £0.1458/kWhth and £0.1283/kWhth, indicating a 12.0% 

cost reduction that brought gross annual costs from £2161 to £1905 for expected savings of 

~£250 annually.  

Further comparison of the scenario results revealed cost trends. Holding the tariff constant, 

increased control complexity generally reduced OCOH and gross costs over the simulation 

period. This could be attributed to increased renewables utilisation as discussed in Section 5.1.1 

and the lower (or equivalent) costs of PV and wind relative to grid imports. An exception was 

that disabling SH over the summer produced a marginal OCOH decrease of less than a 

thousandth of a pound per kWh compared to the simulation without disabled SH. This could 

be explained by the underlying charging figures. Although annual electricity use was reduced 

by 192 kWh or 2.7%, 86% of this reduction canes from reduced PV usage (Appendix 2, Table 

2). There was no appreciable cost saving because PV is free to Woodside.  

Varying the tariffs produced different results depending on the control regime. Across controls, 

the day-night tariff reduced OCOH between 1% and 2.5%. This could be due to an increased 

frequency of charging outside the high-cost early morning period caused by residents depleting 

the DHW tank with after-work demand. The dynamic wind tariffs increased cost relative to the 

standard and day-night tariff for the demand-led and opportunistic PV RBC, but lowered costs 

for the advanced RBC. This was because the demand-led and opportunistic PV RBC do not 

opportunistically charge during wind surpluses. As a result, simulations with those controls 



   

had significantly lower wind consumption and greater grid imports compared to the advanced 

RBC scenarios (Appendix 2, Table 12). Heightened import prices therefore outweigh cheaper 

wind electricity under demand-led and opportunistic PV RBC. Because the advanced RBC 

enabled opportunistic wind charging, it captured the benefit of lower wind prices through 

significantly increased renewables utilisation.  

Dynamic wind tariffs results are only discussed using advanced RBC because they do not 

provide a benefit for the other controls. In general, DWTs did not substantially alter OCOH 

compared to the existing Findhorn tariff options. DWT 1, 2, and 3 all resulted in an OCOH 

below the standard tariff £0.1344/kWhth, but the greatest reduction to £0.1283/kWhth using 

DWT 2 was only a 4.6% decrease. This decrease corresponded to annual gross savings below 

£100. Simulating with DWT 1 decreased the price of wind electricity by 16% from £0.18/kWh 

to £0.15/kWh but reduced OCOH by only 3.7% (Table 8). DWT 3 reduced wind cost further 

while increasing import costs correspondingly but marginally increased OCOH compared to 

DWT 2, which can be explained by the system using more imported than wind electricity over 

the year (Appendix 2, Table 12). Overall, this analysis indicated thhe examined dynamic wind 

tariffs lowered electricity costs compared to the existing tariffs, but only marginally. Greater 

cost reductions may require either lower wind pricing or alterations to the control regime.  

5.1.4 Additional Results and Results Feasibility  

Additional results of interest for each scenario are provided in Appendix 2. These include 

annual totals for electricity used to charge the SH and DHW tanks; thermal charge to the SH 

and DHW tanks; electricity usage from PV, wind, and grid imports; total carbon emissions; 

and thermal discharge from SH and DHW, which is the same for all scenarios. 

The simulated node temperatures were reviewed to ensure that infeasible results did not occur. 

The foci of this review were minimum top node temperature, minimum temperature of any 

node, and the maximum temperature of any node. Minimum tank temperature should not fall 

below the return temperature, while maximum tank temperature should not exceed charging 

water temperature from the WSHP. The minimum top node temperature should ideally never 

go below the required flow temperature but may occasionally do so within the SH tank when 

the WSHP has prioritized DHW tank charging. No infeasible minimum or maximum 

temperatures were observed in any scenario, while the SH tank top node temperature only 

dropped below the 45°C flow temperatures for a handful of timesteps in each scenario.  



