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Abstract 

Phase imbalance is an increasingly important problem for low-voltage networks in the 

UK, mainly because they can lead to energy losses and lower hosting capacity of 

embedded technologies, such as PV-DG. This is of vital importance nowadays since 

PV-DG is precisely one of the main factors driving phase imbalance. In addition, 

considering that PV-DG is experiencing a growing penetration, if not tackled properly 

it might cause major issues in the operation and management of LV networks. For this 

reason, many methods have already been developed, which put forward phase 

identification approaches.  

Phase identification methods allow identifying the phases to which customers (and/or 

feeders) are connected to. If network operators have this information, they could take 

actions to correct these imbalances, and avoid the unfavourable impacts of unbalanced 

networks.  

The main drawback of the existing methods is that they are usually tested for scenarios 

where, for example, the SM uptake is very high, there is information at both the 

transformer and the consumer point, or there is special equipment used that directly 

allows identifying the phases of the SM. The real situation for network operators in the 

UK is currently very different from these scenarios, and it is not expected to change 

soon. Nowadays, the SM coverage is very low and even when SMs are installed in LV 

networks, the information sent to network operators is usually of low granularity and 

rather limited. 

Therefore, the main objective of this thesis is to develop a profound analysis of the 

existing solutions, in order to test and determine if these methods could be adapted so 

that they could solve the phase identification problem in highly constrained scenarios. 

Drawing upon the findings from the literature review, it was concluded that hierarchical 

clustering and k-means clustering techniques could be suitable for the study. These 

methods were firstly compared for different levels of SM coverage in order to select 

the most appropriate method.  

It was found out that k-means clustering was more appropriate and following analyses 

in the thesis were focused on investigating how different variables affect their accuracy 



 

5 

when allocating phases. Some of the variables to be tested are the presence of PV on 

the rooftops, decreasing levels of SM penetration, and type of SM measurements.  

In addition, in order to correct the main weakness of k-means clustering, an improved 

algorithm was presented. This weakness is the need to define the number of clusters to 

be formed, or in this case, the number of different phases to be identified in a SMs data 

set.  

With this improved k-means approach several scenarios with moderate PV-DG levels 

and SM penetration were tested, resulting in very promising results. Conclusions on the 

best type of voltage measurements were also derived from these analyses. 
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1 Overview 

1.1 Introduction and Motivation 

UK government has set out a number of incentives and grants to boost the deployment of 

distributed generation (DG) and electrification of transport, with the goal of achieving the 

targets on carbon emissions established for 2050 (Department of Energy & Climate 

Change, 2011). While this is very beneficial for climate change and carbon emission 

reductions, it will also increase the demand for electricity, and the number of devices 

connected to the LV network.  

It therefore becomes apparent that electrification of transport, embedding DG in the LV, 

increasing participation of users, and increase of monitoring and active management of 

LV networks, will pose fundamental challenges in the years to come, as well as, fantastic 

opportunities to make a difference and evolve in the way we consume and produce 

energy. We are therefore moving towards different energy landscapes, and it looks like 

an essential part of the change is going to start from the LV networks. 

In the past, the LV network, which is going to be the main focus of this thesis, did not 

require to be monitored in detail, and the focus was set on the transmission networks 

instead. However, due to rollout of these new agents in the LV network and the 

widespread of smart grid and smart meters, this ‘fit-and-forget’ approach is no longer 

suitable for distribution networks (Mokhtar, et al., 2019). 

One of the main issues of these LV networks is the phase identification problem. As 

already mentioned, there is a significant amount of existing methods in literature. 

Nonetheless, it should be noted that the suitability of these methods is dependent on the 

data and equipment available for the networks under study. Many of these methods 

requite full observability of the network, with high levels of penetration of SMs, and 

sometimes even the installation of additional equipment (such as microsynphasors, or 

more advanced SM models). Nevertheless, assuming that this level of data detail is going 

to be always available in real life is not realistic. What is more, SM roll-out can sometimes 

be troublesome, and high levels of penetration in LV networks are not likely at this 

moment. In fact, the current level of penetration of SMs is considerably low, 

approximately a 25% per cent in GB by the end of June 2018 (Department for Business, 

Energy & Industrial Strategy, 2019). 
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In light of the above, it is important to investigate the feasibility of other methods in 

tackling the phase identification problem, so that they can be accurate even in scenarios 

where there is missing information due to the low coverage (or poor operability) of SMs 

in LV networks. 

Several real LV networks will be analysed in this thesis, which present a limited number 

of SMs, as well, as constrained SM measurements. The main reason for using these highly 

constrained networks is that these networks are intended to represent the current situation 

of UK distribution networks. Nowadays, the level of SM uptake in the UK is rather low, 

and therefore, network operators have limited data on LV networks, which lead to 

unbalanced systems, and thus, to an inefficient operation and energy losses. Not that most 

distribution networks are unbalanced, but the current little monitoring does not allow to 

take actions to tackle the situation. Moreover, this situation will be compounded by the 

increasing adoption of DG in the LV networks. Unbalanced networks, in turn, reduce the 

hosting capacity of DG, therefore it is of great interest to have balanced LV networks, if 

striving to achieve scenarios where there is a more significant presence of these LCT. 

