
  
 

Student No. 202290074                                                                                                                                                                            

  

 

 

 

Department of Mechanical and Aerospace Engineering  

 

Project Title: Improving Energy Efficiency and Cost-

effectiveness through Demand Forecasting of DHW 

Consumption in Residential Buildings: A case study of 

Findhorn, North Scotland 

 

 

Author: Chilufya Chitindi 

 

Supervisor: Dr Paul Gerard Tuohy 

 

 

A thesis submitted in partial fulfilment for the requirement of a degree in  

Master of Science in  

Sustainable Engineering: Renewable Energy Systems and the Environment 

 

 

August 2023 



 

 

 

 



 

Copyright Declaration 

 

This thesis is the result of the author’s original research.  It has been composed by the author 

and has not been previously submitted for examination, leading to the award of a degree. 

The copyright of this thesis belongs to the author under the terms of the United Kingdom 

Copyright Acts, as qualified by the University of Strathclyde Regulation 3.50. Due 

acknowledgement must always be made of the use of any material contained in, or derived 

from, this thesis. 

 

Signed: Chilufya Chitindi   Date: 11/08/2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Abstract 

 

The global drive towards sustainable energy sources with acceptable green credentials has led 

to a bias towards the electrification of various sectors, including transportation. This includes 

the heating and cooling in business, residential and commercial buildings. Some communities 

are establishing decentralised energy systems or microgrids to incorporate more renewable 

energy sources. To manage the challenges of these distributed energy resources on the 

broader grid, flexibility markets are emerging. These markets optimise local energy resources 

and reduce costs, by utilising advancements in digitisation and artificial intelligence. These 

have given rise to the ubiquitous smart grids, enhancing energy generation, distribution, and 

consumption efficiency. The Findhorn ecovillage, in Moray, Scotland, while dedicated to 

sustainability, grapples with significant energy inputs and leveraging technology could 

address these challenges. This study analyses the hourly hot water demand of the end user 

and utilises a machine learning algorithm, an ARIMA model developed in Python, to guide 

the development of a smart control system for charging a residential building’s thermal store. 

The ARIMA models developed showed promising results, with low RMSE and MAE values 

in comparison to other models. The results of this study offer valuable insights that can be 

leveraged in future initiatives to optimise energy consumption in Findhorn's residential 

buildings. 

Keywords: DHW usage, Smart Grids, Time Series Analysis, Machine Learning, ARIMA. 
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1.0 Introduction 

The transition to renewable energy sources is a crucial step in the realisation of the global  

campaign popularly known as net zero, to reduce greenhouse gas emissions.[1]. Projections 

published by the former Department for Business, Energy, and Industrial Strategy (BEIS, 

now the Department for Energy Security and Net Zero - DESNZ) suggest continued growth 

in energy generation from renewable technologies in the UK through 2040 (Figure 1) [2].  

 

Figure 1: Electricity generation by fuel source, TWh 

1.1  Smart Electrification 

The growth of wind and solar technologies has significantly increased the supply of clean 

electricity in recent years. However, the demand side, primarily transportation and heating 

sectors, still mostly depend on fossil fuels [3]. Continued cost reductions in wind and solar 

technologies, have now made, renewable power a viable solution for electrifying many 

industries, both directly and indirectly. Strategic electrification offers an economical way to 

decarbonise these sectors, improve system flexibility, and incorporate larger proportions of 

renewable energy into power systems [4]. 

In order to attain the shared objective of a carbon-neutral future, the worldwide shift in 

energy utilisation is concerned not just with the methods of energy production but, crucially, 

with the patterns of its consumption as well. Essentially both the supply and demand aspects 

must be concurrently addressed to ensure the comprehensive and robust decarbonisation of 

the entire system. Consequently, innovations within end-use sectors are pivotal in facilitating 

this transition. The International Renewable Energy Arena (IRENA) suggests routes for the 

smart electrification of these industry sectors. These routes are illustrated in Figure 2 [4]. 
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Figure 2: Routes for smart electrification, source IRENA 2023 [4] 

1.2  Electrification of Heating and Cooling 

Heating and cooling of buildings, which constitute about 50% of global final energy use, 

exceed the consumption of electricity (20%) and transportation (30%) [4]. These sectors also 

contribute to over 40% of the world's energy-related CO2 emissions [5]. The buildings and 

industrial sectors make up nearly 95% of global heating demand [7]. Predominantly, heat is 

generated from the use of fossil fuels and some unsustainable biomass sources. In recent 

times, the fossil fuel share in heat production has been declining, from 91% in 2010 to 75% 

in 2021 [6]. To achieve the 1.5°C target by 2050 and decarbonize these sectors, 

electrification, especially of heating, is key. Forecasts based on IRENA's 1.5°C Scenario 

suggest that electricity would fuel 73% of the total demand in buildings by 2050, a significant 

rise from the current 34% [7]. This transition would necessitate the deployment of about 793 

million heat pump units by 2050, a 1267% increase from the current 58 million units [4]. 

1.3  Centralised and Decentralised Energy Systems 

Centralised energy systems rely on large-scale power plants, offering efficiency and unified 

standards but posing vulnerabilities like single failure points and potential monopolistic 

practices. Decentralised systems, utilising sources like solar or wind, increase resilience, 

adapt to local needs, and often harness sustainable sources. However, they face grid 

integration challenges and can have higher initial costs [8].  

An increasing number of local communities in the United Kingdom are forming decentralised 

energy systems or micro grids, which consist of small-scale renewable energy generation and 

local energy storage systems, that can offer a more sustainable and resilient alternative to 

centralised energy systems. Additional potential benefits of decentralised energy systems 

include reduced carbon emissions, increased energy efficiency and cost effectiveness, and 

greater energy security.  
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        a                  b 

 

Figure 3: a) Centralised vs b) Decentralised Energy Systems 

Despite these benefits, the decentralised nature of energy production can lead to a fragmented 

grid system, making it more challenging to ensure a stable and reliable energy supply. 

Without proper coordination and planning, this could result in inefficiencies and higher costs 

for consumers. It is therefore essential to address these challenges to ensure equitable access 

and a reliable energy system for all customers. 

1.3.1 Distributed Energy Resources (DERs) 

Distributed energy resources (DERs) refer to a diverse range of small-scale power generation 

and storage technologies that are located close to the point of consumption. These resources 

include solar photovoltaic (PV) systems, wind turbines, microgrids, energy storage systems, 

and electric vehicles. DERs play a crucial role in the development of local energy systems by 

providing decentralised and sustainable sources of energy 

DERs offer several benefits such as the enhancement of the resilience of the energy system 

by reducing reliance on centralised power plants and transmission infrastructure. In the event 

of a grid failure or natural disaster, DERs can continue to operate and provide power to 

critical loads, thus improving the overall reliability of the system. They also enable local 

energy optimisation and demand response capabilities through advanced monitoring and 

control systems.  

1.3.2 End-user Engagement in Flexibility Markets 

Despite the benefits of DERs, distribution systems continue to encounter operational 

challenges from the unpredictability of renewable generation and DERs. Distribution system 

Operators (DSOs) are turning to market tools, like local flexibility markets, to manage these 

challenges by trading flexibility with participants, such as end-users and aggregators (an 

entity that consolidates energy assets, bridging asset owners with the flexibility market), for 

economic efficiency. 

Flexibility Markets provide end-users with greater control and flexibility in managing their 

energy resources by becoming active participants in the energy market. Such engagement is 
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made possible by the integration of technologies, such as smart grids and digital platforms, to 

enable user involvement and facilitate the exchange of energy and flexibility services.   

However, the true potential of these decentralised energy systems can only be fully harnessed 

when comprehensive information is readily accessible to the market participants. Knowledge 

about when energy is needed and the optimal times to utilise available power are important. 

This insight ensures the success of flexibility markets, benefiting both end-users and system 

operators. 

1.4  Enabling flexibility through Digitalisation 

Digitalisation facilitates the development of strategies that leverage data from metering 

devices through computational programs or machine learning algorithms. These strategies 

provide flexibility, optimise operations, and reduce costs [9]. Metering devices are used to 

monitor energy use and operations enable new smart system models that help cut down on 

energy bills. Digitalisation therefore allows consumers to reduce energy costs and enables the 

electricity grid to optimise the use of renewable sources [10] [11]. 

1.5  Artificial intelligence and Data Analysis for forecasting 

AI improves energy system flexibility by accurately predicting and optimising heating and 

cooling demands, facilitating greater use of fluctuating renewable energy sources. AI 

techniques, such as deep learning and time series analysis, lead to significant energy savings, 

particularly as they can detect when buildings are empty (which is more than 60% of the 

time) and can adjust control settings accordingly [12] [13]. In a 2019 Report, Artificial 

Intelligence and Big Data, the IRENA suggest steps to leverage Big Data and AI in the Power 

Sector (Figure 4), most of which were adopted in the current study. 