   

5.2 Graphical Result Analysis 

This subsection contains a graphical analysis of system behavior during simulation. The 

analysis focused on node temperatures, charging events, and renewable generation over three-

day periods for each control regime. Tariffs were not considered because the controls triggered 

charging based on renewables availability, not cost. The first period was between timesteps 

12000 and 12143, corresponding to the dates September 7 to 9, which had significant solar 

generation. The second period was between timesteps 624 and 767, corresponding to the dates 

January 14 to 16, which had significant wind generation. A solar-driven period outside of the 

summer months was selected to show advanced RBC SH charging behavior.  

5.2.1 Demand-Led RBC 

This subsection analyzes system operation under demand-led RBC. 

5.2.1.1 High PV Generation 

The behavior of the system during the high-PV period is shown in Figure 9. Wind generation 

is excluded because its greater magnitude makes the PV generation difficult to see. Rapid 

charge/discharge cycles were observed for the DHW tank. SH cycles were less frequent and 

primarily triggered by losses, as SH demand was low at the tail end of summer. Temperatures 

remained within the desired boundaries, indicating the models functioned as expected.  

 

Figure 9. Simulated system behavior under demand-led RBC during the high-PV generation period. 

0

0.5

1

1.5

2

2.5

3

3.5

45

47

49

51

53

55

57

59

12000 12024 12048 12072 12096 12120 12144

Ge
ne

ra
tio

n 
(k

W
h)

Te
m

pr
at

ur
e 

(°
C)

Timestep (half-hourly)

DHW N1 DHW N3 SH N1 PV Gen PV Threshold



   

PV’s cyclical generation profile is seen with generation peaking midday. Generation exceeded 

the specified charging threshold of 4 kW, or 2 kWh per half-hour timestep, on each day during 

this period. Although charging cycles may have incidentally overlapped with PV generation, 

the clear lack of coordination between renewables availability and tank charging is evident. 

Consider the PV peak on the third day, which occurred merely hours before the SH and DHW 

tanks both charge. This reflects that demand-led RBC left significant room for increased use 

of onsite renewables, corroborating the findings of the quantitative analysis. 

5.2.1.2 High Wind Generation 

The simulated heating system behavior during the high-wind period is shown in Figure 10. PV 

generation is excluded, as changes in output are difficult to see due to scaling. In this winter 

period, SH and DHW both cycled frequently due to high heat demands. Tank temperatures 

remained within the desired boundaries.  

 

Figure 10. Simulated system behavior under demand-led RBC during the high-wind generation period. 
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5.2.2 Opportunistic PV RBC 

This subsection analyzes system operation under opportunistic PV RBC. 

5.2.2.1 High PV Generation 

System behavior during the high-PV period is shown in Figure 11. The cyclical generation 

profile of PV, prioritization of DHW charging, and variation of top node temperatures within 

the expected boundaries indicated the tank models are functioning properly. 

As this control regime utilizes opportunistic PV charging, several changes to system operation 

are observable between Figures 9 and 11. PV generation and charging were now much better 

aligned; all SH charging cycles and two out of three DHW charging cycles were triggered by 

PV. SH charging cycles were more frequent because the threshold temperature to allow 

opportunistic charging exceeded the threshold temperature for forced charging. DHW tank 

cycling was less frequent because the opportunistic charging heated the tank to a higher 

temperature. This allowed the tank to coast longer in wait of the next opportunity for PV 

charging before it was forced to charge due to low node temperatures.  

 

Figure 11. Simulated system behavior under opportunistic PV RBC during the high-PV generation period. 
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instead of imported electricity. Therefore, a capability to temporarily lower forced charging 

temperature setpoints in anticipation of the daily PV cycle would improve the opportunistic PV 

RBC. This aligns with the findings of the quantitative analysis that show the advanced RBC 

achieved cheaper OCOH with the use of a night offset.  