For the above reasons, in this project, firstly a thorough review of existing methods was 

carried out in order to fully understand how the phase identification problem could be 

solved, given the constraints and characteristic of the LV networks under study. The main 

finding from research led to choose two preliminary machine learning techniques, which 

were applied to the test networks, in order to determine if there is any method that can 

effectively solve the phase identification problem for the given case study. 

After testing the two preliminary methods, only one of them demonstrated to yield 

accurate results for the phase matching, and it was further tested to determine how 

different factors, such as lower levels of SM penetration, or the moderate PV penetration 

scenarios affected the accuracy of its phase allocation. 

Automatic phase identification methods, such as, the proposed approaches in this thesis, 

are the precursor to intelligent automated systems that will enable to monitor the network 

with a high level of granularity and detect and rectify unbalances for optimal 

performance. In addition to enable higher levels of PV panels installed on the rooftops.  
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1.2 Aims and Objectives: 

The main objective of this thesis is to investigate if phase identification methods can be 

successfully applied for highly constrained LV networks, such as the networks under 

study. The characteristics of this networks and its limitation are further detailed in section 

5, but it should be noted that the type and size of data set are the main factors that 

determine the suitability of phase identification methods. Consequently, such highly 

constrained scenarios pose an important challenge, since none of the methods found in 

literature were tested for similar limited data sets. 

Consequently, the following are the main goals of the project:  

• To carry out an extensive review of already existing phase identification 

approaches, in order to gain a deep understanding of the potential solutions for the 

test networks. From this research process, it is, therefore, intended to propose 

which methods are theoretically suitable for the case studies. 

• These proposed methods will be tested for the test networks, in order to check the 

can also be successfully applied to the case studies of this thesis. They will also 

be compared, with the objective of selecting the most effective method, and later 

perform a series of analyses. 

• The definitive methods will be tested for different scenarios, that is, it will be 

checked how the accuracy of the phase matching is affected by different levels of 

SM penetration, and for scenarios both without PV-DG and with a moderate PV 

uptake. This will be done, in order to be able to conclude under what conditions 

high levels of accuracy can be achieved for the final phase identification method. 

1.3 Project Outline  

The first section provides an overview of the current situation of DG and SMs in the UK. 

It opens by outlining the main principles of LV network in the UK, as well as, its current 

state. Next, it is addressed the increasing levels of penetration of DG in distributed 

networks. It is important to understand how the DG is evolving and moving forward to 

an increase in its presence in LV networks. Lastly, the main facts about how SMs are 

being deployed in the UK are given, in order to understand, the current level of monitoring 

of LV networks. 
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Chapter 3 addresses what the phase identification problem consists of. It also details what 

phase imbalances are, which are the main factors that can cause such imbalances, as well 

as, the impacts of unbalanced network, and why it is so important to avoid phase 

imbalances by implementing phase identification methods.  

The following section outlines relevant knowledge on phase identification methods that 

have already been proven to succeed in literature. This revision allows to assess and pre-

select the most suitable methods for the case studies analysed in this thesis. 

The next chapter provides detailed information on the proposed methods that will be 

applied to the test data sets, to determine their suitability and effectiveness. This chapter 

enables to understand how these methods rational work, in addition to information about 

how the Machine Learning Toolbox of Matlab was used to implement these methods. 

Section 6 provides detailed information about the main characteristic and topology of the 

six LV networks to be studied. This information is important in order to understand the 

constraints and limitations of the available data. Existing methods for solving the phase 

identification problem are data-sensitive, therefore, this limitation will determine the 

suitability of the proposed methods.  

Chapter 7 explains how the methodology process was developed in order to implement 

the proposed methods presented in section 5, and the different analyses that were 

performed to test how different scenarios and factors affect the accuracy of the phase 

allocation of these methods. 

Section 8, 9 and 10 present the results obtained for these analyses, as well as, the 

discussion on the results obtained in each analysis. 

Finally, the main finding and limitations of the whole project are presented in the 

conclusions section. In addition, in chapter 12, future lines of work, explore potential 

improvements and expansion of the studies carried out in this thesis. 
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2 Distribution Systems and SMs in the UK 

This section provides an overview of the current state of distribution systems 

and smart meters in the UK. It gives a better understanding of the significance 

of this thesis for the future development of new energy landscapes.  

2.1 Overview 

Traditionally, the transmission (high voltage) system has always been analysed in more 

detail than distribution systems. In fact, it is common practice to monitor transmission 

lines every second and sometimes using complex algorithms.  This is due to the fact that 

in the past the whole energy production tended to be centralised in big power plants, and 

this energy was distributed to substations near the consumption points through high 

voltage lines. Therefore, the main focus was placed on avoiding losses in the transmission 

lines, and it is the mission of Transmission system operators (TSOs) to take charge of 

monitoring and balance power flows to avoid them. (Dang-Ha, et al., 2015) 

 

 

Figure 2.1 - Example of a distribution architecture in the UK (Wang, et al., 2016) 
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On the other hand, distribution systems structure is usually tree-like, also named 

‘distribution feeder’. As shown in Figure 2.1, a typical distribution system1 the energy is 

transmitted from the transformer to the all the customers through the branches. (Morgan, 

et al., 2019). Unlike transmission lines, LV networks usually rely upon little control or 

monitoring. Consequently, this may pose a problem in future energy scenarios where 

electrification of heat and embedded energy resources (also known as Low Carbon 

Technologies, LCT) have a greater presence in distribution systems.  

