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Abstract 

 

Shear-thinning fluids are numerically investigated using a model in Star CCM+ of a 

cross-slot configuration, imposing equal flow velocities at the inlet channels. The 

main technique used is a ramp down in generalised Reynolds number to investigate 

the effects on the central inertial instability during the steady-asymmetric flow above 

the critical conditions, and the transition towards a steady-symmetric flow below the 

critical conditions. The central vortex of the shear-thinning fluid results is 

numerically analysed and then compared with the Newtonian equivalent. The 

behaviour is characterised depending on the imposed generalised Reynolds number. 
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1.0 Introduction 

 

The development in rheology and microfluidics in the last few decades has led to a 

great number of improvements in different fields, ranging from industrial, medical to 

engineering. The more understanding that is acquired through investigation about 

different configurations and different types of fluid, the bigger the capacity is to 

exploit these rheological behaviours and range of operations, which can later be 

extrapolated and implemented in an extensive range of applications.  

This paper is a numerical investigation of the effects of different fluids on the inertial 

flow instability that occurs in a cross-slot configuration. A systematic review of 

existing literature is done, starting from the basic principles and goals of rheology 

and microfluidics, to discussing different investigations in 2D planar mesh and 3D 

volume mesh published articles and ending in a detailed review on past work 

performed on cross-slots. There exists an enormous body of literature regarding 

Newtonian fluids, but not as much has been characterised for non-Newtonian fluids. 

The results of this investigation will aim to fill some gaps in the literature of shear-

thinning fluids.  

This investigation will use the Power law model to model shear-thinning fluids in a 

cross-slot configuration. Star CCM+ was used as a computational fluid dynamics 

simulator. A process of validation was performed comparing analytical results 

obtained from equations with the results extracted from Star CCM+ for a 2D straight 

channel with different power law fluids, and a simple Newtonian fluid in a 3D 

straight channel. This step gives a certain level of confidence in the results that will 

be obtained from the investigation, establishing that the model works in the way it is 

supposed to.  

The main body of the investigation focuses on the numerical analysis of an inertial 

flow instability using computational fluid dynamics to simulate shear-thinning fluids 

in a cross-slot configuration. The simulations for each different fluid are started by 

imposing a high generalised Reynolds number, well above the critical value, and 

perform a ramp down process. The aim is to observe the transition from steady-

asymmetric flow to steady-symmetric. These results are then compared to the 

equivalent Newtonian fluid to characterise any differences. The focus of this study is 
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on the central inertial flow instability that occurs at the intersection of the geometry, 

where the stagnation point occurs. This is the most distinguishing characteristic of 

the configuration used. The results from the investigation will be presented in a 

dimensionless manner so the data is easier to extract and extrapolate for other uses. 
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2.0 Background Review 

 

Rheology is the term that describes the science of flow of matter and deformation. 

This independent branch of science is relatively new, having emerged less than a 

century ago. This term was invented in 1929 by E.C. Bingham and his Lafayette 

College associates [1]. This science came to be from the observations of abnormal 

behaviour of fluids, or non-Newtonian as we know it today, in popular materials such 

as paint, clay, oil… Paint is meant to be a liquid but when applied to the wall it 

adheres without sagging down, which would not happen with water. The modern 

concepts of liquid and gas are also essentially models which were mathematically 

represented by the efforts of Robert Hooke and Isaac Newton [2]. When research 

into this kind of abnormal materials began, the term solids and liquids were found to 

not be enough to describe their properties, due to the fact that some of these non-

Newtonian fluids had both liquid-like and solid-like properties. 

All of the natural sciences attempt to deal and understand reality with the use of 

phenomenological models. This is a scientific model that empirically describes the 

relationship of phenomena to each other. Any model is used as a tool to understand 

not all, but the most significant characteristic features of the material under 

investigation.  

In rheology there is a first main goal, which is to investigate and establish the 

relationship that happens between applied forces and geometrical effects caused by 

such forces at a point of interest. The next independent goal of this science would 

consist of developing relationships between the molecular composition and the 

rheological properties of a material.  

By common approval, rheology is known to be a difficult field. This is surely the 

most common first impression a newcomer would have. As stated in the book “An 

introduction to rheology”, due to the interdisciplinary nature of the subject, most of 

the engineers and scientists who join are forced to move away from a normally 

restricted area of expertise and have to develop a much broader scientific approach 

[3].  
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Rheology, as mentioned above, is a multidisciplinary science which has its main 

relationship with chemistry and physics. The link with physics is that both are based 

on predictions and explanations of rheological properties through fundamental laws 

of physics and knowledge of molecular structure. On the other hand, rheology’s 

connection to chemistry can be expressed by existing experimental proof of direct 

correlation between rheological properties and chemical parameters [2]. Individuals 

who work in rheology must become comfortable with specific well-defined sub-

areas. These would be rheometry, constitutive equations, calculations of the 

behaviour in complex flows and the measurements of behaviour of the flow in 

complex geometries [3]. 

The main theoretical concepts are kinematics, conservation laws and constitutive 

relations. Kinematics addresses the geometrical aspects of deformation and flow. 

Conservation laws deal with stresses, forces and energy interchange. Constitutive 

relations are used to relate the forces and motion in order to complete the description 

of the flow processes. This may then be used to solve engineering problems, as this 

paper will do. Constitutive equations, also known as rheological equations of state, 

are equations that relate appropriately defined deformation and stress variables. 

These can be derived from a microrheological perspective, in which the molecular 

structure is considered principally. A different approach is to have the macroscopic 

perspective, also known continuum. This way the individual microscopic behaviours 

are not directly addressed. 

All materials in the real world possess a microstructure at the molecular, crystal, or 

further level. In mechanics we do not normally consider the discrete nature of matter. 

The area of interest usually resides in the large-scale phenomena which involves the 

average behaviour of a very large number of units of the microstructure. Continuum 

mechanics studies the mechanical behaviour of solids and fluids at a macroscopic 

level. It is the mathematical study of the response of these ideal bodies to 

deformations and applied forces [4]. 

As previously mentioned, rheology appeared from the study of abnormal fluids. 

Newtonian fluids are simple and behaved in expected ways, as can be described by 

the Navier-stokes equation [5]. This equation cannot be applied to non-Newtonian 

fluids due to their complex structure. Some of these non-Newtonian or rheological 

effects which have been studied are Shear-rate dependent viscosity, Normal-stress 
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effects in steady flows and Transient responses in unsteady shear flows. In this paper, 

the focus will be on Shear-rate dependent viscosity. 

Shear-rate dependent viscosity means that their viscosity is correlated on shear rate 

or the deformation history. For the dependency on the shear rate there would be 

shear-thickening, in which the viscosity increases with increasing shear rate, while 

shear-thinning- on the other hand, its viscosity decreases with increasing shear rate. 

Viscosity is normally the most important parameter in engineering applications. 

Fluids that depend on deformation history are called Thixotropic fluids. This 

behaviour can be defined with the following equation: 

Eq 1                  τ=ηU/d=ηγ ̇ 

 

The shear stress (τ) is related to the shear rate (γ ̇) by the shear viscosity (η), while U 

is the velocity and d the distance of the velocity profile [1]. 

Another behaviour of these materials in shear is the time-independent non-

Newtonian fluids. When the structural changes with time are ignored, there is a 

possible model for inelastic, non-Newtonian fluids given by this equation: 

 

Eq 2                  du/dy=γ ̇=f(τ) 

The equation above suggests that the shear rate (γ ̇ ) at any location in a fluid is a 

function of the shear stress (τ) at that same point. These models for fluids can be 

called non-Newtonian viscous fluids or generalized Newtonian fluids. By developing 

such models, they give us the chance of predicting the behaviour of these fluids and 

even take advantage of certain properties. These fluids can be divided into three 

groups, depending on the nature of the previous equation. These are Bingham 

plastics, pseudo-plastics (shear-thinning fluids) and dilatants (shear-thickening 

fluids) [1]. 

As discussed, models are tools to characterise the most important characteristic 

features of the matter to be studied. Having the capability to accurately characterize 

and analyse non-Newtonian fluids is a vital skill when it comes to the manipulation 
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and distribution of these fluids. This topic of research has been going on for decades 

having developed numerous different models addressing different features at 

different levels of complexity to achieve their analysis. A simple model, which will 

be the one used in this paper, is the Power-law model. This model is also known as 

the Ostwald de Waele relationship. This model is described by the equation below: 

Eq3              η=Kγ ̇^(n-1) 

 

 Where η is the viscosity, n is the power law constant and K is the flow consistency 

index. This model is used to place non-Newtonian data along shear rates where there 

is no indication of a Newtonian Plateau [6]. The power-law model is one of the most 

famous models due to its simplicity, having only two fitting parameters, while other 

models used for similar cases such as the Carreau-Yasuda model or Cross model 

have up to 4 or 5 fitting parameters, making them much more complex.  