5.2.2.2 High Wind Generation 

System behavior during the high-wind period is shown in Figure 12. Maintenance of node 

temperatures within the expected boundaries indicated proper model function. 

Because the opportunistic PV RBC did not opportunistically charge using wind, Figure 12 is 

essentially identical to Figure 10. The same conclusions can be drawn, namely that 

opportunistic PV RBC missed a substantial opportunity for opportunistic wind charging. 

Opportunistically charging to a heightened temperature would make better direct use of wind 

and allow the tanks to coast longer, increasing the likelihood they can charge renewably before 

being forced to charge with imports. This aligned with the KPIs showing that advanced RBC 

achieves lower LCOH by increasing renewables utilisation with opportunistic wind charging. 

 

Figure 12. Simulated system behavior under opportunistic PV RBC during the high-wind generation period. 
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5.2.3 Advanced RBC with Seasonally Disabled SH 

This subsection analyzes system operation under advanced RBC with seasonally disabled SH. 

Advanced RBC without seasonally disabled SH will have substantively identical behavior, 

except that SH charging will not occur in the summer. 

5.2.3.1 High PV Generation 

System behavior during the high-PV period is shown in Figure 13. The cyclical generation 

profile of PV, prioritization of DHW charging, and variation of top node temperatures within 

the expected boundaries indicate the tank models were functioning properly.  

Although advanced RBC and opportunistic PV RBC both opportunistically use PV, Figures 11 

and 13 show clear differences. Notably, PV was not used to opportunistically charge the DHW 

tank for the first two observed charge cycles. This was because the minimum temperature in 

the third node dropped below the lower threshold before PV became available, and the top 

node temperature was then above the limit temperature for opportunistic charging. A potential 

solution is to increase the top node limit temperature above which opportunistic charging is not 

allowed; another is to directly control DHW forced charging using the top node temperature.  

 

Figure 13. Simulated system behavior under advanced RBC during the high-PV generation period. 
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behavior is suboptimal because free PV was abundant only a few hours before the opportunistic 

wind charge, and wind has an associated cost even if a dynamic wind tariff is considered. This 

highlights why a predictive controller may improve upon advanced RBC. 

5.2.3.2 High Wind Generation 

System behavior during the high-wind period is shown in Figure 14. Maintenance of node 

temperatures within the expected boundaries indicated proper model function. 

With the introduction of opportunistic wind charging, the system behavior changed 

significantly. Opportunistic charging of the DHW and SH tanks brought them to heightened 

node temperatures and allowed them to coast until the next period of sufficient surplus wind 

during the first half of the examined period. This demonstrated why advanced RBC achieves 

higher renewables utilisation and lower OCOH than demand-led or opportunistic PV RBC. 

During the second half of the period, wind generation fell off and the tanks started to charge 

using imports. However, this charging was deferred because of the heightened starting 

temperatures and the night offset, as was shown by the SH top node temperature dropping to 

45°C before charging was triggered. Over the year, this coasting prevented unnecessary 

charging and increases renewable use. It also reduced the number of total cycles, potentially 

reducing wear on the WSHP.  

 

Figure 14. Simulated system behavior under advanced RBC during the high-wind generation period. 
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5.3 Key Takeaways 

The simulated scenarios demonstrated that advanced RBC can achieve moderate reductions in 

heating costs for district heating systems with thermal storage. A 12.0% reduction in OCOH, 

from £0.1458/kWhth to £0.1283/kWhth, was expected when switching from demand-led RBC 

with the standard tariff to advanced RBC with DWT 2. However, the scale of the Woodside 

system meant that gross cost savings (on the order of ~£250 annually) were minimal. On the 

other hand, renewables utilisation increased by a substantial 38.4% and carbon intensity fell by 

21.4% when switching to advanced RBC. Findhorn must assess whether the limited cost 

savings, but noticeable emissions reductions, warrant the time and effort required to implement 

these controls. This analysis found that tariffs have a less significant impact on costs. A 

graphical analysis gave further insight into why opportunistic charging was effective at both 

increasing renewables utilisation and lowering costs. By charging to high temperatures using 

free PV and cheap wind, the tanks could then coast for long periods of time before forced 

charging was required.  