 

 

 

 

 

 

In addition to this, as shown in Figure 2.2, domestic energy consumption in Great Britain 

accounts for 38% of the total, and therefore, any problems caused in domestic LV 

networks may trigger significant losses for the whole energy network. 

2.2 Distributed Energy Production in LV networks 

In the UK, almost every domestic consumer is connected to the LV network (that is, the 

distribution network) and usually to single-phase cables (Mokhtar, et al., 2019). 

Therefore, for the deployment of residential LCT, they will mostly be connected as well 

to the single-phase LV supply trough ‘line-to-neutral’ cables. This will result in an 

increase of the resources (or loads) present in the network, and it is very likely that it 

would lead to imbalances, among other problems, and will certainly affect the operation 

of the LV networks. (Li & Crossley, 2014).  

 

1 In Figure 2.1, letters a, b, and c stand for the three phases. L represents a lateral, and T, the transformers, 

and x denotes consumers (Wang, et al., 2016) 

Figure 2.2 - Share of energy consumed by households in Great Britain (National Grid, 2018) 
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Moreover, Distribution Network Operators (DNOs) have traditionally administrated and 

operated distribution networks passively, with unidirectional power flows. Since, for 

example, in domestic LV networks, customers appliances were the only loads in the 

system. However, with the increasing roll-out of LCT, this will no longer be possible 

because reverse power flow issues will 

be more and more frequent (Cipcigan & 

Taylor, 2007).  

Moreover, Figure 2.3 - Community 

Renewables scenario for the increase of 

the electricity peak demand in Great 

Britain depicts the expectations 

regarding the increase of electricity peak 

demand estimated by (National Grid, 

2018) in their ‘Community Renewable 

Scenario’, which considers a more decentralised energy landscape that could allow the 

achievement of 2050 targets. 

For all the above reasons,  higher levels of observability and active management of LV 

networks is becoming increasingly important; and this, in turn, is resulting in more 

emphasis on the role of DNOs (Hollingworth, et al., 2012).  

It is also useful to highlight that these stated consequences of DG are caused by all types 

of embedded energy technologies, and not necessarily LCT (e.g. reciprocating engines). 

Nonetheless, renewable technologies, such as PVs or wind energy, due to their 

intermittent nature, constitute a particularly significant challenge for the optimal 

operation and management of distribution networks (Begovic, et al., 2012). 

In this project, however, as already mentioned, the focus is going to be set on the impact 

of PV-DG in LV networks, and its relation to the phase identification problem. This is 

why the residential PV roll-out and its impacts are discussed in more detail below. 

Figure 2.3 - Community Renewables scenario for the 

increase of the electricity peak demand in Great Britain 

(National Grid, 2018) 
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2.3 Domestic PV-DG and its Impacts on the LV Network 

2.3.1 Domestic PV roll-out 

It noteworthy how energy generation is being increasingly generated in a wide variety of 

decentralised ways, but nowadays, PV-DG is the most prominent (Hoornaert, et al., 

2016). 

Since 2010, as it can be observed in Figure 2, the PV installed capacity has increased up 

to exceeding the total capacity of 13 GW. While in Figure 2.4, it can be observed the UK 

government incentives that have fostered this rapid growth in recent years. 

It is worth noting that around 20% of the total installed capacity comes from domestic 

PV-DG connected to the LV network (Department for Business, Energy & Industrial 

Strategy, 2019). This only reaffirms the importance of maximising the operation and 

management of PV-DG in the UK. 

2.3.2 Impact of PV- DG on LV Networks 

Even nowadays, PV-DG deployed in the LV networks has caused problems to the DNOs 

in the UK. For this reason, it is important to further investigate their effects and how to 

tackle this issue, so that future scenarios with higher degrees of domestic PV  roll-out will 

not pose a problem for the network control (Navarro, et al., 2013). 

Figure 2.4 - UK solar deployment by capacity updated monthly 

(Department for Business, Energy & Industrial Strategy, 2019) 

 

Figure 2.4 - UK solar deployment by accreditation updated quarterly 

(Department for Business, Energy & Industrial Strategy, 2019) 
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Next are detailed some of the main impacts caused by PV-DG in LV networks (Begovic, 

et al., 2012) (Romero Agüero & Steffel, 2011): 

1. Reverse power flow:  

High degrees of PV-DG penetration can produce reverse active power flows at feeder 

and substation transformer level. This can be troublesome for overcurrent protection 

coordination, in addition to the operation of line voltage regulators. 

2. Voltage Rise:  

The integration of domestic PV-DG leads to changes in the feeder voltage profiles, 

as well as, voltage rises in the proximities of the PV site. This becomes especially 

evident when large PV-DG are deployed in rural areas since they tend to have long, 

lightly loaded feeders. Voltage rises can cause voltage violations on utility planning 

and industry standards, which in turn, may lead to customer dissatisfaction, and the 

need for using overvoltage protection systems of the PV-DG systems. 

3. Voltage fluctuations: 

Due to the intermittency of the PV generation, and since weather variability affects 

the efficiency, the output generation of PVs can be affected. Also, fluctuations in the 

feeder’s voltage may happen at the distribution level. This phenomenon is more 

common on ‘weak’ feeders, that is, those that have short-circuit power levels, as well 

as, on sites where the PVs are located far from the transformer. 