The power-law constant (or flow behaviour index) will be used to classify the fluids 

to be simulated. Based on the power-law index (n), if n<1 the fluid will exhibit shear-

thinning (or pseudo-plastic) behaviour. The smaller the value the higher the degree of 

shear-thinning characteristics. If n=1, the fluid has Newtonian behaviour. If n>1, the 

fluid exhibits shear-thickening (or dilatant) characteristics, increasing with increasing 

index value. 

In the last century technology has been developed at an exponential rate, giving 

access to fields of investigation that were not even considered previously. An 

example of these is the field of miniaturization. In the last decades, a significant 

amount of progress has been achieved, making it now possible to miniaturize all type 

of systems. Some examples of this could be fluidic, mechanical or even 

electromechanical up to sub-metric sizes. Less than half a century ago, in the 1980s, 

the progress made in miniaturization gave birth to a new field which is called MEMS 

(microelectron-mechanical systems. Once the potential of this was acknowledged, 

this field diversified into all kind of applications such as biological, chemical or 

biomedicine.  The way these systems worked was by employing flows working 

under unknown and strange conditions. This led to the rise of a new field called 

microfluidics [7].  
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A simple way to define microfluidics is the study of the flows which are circulating 

in an artificial microsystem. Its both the science which studies and analyses the 

characteristics of these fluids, and at the same time manufacturing technology which 

creates miniaturized devices with different geometric configurations. 

The first devices in this field appeared at the end on the1980s in two different places. 

At IBM in 1977, ink jet printer nozzles were in the process of development. This set 

of uniform nozzle arrays was a crucial part of actually implementing high speed and 

high resolution ink jet printing [8]. Stanford University was performing research 

involving a gas chromatograph system in 1979 [9]. This impressive device worked 

by circulating gas through microchannels made in silicon. It was based on a 

miniaturized thermal detection and a miniaturized electromagnetic injection. All this 

was within a single chip which only measured a few centimetres in width. Only 

about 20 years later, people realised the numerous advantages of microfluidics, 

which made this field gain the spotlight. After that moment, all kind of microfluidic 

systems began to be manufactured, such as the electroosmotic pumping system, 

micromixers, DNA amplifiers, chemical microreactors and many more [10]. This 

enabled a whole new level of precision and efficiency to be added to many different 

fields. 

Two main ways of simulating fluids exist. These are 2D and 3D. However, like most 

things, there are advantages and disadvantages to both types. To begin, 2D flows are 

not real, in the way that they do not exist in nature. Some configurations are similar 

to this, such as flow over a plate, but they will lack some key characteristics only 

present in 3D. Also, 2D can give us useful approximations such as aerofoil analysis 

in aerodynamics.  When comparing fluids simulated with a planar mesh (2D) and a 

volume mesh (3D), sometimes the differences can be predicted. In the case of a flow-

mixing configuration, if the volume mesh cross-section is rectangular, it will have a 

similar result than the planar mesh. Most of the phenomena in fluids are never purely 

2D. 2D simulations will run significantly quicker than their 3D counterpart. This is 

because as there is a whole less dimension, this will reduce the individual points to 

evaluate, reducing the number of equations required for the simulation. This can be 

explained by the square-cube power law [11], the scale of the problems depending on 

the resolution of the mesh chosen go up by a factor of L^2 . When you perform a 3D 

model, the scale of the problems go up in a scale of L^3.  



Student No. 202076168    

When reviewing planar mesh investigations, a popular tendency can be observed that 

inclines studies towards analysing certain characteristics of fluids. These can be wall-

effects, different configurations, drag coefficients and the effects of variations of 

blockage ratio and flow patterns on different types of fluids. The fluids of interest 

will be Newtonian, Shear-thinning, or Shear-thickening. 

 

It would be no surprise if the amount of literature on the subject of bluff body wakes 

that has been developed since the start of early last century would impress any 

newcomer. The fact that so much investigation has been focused on this field just 

shows both the difficulty of first understanding, and then describing appropriately the 

flow behaviour under different conditions that would occur in a viscous flow. Even 

flows which have a relative simple configuration, like those past a cylinder, have 

managed to attract the interest of scientists from different fields into the array, which 

after decades has only just recently started to reach consensus on the matter. This is 

an attestation of the complexity of the subject.  

In a paper published in 2004 [12] the existing literature is commented upon. It can be 

seen that some simple effects of varying the blockage ratio have already been 

described. One would be that in the steady flow regime, if the blockage ratio is 

increased by bring the walls closer together whilst maintaining the dimensions of the 

cylinder derived in the emergence of twin vortices in the region of the cylinder wake, 

happening at high Reynolds number. Another effect described is that at any Reynolds 

value lower than 50, and for a blockage ratio smaller than 0.2, the closed vortex 

bubble decreases in length with wall proximity. When performing experimental and 

numerical investigations, bounded domains give a more definite specification of the 

rheological behaviour of the flow, than in the unbounded cases. This paper 

performed a velocity-only numerical investigation of the effect the walls would have 

when increasing blockage ratios in a two-dimensional flow past a cylinder. They 

focused on investigating this effect on certain properties, these were stability, wake 

structure, hydrodynamic forces and Strouhal number [13]. One of the behaviours 

they found showed that for Reynold’s value under 280 and a blockage ratio of 0.9, 

there was (minimum) three individual curves of neutral stability. 
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An article released in 2007 investigated the behaviour of drag coefficient and wall 

effects on power-law fluids across a circular cylinder in a confined channel [14]. As 

stated in the paper, due to previous efforts in the field, an extensive amount of 

information on transverse flows over a circular cylinder in an unconfined 

configuration exists. On the other hand, there is a lot less known about the effect of 

including confining walls on the flow behaviour, even for simple fluids. This is one 

example of the stage at which this field is at, having a lot to be analysed still. A 

significant wide variety of different conditions were computed, these were the 

Reynolds number (between 1-40), power-law index (between 0.2-1.9, therefore 

covering shear-thinning, Newtonian and shear-thickening) and the blockage ratio 

(between 4-1.1).  Many extremely useful and applicable results were obtained for 

different properties, like drag phenomena (pressure drag coefficient, friction drag 

coefficient, total drag coefficient, and drag ratio), detailed flow characteristics 

(streamline patterns, surface pressure coefficient). They observed that independently 

of the blockage ratio between the cylinder and the walls (β), there was an 

improvement in the drag coefficient when the shear-thickening tendency of the fluid 

increased. Conversely, the shear-thinning exhibited the opposite dependence. 

Another characteristic observed was that the confining walls apparently delayed the 

separation of the flow in the case of shear-thickening fluids, while the opposite 

behaviour was observed for shear-thinning fluids. The behaviour of power-law fluids 

was computed, observed and analysed in order to improve our understanding of these 

complex fluids. This research has an extensive range of applications in the real 

world. Some of these examples could be pin or tubular heat exchangers [15], where 

more understanding of the behaviour of flow around certain geometries and the heat-

exchange occurring under certain conditions may enable us to develop much more 

efficient heat exchangers. 

The more knowledge is acquired in this field, the more apparent it is that there is so 

much more to study by performing similar investigations but under different 

conditions and parameters due to the complexity of some rheological behaviours. An 

article which was published in2019 in a journal of applied mathematical modelling 

[16] shows that the level of investigations is evolving to be much more complex and 

is carried out over a wider array of conditions. This numerical study was done again 

on the effects of the blockage ratio but was performed under one cylinder and two 

cylinders in tandem, confined, and unconfined, 2D and 3D. Even further, different 
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power law fluids were implemented adding to the complexity. The rheological 

behaviour on the flow movement of the different fluids was numerically studied. 

This particular arrangement, when contemplated about in the physical point of view, 

the case of the tandem cylinder configuration is related to a wide range of variables 

that define the rheological behaviour. Some of these variables are the number of 

cylinders implemented, the distance between these and the influence of different 

Reynolds number. The power-law model was used as a constitutive model in order to 

observe correlations that could be extrapolated to other fluids with a higher level of 

complexity. One of the applications of this specific study could be to utilise these 

rheological behaviours as the basic principle for an innovative design which could 

promote different mixing capacities by changing the working fluid used [17]. This 

type of approach has proven really useful, shown in the conclusions of this paper. 