 

 

 

 

 

 

 

 

 

 

 



   

6.0 Discussion 

This section presents key achievements, limitations of the current work, and avenues for future 

work to build upon these achievements and address the limitations.  

6.1 Key Findings / Achievements 

The work presented in this thesis addresses the three overarching aims specified in Section 1.3.  

The first-principles multi-node PyLESA tank models inherited from Graeme Flett were 

documented and modified to represent the Woodside SH and DHW tanks. Empirical heat loss 

parameters were used and calibrated against periods of monitored data without charging or 

discharging. Finally, tank node masses were adjusted during a validation process until the tank 

model behavior resembled monitored outputs over a two-week period. These models were 

made available in a GitHub repository. 

Python control scripts for a demand-led RBC, opportunistic PV RBC, and advanced RBC were 

written; an attempt was also made to adapt the MPC module in PyLESA. Existing tariff 

structures at Findhorn were identified and three potential implementations of a dynamic wind 

tariff were formulated. Data was obtained from the Emoncms portal for part of 2023 and 2024 

and processed to produce complete annual datasets of Woodside SH and DHW demand, 

Findhorn electrical demands, and wind and PV generation. The control scripts, tariffs, data, 

and tank models were then applied to simulate Woodside heating system behavior over a year 

in half-hour timesteps under each combination of control regime and tariff. The control scripts 

and datasets were made available with the tank models.  

Finally, the results of the simulations were compared to identify which combination of controls 

and tariffs produced the best KPIs. Quantitative analysis identified a potential cost reduction 

of 12.0%, corresponding to ~£250 annually, by switching from the current demand-RBC with 

a standard tariff at an OCOH of £0.1458/kWhth to advanced RBC with DWT 2 at an OCOH of 

£0.1283/kWhth. Simulations indicated this switch also increased renewables utilisation from 

37.0% to 51.2% and reduced carbon intensity by 21.4%. A graphical analysis was conducted 

to elucidate the mechanisms by which opportunistic control achieved these gains. These 

mechanisms are improved alignment of charging with generation and tank coasting enabled by 

raised charging temperatures during opportunistic charging.  



   

6.2 Limitations 

The achievements of this thesis come with several limitations. 

6.2.1 Woodside System Modelling 

Although the multi-node tank models were more accurate than simple energetic or moving 

boundary models, they did not perfectly mimic observed behavior. This could partly be 

attributed to simplifying assumptions. Both models assumed that the tank is a perfect cylinder. 

The DHW tank model used heat loss coefficients that were not physics-based, but were 

calibrated to align with observed heat loss. For the SH tank model, it was assumed that 

conductive heat loss only occured linearly, that insulation provided the only resistance to heat 

flow, and that the heat loss from piping connections was spread evenly across the nodes. 

Despite these limitations, model calibration and validation indicated the tank models 

approximated measured performance reasonably well.  

A limitation of the model is that heat pump COP was calculated assuming an average monthly 

source water temperature. In reality, temperatures fluctuate significantly across the month and 

across each day. Real water temperatures may drop below the 5°C minimum heat pump inlet 

temperature during the winter, necessitating direct electric preheating up to 5°C. The model 

did not account for this temperature fluctuation or water preheating. 

During simulation, non-heat electrical demand at the site was not considered as a potential 

competitor for the use of onsite renewable generation. This primarily affected PV generation, 

as opportunistic wind charging occured only when the net Findhorn electricity surplus 

exceeded 50 kW, which was far greater than the 4 to 7 kW drawn for the Ochsner WSHP at 

Woodside. A potential consequence is that the simulated gains of opportunistic charging were 

overstated because some of the PV used to charge the thermal stores was already used to meet 

electrical demand. This could increase domestic electrical costs for Woodside residents, eating 

into the expected heating cost reduction of advanced RBC.  