4. Interaction with voltage-controlled capacitor banks, an overvoltage protection 

operation of Load Tap Changers (LTCs), and line voltage regulators: 

The two previous impacts, voltage rises and fluctuations, might, in turn, require the 

use of equipment and/or techniques to control them. The most commonly used ones 

are voltage-controlled capacitor banks, LTCs, and line voltage regulators. The 

overuse of these measures, however, can lead to increased maintenance costs, and 

eventually, cause augmented voltage fluctuations. Besides, repeated utilisation of 

capacitor banks can also lead to reverse power fluctuations.  

5. Feeder loading and power decrease: 
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Feeder loading may be caused by low or intermediate levels of PV-DG penetration, 

and it is especially significant when the peak demand occurs during the daylight 

hours. While power decrease is usually a consequence of the reverse flow caused by 

larger amounts of PV-DG. Reverse power flows can lead to an increase in the 

distribution line and equipment loading, resulting in higher distribution line losses, 

and hence increase the feeder power losses. It should be highlighted that these losses 

can also be intensified if there are voltage rises in the network, due to the fact that 

distribution transformer core losses are proportional to nodal voltage. 

6. Total Harmonic Distortion (THD) increase: 

High penetration levels may trigger an increase of THD, which is gaining importance 

owing to the advent of electronic interfaced equipment, such as electric vehicle 

charging points or distributed energy storage. THD increase means that the presence 

and interplay among these devices connected to the network plus capacitor banks 

action can produce harmonic related problems like resonance. 

7. Voltage and current unbalance: 

The increasing presence of PV-DG connected to single-phase cables in the LV 

network might offset feeder currents, resulting in voltage and current unbalance.  

It is worth noting that the phase identification problem in LV, which is the focus of 

the project, is intended to avoid unbalances and is further discussed in section 3. 

2.4 SM Rollout in the UK 

Smart meters are devices that allow to obtain advanced information about the network 

and enable two-way communication. In the UK, SM settings are programmed so that each 

half-and hour communicate their readings with energy suppliers and network companies 

(National Audit Office (NAO), 2018).  

It is also noteworthy the governmental rollout programmes and statistics refer to both 

electric and gas meters, although in this thesis the spotlight is placed on electric SMs. 

Also note that, the following figures shown account for the whole Great Britain (GB), 

and not only the UK. 

SMs are expected to play a crucial role in future energy scenarios, since accurate and 

complete information will be required for high levels of DG rollouts and the proliferation 
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of EVs. Accordingly, the UK Government presented ambitious plans to boost SM 

deployment, whose progress is discussed in the following subsections: 

Rollout Plans Made by the Government: 

• Back in 2008, the government made public its intention to promote the installation 

of SMs. It was also decided that the government will intervene to ensure the 

fulfilment of standards, and the operability of SMs (National Audit Office (NAO), 

2018). 

• In March 2011, a strategy for high-level implementation of SMs was put forward, 

which entailed two stages: Firstly, smart meters of first-generation (SMETS1) 

would be installed. Then, the second stage was supposed to take place in June 

2014, after the DCC went live, and SMETS1 would be replaced with second 

generations SMs (SMETS2)2. Also, customers that still had conventional meter 

would replace them with SMETS2 (Department for Business, Energy & Industrial 

Strategy, 2019). 

• In 2012, to make sure that if customers decided to switch supplier, the SMs would 

continue working,  the government decided to establish new standards.  These 

standards stated how SMs were supposed to be operated and connected to the 

central data and communications infrastructure ( Data and Communications 

Company, DCC). Besides, customers were encouraged to start installing SMs 

even before the infrastructure was up and running. 

• Also, in November 2012, the Department of Energy & Climate Change (hereafter 

referred to as ‘the Department’) legally obliged energy suppliers to have taken all 

the reasonable steps so that there would be full coverage of SMs by 2019.  

However, in 2013, this target was postponed until 2020 (National Audit Office 

(NAO), 2018). 

 

2 Note that there is no main difference in functionality between SMETS1 and SMETS2. But their 

differentiation lies in the way they communicate with the DCC, which is the main cause of problems in the 

installation of SM, and the reason why SMETS1 operation is being somewhat troublesome (National Audit 

Office (NAO), 2018). 
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2.4.1 Actual progress in the SM rollout: 

• SMETS2s were supposed to start to be installed in June 2014. However, it was 

not until July 2017 that they were first introduced, and their installation process 

happened to be slower than expected by the Department. Also, it is unclear the 

number of years that it would take until the complete SMETS2 system works. 

• Besides, due to the delay of SMETS2 installation, over 7 million more SMETS1 

were installed than the originally planned figure. And although SMETS1 enabled 

customers to enjoy the benefits of smart metering, this considerable figure poses 

an important challenge for the correct development of the programme. 

• The department has not yet tried to enrol SMETS1 into the DCC infrastructure, 

and it is not clear how feasible this task would be, resulting in the postponing of 

the deadlines for doing this. 

• Another problem related to the operation of SMETS1 is that around 70% of them 

‘go dumb’ when switching suppliers, meaning they lose their smart functionality 

(National Audit Office (NAO), 2018). 