Some of them are that shear-thickening fluids have a higher critical Reynolds 

number when comparing it to shear-thinning fluids in confined cases of both one and 

two cylinders. On the other hand, it was also concluded that shear-thickening fluids 

have a lower critical Reynolds number than shear-thinning for the unconfined cases. 

Many more conclusions about the effects the addition of another cylinder, increased 

confinement and 3D cases were described.  

The set of literature for flows around cylinders is significantly extensive, owing that 

to the extensive range of applications this geometric configuration has. Heat 

exchangers is one of the most popular applications, where more knowledge of the 

interaction between the geometry and the fluid could lead to devices with 

significantly increased efficiency. Some of the applications can also be on a large 

scale, such as with offshore wind farms, where the underwater structure tends to have 

circular cross-sections and one of the most important requirements for this case is 

stability and robustness [18]. Also adding that lower drag would lead to less erosion 

and decay of the components, leading to cheaper maintenance.  

Non-Newtonian fluids are also crucial for a wide spectrum of scientific fields. Some 

engineering applications could be polymer and food industries, due to the non-

Newtonian nature of many of the fluids manipulated. Biomedical engineering and 

medicine also benefit from increasing knowledge of the rheological behaviour of 

non-Newtonian fluids because of the complex body fluids, such as blood [19]. All 

the knowledge obtained from studies and investigations can be extrapolated into 

numerous different fields with alternative operating conditions and geometries.  
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An alternative type of configuration for a 2D planar mesh could be of a sudden 

expansion. In 2013, a journal was published on a numerical investigation that was 

performed in a 1:3 ratio planar sudden expansion for power-law fluids [20].  The aim 

of this experiment was to investigate the rheological behaviour of power-law fluids 

when encountered by a sudden expansion. In the case of a Newtonian fluid, as the 

literature already exists, at a low/moderate Reynolds number when it encounters a 

sudden expansion in a 2D channel, flow separation occurs creating a pair of 

symmetric recirculating eddies along the walls going downstream. If the Reynolds 

number was increased above a certain critical value, the vortices will evolve into 

steady-asymmetric. The Reynolds was increased even further in the hope of finding 

some rheological phenomena, which did happen when a third vortex was formed 

downstream of the two vortices mentioned previously. The range of power-law fluids 

that was analysed went from 0.2-4, giving the properties for Newtonian, shear-

thinning, and shear-thickening. In addition, in this journal the Generalised Reynolds 

number was utilised instead of the conventional Reynolds number, which will also be 

used in this paper later. Some of the conclusions brought in the journal are quite 

interesting. One being that the bifurcation in the flow is delayed in the presence of a 

shear-thinning fluid when compared with the Newtonian. As expected, for the shear-

thickening fluid the behaviour was seen earlier than for the Newtonian. The 

characteristics of the recirculating eddies at the walls also changed, making them 

more elongated as the shear-thickening behaviour was intensified. For the shear-

thinning, they became more curved the more shear-thinning the fluid was.  

Using 3D volume meshes, as mentioned before, has different implications to the 

previous 2D examples discussed. When using 3D meshes the level of complexity 

evolves significantly, but so also do the possibilities of configurations and 

rheological behaviours. In this field, as seen in the literature, different fluids are 

investigated but are not as focused on configurations such as flow over cylinders, the 

interest being in completely different geometric configurations. Two of the most 

popular and useful properties of 3D investigations is the ability to mix two fluid 

flows and the manipulation of particles on the micro and nanoscales. Deriving from 

the increased use of microfluidic devices across many fields, such as biomedical 

diagnostics and chemical fields, the ability to manipulate a particle or mix two fluids 

has become an extremely tempting field of research. These devices are usually 

needed in a really small scale, and because of this, the inertial forces are normally 
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small, therefore laminar flow is predominant. This behaviour makes the process of 

mixing fluids rely on molecular diffusion. This is significantly inefficient when 

compared to turbulent convective mixing. Some of these can be a T-shaped, H-

geometry and cross-slot. A review of previous work using these configurations will 

be done observing the different characteristics of each configuration as well as the 

potential applications these could have. 

The T-geometry is widely popular due to its simplicity and applicability. It is 

established that above a certain Reynolds number (dependent on aspect ratio), the 

flow can break symmetry inside a 3D T-channel. This phenomenon has been used as 

a method of improving mixing in microfluidic channels. When investigated, it has 

been shown to produce significant increases in mixing quality beyond the bifurcation 

and the intersection. The geometry consists of two-square inlets and an outlet which 

has an equal combined area.  The two inlet opposing channels join at the intersection 

turning 90 degrees. It was found out that the resulting flow in this configuration in 

the outlet channel can be characterized by three flow regions within the steady flow. 

These would be “vortex” flow, “stratified” flow and “engulfment” flow [21]. 

A journal in Chemical Engineering Science investigated the effects of shear-thinning 

and aspect ratio on this configuration [22]. The investigation consisted of exploring 

the critical conditions which derived in the steady symmetry-breaking phenomenon. 

This was done by varying the aspect ratio of both inlet channels over a considerably 

wide range. It was possile to show that the change in flow behaviour, going from 

symmetric to asymmetric was (in most cases) a steady supercritical pitchfork 

bifurcation. It was confirmed than an existing relation for attempting to predict the 

critical conditions can fail to work under specific combinations of aspect ratios. 

The H-geometry configuration is a bit harder to understand than the T-geometry. It is 

made up of two straight square parallel channels where the flow of the fluid enters 

the channels in opposite directions. It has a central gap between the channels that 

allows both flows to interact. When the conditions are under creeping-flow, the flow 

seems steady planar and exhibits a sharp interface between the two flows. When the 

Reynolds number goes over certain critical value, one out of two possible behaviours 

may occur. These would be supercritical inertial instabilities which alter the flow 

pattern significantly. This produces the two flows to interact much more while 

remaining steady. The behaviour of the instability can be altered by varying the size 
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of the gap between the channels or by varying the Reynolds number. Two 

instabilities were identified, one of them appears in configurations with a relatively 

small gap size, while the other appears with big gaps. When using a value in between 

these two gaps both instabilities will appear at the same time [23]. Having the ability 

to control the combining and separation of fluid flows in a microscale has a vast 

range of applications within the industrial, scientific, and medical fields. 

Cross-slots have recently become popular within the extensional flow configurations. 

This is thanks to the ability to enable a variety of different operations and 

geometrical simplicity.  

A cross-slot geometry is composed of 4 intersecting channels. Two of which are 

opposing inlets and the other two are opposing outlets. The two inlets have a 

particular fluid flow which is imposed to be at the same flow rate, where they meet at 

the centre of the configuration and interact. When they meet, a stagnation point is 

generated at the centre. This characteristic is the trademark characteristic of this 

configuration. For small Reynold’s value (below critical), the flow remains steady-

symmetric and could be seen as an almost 2D flow. When the Reynolds number is 

increased above the critical value the behaviour of the flow changes dramatically, a 

single-spiral vortex is created, and the flow evolves a bifurcation to a steady-

asymmetric state. From this state at the intersection, an axially-aligned spiral vortex 

extends through the outlet channels  

 The ability of creating a stagnation point without the need of an obstacle like a 

sphere is an extremely useful property in a lot of fields. The most important property 

of these stagnation point flows is that fluid “particles” are stuck at the stagnation 

point and are put through high strain rates for finite time, or they are put through high 

velocity gradients at the area around the stagnation point for limited time too. The 

significance of stagnation point flows was firstly addressed by Taylor, who in 1934 

created the four-roll mill design. The device consisted of a square container with a 

hole through which fluid was added. This square device contained four cylinders at 

each corner, powered by shafts linked to a pair of cylinders, which rotated at equal 

speeds but in opposite directions thus creating a specific flow with a stagnation point 

at the centre of the configuration [24]. This device enabled Taylor to create powerful 

extensional flows using a matrix fluid and further deformations. It could even 

provoke the break-up of particular droplets by catching them in the stagnation point.  
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The cross-slot configuration can be seen as a fundamental base-case geometry. It 

represents a stagnation point and planar intersecting forming flow geometry. The 

more that is understood about the behaviour of flow in this geometry and as the body 

of literature grows, the more applications of fluidic systems this configuration could 

be utilised for. 

An article published in 2016 investigated the fluid flow within a cross-slot 

configuration while varying the depth to width ratios [25].  The creation of vortices 

with a Reynolds value over a moderate one in the configuration was analysed. The 

difference in the pattern of the flow was compared with the Taylor vortex formation, 

while demonstrating that it is due to extensional flow in the vicinity of the stagnation 

point instead of by centrifugal effects. One of the observations done was when using 

a deep cross-slot cross-sections, the instability takes the shape of a pile of 3D spiral 

structures that can be seen in the central intersecting region. It was also demonstrated 

for a flow with a Reynolds value above the critical value in cross-slot configurations, 

that the steady spiral vortex instability seen is well expressed by a Landau model. 