AI enhances the functionality of IoT by adding intelligence to the data and communication 

between its components. It shows great promise in creating predictive energy consumption 

models for buildings, considering factors like the building's thermal properties, architecture, 

weather conditions, wind speed and direction, indoor and outdoor temperatures, and user 

behaviour. Recent studies indicate that AI-based methods improve prediction accuracy, 

enabling better forecasts of short-term changes essential for control applications [14]. 

 

Figure 4: Steps to Leverage Big Data and AI in the Power Sector [15] 
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1.5.1 Artificial Neural Networks (ANN) 

ANNs are a type of forecasting technique capable of learning from historical data and 

identifying patterns, enabling them to provide accurate predictions and optimise energy 

management strategies. ANNs can be trained to model the flexibility of smart grids by 

considering factors such as demand response, energy storage, and renewable energy 

generation. This modelling approach can assist in designing more efficient and resilient 

energy systems that can adapt to changing conditions and optimise resource allocation. ANNs 

can be applied in energy management and smart grids because incorporating flexibility 

models has the potential to address the challenges posed by the transition to sustainable 

energy systems [16]. 

1.5.2 Support Vector Machine (SVM) 

SVM is a machine learning technique that focuses on finding an optimal hyperplane to 

separate data into different classes. In the context of energy consumption forecasting, SVM 

models are trained to classify historical data into low, medium, or high demand categories. 

These models have been applied to various energy forecasting tasks, including short-term 

load prediction and electricity price forecasting. SVM models have the ability to handle high-

dimensional data and the potential for incorporating additional features such as weather 

conditions, socioeconomic factors, and time of day. 

1.5.3 AutoRegressive Integrated Moving Average (ARIMA) 

ARIMA is a  method used in forecasting, particularly within the realm of artificial 

intelligence, for predicting future trends or predicting electricity consumption patterns based 

on historical data. 

The models consists of three components: 'AutoRegression' which assesses the dependency 

between a current observation and a number of its preceding ones, 'Integrated' which uses the 

differencing of raw observations to transform the data into a stationary time series, and 

'Moving Average' that models the error term of the process as a linear combination of 

previous error terms [17]. 

Through these mechanisms, ARIMA models can enable precise forecasting of future 

electricity demand. This accurate forecasting is integral to the efficient operation of smart 

grids, as it helps in effective load management, optimises grid operations, and facilitates the 

integration of renewable energy sources. 

1.5.4 Limitations of AI forecasting methods 

All the above methods utilise AI to various extents. However, some of the limitations 

associated with AI based forecasting techniques for energy consumption are that the 

performance of these models heavily depends on the quality and availability of input data. 

Lack of data or inaccurate data can lead to unreliable predictions. There is a need for proper 

data preprocessing and feature selection techniques to enhance the accuracy of forecasting 

models. Additionally, the selection of appropriate model parameters and optimisation 

algorithms is crucial for achieving optimal performance [18]. 

Despite these limitations, implementing these AI techniques enables distribution network 

operators (DNOs) to make data-driven decisions, improve system performance, and enhance 
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the integration of renewable energy sources to the electricity grid. Overall, there is a 

significant role for AI in enabling Big Data services in distribution networks and but further 

research and development is required in this field [19]. 

2.0 Project Aims and Objectives 
The aim of the current study was to contribute to the current DHW consumption demand 

profiling methods by developing a demand forecasting algorithm to aid in optimising thermal 

store charging thereby reducing energy costs associated with domestic hot water use at the 

West Whins site in Findhorn. 

2.1  Objectives  

The specific objectives for the project included:  

- To investigate the current demand forecasting techniques for DHW consumption 

- To develop a demand forecasting algorithm to predict hourly DHW consumption in 

residential buildings in Findhorn 

- To critically evaluate and validate the developed algorithm  

- To propose a method of implementing the tool at West Whins. 

 

2.2  High-level Approach 

The steps to accomplish the study's goals are outlined as follows: 

 

 

3.0 Case Study Background – Findhorn Ecovillage 

Eco-villages, like Findhorn in the north of Scotland, strive to reduce their environmental 

impact by using local renewable energy sources such as wind and solar, integrating with the 

electricity from the grid. This has the added benefit of lowering the cost of purchasing 

electricity from the grid [20].  

 

Project Plan Step 1: Review current literature to understand leading methods to 
inform the choice of tools and case study support.

Step 2: Establish the technical methodology for analysis

Step 3: Perform a technical analysis using selected tools and methods

Step 4: Discuss the findings, address limitations and provide 
recommendations for future work.
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Figure 5: Findhorn Ecovillage Housing with Local Energy Sources 

3.1  West Whins Housing Complex 

The energy infrastructure at the Findhorn Ecovillage incorporates an internal microgrid 

connected to the national grid through a single sub-station. The microgrid combines wind and 

Solar PV electricity generation. Within this context, the West Whins site in the Findhorn 

Ecovillage is a housing complex with 6 flats. 

At the West Whins site, there is a central energy centre (EC) responsible for supplying energy 

to the housing complex. The EC consists of a 14kW air source heat pump (ASHP) providing 

both space heating and DHW supply. Additionally, there is a 550-litre hot water thermal store 

specifically designed for DHW supply, and charged directly by 6 solar thermal panels; each 

measuring 2.3m2. Billing for hot water consumption is calculated based on a single heat 

meter assigned per flat, takes into account flow meter readings and assumes a nominal 

temperature difference of 43oC determined by a flow temperature of 55oC and a cold water 

input of 12oC [21].  

 

Figure 6: West Whins 6 Flat Structure 

       

Figure 7: Smart Control Panels in the West Whins Energy Centre 
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Figure 8: a) DHW & Space Heating System at West Whins    b) DHW Tank 

3.2  OpenEnergyMonitor Kit 

The Energy and environmental monitoring and control function at Findhorn Ecovillage uses  

OpenEnergyMonitor (OEM) supply equipment. Particular choice of OEM equipment was 

largely influenced by its open-source nature, versatility in various applications, as well as the 

availability of case studies that align with the requirements at Findhorn.  

EmonPi metering device is based on Raspberry Pi technology and is used to gather and 

upload data from the energy centre to a cloud based service. This device enables the 

connection of diverse sensors and provides the capability for continuous data uploading to the 

‘Emoncms’ cloud service through Wi-Fi connectivity. Furthermore, the Emon Pi hub offers 

additional data storage capacity, enhancing the overall functionality of the monitoring 

system.   

The device firmware primarily provides the energy monitoring function and handles the radio 

traffic from other sensor nodes. It utilises a software library named emonLibCM and is set up 

for two current channels to gather and process voltage and current measurements. 

Additionally, it receives temperature data from external sensors and manages pulse inputs. 

EmonCMS is the main user interface on the emonPi/base, it can be used to store and visualise 

data locally or just used to configure posting data to a remote server, or both. 

 

Figure 9: a) Emonpi metering device b) Emoncms user interface 
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3.3  Previous Work 

Knowledge of Findhorn's electrical network stemmed from the EU-funded FP7 Orchestration 

of Renewable Integrated Generation in Neighbourhoods (ORIGIN) Project, which sought to 

maximise local renewable usage and curtail energy imports in established buildings. Later 

research under the Smart Integrated Energy Systems (SIES) Project addressed newer 

buildings, aiming to reduce energy consumption for users and refine the park's microgrid. 

Yet, during the SIES project, the West Whins systems could not be fully controlled due to a 

technicality relating to constraints in the heat pump control systems.  

3.4  Project Scope  

The present study builds on the knowledge of time series analysis by developing a demand 

forecasting algorithm for integration into the existing control system at West Whins. Instead 

of simply heating the thermal store at predetermined times (figure 10), this algorithm seeks to 

intelligently determine when to charge the thermal store based on forecasted data. The 

rationale was that electricity prices tend to be high during peak demand and lower during off-

peak periods. Users can thus configure the system to charge when electricity is cheaper or 

demand is low. In essence, the study focused on devising an algorithm that offers daily 

domestic hot water usage predictions to guide a smart control system. 

 

 
Figure 10: Current Thermal Store charging at West Whins 

 

4.0 Literature Review 

The academic research that was examined to get insight into the various methods for 

predicting demand for domestic hot water use in residential buildings is described in the 

following section. 
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4.1  Domestic Hot Water Consumption 

Approximately 16-50% of the national energy consumption in many countries in residential 

buildings [22]. Much of this is due to domestic hot water (DHW) heating, with residential 

buildings in the UK using nearly 20% of domestic energy for DHW heating [23].  

Forecasting hot water consumption in residential houses is a critical aspect of energy 

management and planning. In their study on this particular subject, Gelažanskas and Gamage,  

[25] explore the development of a long-term forecasting model for hot water demand in 

residential buildings. The authors note that hot water consumption patterns are influenced by 

various factors, including climate, household size, and occupants' behaviour. By analysing 

historical data, the researchers develop a model that incorporates these factors and captures 

the temporal and spatial variations in hot water consumption. The study demonstrates the 

importance of accurate forecasting in energy management, as it allows for better planning of 

energy generation and distribution resources.  