• To date, approximately 15.97 million domestic (both domestic and electric) SMs 

have been installed by large and small suppliers, which means a 6.9% of increase 

respect to previous quarter cumulative total figure (Department for Business, 

Energy & Industrial Strategy, 2019). 

• Figure 2.5 shows the quarterly progress in the installation of domestic SMs by 

large suppliers. Even though it can be observed that in the last quarter of 2019 the 

number has decreased, the level of installations per quarter continues to be higher 

than 1 million for the ninth consecutive quarter (Department for Business, Energy 

& Industrial Strategy, 2019) 
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Figure 2.5 - Domestic SM quarterly installation for large energy suppliers (Department for Business, Energy & 

Industrial Strategy, 2019) 

• Also, in Figure 2.6, it is portrayed the figures for the already installed SMs (by 

large suppliers) and the high number of traditional meters that have not yet been 

replaced. Note that only SMs (and not smart-type meters) are accounted as SMs 

in this case. In fact, by the end of June 2018, the penetration of SM was 25 per 

cent. 

 

 

Figure 2.6 - Number of SM operated by large energy suppliers (Department for Business, Energy & Industrial 

Strategy, 2019) 
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• The NAO report concludes that the initial target of having an 80 per cent 

penetration by 2020 will very likely fall short, and the penetration is now expected 

to be around 70-75%. 

From this subsection can be therefore concluded that a scenario where there is a 100% of 

SM in LV networks is not very likely to happen in the short term. This is precisely one of 

the primary motivations for the study developed in this project since it should not be taken 

for granted that there will be full observability of LV networks. As a consequence, the 

methods for phase allocation proposed in this project are chosen on the grounds that this 

situation is not going to change in the short term, and how accurate these approaches can 

be despite this.  
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3 Phase Identification Problem 

This section addresses the phase identification concept and the phase 

unbalance of LV networks.  It is detailed how unbalancing happens in LV 

networks, as well as its consequence and significance.  

To understand the significance of the phase identification problem, distributed systems 

were firstly introduced in section 2, where it is discussed how they are evolving towards 

more complex systems where DG and SMs will have an important role to play. As 

mentioned in this previous chapter, the increasing presence of DG, and particularly of 

PV-DG, results in phase imbalances. In this chapter the concepts of phase imbalance and 

phase identification, in addition to their causes and impacts, are explained. 

3.1 Unbalanced Networks in the UK 

Most domestic consumers in the UK are connected to the LV network via single-phase 

cables taken from the three-phase cable, and whose voltage tolerance varies from 6 to 10 

per cent of the reference voltage 1pu. However, there is usually little or no information 

about the phase to which these households are connected to. In fact, one of the main 

challenges for the optimal functioning and management of these networks is missing 

customer phase information (Mokhtar, et al., 2019).  

Although it is usually assumed that these networks, are balanced, according to (Kong, et 

al., 2018), more than 70% LV network have three-phase unbalance up to some degree. 

Moreover, as discussed in several studies, the major causes for the unbalancing are 

originated at the LV side (Ma, et al., 2015) (Ochoa, et al., 2005). 

It should be noted, that even if systems were initially balanced, and the phases to which 

each customer is connected were known, due to all the factors that can cause phase 

imbalance, these phases may change. In addition, since DNOs no longer have the correct 

information about the phases, then they cannot do anything to try to balance back the 

network. And what is more, they may not know the network is unbalanced. 

3.1.1 Causes of Unbalanced Systems: 

LV networks are commonly unbalanced, even without the introduction of DG, since 

household appliances connected to single-phase lines can produce the unbalancing. This 
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may be because over time some loads are removed, while others are added, resulting in 

unbalanced loads. Sometimes, even during the same day, there can be fluctuations in the 

phases of the feeder (Kai, et al., 2013) 

Other factors such as asymmetrical line configurations (Yan & Saha, 2013), or the already 

mentioned presence of PV-DG in the LV circuit can also generate phase unbalancing, as 

shown in several studies such as (Olivier, 2018) (Schwanz, et al., 2017),  

3.1.2 Consequences of Imbalances in LV Network: 

Three-phase imbalances can lead to more inefficient utilisation of assets (Zhu, et al., 

1998). Concretely, in LV feeders the phase with higher power will exhaust the per-phase 

capacity. Also, it can affect the efficiency of transformers, since imbalances decrease its 

available capacity. Both of these consequences, will at the same time result in having to 

strengthen the network more often that it would be necessary for balanced circuits (Ma, 

et al., 2017) (Ma, et al., 2015).  

With regards to the cost of unbalanced systems, the losses caused by the imbalance can 

be very costly for utilities, and hundreds of millions of pounds are spent to compensate 

the unbalanced systems. (Kong, et al., 2018) (Ofgem, 2010) 

Furthermore, several studies (Strbac, et al., 2014) (Strbac, et al., 2018) indicated the phase 

imbalance impacts on the level of losses in the network. As a matter of fact, these studies 

showed that even small imbalances result in power losses, but as depicted in Figure 3.1, 

the relationship between phase unbalance and losses is not linear, and large imbalances, 

for example, 25% of imbalance cause 30% of losses. 

Figure 3.1 - Phase imbalance impact on losses (Strbac, et al., 2014) 
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On another note, imbalances can reduce the hosting capacity of DG in the network, that 

is the number of embedded technologies can be deployed without affecting the correct 

operation of the system (Dubey, et al., 2015), (Cundeva, et al., 2016). 