New information found performing these investigations can be implemented in many 

different fields. Many areas of research, such as viscoelastic fluid properties and 

macromolecular dynamics [26] [27]. It can also be used to control deformations in 

particles [28]. Only recently, it was also shown that a microscale device utilised the 

flow instability within the cross-slot promoted mechanical scission of polymer chains 

[29]. 

Another approach in investigations using the cross-slot device can also be varying 

the working fluid, instead of changing the dimensions as in the example above. The 

same journal published an article addressing this in 2017. The investigation consisted 

of studying the effect of adding quantities of a flexible polymer into the working 

fluid, in this case a Newtonian solvent [30]. It was shown that by doing this mixture, 

there was a significant effect on the onset conditions for the flow instability, and 

therefore the growth of the axially aligned vortex. This investigation facilitates the 

study of these interactions between the inertial flow instability and the altered 

elasticity properties. It was seen that while slowly increasing the elasticity properties, 

the flow was destabilised at a significantly small critical Reynolds value than for the 

simple Newtonian example. This investigation approach can be used in industrial 

applications by extrapolating the knowledge acquired and implementing it in 

industrial properties with similar working conditions.  



Student No. 202076168    

A more recent article released in the journal of non-Newtonian fluid mechanics 

numerically investigates the behaviour and effects of viscoelastic fluids in a 3D 

cross-slot device [31]. The shape of the channels used for this study was square 

cross-section, having an aspect ratio of 1, maintaining it at that value throughout the 

investigation. This study focuses on the effect on the inertial instability above certain 

critical Reynolds number which leads to a steady-asymmetric flow. The results 

released here show how utilizing different models for viscoelastic fluids will have an 

impact on the behaviour of the instability in the central region of the configuration. 

All the models used showed a common rheological behaviour, changing the onset 

critical conditions for the flow asymmetry. All the data demonstrated the critical 

Reynolds value was lower compared to a Newtonian fluid, both for decreasing and 

increasing ramps. The results also showed a hysteric behaviour between both ramps 

for the critical conditions of the flow transition, which also happened for the 

Newtonian fluid.  

As seen by the extensive existing literature related to cross-slots, due to the 

properties of the configuration, it has countless fields where it could be used. Cross-

slots can be used in experimental techniques due to its planar nature. This permits the 

behaviour of complex fluids subject to extensional flow regions in order to be 

understood and characterized. Another use of cross-slots could be rheometers, due to 

its ability to manipulate particles enabling large deformations around the stagnation 

point to be done [32].  The field of biomedical research would also benefit from this 

configuration, individual cells could be trapped within the stagnation point and 

analysed in detail, enabling manipulation of individual particles, such as DNA 

molecules [33]. As previously discussed, microfluidic device flow tend to reside in 

the laminar regime, which makes mixing a complicated task. The instabilities and 

non-linearities could be utilised as an advantage to enhance mixing qualities. The 

characteristic of the spiral vortex could also be used to enhance heat-transfer ([34], 

offering an effective alternative instead of modifying the geometry or requiring 

external forcing.  
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3.0 Problem description  

 

In this investigation a cross-slot device was used to exploit the inertial flow 

instability phenomenon of this configuration and an analysis was performed on 

the behaviour of Newtonian and Shear-thinning working fluids. The 

computational fluid dynamics software (Star CCM+) used to achieve the study 

was initially validated using a 2D planar mesh channel and 3D volume mesh 

channel with analytical equations in order to validate the accuracy of the 

software. Once this was completed, a cross-slot configuration was created. 

The device used in this experiment is made by mutually bisecting channels. 

These square-channels can be seen in Figure 1, measuring 1m x 1m and being 

of constant height and width.   

 

 

Figure 1- Front view of inlet channel A (Mesh scene) 

 

 

In figure 2, a top view of the configuration can be seen. The horizontal channels 

(aligned with the x-axis) are the two inlets, flowing in equal but opposite 

directions towards the centre. The inlet channels have a length of 20 metres, 

long enough to allow the fluid velocity profile to be fully developed. This 

development was also verified using a line probe (line probe 3) along the inlets. 

This would make any rheological behaviour of the flow in the intersection and 

after be due to the inertial instability created by the device.  The two vertical 

channels (aligned with the y-axis) are the outlets, where the axially aligned 

vortex flows and dissipates. In order to create a nicely refined mesh for the 

device, 5 different bodies were created, these being the two inlet channels, two 

outlet channels and the centre cube where the intersection occurs. The flow 

was initially imposed at a predetermined velocity at the velocity inlet in the 

inlet channels. This fully developed flow then meets in the centre cube where 

it interacts and is released through the two outlet channels towards the pressure 

outlet. A directed mesh was utilised with a base size of 0.05m, as seen in Figure 

1. As the centre and outlet channels are linked to the inlet channels, once the 
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mesh is modified in the inlet channels the base size of the other three connected 

bodies is modified automatically to match. A one-sided geometric stretching 

function was utilised for both the inlet channels and the outlet channels, 

concentrated towards the centre so there was a higher resolution in the region 

of interest. Both sets of channels had different values for the function to achieve 

a refined mesh. The inlet channels had 40 layers and a stretch value of 1.12, 

while the outlet channels had 45 layers and a stretch value of 1.1, to create a 

nice transition of the meshes between the bodies, as shown in Appendix 1. 

 

 

 

 

 

 

Figure 2- Top view of cross-slot configuration 

 

 

 

 

 

 

The physics model chosen for the working fluid was a constant density, laminar, 

steady, three-dimensional flow. These conditions were chosen to emulate the best as 

possible the microfluidic conditions. The liquid that was chosen was water (H2O) with 

slightly different properties. The density was rounded from 997.6 kg/m^3 to 1000 
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kg/m^3 and the dynamic viscosity from 8.89x10^(-4) Pas to 1〖x10〗^(-3)Pas. This 

was done for the convenience of calculating the flow velocities for different 

generalised Reynolds values. The model of fluid that was chosen in the software was 

‘non-Newtonian Generalised Power Law’ model.  

 

 

 

This study performed ramp-down investigations on three separate power law index 

values (explained in the next section). These values were n=1 (Newtonian), n=0.8 

(shear-thinning) and n=0.6 (“more” shear-thinning). The simulation investigations 

were initiated by imposing equal velocities in the inlet channels towards the 

intersection at high Generalised Reynolds value (above critical Reynolds value, Re=50 

for Newtonian and Re=75 for non-newtonian). Once this was completed, the inertial 

flow instability at the meeting point was observed and measured. Two important 

numerical aspects of the simulations were analysed, the x-component of the velocity 

at the stagnation point using a line probe (line probe 2) to measure the data, at x=y=0, 

along the z-axis. The full profile was obtained and from that data the peak velocity was 

also recorded separately. Once the residuals stabilised and the results were constant 

and recorded, the imposed velocities at Inlet A and Inlet B were reduced by a value of 

5 Reynolds number. Each time this was done, the data was recorded to observe the 

inertial flow instability and the axially-aligned vortex. When these phenomena were 

no longer present, it meant the generalised Reynolds number used for the flow was 

below the critical. To achieve more accurate results, the simulation model before the 

inertial instability disappeared is used again. This time decreasing the generalised 

Reynolds value by 1 each time to characterise when exactly does the inertial flow 

instability dissipate and the critical Reynolds value is passed. This process was done 

to view the intensities of the inertial flow instability under different conditions and to 

characterise the transition ramping-down from a steady-asymmetric flow to a steady-

symmetric flow. 

 

Four main derived parts were used to numerically record the results as well as visually 

represent rheological behaviours. The image seen in appendix 2 shows a scalar view 

of the cross-slot configuration used. It shows the important derived parts which are 

line probe 2, line probe 3, plane section and streamlines. The line probe 2 seen in the 

centre of the configuration was used to measure the inertial flow instability as 

mentioned previously. This probe was located at x=y=o, along the z-axis (0 - 1m). The 

characteristic stagnation point of this configuration is at the middle of this probe, as 

will be seen in the results section.  Line probe 3 was placed along Inlet A to verify the 

development of the flow. It is located at z=0.5m, y=0 and spans along the x-axis (-20.5 

- 0m). A different kind of derived part was also added, this was a plane section 

representing the x and z axis, normal to y-axis, as can be seen in Appendix 2. This 

visual aid of the flow firstly represents how the flow fully develops and how it interacts 

when reaching the intersection. The fourth important derived were streamlines which 

had the plane section as a source and continued into the outlet channels. These visually 
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represented the axially aligned spiral vortex which appears at high generalised 

Reynolds number. 