4.2  Time Series Analysis 

Time series analysis is a statistical technique used to examine data from many observations 

made over a long period on a single unit [26]. It is a prediction method of forecasting future 

values based on historical time series data [27]. Because of the difficulty in assessing the 

exact nature of a time series, it is usually quite challenging to generate accurate forecasts.  

Demand prediction models focused on time series data can be categorised into three types 

based on their prediction components: 

- Single models: employing a single learning algorithm; 

- Ensemble models: combining multiple prediction models to determine the output data; 

- Hybrid models: blending two or more machine learning techniques.  

Hybrid models are particularly advantageous as they leverage the strengths of incorporated 

techniques resulting in enhanced forecasting accuracy and greater robustness compared to the 

other models [28].  

Figure 11 illustrates the overall framework of time series prediction methods. Domestic hot 

water usage is largely dependent on time therefore this work focused on single-model time 

series forecasting methods for demand prediction. Subsequent sections describe the key 

single model time series methods utilised in this study.  
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Figure 11: Time Series Analysis 

Time series forecasting has been a fundamental area of research in the field of statistics and 

forecasting for many years and studies by various authors [29], [30], [31], [27], [32] provide 

a comprehensive overview of the advancements made in this domain in the past. The authors 

discuss various topics ranging from traditional univariate methods to more recent multivariate 

techniques. They emphasise the importance of model selection, evaluation, and validation in 

time series forecasting. The authors also discuss the introduction of non-linear models, such 

as neural networks and support vector machines (SVM), which have shown promising results 

in accurately predicting time series data. 

In their various reviews on time series forecasting techniques for energy consumption, the 

researches [32], [33], [34], [35], [36], [37] all discuss three categories of forecasting methods 

namely statistical models, machine learning algorithms, and hybrid models. Regarding 

statistical models, the authors cite the use of Autoregressive Integrated Moving Average 

(ARIMA) and seasonal decomposition of time series (STL) as popular techniques. ARIMA 

models capture the dependencies of the current value on past values and the errors, while 

STL decomposes the series into trend, seasonal, and residual components. According to [33] 

ARIMA and STL have been widely used in building energy forecasting due to their 

simplicity and effectiveness.  

 

In addition to statistical models, [33], [38], [39], [28] discuss the application of machine 

learning algorithms in energy consumption forecasting including support vector regression 

(SVR), artificial neural networks (ANN), and random forest (RF) as commonly used 

techniques. SVR is based on the principle of structural risk minimisation and has shown 

promising results in energy forecasting. ANN, inspired by the human brain, can capture 

complex nonlinear relationships in the data. RF, an ensemble learning method, combines 

multiple decision trees to improve prediction accuracy.  
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Furthermore, [40], [33], [41], [42] discuss hybrid models that integrate both statistical and 

machine learning techniques. These models aim to leverage the strengths of each approach to 

improve forecasting accuracy. The authors mention the combination of ARIMA and ANN, as 

well as ensemble methods such as stacking and boosting, as examples of hybrid models. 

According to the authors, hybrid models have shown promising results in building energy 

consumption forecasting by capturing both temporal dependencies and complex nonlinear 

relationships.  

 

Many studies also address the issue of forecast evaluation and comparison. Authors such as 

[26],[43],[44],[30],[45] all present various evaluation metrics, such as mean absolute error 

and mean squared error, to assess the performance of different forecasting models. They also 

emphasise the importance of out-of-sample validation to ensure the generalisability of the 

models. 

 

Walpert and Macready discuss the "No-Free-Lunch Theorem" [46] and make assertion that 

no forecasting method is best for every time series. Essentially, data analysts must select a 

forecasting method from one of the three families of forecasting techniques namely; machine 

learning, statistical models, and hybrid methods [36]. In this study, a forecasting system 

based on the statistical ARIMA technique—known to be comparatively straightforward and 

to perform well—was developed and assessed. The sections that follow discuss the ARIMA 

approach. 

 

4.3  ARIMA Modelling 

A time series is a sequence of observations taken sequentially in time and a normal machine-

learning dataset is a collection of observations. If the current time is defined as t, then an 

observation at the current time is denoted by the quantity obs(t). Observations made at prior 

times, called lag times are denoted by the quantities obs(t-1), obs(t-2) etc where t-1 refers to 

the time before t and t-2 to the time before t-1. Future times are denoted by obs (t+1), 

obs(t+2) etc where t+1 is the time after t and t+2 the time after t+1. [31].  

Autoregressive Integrated Moving Average (ARIMA) Models, developed by Box and 

Jenkins [17] are a popular and effective statistical technique for forecasting time series data 

[40]. They constitute a widely used class of linear models for the development of univariate 

time series prediction information [27].  

ARIMA modelling is the improvement of the simpler Autoregressive Moving Average 

(ARMA) modelling as it adds the integral component. The key aspects of this model include 

the following and are summarised in the figure below:  

4.3.1 Autoregression (AR) 

In an autoregression model, the variable of interest is predicted using a linear combination of 

the variable's prior values. It is therefore a regression of the variable against itself. Using 

standard notation an autoregressive model of order p can be written as: 

𝑦𝑡=𝐶+𝛼1𝑦𝑡−1+𝛼2𝑦𝑡−2+···+𝛼𝑝𝑦𝑡−𝑝 
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where C is a constant; 𝑦𝑡−1,𝑦𝑡−2,𝑦𝑡−𝑝 are the lags (past values); and 𝛼1,𝛼2,𝛼𝑝 are lag 

coefficients which are estimated by the model. 

An autoregression model assumes that the observations at current and previous time steps are 

useful to predict the value at the next time step. This relationship between variables is called 

correlation. 

4.3.2 The I (Integrated) term 

This term refers to the use of a differencing operator of raw observations (e.g., subtracting an 

observation from an observation at the previous time step) to make the time series stationary. 

4.3.3 Moving Average 

The moving average part of the ARIMA model describes the dependency between the current 

observation and a residual error from a moving average model applied to lagged 

observations. Using standard notation, the moving average yt can be described by the 

function: 

𝑦𝑡=𝜖𝑡+𝛽1𝜖𝑡−1+𝛽2𝜖𝑡−2+···+𝛽𝑞𝜖𝑡−𝑞 

Where: 

𝜖𝑡,𝜖𝑡−1,𝜖𝑡−𝑞 are white noise terms for the respective lags, i.e., 𝑦𝑡−1,𝑦𝑡−2,𝑦𝑡−𝑞; and 

𝛽1,𝛽2,𝛽𝑞 are the parameters of the model [31]. 

 

 
 
Figure 12: ARIMA Model Summary 

 

These parts are explicitly specified in the model as a parameter. A standard notation that 

takes the form ARIMA(p,d,q) is used for this, where the parameters p, d and q are substituted 

with finite integer values to indicate the specific ARIMA model being used. The parameters 

of the ARIMA model  are defined as follows: 

1. ‘p’ is the number of autoregressive terms or number of lag observations in the model, 

also known as the lag order; 

2. ‘d’ is the number of differences or nonseasonal differences needed for stationarity; and 

3. ‘q’ is the number of moving averages or lagged forecast errors in the prediction 

equation[47], [38]. 
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The constants p and q are the model orders while the term d represents the degree of ordinary 

differencing, applied to make the series stationary [40]. The appropriate orders of the 

ARIMA(p, d, q) model are usually determined through the Box-Jenkins model methodology 

[27]. 

 

4.4  Box-Jenkins Method 

The Box-Jenkins method was proposed by George Box and Gwilym Jenkins in their seminal 

1970 textbook Time Series Analysis: Forecasting and Control [48]. Box and Jenkins based 

their approach on the assumption that the process that generates a time series can be 

approximated using an ARIMA Model if it is stationary. Model identification, parameter 

estimation, and diagnostic verification are the three iterative processes of the Box-Jenkins 

approach [17].  

The identification stage is meant to first asses if the time series data is stationary and if not 

how many differences (d) would be required to make it stationary. Box and Jenkins further 

suggested producing two diagnostic plots using the sample’s data to choose the p and q 

parameters of the ARIMA model. These are:  

1. Autocorrelation Function (ACF) – a plot to summarise the correlation of an observation 

with lag values. The x-axis shows the lag and the y-axis shows the correlation between 

the -1 and 1 for negative and positive correlation.  

2. Partial Autocorrelation Function (PACF) – a plot of the summary of the correlations 

for observation with lag values that are not accounted for prior lagged observations.  

Parameter estimation involves using numerical methods to minimise a loss or error term, 

while diagnostic checking looks for evidence that the model is not a good fit for the data by 

using a review of residual errors. The errors from an ideal model would resemble white noise, 

that is a Gaussian distribution with a mean of zero and a symmetrical variance. Plots such as 

a density plot, histograms and Q-Q plots are used to compare the distribution of errors. An 

asymmetrical distribution or a non-zero mean may suggest a bias in the forecasts produced.  