Finally, this analysis is limited to controlling existing thermal storage assets at Woodside. 

There is no consideration of the potential for additional storage, either in the form of water 

tanks or phase change materials.  



   

6.2.2 Site Data 

The limitations regarding site data are primarily related to missing 2023 data, how well the data 

reflect future site conditions, and methods used to calculate Woodside heating demands. The 

hybrid 2023 datasets for the West Whins, CB001, and CB002 feeds may not accurately reflect 

site conditions. This uncertainty is considerable for West Whins considering three-quarters of 

the hybrid 2023 dataset is pulled from 2024 or replicated from other parts of the year.  

An additional limitation is that wind generation in future years is likely to vary from that in the 

2023 dataset. This is due to aging turbines [75], inter-year weather variability [76], and broader 

changes in climate [77]. To a limited extent, these factors also impact PV generation. 

Therefore, extrapolating the benefits of opportunistic charging estimated in this thesis to future 

years may result in an overestimation or underestimation.  

Furthermore, site data describing outlet temperatures and return temperatures for the water 

tanks over the year could not be accessed. This was likely because the feeds were not operating 

properly or the data was monitored but not logged. As a result, Woodside heating demands at 

half-hourly timesteps were estimated based on volumetric flow out of the tanks and assumed 

temperatures. These temperatures are unlikely to be constant over the year, introducing error 

in the calculation of OCOH because the actual heat provided to properties during 2023 is 

uncertain. Beyond the simplified calculation, determining the cost of heat provided for DHW 

is a challenge because it is unknown how the end user uses the hot water. This work assumes 

that the heat used is a function of the flow temperature and temperature of water returning to 

the DHW tank through the Living Machine wastewater system. However, future studies may 

prefer to measure the annual cost of DHW in volumetric terms. 

6.2.3 Controls and Tariffs 

The primary limitation associated with controls was that simulations were not conducted with 

a predictive controller. Attempts were made to use the MPC module in PyLESA, but were 

abandoned due to a lack of success and time limitations. As the graphical analysis of the 

advanced RBC indicates, there was additional scope for increased renewables utilisation 

beyond opportunistic controls that is not assessed in this work.  

The controls implemented in this work did not operate DHW disinfection cycles, which are 

meant to occur at least every 10 days to prevent Legionella growth [78]. Running disinfection 

cycles would increase electricity demand without increasing the heat provided to end users, 



   

raising OCOH across control and tariff scenarios. The controls also did not implement a 

weather compensation curve for the SH tank proposed as part of the POCIT project. A 

compensation curve would lower flow temperatures below 45°C in response to warmer 

ambient temperatures. This would likely lower costs, as the SH tank would not have to be 

charged to such a high temperature and WSHP COP would increase due to the lower 

temperature differential. 

The tariffs assumed to be in place at Findhorn were based on the information available on the 

NFD website [2]. These tariffs may fluctuate in the future, impacting the validity of 

extrapolating simulation results to future years. The formulated dynamic wind tariffs represent 

a few possible rates, but tariff design is an active area of innovation with a multitude of other 

options [79]. This analysis has only scratched the surface of all the tariffs that could be 

implemented at Findhorn.  

Finally, this analysis does not consider how costs (and savings from opportunistic control) 

associated with tank charging might be distributed among Woodside residents. Cost 

distribution is a challenge because the costs of charging the tanks are temporally dissociated 

with the use of heat from the tanks, and much of the heat is lost to the environment. This 

concern is unlikely to impact the benefit of controls because end-user demand is not impacted 

in any way. However, it is an important consideration for communal energy schemes that target 

load shifting, especially regarding how motivated residents are to adopt advanced controls.  

6.3 Recommendations for Future Work 

Several areas of future work could build upon the achievements of this thesis and address the 

associated limitations. Recommendations considered to be most pertinent are presented here.  