 

4.0 Governing equations 

 

This study performs a numerical investigation in which the inertial flow instability 

occurs in a cross-slot configuration. The power-law model (Poiseuille flow) is used 

to characterise Newtonian and shear-thinning fluids used in the simulations. The 

critical conditions in which the flow transitions from a steady-asymmetric flow to a 

steady-symmetric are investigated in a ramp-down process. The flow for the different 

working fluids investigated was considered as incompressible, laminar, steady and 

was evaluated using a three-dimensional volume mesh simulation using a finite-

volume method. 

The base equations solved using numerical methods are the equations of mass and 

momentum conservation as represented below: 

𝛻 ∗ 𝑢 = 0 

Eq4 

𝜌 (
𝛿𝑢

𝛿𝑡
+ 𝑢 ∗ 𝛻𝑢) = −𝛻𝜌 + 𝛻 ∗ 𝜏 

 

Eq5 

 Where p is the pressure 𝜌 is the density, u is the velocity vector and 𝜏 is the stress 

tensor (KON 6).  

When studying conventional Newtonian fluids, the following Reynolds number is 

used as a dimensionless number to characterise the behaviour of the fluid. The 

Reynolds number is represented below: 
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𝑅𝑒 =
𝜌𝑈𝐻

𝜂
 

Eq6 

U being the flow velocity, H is the height of the channel and 𝜂 being the dynamic 

viscosity. This definition of the Reynolds number is good to use in cases where the 

viscosity remains constant. When investigating non-Newtonian fluids, other 

generalised Reynolds numbers must be used. As mentioned earlier, models are used 

to understand the most important characteristic features, therefore in this study a 

generalised Reynolds number will be used which removes the shear-thinning from 

the definition when using it with power law fluids. The generalised Reynolds number 

that will be used can be seen below: 

 

𝑅𝑒𝑔𝑒𝑛 =
6𝜌𝑈(2−𝑛)𝐻𝑛

𝐾[
4𝑛 + 2

𝑛 ]
𝑛

 
 

Eq7 

Where n is the power law index, which defines the type of fluid to be modelled, k is 

the consistency index. K is equivalent with the dynamic viscosity when rearranging, 

making them have the same value. When using a power law index value of 1 (n=1), 

the original Newtonian expression for the Reynolds number is recovered [20] 

In section 5, a validation process is performed comparing analytical results using 

equations and the results obtained from the Star CCM+ software. The initial 

validation is done in a 2D planar mesh using different power law index values, and 

using the velocity profile equation in Poiseuille flow through a slit, as seen below:  

 

𝑢1 =
2𝑛 + 1

𝑛 + 1
𝑈 [1 − (

𝑥2

𝐻
)

𝑛+1
𝑛

] 

Eq8 
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Where U is the imposed velocity at the start and the rest of the symbols maintain 

their meaning [14]. An easy way to visually verify if the results are on the right track 

is by calculating velocity as the centre (max. value) in a dimensionless manner 

diving it by U. When the power law index value is changed, the maximum velocity 

also changes, as will be seen in the validation section .  

The 3D volume mesh straight channel is a bit more complex as the number of 

parameters increases. The equation used for the 3D validation can be seen below: 

 

𝑢(𝑦, 𝑧) =
16𝑎2

𝜇𝜋3
(−

𝑑�̂�

𝑑𝑥
) ∑ (−1)

(𝑖−1)
2 [1 −

cosh (
𝑖𝜋𝑧
2𝑎 )

cosh (
𝑖𝜋𝑏
2𝑎 )

] 𝑥
cosh (

𝑖𝜋𝑦
2𝑎 )

𝑖3

∞

𝑖=1,3,5…

 

Eq9 

 

𝑄 =
4𝑏𝑎3

3𝜇
(−

𝑑�̂�

𝑑𝑥
) [1 −

192𝑎

𝜋5𝑏
 ∑

tanh (
𝑖𝜋𝑏
2𝑎 )

𝑖5

∞

𝑖=1,3,5…

] 

Eq10 

 

Where −𝑎 ≤ 𝑦 ≤ 𝑎  and −𝑏 ≤ 𝑧 ≤ 𝑏, Q is the volumetric flow rate (𝑚3/𝑠) [35]. 

The values of I in the summations was increased until the results variation was 

insignificant. The process to obtain the results was to first rearrange equation 10 in 

order to isolate (−
𝑑�̂�

𝑑𝑥
). Once all the iterations were complete, this was then included 

into equation 9, which then gave the analytical results for the velocity profile of a 

fluid flow along a rectangular section to validate.  

 

 

 



Student No. 202076168    

 

5.0 Validation 

 

In this section, the computational fluid dynamics software used (Star CCM+) is 

validated by creating some simple flow models and comparing them with analytical 

equations. This is done to make sure the results obtained from the simulation in 

section 6 are reliable. This is a two-step validation process. Firstly, a straight 2D 

planar mesh channel with constant dimensions is created to validate different power 

law indexes results with analytical equations. Any issues or mistakes ca be addressed 

at this stage to avoid difficulties when the model is more complex. Once this 

validation was completed successfully, a second validation was performed using a 

3D volume mesh straight channel. 

 

5.1 2D straight channel, power-law fluids velocity 

profiles 

 

The graphs showing the results for this section will start with the Newtonian fluid 

and decreasing power law index value (n=1, n=0.6 and n=0.4. Section 6 will also 

follow this order to be able to compare the results for the non-Newtonian fluids 

(shear-thinning) with respect to the Newtonian (n=1). This validation used equation 7 

for the generalised Reynolds number and equation 8 to obtain the analytical velocity 

profile. Table 1 shows the velocity values used for to achieve a generalised Reynolds 

value of 1, using three different power law index values. As mentioned previously, 

the consistency index has the same value as the dynamic viscosity. The consistency 

index, density and height are maintained constant while the imposed velocity at the 

inlet was varied to achieve a generalised Reynolds number of 1, to compare all the 

results. An extra column was added in table 1 to show the difference between both 

Reynolds definitions.  
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Table 1- Numerical parameters used to determine the generalised Reynolds number and the imposed velocity 

required for the 2D channel validation 

n Density  K 

(viscosity 

equivalent) 

U  H  nominator denominator 𝑅𝑒𝑔𝑒𝑛 Re 

1 1000 0.001 0.000001 1 0.006 0.006 1.000 1 

0.6 1000 0.001 0.00003384 1 0.003306387 0.003305071 1.000 33.84 

0.4 1000 0.001 0.00010051 1 0.002408164 0.002408225 1.000 100.51 

 

For the first simulation, as stated, was the Newtonian fluid (n=1), which can be seen 

in figure 3. The results were obtained from the simulation using Star CCM+, where a 

line probe was placed with a resolution of 21 to match the resolution of the mesh. 

The results were extracted numerically from the software and placed in an excel 

sheet where it was compared with the set of results obtained from using equation 8. 

The horizontal axis shows the normalised y-position (where the line probe was 

placed), making a span of 1m. The vertical axis is the dimensionless normalised 

speed, where the speed was divided by the imposed speed (u/U). If equation 8 is 

solved using n=1, the maximum value matches the maximum value on the graph, 

being 1.5U. As it can also be seen in the figures, both the results and the analytical fit 

perfect upon each other making an expected smoothly curved velocity profile. This 

proved the 2D planar mesh for n=1 was validated successfully. 
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Figure 3- Numerical results of Star CCM+ vs analytical results of the velocity profile of fluid N=1 in a 2D 

channel 

  

The second set of results in this section can be seen in figure 4. A power law index 

value of 0.6 was used in this model using the same procedure as with the Newtonian 

fluid previously. Figure 4 also shows how both the software results, and the 

analytical results overlap, making them match perfectly. When n=0.6 is included in 

equation 8 and solved, the maximum dimensionless value is 1.4U, once again 

matching with the results extracted from Star CCM+. This indicates that the 

methodology used to create the model in the software has been successful.  
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Figure 4- Numerical results of Star CCM+ vs analytical results of the velocity profile of fluid N=0.8 in a 2D 

channel 

 

The last set of validation results in this section are in figure 5, which show the 

validation of a power law index value of 0.4 on the 2D straight channel.  Same 

procedure was followed, proving equally successful. The analytical results match the 

software results perfectly, as the dimensionless maximum velocity is 1.3U for both.  
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Figure 5- Numerical results of Star CCM+ vs analytical results of the velocity profile of fluid N=0.6 in a 2D 

channel 

 

Figure 6 is a comparison between all 3 different power law index value velocity 

profile at a generalised Reynolds number of 1, as shown in table 1. It represents the 

difference in rheological behaviour this distinct property has. A way to describe this 

would be that n=1 has a lower gradient towards the walls but still achieves the 

highest peak amongst them. As the power law index value is decreased, the gradient 

of the line closer to the wall increases, but the centre region of the velocity profile 

flattens down the more shear-thinning the fluid is. The maximum velocities decrease 

from 1.5U, to 1.4U and finally 1.3U. This easily represents the impact of this 

property on the behaviour of the fluid. 
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Figure 6- Comparison of the velocity profiles for the three different fluids in a 2D channel 

 

 

5.2 3D straight channel, velocity profile 

 

This sub-section proved to be significantly more challenging than the previous sub-

section. This can be attributed to the added complexity of the 3D volume mesh 

straight square channel and the complex nature of equation 9 and equation 10 with 

respect to equation 8. Table 2 shows the imposed velocity used to achieve a 

generalise Reynolds number of 1, staying consistent with section 5.1 in order to 

model a square-section straight channel. 