Further diagnostic checks can be carried out by creating more ACF and PACF plots of the 

residual error time series and the presence of a serial correlation would suggest further 

opportunity for model analysis. This three-step model creation method is often repeated 

multiple times until a good model is finally chosen. The final model chosen can then be 

applied to make predictions. 

The following table summarises the broad categories of demand forecasting techniques and 

their uses. 
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Table 1: Summary of Literature Review 

Broad Category Specific Method Findings/Use  Source  

Machine Learning 

Models 

Support Vector Machine (SVM) 

models with time series clustering 

Long-Short term memory network 

(LSTM) 

ARIMA models, Optimized Theta, 

ensemble methods, and neural 

networks 

 

Neural networks to predict domestic 

hot water (DHW) consumption in 

residential buildings 

Autoregressive neural network 

 

Seasonal ARIMA (SARIMA) 

 

Artificial neural networks (ANN) 

 

 

Random forests (ensemble) 

Forecasted water demand in a distribution 

network with a 24-hour delay 

Compared to ARIMA, SVM, and random 

forests models, LSTM showed better results 

Forecasted water consumption with a 

horizon of several months. Concluded that 

ARIMA models performed best based on 

various metrics. 

Observed better prediction performance as 

the size of the systems increased 

 

Demonstrated the importance of external 

variables for improving predictions 

Analysed the effect of seasonality on 

regression performances for DHW load 

prediction 

Benefits include continuous adaptability to 

changing water demand patterns and 

applicability to different demand signals 

 

Success was attributed to a good choice of 

features in models  

[49, 50] 

[51] 

 

[52] 

 

 

[53] 

 

[54] 

 

[25] 

 

[55, 56]  [57]  

 

[58] 
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Statistical and Periodic 

based Models 

Multilinear and nonlinear regression 

 

Regression techniques 

 

 

Holt-Winter, ARIMA, and GARCH 

 

 

Moving window 

The method is based on data-driven 

techniques 

A pattern-based approach to avoid 

problems encountered with next-day 

transitions 

 

Statistical forecasting for pattern 

recognition  

 

Demand fluctuations are determined by 

variables calibrated on a shifting window of 

observed data 

[59] 

 

[60] 

 

 

[61] 

 

[62] 

 

[63] [64] 

Stochastic Models Bayesian model 

 

 

Model conditional processor (MCP) 

 

 

Markov chain-based model 

Analysed uncertainty quantification and 

reduction 

 

Combined different forecasting models and 

estimated predictive uncertainty 

 

 

Estimated the probability that future 

demands will fall within given ranges 

[65] 

 

 

[66] [42] 

 

 

(Gagliardi et al. 2017) 
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4.5  Metrics for Evaluation 

Time series prediction performance metrics give an overview of the knowledge and 

expertise of the forecast model that produced the predictions. There is a wide variety 

of performance metrics available for this. Metrics can be used to assess the model’s 

performance and they have been shown to depict its accuracy very well. They are 

computed for each model and compared with each other to identify the most accurate 

one. The following table summarises these metrics:  

Table 2: Performance Metrics 

Error Type Description Formula 

Forecast Error This is the expected value minus 

the predicted value called the 

residual error of the prediction. A 

forecast error of zero indicates no 

error or perfect skill for that 

forecast. 

forecast error = expected 

value − predicted value 

Mean Forecast Error This is the average of the forecast 

error values and an ideal mean 

forecast error would be zero. A 

mean forecast error value other 

than zero suggests a tendency of 

the model to over-forecast 

(negative error) or under-forecast 

(positive error). A forecast bias of 

zero, or a very small number near 

zero, shows an unbiased model. 

mean forecast error = 

mean(forecast error) 

Mean Absolute 

Error (MAE) 

MAE is the average of the forecast 

error values, where all of the 

forecast values are forced to be 

positive. A mean absolute error of 

zero indicates no error. 

mean absolute error = 

mean(abs(forecast error)) 

Mean Squared Error 

(MSE) 

MSE is calculated as the average 

of the squared forecast error 

values. A mean squared error of 

zero indicates perfect skill or no 

error. 

mean squared error = 

mean(forecast error2) 

Root Mean Squared 

Error (RMSE) 

The square root of the mean 

squared error score is called the 

root mean squared error, or RMSE. 

As with the mean squared error, an 

RMSE of zero indicates no error. 

rmse = p mean squared error 
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4.6  Conclusion and Gap Statement 
In the 2023 article "Futures for Findhorn" by Copeland et. al.[67], challenges faced 

by the Findhorn community in achieving a net-zero carbon footprint are highlighted. 

At the time of writing, despite their sustainability efforts, they struggle with issues 

like significant energy imports. The community's energy consumption, particularly in 

heating and transportation, heavily influences their emissions. The authors emphasise 

a comprehensive approach that includes technology, behaviour changes, and 

community engagement, with a focus on energy efficiency, renewables, and green 

transport. 

The current study employed the ARIMA method for time series analysis, given its 

proven efficacy in forecasting using past data. Data collected hourly and half-hourly 

from the Findhorn ecovillage validated the ARIMA model's suitability for predicting 

DHW energy demand. 

 

5.0 Methodology 
The approach, technical analysis, and modelling used to accomplish the aims and 

objectives are described in this section. Subsequent subsections provide an 

explanation of model development techniques used. 

The table below lists the hardware and software specifications of the system used in 

the development of the models for the current work.  

Table 3: Hardware and software specifications 

 Details 

Processor 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz 

Storage 1TB SSD; Installed RAM - 16.0 GB (15.7 GB usable) 

Display Intel® Iris® Xe Graphics, MS Excel, Lucidchart 

Software Python 3.11.4, VS Code (Jupyter Notebook 6.5.2), Anaconda 

(Spyder 5.4.1) 

Libraries Pandas, numpy, matplotlib, statsmodels, sklearn.metrics, scipy.stats 

 

5.1  Project Approach 

The following flow chart provides a visual representation of the integrated process 

undertaken during the project. 
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                                              Figure 13: Project Approach 
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5.2  Time Series Model Development  
To develop a time series forecasting model for predicting DHW consumption, 

various procedures were undertaken, which are detailed in this section. Drawing 

from methodologies outlined by authors [68] and [69], a procedure was formulated to 

predict DHW energy usage for both summer and winter periods.  

5.3 Data Collection and Visualisation  
The time series data used in the model development was collected from the 

Emoncms cloud service using a Python-based API. The data was cleaned to remove 

any outliers, inconsistencies or missing values. It was further rearranged such that the 

averages of the hourly consumptions for each time period (winter and summer) were 

obtained and saved in separate excel datasets in the model development file location.  

In time series analysis and forecasting, visualisation plays an important role. Plotting 

the configured datasets helped to uncover time-based characteristics like trends, 

cycles, and seasonality that can influence the model selection.  

5.4  Baseline Model  
A baseline in forecast performance provides a point of comparison. It was important 

to gauge the performance and reliability of any elaborate models developed later by 

establishing a clear baseline for comparison. The chosen model for comparison was a 

Simple Moving Average Model (SMA) which is a method used to identify trends by 

smoothing out large fluctuations. This is done by calculating the average of the data 

points within a specific window of periods. The level of accuracy of the baseline 

model was evaluated using metrices, the RMSE and the MAE. 

 

5.5  Data Stationarity  
A stationary time series is one where the values are not a function of time. Time 

series are stationary if they do not have trend or seasonal effects and summary 

statistics calculated on the time series are consistent over time, like the mean or the 

variance of the observations. Experts suggest that a stationary time series is easier to 

model and statistical modelling methods assume or require the time series to be 

stationary to be effective.  

The stationarity of the learning datasets was confirmed using a statistical significance 

test, specifically the Augmented Dickey-Fuller (ADF) test, which was performed by 

running a script with the adfuller() function in the Statsmodels Python library. It uses 

an autoregressive model and optimizes an information criterion across multiple 

different lag values. The null hypothesis of the test is that the time series can be 

represented by a unit root and that it is not stationary (has some time-dependent 

structure). The alternate hypothesis (rejecting the null hypothesis) is that the time 

series is stationary.  

- Null Hypothesis (H0): Fail to reject, it suggests the time series has a unit root, 

meaning it is non-stationary. It has some time-dependent structure. 

- Alternate Hypothesis (H1): The null hypothesis is rejected; it suggests the time 

series does not have a unit root, meaning it is stationary. It does not have a 

time-dependent structure. 
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The result is interpreted using the p-value from the test. A p-value below a threshold 

(such as 5% or 1%) suggests we reject the null hypothesis (stationary), otherwise, a 

p-value above the threshold suggests we fail to reject the null hypothesis (non-

stationary). 

- p-value > 0.05: Fail to reject the null hypothesis (H0), the data has a unit root 

and is non-stationary. 