6.3.1 Improving and Expanding Simulation of Woodside 

A straightforward extension of this work is simulating system performance with adjusted 

control settings. The first steps would be exploring how costs change when extending the night 

offset into the day and lowering the wind generation threshold for opportunistic charging. A 

lengthened night offset would extend the coasting period, potentially affording an increased 

opportunity for PV charging during the day. Similarly, lowering the wind threshold below 50 

kW could increase the frequency of wind charging, but may decrease the occurrence of 

opportunistic PV charging. Simulating with higher WSHP flow temperatures during 

opportunistic charging could elucidate the optimal balance between COP, renewables 



   

utilisation, and subsequent heat losses. Raising the DHW and SH tank limit temperatures, 

which are the thresholds above which opportunistic charging will not occur, may also enable 

increased opportunistic charging and warrants investigation. Finally, simulating with increased 

temporal resolution – such as 15-minute timesteps – may offer additional system insights. 

Instead of adjusting control parameters, future work could also examine alternative tariff 

options. There is broad scope to explore different settings for the examined time-of-use and 

dynamic tariff types as well as additional tariffs tied to wholesale markets such as Octopus 

Agile [43]. These rate designs may synergize with MPC, which is another area of future work 

that could reduce costs and increase renewables utilisation. Other studies [80], [81] indicate 

that MPC provides significant benefits in related domains like building energy management, 

so it is worthwhile to investigate its application to the Woodside heating system.  

An alternative direction for future work is improving the water tank models. Developing heat 

loss parameters for the SH tank could increase model accuracy if node temperature readings 

could be obtained at intermediate points along the tank. Implementing more complex model 

types such as a zonal model or CFD may clarify the trade-off between accuracy and 

computational burden while modelling the Woodside system.  

The final set of suggestions for future work directly address the limitations of the current 

simulation approach. Obtaining more detailed water temperature data at hourly resolution 

could enable the model to account for WSHP inlet water preheating.  Monitored flow and return 

temperature values for the SH and DHW tanks would enable significantly more detailed 

calculation of energy demands at Woodside, increasing the relevance of simulation results. 

Finally, implementing disinfection cycle charging would enable more realistic simulation of 

DHW tank behavior. 

6.3.2 Broadened System Focus 

Broadening the analysis and simulation focus to extract lessons that are applicable to heating 

systems beyond Woodside is another avenue for future work. 

The Woodside WSHP can only operate at its maximum output, so whenever it opportunistically 

charges it will use grid electricity if renewable supply is insufficient. A future work would 

simulate system operation using a modulable heat pump. This type of heat pump can adjust its 

output to align exactly with the amount of available renewable electricity. Understanding 

whether modulable heat pumps offer benefits that warrant increased prices compared to non-



   

modulable options is a valuable future work for communities considering district heating with 

thermal storage. 

Comparing hot water tanks to alternative forms of thermal storage, such as phase change 

materials [82], is another possible direction. Pairing a detailed BEMS that can efficiently 

manage energy flows at the household level with this model of thermal storage may be fruitful 

in magnifying costs reductions through more efficient energy use and decreased heat demands. 

Additionally, “recursive” development could be pursued by integrating the multi-tank heating 

system approach into PyLESA, which natively models systems with a single hot water tank. 

PyLESA’s range of applicability could also be expanded by integrating the indirectly charged 

DHW tank model developed in this thesis. In a future version of PyLESA, this model could be 

presented to the user as one of several options. 

6.3.3 Real-World Implementation and Feedback 

These simulations can be taken a step further by conducting a trial run of the advanced RBC at 

Woodside and observing how real system performance compares to predicted performance. 

This would require adjusting the controls code for compatibility with the Raspberry Pi used in 

monitoring and control and uploading the code to the Pis via Node-RED.  