 

Table 2- Numerical parameters used to determine the generalised Reynolds number and the imposed velocity 

required for the 3D channel validation 

n densti

y 

K 

(viscosity 

equivalent

) 

U H nominmato

r 

denominato

r 

𝑅𝑒𝑔𝑒𝑛 
 

Re 

1 1000 0.001 0.00000

1 

1 0.006 0.006 1.000 1 
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Equation 9 and 10 were used to obtain analytical results for this section. The values 

used were a=0.5m, b=0.5m (square-section). The values of i were increased in both 

of the equations until the variation of the result of the summation was negligible. 

Equation 10 was rearranged in a manner to isolate (−
𝑑�̂�

𝑑𝑥
). This solution was then 

included into equation 9, performing all the iterations required to obtain a full 

analytical velocity profile.  

When the analytical results were initially obtained using calculations in excel it 

matched perfectly with the results from the simulation, but due to a simple error in 

the excel analytical sheet, it had to be redone. The new analytical excel spreadsheet 

was obtained with accurate results but with a slight change. The new analytical 

results had 26 results in total. The initial results obtained from the simulated model 

were 20. This could be easily fixed but due to some issues with Star CCM+, the file 

could no longer be accessed. In appendix 3 a screenshot can be seen with the error 

encountered. The initial issue can be seen in appendix 4. The number of separate 

values differed between the correct analytical and the software results. This problem 

was initially addressed by modifying the resolution of the mesh (so that more 

velocities were calculated in the profile) and the resolution of the line probe used in 

Star CCM+. The technical problems occurring with the file adversely effected the 

results obtained. These effects can be seen in Appendix 5, where the simulation 

results gave the correct shape of the profile but with an unsmooth curve. The 

problem was not fixed by modifying the file model but by modifying the graph. As it 

can be seen in figure 7, the analytical results and the simulation results matched 

satisfyingly. The maximum values shown and the centre region behaviour show 

consistency.  
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Figure 7- Numerical results of Star CCM+ vs analytical results of the velocity profile of fluid N=1 in a 3D 

channel 

 

This validation is satisfactory, but as it can be spotted in figure 7 there is room for 

improvement. Both lines are not perfectly aligned close to the edge in the region 

beside the wall. This deviation could be improved by changing the mesh and line 

probe resolution so the same number is created in the model. By adding probes at the 

edge of the profile in the model, this would results in a more accurate results leading 

to a better validation. 
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6.0 Numerical results 

 

This section contains the results of the investigation of the inertial flow instability on 

the 3D cross-slot simulation in Star CCM+ of the Newtonian and shear-thinning 

fluids, the validation using a mesh with a significantly higher resolution for each set 

of results as well as a verification that the flow along the inlet channels is fully 

developed before encountering the intersection.  The strategy to illustrate the results 

for the inertial flow instability for the different fluids was to initially obtain the 

results from the Newtonian, then the results for both shear-thinning fluids are 

compared with the equivalent Newtonian behaviour as a reference. This will be 

presented in section 6.1.. In this study, ramps are done only down in generalised 

Reynolds number to investigate the transition from steady-asymmetric to steady-

symmetric flow, obtaining the critical generalised Reynolds number which 

characterises the offset of the instability. The results for the different ramp-down 

velocity profiles of the x-axis velocity magnitude located at the stagnation point in 

x=y=0 along the z-axis are presented in presented obtaining the numerical results 

using line probe 2, that can be seen in appendix 2. The maximum values for each 

different generalised Reynolds number are then extracted and presented in a different 

graph so that the characteristics of the rheological behaviour can be studied. An 

additional table is included which contains the value of the main generalised 

Reynolds numbers which characteristics the behaviour, such as the critical 

generalised Reynolds number. When some results are presented using a 

computational fluid dynamics software, a process of validation much be done. 

Section 6.2. contains the validation process performed for each different fluid. This 

was completed by comparing the original results with the equivalent results of a 

mesh with a higher resolution, making sure that the variation when compared was 

acceptable and spot any difference in behaviour. This simulation was extensively 

more computationally demanding and required almost 12 hours for the residuals to 

stabilise. This allows the results presented in this investigation to be more reliable. 

To finish the numerical results section, a verification of the fully developed inlet 

velocity profile of the flow is included. The flow is initially imposed with equal 

velocity throughout the cross-section at the start of both inlet channels. Section 6.3. 

shows the results extracted from line probe 3 shown in appendix 3 for the different 

fluids investigated at the same generalised Reynolds number. This makes sure the 
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velocity profile is fully developed and behaves appropriately when encountering the 

intersection. 

 

6.1 Results and discussion 

 

 

In this section the core of the numerical results obtained in this investigation are 

presented. Three different fluids were modelled, these were a Newtonian fluid (n=1) 

and two Shear-thinning (n=0.8 and n=0.6). The Newtonian results which exhibit its 

response to the characteristics of this particular model are presented first to have a 

reference of comparison. 

The simulations were initiated at high Reynolds number (above critical generalised 

Reynolds number) performing ramp down in generalised Reynolds number. For this 

reason, all of the evaluations begin from an initial steady-asymmetric solution, and as 

the generalised Reynolds number is reduced until it transitions to a steady-symmetric 

solution. The intervals between the gen Reynolds number above or below the 

transition region are of 5, significantly higher than in the area of interest. The region 

of generalised Reynolds number where the transition occurs in investigated in higher 

precision varying the values of the generalised Reynolds value in steps of 1 as will be 

seen in the graphs. These results will show the difference in rheological behaviour 

between a Newtonian fluid and two shear-thinning fluids with different power law 

index in a cross-slot configuration. The results were presented in a dimensionless 

manner so that the key characteristic behaviours obtained from the results can be 

extrapolated to other investigations. 

 

6.1.1 N=1 

 

As discussed earlier, the results for the Newtonian fluid will be presented first. The 

amount of existing literature involving Newtonian flows is extensive, so certain 
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behaviours can be anticipated. Table 3 shows a list of the different generalised 

Reynolds number used in the ramp down in this model. As discussed, the generalised 

critical Reynolds number is well known for a Newtonian fluid, so a generalised 

Reynolds number of 50 was chosen to initiate the ramp down. As seen in the table, 

all the dimensions and properties of the model are maintained constant through the 

ramp down, only changing the imposed velocity at the inlet of the inlet channels to 

alter the generalised Reynolds number. It can be seen in column 9 in table 3 that 

when using a Newtonian fluid, the original Reynolds definition is recovered, 

showing no difference between both. Thanks to the approximations done with the 

fluid properties, the velocities imposed are much “nicer” than if this wouldn’t have 

been done. 

 

 

Table 3- Numerical parameters used to determine the generalised Reynolds number and the imposed velocity 

required for the cross-slot geometry model with fluid N=1 

n denstiy K 

(viscosity 

equivalen

t) 

U H nominmat

or 

denominat

or 

𝑅𝑒𝑔𝑒𝑛 
 

Re 

1 1000 0.001 0.00005 1 0.3 0.006 50.000 50 

1 1000 0.001 0.000045 1 0.27 0.006 45.000 45 

1 1000 0.001 0.000042

5 

1 0.255 0.006 42.500 42.