Last but not least, imbalances can also risk the correct functioning and safety (Ochoa, et 

al., 2005) . Besides that, it can lead to higher operating temperatures, achieving the 

thermal capacity of the network, which is a situation that would not happen if the circuit 

was balanced, and also leads to shorter lifespan of the network assets (Ma, et al., 2015). 

3.2 Phase Identification and Phase Balancing 

In light of the above, it becomes clear that in order to avoid unbalanced systems, phases 

to which consumers are connected needs to be known. This is where phase identification 

techniques come to play. If the phase allocation is accurately and precisely done, DNOs 

could take action to balance the system. Apart from, avoiding the negative effects of 

unbalanced systems, balance systems can enhance existing facilities and defer feeder 

expansion projects (Zhu, et al., 1998). Balanced systems are more reliable and therefore, 

would make DG more attractive to customers, and could lead to better power quality and 

decrease in the electricity costs.  

Regarding how phase imbalance can be handled, the next chapter revolves around 

different phase identification approaches.  
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4 Literature Review on Existing Methods 

This chapter provides a thorough revision of the existing solutions for solving 

the phase identification problem concerning their applicability to the study 

cases. Due to the nature of this project, reviewing phase allocation 

approaches is a central point for understanding and choosing t he best 

method, and how to adapt it to the given conditions of this project.  

4.1 Introduction 

There is a considerable amount of existing methods for solving the phase identification 

problem in literature. These methods may vary significantly, depending on the available 

data and equipment. For this reason, before going into detail about phase identification 

methods, it is necessary to provide a summary of the characteristic of the test networks 

that will be studied, in order to understand which methods could be implemented. 

Six case studies representing domestic LV network in the UK will be analysed in this 

thesis. These networks are discussed in more detail in chapter 6, but here are their main 

features: 

• These networks are composed of customers connected to the same distribution 

transformer. These LV networks are relatively small, having from 31 to 111 

customers. Varying levels of topology complexity are present in the network set, 

in order to test how this would affect the approaches. 

• Discrete half-hourly voltage profiles of customers are available thanks to SMs 

located at the consumer point. There is full coverage of SM in these networks; 

that is, there is voltage data from all the customers connected to the transformer. 

However, lower levels of penetration are intended to be simulated to determine 

how the phase identification solution would be affected. 

• There is no information about the voltage measurements at the transformer point 

that could be used to correlate both measurements. 

• In addition, power measurements both at the transformer and customer point are 

not available. 
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For the sake of analyses in this thesis, the phases connection of all SMs is known, in order 

to be able to determine the accuracy of the phase allocation by the phase identification 

method to be applied. 

Compared to similar phase identification studies, the data available in this thesis is 

limited, and thus, most of the methods outlined next are not applicable to the test networks 

for this reason. 

Nevertheless, and comprehensive overview of the research realised on the methods for 

solving the phase identification problem and their suitability for this project are presented 

below. In addition, note that a summary of the main finding derived from this 

investigation is presented at the end of the chapter. 

4.2 Automatic methods 

Existing methods can be divided into two big groups: Manual methods, which require 

technicians to go to the SM site in person, and automatic methods, that use the available 

remote information on the network. Also, the latter may rely on additional equipment to 

acquire more data, which is not usually installed in domestic LV networks, as is discussed 

further in subsection 4.2.2.  

4.2.1 Manual Methods   

These methods require the technician to physically go to the premises and read the phase 

identifiers measurements. These devices are deployed in the point of the interest in the 

network, to enable the technician to identify the phases to which each household is 

connected to (Olivier, et al., 2018). 

4.2.2 Automatic Methods 

Automatic methods can be divided into five subcategories, depending on the type of data 

used for allocating the phases, as follows: 

• Remote Phase Identifier Technologies 

Following the manual method using phase identifiers, there are new technologies, such 

as SMs that use PLC (Power Line Carrier). This technology consists of a conductor 

transmitting the information from the consumer point to the receiver point. In addition, it 

allows to identify the phase at the consumer end, and process this data (Gunasekaran, et 

al., 2017) 
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The main drawback of these technologies is their costs. Also, most of the SMs nowadays, 

do not include this technology, and issues could be derived from adapting the 

infrastructure for their installation (Olivier, et al., 2018). 

• Methods that Require Additional Equipment 

The approach put forward by (Wen, et al., 2015) requires the installation of 

microsynphasors to solve the phase identification problem, since these devices allow to 

measure voltage phase angles and voltage magnitude. The main reasoning of this method 

is that if a customer SM is allocated the correct phase, this should have the highest 

correlation for voltage magnitude and phase between the customer SM and the 

transformer.  

Methods like this one, yet very successful and straightforward, were not considered for 

this case study, since this equipment is not commonly found in practice, and it would be 

very costly to deploy it in the current infrastructure. Plus, as already mentioned, in this 

thesis, test networks represent the current situation in the UK, which do not include this 

type of devices. 

• Methods Based on Power Measurements 

There is a significant number of phase identification methods that revolve around 

comparing power measurements from the customer SM and the transformer, or the 

summation of all the power measurements at the customer side, as it is further detailed in 

the methods presented below. Although all these methods have proven to be effective in 

practice, and SM that provide power measurements are common in the market, the 

majority of the SM which have been deployed in the UK do not provide power 

measurements. Consequently, the methods discussed in this section are not applicable to 

the test networks under study in the thesis. 