- p-value ≤ 0.05: Reject the null hypothesis (H0), the data does not have a unit 

root and is stationary [31]. 

Where the time series was found to be non-stationary, data transformation would be 

required to make the time series stationary.  

5.6  ARIMA Model Configuration 
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots 

were generated in Python to determine initial model parameters. To better determine 

the optimal ARIMA configuration (the p, d, q order), various combinations were 

systematically explored. During this process, two key metrics were used, the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Both 

metrics evaluate model goodness of fit, with a penalty for models that might be too 

intricate. 

 

Essentially, lower AIC or BIC values denote models that strike an ideal balance 

between accuracy and simplicity. Using Python, these metrics were generated after 

model fitting with a goal to select the model showcasing the lowest AIC and BIC 

scores. 

 

5.7  Model Evaluation Using Residual Errors 
To further evaluate the accuracy of the model, a review of the residual forecast errors 

was carried out. Residual errors, in essence, are the differences between predicted 

and actual values. Ideally, the distribution of residual errors should be random and 

normally distributed around zero. If there's a pattern in the residuals, it suggests that 

the model may not be capturing some information. 

The following steps were implemented in Python to evaluate the ARIMA model 

using residual errors: 

1. Compute Residuals: Subtract the predicted values from the actual values. 

2. Plot Residuals: This helps in visually checking if the residuals have any 

patterns or seasonality. 

3. Check for Mean Residual: Ideally, the mean of the residuals should be zero or 

very close to zero. 

4. Plot Residual Distribution: Use histograms or kernel density plots to verify if 

residuals are normally distributed. 

5. Residual Autocorrelation: Use the ACF (Autocorrelation function) plot to 

check if residuals have any correlation with lagged versions of itself. 
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The performances of the developed models were evaluated and conclusions drawn 

based on the analysis of the associated errors. 

5.8  High-Level Python Script Process 
 

Figure 14 provides an overview of the algorithm used to forecast energy 

consumption, illustrating how the functions (.py) within the forecasting script 

produce the desired outcomes. 

 

Figure 14: High Level Algorithm Process 

 

6.0 Technical Results Analysis  
The following section presents the technical results gathered during the study. An 

analysis of the findings is also provided.  
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6.1  Data Analysis using summary statistics and plots 
Summary statistics and plots analysed the data's structure and characteristics, 

focusing on daily and hourly volumetric hot water consumption and its energy 

delivery.  

 

Hot water consumption was measured to a 0.1 litre resolution from the six dwellings 

in the West Whins residential building. The plots and tables summarise the data 

collected for one summer and one winter season (91 days each). 

 

 
Figure 15: Daily Total against Daily Average Usage for Winter and Summer 

Table 4: Daily Water Consumption – Litres/day 

 
Winter  Summer  

 Daily Total Building 

Consumption  

Daily average 

consumption per flat  

Daily Total Building 

Consumption  

Daily average 

consumption per flat  

Mean  174 29 140 23 

Max 309 52 280 47 

Min 90 15 48 8 
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The average hourly hot water consumptions per flat and for the whole building are 

shown below (Figures 16 - 17) as well as the cumulative hourly consumption per 

season (Figure 18). 

 

Figure 16: Average Hourly Water Usage for one dwelling 

 

Figure 17: Average Hourly Water Usage for the whole building 

 

Figure 18: Cumulative Hot water use per season 
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The plots revealed a consistent pattern of Domestic Hot Water (DHW) usage across 

both daily and hourly consumption for both the summer and winter seasons. This 

consistency suggested that the factors driving DHW consumption in the building 

were relatively stable over time. 

Moreover, the absence of significant outliers in the plots underscored the reliability 

of the data collection process and the normalcy of the DHW usage patterns observed. 

Such consistent patterns and the lack of extreme outliers support the application of 

time series modelling techniques for future DHW consumption prediction. 

6.1.1 Energy Consumption  

To determine the energy content of the hot water used, the volumetric water 

consumption and the temperature rise required to heat it was used in the general 

energy equation:  

𝑄 = 𝑚𝑐∆𝑇 

Where Q is the heat energy (J or kWh) 

m is the mass of the water (kg) 

c is the specific heat capacity of water (~4200 J/kg°C) 

ΔT is the temperature change (°C) 

 

The energy content was calculated based on the volumetric hot water consumption 

values (assuming 1L of water equals 1kg) and the nominal temperature difference of 

43°C required to heat the water, as stated previously, and a conversion of energy in 

joules to kwh. Figure 19 depicts the daily energy consumption of the building. 

 

Figure 19: Daily distribution of energy delivered across the  whole sample 

 

A summary of the daily energy consumption statistics is given in the table below:  
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Table 5: Daily Energy Distributed in Hot Water Use - kWh 

 
Winter  Summer  

 Building Energy 

Consumption  

Daily Energy 

Consumption per flat  

Building Energy 

Consumption 

Daily Energy 

Consumption per flat 

Mean  8.72 1.45 7.05 1.17 

Max 15.5 2.58 14.05 2.34 

Min 4.52 0.75 2.41 0.40 

 

Hourly energy distribution to hot water was plotted for each of the 6 flats in both 

winter and summer periods (Figure 20 - 22).  

 

 

Figure 20: Comparison of Hourly Energy Usage Per Flat at West Whins 
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Figure 21: Hourly energy distribution delivered to hot water in one dwelling 

 

Figure 22: Hourly energy distribution delivered to hot water for the whole building 

  

6.2  Creation of baseline models 
A Simple Moving Average (SMA) was created as a baseline model. This was done 

using a python script and the RMSE and the MAE evaluation metrices were 

computed. 
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Figure 23: Simple Moving Average Baseline Model Outputs – Winter  

Using a Simple Moving Average (SMA) model with a window of 5 hours, the energy 

usage for Flat 2 was predicted based on data from Flat 1. 

 
Table 6: Simple Moving Average Evaluation Metrices 

Winter Stats Training Data Test Data 

RMSE 0.0734 0.1400 

MAE 0.0507 0.1083 

 

The model had an acceptable level of predictive power with a Root Mean Squared 

Error (RMSE) of 0.0734 and Mean Absolute Error (MAE) of 0.0507 for the training 

data, and an RMSE of 0.1400 and an MAE of 0.1083 for the test data. Similar results 

were observed using the summer datasets as summarised below.  
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Figure 24: Simple Moving Average Baseline Model Outputs – Summer 

Table 7: Simple Moving Average Evaluation Metrices 

Summer Stats Training Data Test Data 

RMSE 0.0215 0.1338 

MAE 0.0159 0.0903 

 

 

The simple baseline model predicted a constant energy usage for all hours in Flat 2 

for both datasets due to the nature of the SMA model, which took the last 5 hours of 

the training data to forecast future usage (window size of the Simple Moving 

Average (SMA) model).  

 

Rather than forecasting a uniform energy usage for all hours in Flat 2 using the last 

5-hour average from the training data in Flat 1, the model was enhanced to 

recalculate the SMA for each test hour based on the preceding 5 hours of combined 

training and test data. This change allowed for hour-by-hour variation in predictions, 

offering a closer representation of the latest data trends. The results for the winter 

and summer datasets are shown below. 
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Figure 25: Enhanced SMA Baseline Model Outputs – Winter 

Table 8: Enhanced SMA Evaluation Metrices 

Winter Stats Training Data Test Data 

RMSE 0.0734 0.1466 

MAE 0.0507 0.0901 

 

 
Figure 26: Enhanced SMA Baseline Model Outputs –Summer 
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Table 9: Enhanced SMA Evaluation Metrices 

Summer Stats Training Data Test Data 

RMSE 0.0215 0.159 

MAE 0.0159 0.107 

 

This simple model served as a baseline for future, more complex models and guided 

subsequent steps of model selection and tuning to improve predictive power for the 

buildings hourly energy consumption. 

 

The same was done with the daily consumption predictions for both summer and 

winter datasets. Due to the nature of the daily consumption data, the datasets were 

split using the first two months of the seasons as training sets (December and January 

for winter and June and July for summer) and the last month as the test sets 

(February for winter and August for summer). The results are shown as follows:  

 

 
Figure 27: Enhanced SMA Baseline Model Outputs – Winter 

Table 10: Enhanced SMA Evaluation Metrices - Winter 

Winter Stats Training Data Test Data 

RMSE 0.4295 0.3759 

MAE 0.3355 0.2864 
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Figure 28: Enhanced SMA Baseline Model Outputs – Summer 

Table 11: Enhanced SMA Evaluation Metrices - Summer 

Summer Stats Training Data Test Data 

RMSE 0.3634 0.2662 

MAE 0.2801 0.2169 

 

Similar to the hourly prediction data, the model using the daily data recalculated the 

SMA for each test day based on the preceding 5 days of combined training and test 

data. This allowed for daily variation in predictions, offering a closer representation 

of the latest data trends 

 

6.3  Data Stationarity 

The Augmented Dickey-Fuller (ADF) test was conducted to check data stationarity 

on the hourly datasets. The test returned a p-value of 0.08 for the winter dataset, 

which was above the 0.05 threshold, indicating potential non-stationarity. The ADF 

statistic of -2.66, however, was less than the 10% critical value (-2.64), suggesting 

possible stationarity at this level. Hence, the results presented a mixed picture 

regarding the data's stationarity. 
Table 12: Results of Dickey-Fuller Test: 

ADF Statistic                  -2.6649 

p-value                          0.0803 

Critical Value (1%)             -3.7697 

Critical Value (5%)             -3.0054 

Critical Value (10%)            -2.6425 
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In order to apply ARIMA modelling, which requires stationary data, a first-order-

differencing method (d = 1) was performed on the energy consumption data from 

Flat 1. The augmented Dickey-Fuller test was then carried out on the transformed 

data to assess its stationarity. The results of the test are shown in figure 28. 