In the same vein, a tool incorporating this Woodside model could be developed that quickly 

predicts the effects of different tariff options on electricity and heating costs at Findhorn as a 

whole. Such a tool would benefit Findhorn when it engages in negotiation for import and export 

contracts, as the window to accept or decline is brief, and it is currently challenging to fully 

understand the benefits and drawbacks of different contract options. However, the development 

of such a tool would require significant additional development of models for other Findhorn 

neighborhood to provide any useful results.  

 

 

 

 

 



   

7.0 Conclusion 

This thesis work developed validated models for the Woodside DHW and SH water tanks and 

control scripts for demand-led RBC, opportunistic PV RBC, and advanced RBC. The model 

and scripts were used to simulate system behavior under a range of tariffs, finding an annual 

cost saving of 12.0% and carbon intensity reduction of 21.4% when advanced RBC is applied 

with the second dynamic wind tariff. Notable limitations include simplified calculation of site 

heating demand, the exclusion of DHW disinfection cycles from the model, and the lack of 

predictive controls. Opportunities for future work that build upon this thesis include additional 

simulations with varied temperature and control setpoints; simulation with a predictive 

controller; and analysis with a hypothetical modulable heat pump that can inform the design of 

future district heat and thermal storage systems. The tank models and control scripts have been 

shared at https://github.com/eli-d-strath/woodside_control and passed forward to PhD student 

Isaac Whitelaw for future site analysis. 
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9.0 Appendix 1 – DHW Heat Loss Parameter Calibration 
Calibration of heat loss parameters was conducted using monitored data between timesteps 

14592 and 14605. No charging or discharging events occurred during this period. The final 

calibrated heat loss parameters are [2.5, 2, 2.5, 8, 30]. Model node temperatures using these 

parameters are compared against monitored temperatures in Figures 15, 16, 17, 18, and 19. 

 

Figure 15. Monitored and modelled top node temperatures using calibrated heat loss parameters. 

 

Figure 16. Monitored and modelled second node temperatures using calibrated heat loss parameters. 
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Figure 17. Monitored and modelled third node temperatures using calibrated heat loss parameters. 

 

Figure 18. Monitored and modelled fourth node temperatures using calibrated heat loss parameters. 
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Figure 19. Monitored and modelled fourth node temperatures using calibrated heat loss parameters. 
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10.0 Appendix 2 – Additional Simulation Results 

This Appendix contains additional simulation results not presented in the main body of the 

thesis. These results include annual totals for electricity used to charge the SH and DHW tanks; 

thermal charge to the SH and DHW tanks; electricity usage from PV, wind, and grid imports; 

total carbon emissions; and thermal discharge from SH and DHW. 

Table 9. Total electrical charge, thermal charge, and thermal discharge across simulated control and tariff scenarios. 

Control Tariff Electrical 
Charge 
(kWhe) 

Thermal 
Charge 
(kWhth) 

Thermal 
Discharge 

(kWhth) 

 

 

Demand-Led 
RBC 

Standard 7172 17756 14822 

Day-night 7172 17756 14822 

DWT 1 7172 17756 14822 

DWT 2 7172 17756 14822 

DWT 3 7172 17756 14822 

 

 

Opportunistic 
PV RBC 

Standard 7252 17864 14822 

Day-night 7252 17864 14822 

DWT 1 7252 17864 14822 

DWT 2 7253 17864 14822 

DWT 3 7253 17864 14822 

 

Advanced RBC 
(SH seasonally 

disabled) 

Standard 7188 17532 14822 

Day-night 7188 17532 14822 

DWT 1 7188 17532 14822 

DWT 2 7189 17532 14822 

DWT 3 7189 17532 14822 

 

Advanced RBC 
(SH not 

seasonally 
disabled) 

Standard 6996 17062 14822 

Day-night 6996 17062 14822 

DWT 1 6996 17062 14822 

DWT 2 6996 17062 14822 

DWT 3 6996 17062 14822 



   

 

Table 10. Total DHW electrical charge, thermal charge, and thermal discharge across simulated control and tariff 
scenarios. 