- (Arya, et al., 2011) computes customers phase merely based on time series of 

power measurements from both the customer SM and the transformer. It is 

founded on the assumption that the sum of power measurements of customers 

amounts to the measurements at the transformer. The method involves integer 

programming and search algorithms, considering both noise-less and noisy 

scenarios. This is done by injecting a unique signal into the phase line that enables 
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to identify the phases. Although the results for this method proved to be highly 

accurate, it is also true that this method is not feasible at the large scale at this 

moment. This because the type of SM technology presented in this method is not 

common in practice, and higher cost would be incurred to introduce this 

technology in the current infrastructure. 

- (Fan, et al., 2012) apart from discussing how machine learning and data mining 

techniques can be applied for the development of smart grids, a novel approach 

for resolving the phase identification problem based on these techniques is 

presented. This method is based upon time series of power measurements from 

the household SMs uniquely. This approach was developed from modifying the 

method presented in (Arya, et al., 2011). The main difference between both 

methods is that in (Arya, et al., 2011) they also count with power measurements 

from the transformer. Meters at the transformer level are not common practice, 

and therefore this approach presents a successful method for allocating phases for 

this additional constraint.  

- (Chen, et al., 2012) employs voltage phases angles measurements on the 

secondary side of distribution transformers to determine the connecting phase of 

the transformers.  

- Unlike the methods discussed in this subsection which use time-series 

measurements, (Brint, et al., 2018) uses half-hourly data of grouped meters are 

available to network operators. Therefore, this approach is based upon power 

measurements from the grouped customer SMs and the transformer reading 

corresponding to the same phase, from a data set composed of 96 users. It was 

proven to allocate phases with high accuracy to the grouped meters. 

• Methods that Compare Time Series of Voltage Measurements between SMs 

and Transformer Readings. 

As already discussed, the LV networks under study already only present SM that provide 

half-hourly voltage measurements from the customers’ households. Consequently, 

although the approaches included in this subsection are the most commonly used, it was 

not possible to apply them in this thesis.  

Hereafter, a wide variety of automatic methods that fall into this category are listed: 
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- (Seal & McGranaghan, 2011) analyses voltage measurements with the object of 

finding changes in the voltage magnitudes and be able to identify the phase of the 

loads by comparing these measurements with SCADA SM data. This method 

proved to work for both single-phase and three-phase customers, and for a 

network formed by 75 customers. 

- (Pezeshki & Wolfs, 2012) compares time series of voltage measurements from a 

three-phase household SM with measurements from other single-phase customer 

SMs on the same network. Correlation is applied to both time voltage profiles 

from a signal processing outlook. This method allows to obtain the phase to which 

the 3-phase SM is most likely connected to. No additional equipment is required, 

and it was proved successful for a LV network with 75 consumers.  

- In (Pezeshki & Wolfs, 2012) method, time-series voltage measurements from both 

the distribution transformer and the customer SMs are analysed with correlation 

method, in order to allocate phases of the household phases. It is based on the 

assumption that voltage profiles of customers are well correlated with the voltage 

profile at the transformer level on the same phase. Note that these assumptions 

were proven to be right both in the simulation and in-field results. 

- While most automation methods rely on the availability of precise connectivity 

models, which cannot be always accessible, largely due to changes in the network. 

(Arya, et al., 2014) expands previous work, and in this method infer phase 

connectivity from voltage measurements of the customer SM only, or in addition 

to measurements from the medium- voltage network, and partly accurate 

information about the phases allocated to each customer. This method provides a 

93% of accuracy when the measurements set is large enough (i.e. couple of days). 

• Clustering Techniques 

On another note, there are a number of methods which use clustering techniques based 

on correlation coefficients. The methods proposed in this thesis belong to this type of 

phase identification approach. Therefore, a more detailed description of this machine 

learning techniques to be used in the analyses is provided in section 5. Hereafter, an 

overview of already successfully tested methods is provided: 
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- In (Arya & Mitra, 2013) a novel method using k-means clustering is proposed, 

where time series of voltage measurements from customer’s SMs are used for 

identifying the phases of each customer. In addition, the k-means algorithm is also 

used to create sub-clusters for those customers that belong to the same building 

and are connected to the same phase, in order to find connectivity relationships 

within the LV circuit. A similar approach is proposed in section 5, since k-means 

clustering is one of the preliminary methods. However, the data set to which the 

algorithm is applied is different since it should be recalled, that data to be used is 

composed of half-hourly voltage. 

- (Short, 2013) approach applies linear regression on voltage SM and substation 

measurements. This method is based on correlating the aggregation of SM 

measurements with substation voltage observations, and is topology-sensitive, 

which can lead to inaccuracies. Although this research sheds light on the 

relationships between the measurements at the household and substation level; 

once again, this method is not suitable for this thesis, since required data to 

perform it is missing. 