5 

1 1000 0.001 0.000041 1 0.246 0.006 41.000 41 

1 1000 0.001 0.00004 1 0.24 0.006 40.000 40 

1 1000 0.001 0.000039 1 0.234 0.006 39.000 39 

1 1000 0.001 0.000037 1 0.222 0.006 37.000 37 

1 1000 0.001 0.000035 1 0.21 0.006 35.000 35 

1 1000 0.001 0.00003 1 0.18 0.006 30.000 30 

 

 

The inertial instability is shown in figure 8 for the Newtonian fluid, the numerical 

results extracted from line probe 2 were used to construct this graph. It clearly 

exhibits the inertial flow instability at high gen Reynolds number, decreasing in 
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strength as the value is decreased. A key characteristic behaviour of the cross-slot 

configuration can be spotted in the graph. This is the stagnation point located at the 

centre, having a velocity magnitude of zero as expected for all of the different 

simulations. The maximum velocity of the central vortex on both sides tends to be 

placed in the same location through the ramp down, which would be about 70% of 

the way from the boundary to the centre (stagnation point). The maximum 

dimensionless velocity at a generalised Reynolds value of 50 is u/U=2.02, which 

decreases during the ramp down, exhibiting the reduction in strength of the 

instability indicating the nearing of the transition. The results for a generalised 

Reynolds number of 40 are the last time the inertial flow instability can be observed. 

Next value that was simulated was a generalised Reynolds value of 39, where the 

flow had already transitioned from steady-asymmetric to steady-symmetric. The flow 

inertial instability is no longer present. All the results after the critical Reynolds 

number should be zero, the difference in the graph is due to numerical error in the 

model. This could be improved by increasing the resolution of the volume mesh.  

 

Figure 8- Numerical results from Star CCM+ of the x-component velocity obtained from line probe 2 for fluid 

N=1 ramp down in generalised Reynolds number 

 

Figure 9 is a Ramp down map of the maximum velocities from each of the different 

simulations. The value at a generalised Reynolds of 50 is consistent with figure 8. 

This graph has the dimensionless velocity as the vertical axis, the horizontal axis is 

the generalised Reynolds number imposed. The horizontal steps vary, above and 
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below the transition region the steps have a variation of 5, while in the transition 

region the steps variation is reduced to 1. This enables a closer look at the transition, 

being able to pinpoint closer the generalised Reynolds number that offsets the inertial 

instability. It shows the steady-asymmetric flow with the inertial instability 

behaviour decreasing gradually up to a generalised Reynolds of 40, where at 39 it is 

not present anymore, meaning the critical generalised Reynolds number lies between 

39 and 40.  The numerical error mentioned before can also be spotted in figure 9, as 

all of the results for generalised Reynolds of 39 and lower are not perfectly aligned 

with zero. 

 

 

Figure 9- Ramp down map depicting the maximum velocity of the central vortex for each different generalised 

Reynolds number for fluid N=1 

 

The final processed results for the Newtonian fluid can be seen in table 4. The 

different behaviours and the presence of the inertial instability is classified depending 

on the imposed velocities. 

 

Table 4- Characterisation of the behaviour of the flow depending on the generalised Reynolds number imposed 

for fluid N=1 

regen Flow behaviour Inertial instability 

40 ≤ regen Steady-asymmetric present 

39 < regen < 40 transition dissipating 

Regen ≤ 39 Steady-symmetric Not present 
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6.1.2 N=0.8 

 

The results for the shear-thinning (n=0.8) fluid will be presented here. As mentioned 

in section 2, there is less existing literature about non-Newtonian fluids than for the 

Newtonian case. Also, within the literature for non-Newtonian fluids, the focus of 

investigations is more focused in Low Reynolds number. For this reason, the initial 

imposed generalised Reynolds number for both shear-thinning fluids (n=0.8 and 

n=0.6) is 75. Table 5 contains the properties and dimensions used to complete the 

simulation of the n=0.8 mode. When a power law index is introduced which is not 

n=1 (Newtonian) there is a curious effect, the difference between the two Reynolds 

number differs massively with respect to table 3. The original definition for Reynolds 

number is not recovered, as seen in column 9 in the table.  

 

Table 5- Numerical parameters used to determine the generalised Reynolds number and the imposed velocity 

required for the cross-slot geometry model with fluid N=0.8 

n denstiy K 

(viscosity 

equivalent) 

U H nominmator denominator 
𝑅𝑒𝑔𝑒𝑛 
 

Re 

0.8 1000 0.001 0.00028578 1 0.33526595 0.004470238 75.000 285.78 

0.8 1000 0.001 0.00026981 1 0.312911051 0.004470238 69.999 269.81 

0.8 1000 0.001 0.00025366 1 0.290571915 0.004470238 65.001 253.66 

0.8 1000 0.001 0.00023729 1 0.268217169 0.004470238 60.001 237.29 

0.8 1000 0.001 0.00022069 1 0.245861449 0.004470238 55.000 220.69 

0.8 1000 0.001 0.00020384 1 0.223510816 0.004470238 50.000 203.84 

0.8 1000 0.001 0.00018671 1 0.201164965 0.004470238 45.001 186.71 

0.8 1000 0.001 0.00016925 1 0.178807472 0.004470238 40.000 169.25 

0.8 1000 0.001 0.00016572 1 0.174341653 0.004470238 39.001 165.72 

0.8 1000 0.001 0.00016217 1 0.169869681 0.004470238 38.000 162.17 

0.8 1000 0.001 0.00015861 1 0.165404731 0.004470238 37.001 158.61 

0.8 1000 0.001 0.00015502 1 0.160922411 0.004470238 35.999 155.02 

0.8 1000 0.001 0.00015143 1 0.156460804 0.004470238 35.001 151.43 

0.8 1000 0.001 0.00013317 1 0.134103135 0.004470238 29.999 133.17 

0.8 1000 0.001 0.0001144 1 0.111753846 0.004470238 25.000 114.4 
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The results for the ramp down in generalised Reynolds number for the n=0.8 fluid 

can be seen in figure 10. The first noticeable thing that can be spotted in the 

resemblance in shape to the Newtonian fluid simulation in figure 8, not exhibiting 

any obvious difference in behaviour. The stagnation point at the centre is also 

present. The graph shows that as the ramp down is taking place, the strength of the 

inertial instability reduces. If compared with the Newtonian case, the maximum 

velocity is also placed about 70% of the way from the boundaries to the centre. This 

means that the inertial instability rheological characteristics haven’t changed in that 

matter. To further compare with the Newtonian case, the maximum velocity values 

suffer a slight variation, may be numerical error. The maximum velocity at 

generalised Reynolds number of 50 for the n=0.8 fluid is u/U=2.09, being a slight 

increase of 3.5%. 

 

 

Figure 10- Numerical results from Star CCM+ of the x-component velocity obtained from line probe 2 for fluid 

N=0.8 ramp down in generalised Reynolds number 

 

The most noticeable difference between both cases can be seen in the transition from 

steady-asymmetric to steady-symmetric. As it can be seen in both figure 11 and 

figure 10, the inertial flow instability dissipates between 37 to 36. This is noticeably 

lower than the Newtonian case. Another peculiar characteristic is that at a 

generalised Reynolds number of37, the inertial flow instability still exists with a 

much smaller strength (u/U=1.32) than when the Newtonian fluid transitioned. This 
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means that this fluid model could maintain the inertial instability longer in a ramp-

down process.  

 

Figure 11- Ramp down map depicting the maximum velocity of the central vortex for each different generalised 

Reynolds number for fluid N=0.8 

 

The processed results for the n=0.8 shear-thinning fluid are presented in table 6. Here 

it shows that the transition from steady-asymmetric to steady-symmetric occurs 

between 37 and 36.  

 

Table 6- Characterisation of the behaviour of the flow depending on the generalised Reynolds number imposed 

for fluid N=0.8 

regen Flow behaviour Inertial instability 

37 ≤ genre Steady-asymmetric Present 

36 < genre < 37 Transition Dissipating 

genre ≤ 36 Steady-symmetric Not present 
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6.1.3 N=0.6 

 

The fluid used in the simulation for this section has the lowest value of power law 

index. This means that it has the most shear-thinning behaviour out of the three fluids 

investigated in this study. The numerical results for the n=0.6 fluid presented in this 

section were obtained in the same way as the previous fluids. As with the n=0.8 

fluid, the ramp down in generalised Reynolds number was initiated at a value of 75. 

Table 7 shows the different imposed velocities that were used, while maintaining all 

the properties and dimensions constant. Column 9 shows the immense difference 

between the two Reynolds number values, showing that the further away the power 

law index goes from 1, the bigger the difference will be between both definitions.  