 

a      b 

  
Figure 29: Differenced Data Plot – a) Winter b) Summer 

 

Table 13: ADF Test Results after first order Differencing - Winter 

ADF Statistic:   -3.066441 

p-value                          0.029138 

Critical Value (1%)             -3.809 

Critical Value (5%)             -3.022 

Critical Value (10%)            -2.651 

 

 

Table 14: ADF Test Results after first order Differencing - Summer 

ADF Statistic:   -28.809440 

p-value                          0.000000 

Critical Value (1%)             -4.069 

Critical Value (5%)             -3.127 

Critical Value (10%)            -2.702 

 

 

The test resulted in p-values of 0.029 for winter and 0.0 for summer, which were less 

than the conventional threshold of 0.05, suggesting the null hypothesis of a unit root 

could be rejected and the transformed series was stationary. It was then saved for 

further analysis.  
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6.4  ARIMA Model Configuration 

In order to visually understand the correlation structure of the hourly time series data 

after differencing, Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) plots were generated in Python (Figures 30 - 33).  

 
Figure 30: ACF Plot – Winter dataset 

 
Figure 31: PACF Plot – Winter dataset 

 
Figure 32: ACF Plot – Summer dataset 
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Figure 33: PACF Plot - Summer dataset 

The significant spikes observed in the ACF and PACF plots presented the initial 

model parameter estimates. Specifically, the plots suggested starting points of p = 1 

for the autoregressive (AR) component and q = 1 for the moving average (MA) 

component. The differencing value, d, was derived from the previous data 

transformation step, giving an initial ARIMA order of (1,1,1). 

 

6.4.1 Optimal ARIMA Model Parameters 

To determine the optimal ARIMA configuration (p, d, q order), various combinations 

were systematically explored. During this process, two key metrics were used, the 

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). 

Both metrics evaluate model goodness of fit, with a penalty for models that might be 

too intricate. Essentially, lower AIC or BIC values denote models that strike an ideal 

balance between accuracy and simplicity. 

 

Using Python, these metrics were generated after model fitting with a goal to select 

the model showcasing the lowest AIC and BIC scores. The results of the script are 

decribed in tables 15 and 16, which identified the ARIMA(0, 0, 1) as the optimal 

order for the hourly winter dataset, and the ARIMA(1,0,0) for the hourly summer 

dataset. The following sections delve into the evaluation and assessment of how well 

the chosen ARIMA models predicted hourly energy consumption. 

 

Table 15: Optimal ARIMA Model Parameters – Winter 

Best ARIMA Order (0, 0, 1) 

Best AIC -59.23 

Best BIC -55.83 

 

Table 16: Optimal ARIMA Model Parameters – Summer 

Best ARIMA Order (1, 0, 0) 

Best AIC -102.67 

Best BIC -99.14 
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6.5  Hourly Data Model Evaluations 

6.5.1 ARIMA(1,1,1) Model  

The preliminary ARIMA model, with parameters set to (1,1,1), was employed to 

predict hourly energy consumption for "Flat 2", using "Flat 1" as the training dataset. 

The ensuing outcomes, presented both graphically and in tabular form, are displayed 

below. 

 
Figure 34: ARIMA(1,1,1) Results - Winter 

Table 17: ARIMA(1,1,1) Errors - Winter 

Hour Actual Predicted Error Absolute Error 

0 0.0000 -0.0252 0.0252 0.0252 

1 0.0000 0.0080 -0.0080 0.0080 

2 0.0011 -0.0026 0.0037 0.0037 

3 0.0000 0.0023 -0.0023 0.0023 

4 0.0006 -0.0007 0.0013 0.0013 

5 0.0006 0.0010 -0.0004 0.0004 

6 0.0006 0.0004 0.0001 0.0001 

7 0.0825 0.0006 0.0819 0.0819 

8 0.2731 0.1069 0.1663 0.1663 

9 0.5479 0.3470 0.2009 0.2009 

10 0.2676 0.7195 -0.4520 0.4520 

11 0.1639 0.2273 -0.0634 0.0634 

12 0.2285 0.1889 0.0396 0.0396 

13 0.1594 0.2175 -0.0581 0.0581 

14 0.1449 0.1656 -0.0207 0.0207 

15 0.1577 0.1406 0.0171 0.0171 

16 0.1410 0.1626 -0.0216 0.0216 

17 0.2152 0.1345 0.0807 0.0807 

18 0.3255 0.2349 0.0906 0.0906 

19 0.1957 0.3354 -0.1398 0.1398 

20 0.1338 0.1838 -0.0500 0.0500 
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21 0.0959 0.1330 -0.0371 0.0371 

22 0.0072 0.0889 -0.0816 0.0816 

23 0.0006 0.0023 -0.0017 0.0017 

   RMSE: 0.1181 MAE: 0.0685 

 

 
Figure 35: ARIMA(1,1,1) Results -  Summer 

Table 18: ARIMA(1,1,1) Errors - Summer 

Hour Actual Predicted Error Absolute Error 

0 0.0000 0.0161 -0.0161 0.0161 

1 0.0000 0.0192 -0.0192 0.0192 

2 0.0000 0.0092 -0.0092 0.0092 

3 0.0000 0.0040 -0.0040 0.0040 

4 0.0076 0.0019 0.0057 0.0057 

5 0.0022 0.0042 -0.0021 0.0021 

6 0.1292 0.0036 0.1256 0.1256 

7 0.2067 0.0635 0.1432 0.1432 

8 0.4989 0.2085 0.2904 0.2904 

9 0.3599 0.6574 -0.2976 0.2976 

10 0.1249 0.3551 -0.2302 0.2302 

11 0.0862 0.1376 -0.0514 0.0514 

12 0.1521 0.0788 0.0733 0.0733 

13 0.1227 0.1378 -0.0152 0.0152 

14 0.0491 0.1141 -0.0650 0.0650 

15 0.0949 0.0515 0.0434 0.0434 

16 0.1003 0.0902 0.0101 0.0101 

17 0.1707 0.0949 0.0757 0.0757 

18 0.0731 0.1529 -0.0799 0.0799 

19 0.1434 0.0757 0.0677 0.0677 

20 0.1134 0.1485 -0.0350 0.0350 

21 0.0763 0.1115 -0.0351 0.0351 
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22 0.0005 0.0758 -0.0752 0.0752 

23 0.0000 -0.0026 0.0026 0.0026 

   RMSE: 0.1122 MAE: 0.0739 

 

6.5.2 ARIMA(0,0,1) and (1,0,0) Models 

The optimal ARIMA models (0,0,1) for the winter dataset and (1,0,0) for the summer 

dataset were also employed to predict hourly energy consumption for "Flat 2", using 

"Flat 1" as the training dataset. Visual assessments, using bar plots comparing actual 

consumption values against predicted values, offered a representation of the model's 

performance. Quantitatively, the model's accuracies were gauged using two metrics: 

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) which were 

summarised in subsequent tables. These metrics provided insight into the average 

magnitude of prediction errors and the average absolute differences between 

predicted and actual values, respectively.  