Control Tariff DHW 
Electrical 
Charge 
(kWhe) 

DHW 
Thermal 
Charge 
(kWhth) 

DHW 
Thermal 

Discharge 
(kWhth) 

 

 

Demand-Led 
RBC 

Standard 2193 6034 4754 

Day-night 2193 6034 4754 

DWT 1 2193 6034 4754 

DWT 2 2193 6034 4754 

DWT 3 2193 6034 4754 

 

 

Opportunistic 
PV RBC 

Standard 2220 6055 4754 

Day-night 2220 6055 4754 

DWT 1 2220 6055 4754 

DWT 2 2220 6055 4754 

DWT 3 2220 6055 4754 

 

Advanced RBC 
(SH seasonally 

disabled) 

Standard 2200 5915 4754 

Day-night 2200 5915 4754 

DWT 1 2200 5915 4754 

DWT 2 2199 5915 4754 

DWT 3 2199 5915 4754 

 

Advanced RBC 
(SH not 

seasonally 
disabled) 

Standard 2199 5915 4754 

Day-night 2199 5915 4754 

DWT 1 2199 5915 4754 

DWT 2 2199 5915 4754 

DWT 3 2199 5915 4754 

 

 

 



   

Table 11. Total SH electrical charge, thermal charge, and thermal discharge across simulated control and tariff scenarios. 

Control Tariff SH Electrical 
Charge 
(kWhe) 

SH Thermal 
Charge 
(kWhth) 

SH Thermal 
Discharge 

(kWhth) 

 

 

Demand-Led 
RBC 

Standard 4979 11722 10068 

Day-night 4979 11722 10068 

DWT 1 4979 11722 10068 

DWT 2 4980 11722 10068 

DWT 3 4980 11722 10068 

 

 

Opportunistic 
PV RBC 

Standard 5032 11809 10068 

Day-night 5032 11809 10068 

DWT 1 5032 11809 10068 

DWT 2 5032 11809 10068 

DWT 3 5032 11809 10068 

 

Advanced RBC 
(SH seasonally 

disabled) 

Standard 4988 11617 10068 

Day-night 4988 11617 10068 

DWT 1 4988 11617 10068 

DWT 2 4988 11617 10068 

DWT 3 4988 11617 10068 

 

Advanced RBC 
(SH not 

seasonally 
disabled) 

Standard 4797 11147 10068 

Day-night 4797 11147 10068 

DWT 1 4797 11147 10068 

DWT 2 4797 11147 10068 

DWT 3 4797 11147 10068 

 

 

 



   

Table 12. Total PV, wind, and grid electricity used for tank charging across simulated control and tariff scenarios. 

Control Tariff PV Used to 
Charge 
(kWhe) 

Wind Used to 
Charge 
(kWhe) 

Grid Used to 
Charge 
(kWhe) 

 

 

Demand-Led 
RBC 

Standard 829 1827 4516 

Day-night 829 1827 4516 

DWT 1 829 1827 4516 

DWT 2 829 1827 4516 

DWT 3 829 1827 4516 

 

 

Opportunistic 
PV RBC 

Standard 1316 1681 4256 

Day-night 1316 1681 4256 

DWT 1 1316 1681 4256 

DWT 2 1316 1681 4256 

DWT 3 1316 1681 4256 

 

Advanced RBC 
(SH seasonally 

disabled) 

Standard 1315 2461 3411 

Day-night 1315 2461 3411 

DWT 1 1315 2461 3411 

DWT 2 1315 2461 3412 

DWT 3 1315 2461 3412 

 

Advanced RBC 
(SH not 

seasonally 
disabled) 

Standard 1149 2433 3413 

Day-night 1149 2433 3413 

DWT 1 1149 2433 3413 

DWT 2 1149 2433 3413 

DWT 3 1149 2433 3413 
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