 

 

Table 7- Numerical parameters used to determine the generalised Reynolds number and the imposed velocity 

required for the cross-slot geometry model with fluid N=0.6 

n denstiy K 

(viscosity 

equivalent) 

U H nominmator denominator Re_gen Re 

0.6 1000 0.001 0.00073899 1 0.24788214 0.003305071 75.001 738.99 

0.6 1000 0.001 0.00066718 1 0.214828293 0.003305071 65.000 667.18 

0.6 1000 0.001 0.00059214 1 0.181779711 0.003305071 55.000 592.14 

0.6 1000 0.001 0.00055317 1 0.165254509 0.003305071 50.000 553.17 

0.6 1000 0.001 0.00051307 1 0.14872998 0.003305071 45.001 513.07 

0.6 1000 0.001 0.00047167 1 0.132204064 0.003305071 40.000 471.67 

0.6 1000 0.001 0.00046321 1 0.128896269 0.003305071 39.000 463.21 

0.6 1000 0.001 0.0004547 1 0.125593217 0.003305071 38.000 454.7 

0.6 1000 0.001 0.00044612 1 0.122287938 0.003305071 37.000 446.12 

0.6 1000 0.001 0.00043747 1 0.118981335 0.003305071 36.000 437.47 

0.6 1000 0.001 0.00042876 1 0.115678119 0.003305071 35.000 428.76 

0.6 1000 0.001 0.00038406 1 0.099153936 0.003305071 30.001 384.06 

0.6 1000 0.001 0.00033716 1 0.082626948 0.003305071 25.000 337.16 
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Numerical results obtained from the line probe 2 for the n=0.6 are presented below, 

in figure 12. As the graph shows, the shape of the velocity profiles is identical to 

those for the Newtonian fluid and other shear-thinning (n=0.8). The maximum 

velocity of each simulation was at the same location, this being about 70% of the 

way from the boundary to the centre of the intersection, where the stagnation point is 

located. The maximum velocity at genre=50 was a dimensionless velocity u/u=2.07, 

showing once again a slight increase with respect to the Newtonian fluid, barely 

below the equivalent maximum velocity for the n=0.8 shear-thinning fluid.  

 

 

 

 

 

 

 

 

 

The strength of the inertial vorticity can be observed to decrease as the ramp down in 

generalised Reynolds number. The interesting detail is that the transition occurs in 

between the same generalised Reynolds values as with the other shear-thinning fluid 

(n=0.8), transitioning from steady-asymmetric to steady-symmetric between genre 37 

and 36. This can also be seen in the ramp down map in figure13, exhibiting a 

identical behaviour to the n=0.8 fluid. The dimensionless maximum velocity at a 

generalised Reynolds of 37 at the last point present was u/U=1.45. 
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Figure 12- Numerical results from Star CCM+ of the x-component velocity obtained from line 

probe 2 for fluid N=0.8 ramp down in generalised Reynolds number 
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Figure 13- Ramp down map depicting the maximum velocity of the central vortex for each different generalised 

Reynolds number for fluid N=0.6 

 

The processed results for the n=0.6 fluid modelled is shown in table 8 where the 

critical generalised Reynolds value is presented as well as the behaviour to be 

expected at different imposed generalised Reynolds number. The transition happens 

at the same equivalent value and in an identical manner. Appendix 6 shows a graph 

where the central vortex of the three different fluids is presented with equivalent 

generalised Reynolds. The graphs are almost identical, having a slight increase at the 

peak of the vortices in each side. 

 

 

Table 8- Characterisation of the behaviour of the flow depending on the generalised Reynolds number imposed 

for fluid N=0.6 

genre Flow behaviour Inertial instability  

37 ≤ genre Steady-asymmetric present 

36 < genre < 37 Transition Dissipates 

Genre ≤ 36 Steady-symmetric Not present 
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6.2 Validation 

 

Once the initial validations, like those in section 5, have been done and the results 

have been recorded, it is common practice to perform further validation. When a 

computational fluid dynamics model is used for investigation, a popular technique 

for further validation is to construct a significantly more refined and complex model 

and run the model under the same conditions so that the results can be checked. The 

results are analysed to make sure the variation is within an acceptable range. The 

reason the models used for the results are simpler than the validation model is due to 

its computational demand and high-capacity requirement. Increasing the mesh is the 

slightest increases the computations needed for stabilised results. The different body 

meshes are interconnected between them, meaning that if a property wants to be 

modified, by doing it in on the source meshes, the whole configuration will be 

updated. The original model base size of the mesh was 0.05m, this was reduced to 

0.01m. The values for the one-sided geometric sequence in the inlet channels was 

maintained, due to its smooth refinement with the intersection body. The outlet 

channels on the other hand were additionally modified. The number of layers of the 

one-sided geometric sequence was increased from 45 layers to 63 layers to match the 

refinement of the mesh at the intersection. This can be seen in appendix 7, where a 

top view of the intersection is showed to observe the difference in the more refined 

model. The following graphs show the results for this additional process of 

validation. Figure 14 contains the validation for the Newtonian fluid. It can be 

observed that the general shape is maintained, with a slight increase in the maximum 

velocity from u/U=2.02 to u/U=2.07. 
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Figure 14- Validation by comparing original mesh results with a more refined mesh results at Generalised 

Reynolds number of 50 for fluid N=1 

 

Figure 15 and 16 show the validation process for both shear-thinning fluid (n=0.8 

and n=0.6). It follows the same variation behaviour as for the Newtonian fluid 

validation.  The three validation results show two common differences between the 

original model and the more refined. The maximum speeds of the inertial instability 

at both sides increases in the slightest. The second common difference is the region 

close to the walls. Both results don’t match as accurately as elsewhere. The gradient 

for the more refined model increases more progressively when starting from the 

walls, staying right under the original model results in that region. Overall, this 

validation is successful as no significant differences were noted that could affect the 

results in section 6.1. 
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Figure 15- Validation by comparing original mesh results with a more refined mesh results at Generalised 

Reynolds number of 75 for fluid N=0.8 

 

 

Figure 16- Validation by comparing original mesh results with a more refined mesh results at Generalised 

Reynolds number of 75 for fluid N=0.6 
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6.3 Development velocity profile 

 

This section contains the last set of numerical results of this investigation. When 

using complex geometric configurations (especially multi-stream) many different 

things have to be considered and verified with respect to the particular characteristics 

and rheological properties. In addition, simple characteristics also have to be 

verified. Both inlet channels in the cross-slot configuration were designed with 

lengths of 20m along the x-axis in order to allow the imposed flow to transition to a 

fully developed velocity profile before reaching the intersection. Line probe 3, as 

seen in appendix 2 was used to obtain these results. This probe was placed at the 

centre of the inlet channels (y=0 and z=0.5) and along the x-axis to record the 

development of the inlet flow. Figure 17 shows the results for the three different 

fluids investigated at equivalent generalised Reynolds number of 50. The shape of 

the results show an expected similarity in behaviour, started at a certain value and 

increasing to the fully developed velocity profile velocity until it finally encounters 

the stagnation point at the centre of the configuration, where the velocity decreases 

until zero within the intersection body. Another expected characteristic is that as the 

power law index decreases, so does the dimensionless velocity. These results verify 

the inlet channels were fully developed and that the inertial instability investigated 

was not affected by undeveloped flows. 

 

Figure 17- Numerical results obtained from line probe 3 for the verification of the fully developed flow  
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7.0 Conclusion 

 

A numerical study was done on the effects of shear-thinning fluids in a three-

dimensional cross-slot configuration of aspect ratio of 1. Three different fluids were 

simulated following the power law model and a generalised Reynolds number 

expression was utilised. An initial validation was undertaken to give a level of 

confidence to the results. A ramp down in generalised Reynolds number permitted 

the characterisation of the behaviour of the flow, starting as a steady-asymmetric 

flow with the presence of an inertial instability, the transition during the ramp down, 

and the steady-symmetric flow.  

The results presented in section 6 demonstrate some different behaviours. It was seen 

that both shear-thinning fluids maintained the shape of the inertial instability but 

required a lower generalised Reynolds number to provoke the transition. This means 

that the axially aligned spiral vortex and the steady-asymmetric flow was observed at 

a generalised Reynolds value where the equivalent Newtonian fluid has already 

transitioned to a steady-symmetric. Another phenomenon that could be observed 

when comparing results is that the figures for the central vortex for the Newtonian 

fluid and n=0.8 fluid started negative, while the n=0.6 fluid started positive, meaning 

the inertial instability has no fixed preference on direction. 

The reduction in the critical generalised Reynolds number could be useful for many 

applications. One of the many applications discussed in section 2 mentioned using 

the inertial instability that occurs in the intersection for the purpose of mixing in 

microfluidic streams. An energy input is required to impose a flow in real life 

systems, therefore by using a fluid with shear-thinning with a lower generalised 

Reynolds number imposed it could reduce energy required on the wanted imposed 

flow while maintaining the mixing properties due to the presence of the inertial 

instability. 
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