 

 
Figure 36: ARIMA(0,0,1) Results - Winter 

Table 19: ARIMA(0,0,1) Errors - Winter 

Hour Actual Predicted Error Absolute Error 

0 0.0000 0.0303 -0.0303 0.0303 

1 0.0000 0.0640 -0.0640 0.0640 

2 0.0011 0.0368 -0.0357 0.0357 

3 0.0000 0.0540 -0.0540 0.0540 

4 0.0006 0.0379 -0.0373 0.0373 

5 0.0006 0.0472 -0.0467 0.0467 

6 0.0006 0.0378 -0.0372 0.0372 

7 0.0825 0.0423 0.0402 0.0402 

8 0.2731 0.0986 0.1746 0.1746 

9 0.5479 0.2040 0.3439 0.3439 

10 0.2676 0.3601 -0.0926 0.0926 
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11 0.1639 0.0248 0.1391 0.1391 

12 0.2285 0.1872 0.0413 0.0413 

13 0.1594 0.1260 0.0334 0.0334 

14 0.1449 0.1249 0.0201 0.0201 

15 0.1577 0.1168 0.0410 0.0410 

16 0.1410 0.1338 0.0072 0.0072 

17 0.2152 0.1099 0.1052 0.1052 

18 0.3255 0.1840 0.1415 0.1415 

19 0.1957 0.2166 -0.0210 0.0210 

20 0.1338 0.0982 0.0356 0.0356 

21 0.0959 0.1418 -0.0460 0.0460 

22 0.0072 0.0794 -0.0721 0.0721 

23 0.0006 0.0570 -0.0565 0.0565 

   RMSE: 0.1002 MAE: 0.0715 

 

 
Figure 37: ARIMA(1,0,0) Results – Summer 

Table 20: ARIMA(1,0,0) Errors – Summer 

Hour Actual Predicted Error Absolute Error 

0 0.0000 0.0170 -0.0170 0.0170 

1 0.0000 0.0153 -0.0153 0.0153 

2 0.0000 0.0142 -0.0142 0.0142 

3 0.0000 0.0132 -0.0132 0.0132 

4 0.0076 0.0124 -0.0048 0.0048 

5 0.0022 0.0152 -0.0130 0.0130 

6 0.1292 0.0123 0.1170 0.1170 

7 0.2067 0.0560 0.1507 0.1507 

8 0.4989 0.1640 0.3350 0.3350 

9 0.3599 0.4794 -0.1195 0.1195 

10 0.1249 0.3205 -0.1956 0.1956 
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The model's effectiveness in forecasting hourly energy consumption was clear 

through both visual and quantitative assessments. The bar plots highlighted hours 

where predicted values closely mirrored actual consumption, and other times when 

discrepancies arose. With RMSE and MAE metrics lower than the baseline SMA 

model, the ARIMA models demonstrated superior performance. Summaries of the 

performance metrics of these models are shown in Tables 21 and 22.  
Table 21: SMA Hourly Forecast Model Performance Summary 

 RMSE  MAE  

 Winter Summer Winter Summer 

SMA 0.1400 0.1338 0.1083 0.0903 

Enhanced SMA 0.1466 0.159 0.0901 0.107 

 
Table 22: ARIMA Hourly Forecast Model Performance Summary 

 RMSE  MAE  

 Winter Summer Winter Summer 

ARIMA(1,1,1) 0.1181 0.1122 0.0685 0.0739 

ARIMA(0,0,1) 0.1002  0.0715  

ARIMA(1,0,0)  0.0993  0.0647 

 

Although the ARIMA models exhibited better performance, the graphs in figures 34 

to 37 show an initial underprediction during the morning demand, which is then 

offset by an over-prediction two hours later. Given that heating systems 

predominantly focus on the morning peak demand, it may be beneficial to adjust the 

timestamps from the ARIMA outputs to achieve a more accurate fit. This 

modification is suggested for consideration in future work to enhance the model. 

 

6.6  Daily Data Model Evaluations 

6.6.1 Winter Daily Models 

The previously described methods were used to calculate the best ARIMA order for 

the daily winter dataset and the results together with the corresponding ACF and 

PACF plots are shown below:  

11 0.0862 0.1053 -0.0191 0.0191 

12 0.1521 0.0771 0.0751 0.0751 

13 0.1227 0.1263 -0.0037 0.0037 

14 0.0491 0.1051 -0.0560 0.0560 

15 0.0949 0.0512 0.0437 0.0437 

16 0.1003 0.0846 0.0158 0.0158 

17 0.1707 0.0888 0.0818 0.0818 

18 0.0731 0.1412 -0.0682 0.0682 

19 0.1434 0.0698 0.0737 0.0737 

20 0.1134 0.1206 -0.0072 0.0072 

21 0.0763 0.0994 -0.0230 0.0230 

22 0.0005 0.0729 -0.0724 0.0724 

23 0.0000 0.0187 -0.0187 0.0187 

   RMSE: 0.0993 MAE: 0.0647 
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Table 23: Optimal ARIMA parameters - Winter 

Best ARIMA Order (0, 0, 4) 

Best AIC 529.17 

Best BIC 544.55 

 

  
Figure 38: ACF and PACF Plots for Daily Usage – Winter 

The ARIMA(0,0,4) Model for the winter dataset was fit into the script and the results 

are as follows:  

 

Figure 39: ARIMA(0,0,4) Results – Winter 

Table 24: ARIMA(0,0,4) Evaluation Metrics 

 ARIMA Order (0, 0, 4) 

RMSE 0.4503 

MAE 0.3727 

 

Despite the ARIMA(0,0,4) being the optimal order from the AIC and BIC tests, 

another model, ARIMA(0,0,6) was fit based on trial and error to see if better results 

would be observed. The results are as follows:  
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Figure 40: ARIMA(0,0,6) Results – Winter 

Table 25: ARIMA(0,0,6) Evaluation Metrics - Winter 

ARIMA Order (0, 0, 6) 

RMSE 0.4089 

MAE 0.3285 

 

6.6.2 Summer Daily Models 

The AIC and BIC tests were carried out on the daily datasets for the summer season 

with the results as follows in addition to the corresponding ACF and PACF plots. 

Best ARIMA Order (4, 1, 0) 

Best AIC 517.97 

Best BIC 530.84 

   

Figure 41: ACF and PACF Plots for Daily Usage – Summer 

The ARIMA(4,1,0) Model for the summer dataset was fit into the script and the 

results are as follows:  
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Figure 42: ARIMA(4,1,0) Results – Summer 

ARIMA Order (4, 1, 0) 

RMSE 0.3395 

MAE 0.2574 

 

Similar to the winter dataset, despite the ARIMA(4,1,0) being the optimal order from 

the AIC and BIC tests, another model, ARIMA(1,0,1) was fit based on trial and error 

to see if better results would be observed. The results are as follows: 

 

 

Figure 43: ARIMA(1,0,1) Results - Summer 
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Table 26: ARIMA(1,0,1) Evaluation Metrices - Summer 

ARIMA Order (1, 0, 1) 

RMSE 0.3003 

MAE 0.2490 

 

Table 27 displays the performance metric summaries for the models that predicted 

daily energy consumption. While the baseline SMA model had better RMSE and 

MAE metrics compared to the ARIMA models, the ARIMA models provided 

superior visual representations of the predicted values. These insights suggest that 

more in-depth research and analysis are required to optimise the models for the most 

accurate predictions.   

Table 27: Daily Forecast Model Performance Summary 

 RMSE  MAE  

 Winter Summer Winter Summer 

SMA 0.3759 0.2662 0.2864 0.2169 

ARIMA(0,0,4) 0.4503  0.3727  

ARIMA(0,0,6) 0.4089  0.3285  

ARIMA(4,1,0)  0.3395  0.2574 

ARIMA(1,0,1)  0.3003  0.2490 

 

 

6.7  Model Evaluation Using Residual Errors 

6.7.1 Hourly Data Residual Errors  

Evaluation of the hourly ARIMA forecasting models for energy consumption 

revealed promising fits and plots of their residual errors are shown below. The 

trendless nature of the plots suggested that most systematic information from the 

original series had been captured by the models. With mean residual errors of near 

zero (0.022 for Winter and 0.010 for Summer), the models did not exhibit persistent 

biases further attesting to their efficacies. The bell-shaped density plots centred 

around zero highlighted the normal distribution-like behaviour of residuals, which is 

a favourable attribute.  

 

The histograms displayed a leftward skew, suggesting a minor asymmetry in the 

error distribution. Meanwhile, the ACF plots revealed limited residual 

autocorrelation, signifying that the model effectively accounted for the majority of 

the series' inherent dynamics. 

 

Winter mean residual error: 0.022  
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Figure 44: Hourly Forecast Residual Errors – Winter 

 

Summer mean residual error: 0.010  
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Figure 45: Hourly Forecast Residual Errors – Summer 

 

6.7.2 Daily Data Residual Errors  

Similar observations were seen with the residual error plots for the daily forecasting 

models. The plots displayed near-zero mean errors, signifying negligible bias while 

the trendless nature of these plots indicated that most systematic information from 

the original series was captured by the models. The histograms exhibited skewness as 

well, indicating some asymmetry in the error distribution. Additionally, the ACF 

plots showed little autocorrelation in the residuals, indicating that the models 

effectively captured the series' main patterns. 

Winter mean residual error: -0.0778  
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Figure 46: Daily Forecast Residual Errors - Winter 

 

Summer mean residual error: 0.0105  
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Figure 47: Daily Forecast Residual Errors - Summer 

7.0 Discussion and Conclusions  

Time series analysis of Domestic Hot Water (DHW) energy consumption was 

performed on real-world data from the West Whins residential building in Findhorn. 

Various techniques were assessed, and the ARIMA method was selected to construct 

DHW consumption forecasting models for both hourly and daily consumptions, 

comparing their performances in winter and summer time periods. 

A Simple Moving Average (SMA) model was developed and evaluated on both the 

hourly and daily consumption datasets for benchmarking. This basic model served as 

a reference point for comparing more advanced models using the Root Mean 

Squared Error (RMSE) and Mean Squared Error (MAE) performance metrics. Before 

developing the ARIMA models, the datasets were tested for stationarity using 

Augmented Dickey-Fuller (ADF) tests. The results of the hourly data highlighted 

non-stationary characteristics, leading to performance of a first order differentiation 

to achieve stationarity. 

To identify the parameters for the ARIMA model, Autocorrelation Function (ACF) 

and Partial Autocorrelation Function (PACF) plots of the datasets were generated. 

Notable spikes observed on the plots suggested the initial ‘p’ and ‘q’ values to be 

used for the ARIMA modelling, with the ‘d’ value based on the stationarity of the 

data. To further pinpoint the optimal parameters for the best fit model, the Alkaline 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) methods were 

employed. The results from these tests gave the optimal ARIMA models for the 

hourly and daily consumption datasets.  

Upon examining the predictive capabilities of the hourly forecasting models, it was 

observed that the ARIMA (1,1,1); (0,0,1) and (1,0,0) models outperformed the 

baseline SMA model, as indicated by their lower RMSE and MAE values. For the 

winter dataset, the best-performing model was ARIMA(0,0,1) with an RMSE of 

0.1002 and an MAE of 0.0715. Conversely, for the summer dataset, the 

ARIMA(1,0,0) model stood out, with an RMSE of 0.0993 and an MAE of 0.0647. 

The residual errors were also plotted for further analysis of the models. For both 

hourly and daily datasets, these errors were close to zero, suggesting minimal biases. 

The absence of trends in these plots suggested that the models effectively captured 
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most of the systematic information from the original series. However, histograms 

displayed skewness, suggesting some unevenness in the error distribution. 

Despite the low RMSE and MAE values, plots comparing the actual versus predicted 

values of hourly energy demand revealed a noticeable underprediction during the 

morning peak times, followed by a subsequent overprediction two hours later. It is 

therefore proposed that the timestamps of the outputs of the models be adjusted for 

more accurate model fitting in future work.  

A number of limitations arose during this study, including time constraints, 

insufficient data details, and a skillset gap in Python programming language that 

restricted exploration into more intricate models. Nevertheless, the ARIMA models 

presented in this study offer a promising foundation for incorporation into the West 

Whins energy centre’s intelligent control system in Findhorn. Further validation and 

comparisons with other forecasting methods could also help refine the model. 
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8.0 Appendices 

8.1  Appendix A: Simple Moving Average Script 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.metrics import mean_squared_error, mean_absolute_error 

from math import sqrt 

 

# Load the data 

df = pd.read_excel('Summer_hourly_energy_data.xlsx') 

 

# Create a single dataset and calculate SMA on it 

df_all = df[['Hour', 'Flat 1 energy (kWh)', 'Flat 2 energy 

(kWh)']].copy() 

df_all.columns = ['Hour', 'Flat 1', 'Flat 2'] 

df_all['SMA_5'] = df_all['Flat 1'].rolling(window=5).mean() 

 

# Split into training and test sets again 

df_train = df_all[['Hour', 'Flat 1', 'SMA_5']].copy() 

df_test = df_all[['Hour', 'Flat 2', 'SMA_5']].copy() 

 

# Plotting the results 

fig, ax = plt.subplots(2, 1, figsize=(12,10)) 

 

# Training data 

df_train[['Flat 1', 'SMA_5']].plot(kind='bar', ax=ax[0]) 

ax[0].set_title('Training Data') 

ax[0].set_xlabel('Hour') 

ax[0].set_ylabel('Energy Consumption') 

 

# Test data 

df_test[['Flat 2', 'SMA_5']].plot(kind='bar', ax=ax[1]) 

ax[1].set_title('Test Data') 

ax[1].set_xlabel('Hour') 

ax[1].set_ylabel('Energy Consumption') 

 

plt.tight_layout() 

plt.show() 

 

# Compute the RMSE and MAE for training data (only for those hours 

where SMA_5 is not NaN) 

rmse_train = sqrt(mean_squared_error(df_train['Flat 1'].dropna()[4:], 

df_train['SMA_5'].dropna())) 

mae_train = mean_absolute_error(df_train['Flat 1'].dropna()[4:], 

df_train['SMA_5'].dropna()) 

 

# Compute the RMSE and MAE for test data 
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rmse_test = sqrt(mean_squared_error(df_test['Flat 2'][4:], 

df_test['SMA_5'][4:]))  # Only compute after the 4th hour 

mae_test = mean_absolute_error(df_test['Flat 2'][4:], 

df_test['SMA_5'][4:])       # Only compute after the 4th hour 

 

print(f'Training Data RMSE: {rmse_train}') 

print(f'Training Data MAE: {mae_train}') 

print(f'Test Data RMSE: {rmse_test}') 

print(f'Test Data MAE: {mae_test}') 

 

8.2  Appendix B: AIC and BIC Script 

import pandas as pd 

from statsmodels.tsa.arima.model import ARIMA 

import warnings 

 

warnings.filterwarnings('ignore') # Ignore warning messages for clarity 

 

# Load your data 

df = pd.read_excel('Summer_hourly_energy_data.xlsx') 

data = df['Flat 1 energy (kWh)'].dropna() 

 

# Define the p, d and q values to take on 

p_values = [0, 1, 2, 3, 4] 

d_values = [0, 1]  # Given data is already differenced once, only 

consider 0 or 1 here 

q_values = [0, 1, 2, 3, 4] 

 

best_aic = float('inf')  # Start with infinity as initial best 

best_bic = float('inf')  # Similarly for BIC 

best_order = None 

 

for p in p_values: 

    for d in d_values: 

        for q in q_values: 

            order = (p, d, q) 

            try: 

                model = ARIMA(data, order=order) 

                results = model.fit() 

                if results.aic < best_aic: 

                    best_aic = results.aic 

                    best_bic = results.bic 

                    best_order = order 

            except: 

                continue 

 

print(f'Best ARIMA Order: {best_order}') 

print(f'Best AIC: {best_aic}') 

print(f'Best BIC: {best_bic}') 
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8.3  Appendix C: ARIMA Daily Forecasting Script 
 

# 1. Import necessary libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from statsmodels.tsa.arima.model import ARIMA 

from sklearn.metrics import mean_squared_error, mean_absolute_error 

 

# 2. Load dataset 

data = pd.read_excel("Summer_hourly_energy_data.xlsx") 

 

# 3. Create walk-forward validation loop 

train = data["Flat 1 energy (kWh)"].values 

test = data["Flat 2 energy (kWh)"].values 

 

predictions = [] 

history = list(train) 

 

for t in range(len(test)): 

    # 4. Fit ARIMA model and predict 

    model = ARIMA(history, order=(1,0,0)) 

    model_fit = model.fit() 

    output = model_fit.forecast() 

    yhat = output[0] 

    predictions.append(yhat) 

    obs = test[t] 

    history.append(obs) 

 

# 5. Store actual and predicted values 

actual = pd.Series(test) 

predicted = pd.Series(predictions) 

 

# 6. Plot bar plot comparing actual and predicted values for Flat 2 

bar_width = 0.35 

index = np.arange(len(actual)) 

 

fig, ax = plt.subplots(figsize=(12, 7)) 

bar1 = ax.bar(index, actual, bar_width, label="Actual (Flat 2)", 

color="blue") 

bar2 = ax.bar(index + bar_width, predicted, bar_width, 

label="Predicted", color="red") 

 

ax.set_xlabel("Hour") 

ax.set_ylabel("Energy (kWh)") 

ax.set_title("Actual vs Predicted Energy Consumption for Flat 2") 

ax.set_xticks(index + bar_width / 2) 

ax.set_xticklabels([str(i) for i in range(24)]) 

ax.legend() 

plt.show() 
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# 7. Calculate and print RMSE and MAE 

rmse = np.sqrt(mean_squared_error(actual, predicted)) 

mae = mean_absolute_error(actual, predicted) 

print(f"RMSE: {rmse}") 

print(f"MAE: {mae}") 

 

# 8. Create a dataframe to store the actual, predicted values, errors 

and MAE, RMSE 

results = pd.DataFrame({ 

    'Actual': actual, 

    'Predicted': predicted, 

    'Error': actual - predicted, 

    'Absolute Error': np.abs(actual - predicted) 

}) 

 

# Add the RMSE and MAE to the bottom of the dataframe 

results = pd.concat([results, pd.DataFrame([[np.nan, np.nan, rmse, 

mae]], columns=['Actual','Predicted','Error','Absolute Error'])]) 

 

# Print the results 

print(results) 

 

# Write to an Excel file 

results.to_excel('results1.xlsx') 

 