- The results obtained with this approach, (Mitra, et al., 2015), demonstrate that 

time-series voltage SM data is correlated with the hierarchical structure of LV 

networks. This correlation is used with the k-means algorithm to partition the 

measurements into three groups and enable to identify the phases of the SMs. This 

method is the most similar to one presented in this thesis. The main difference lies 

largely in the type of data analysed, since even though this approach only uses 

voltage measurements from customers, these are time-series voltage profiles,  

- As already mentioned, connectivity models can become outdated due to changes 

in the network topology. Consequently, (Bandyopadhyay, et al., 2015) proposes 

a new method for inferring customer phases from voltage measurements of 

customer SMs using machine learning techniques. In this case, supervised, semi-

supervised and unsupervised techniques are tested on real SM measurements from 

a LV network in North America. 

- In (Wang, et al., 2016) k-means clustering is successfully deployed, based upon 

customer voltage measurements. Instead of directly employing correlation, it 

extracts features on which they perform a k-means clustering, achieving to divide 
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customer SMs into clusters corresponding to the different phases with an accuracy 

of over 90%. 

- (Watson, et al., 2016) presents a promising method that enables to use voltage 

measurements from customer SM to determine the transformer, as well as, the 

phase to which each customer is connected to. An algorithm that uses correlation 

analysis with the Fisher Z transform is presented to achieve this.  

- (Jayadev P, et al., 2016) puts forward a novel data-driven approach that employs 

graph theory and PCA to identify phases of a simulated set, considering the effect 

of noise. From these noisy measurements, the algorithm has been proven to 

efficiently identify the phases of the household SM. 

- (Olivier, et al., 2017) employs graph theory, in this case, maximum spanning tree 

technique, in order to identify the phases of SMs in a LV network, using uniquely 

the time-series voltage measurements. In this way, since distribution networks are 

usually shaped in radial fashion, the branches of the resulting tree represent the 

cable lines, and the nodes are the buses. The algorithm is used to maximise the 

correlation coefficient between the voltages at the nodes, and based on the results 

obtained, group the measurements into 3 clusters. 

- (Pappu, et al., 2018) method relies on energy measurements to identify the 

underlying network topology, so that phase of SM can be allocated correctly. It 

applies graph theory based on principal component analysis (PCA) to SM energy 

measurements. 

- (Olivier, et al., 2018) method expands the work developed in (Olivier, et al., 

2017). Voltage measurements are analysed using a clustering method based on 

graph theory and k-means algorithm but modified in order to take into account the 

underlying structure of LV network, even when its topology is unknow. It also 

compares the results obtained from this novel approach to those with the k-means 

method used in other studies. Obtaining a higher accuracy with their proposed 

method for different scenarios, such as, when there is a greater presence of 3-

phase SMs than single-phase SMs in the circuit, or when the average voltage 

profiles are calculated for periods lower than one minute. 
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- (Blakely, et al., 2019) puts forward a machine learning, spectral clustering 

method, for identifying and correcting phases allocated to customer SMs. Spectral 

clustering is employed in combination with a ‘sliding window ensemble’ which 

improves the accuracy, and its suitability for larger networks.  

Given that many of the above-mentioned methods used k-means and graph theory have 

been proven to be successfully implemented in voltage measurements only, it was 

concluded that these methods could be suitable for discrete voltage measurements. Based 

on the fact that it has been proven that SM connected to the same phase present high 

values of correlation.  

4.3 Findings from Literature 

First of all, it should be highlighted that although some of the methods presented in this 

chapter would be outstanding options for solving the phase identification problem, they 

were considered to be not suitable for the case studies of this thesis.  

For example, installing SMs which include PLC technologies would be a great option to 

sort out the phase identification problem, and have a higher level of monitoring in LV 

networks. However, it is not within this project’s scope to determine which technologies 

would be more beneficial to include in LV networks for their better management and 

operability. 

What is more, the test networks in this thesis represent the real situation in the UK 

nowadays, and it is of great interest to research if it is possible to apply a method that 

does not require any additional change in the SM infrastructure. This is because even if 

these changes in the infrastructure would be found to be cost-effective and beneficial, 

they are not likely to happen any time soon. And it is worth recalling that the objective of 

this thesis is to present a phase identification solution that can work for the current 

situation. 

On top of that, many methods used time-series based approaches, and given the fact that 

only discrete half-hourly measurements from the customers are available, these methods 

had to be discarded as well. 

Therefore, the only automatic methods that were found to be applicable to the case study 

were those that rely on clustering techniques for identifying the phases of SMs. 
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In addition, since only data about voltage profiles from customers is available, it was 

found that the only criterion that could be applied for the clustering of the data set is based 

on using correlation factors. This is because it has been proven that voltage profiles of 

customers connected to the same distribution transformer present high correlation values. 

In addition, it was found that customers connected to the same phase are expected to have 

the highest correlation (Luan, et al., 2015).  

All in all, it was concluded that the only suitable techniques are clustering approaches 

based on grouping the SM voltage profiles according to their correlation factor. Meaning 

that the clusters to be formed will be composed with the SM with higher correlation 

factors among them, and therefore, the SMs belonging to the same cluster would be 

connected to the same phase.  

In particular, hierarchical clustering and k-means clustering are proposed to be applied in 

the test network. Both methods have been successfully used in a considerable number of 

studies, especially the k-means algorithm which a very commonly clustering technique. 

In addition, they can be easily programmed to used correlation criterion for the clustering, 

thanks to software like Matlab which enables to use machine learning techniques.  

Although similar approached worked in studies like (Mitra, et al., 2015),  which uses 

correlation-based k-means algorithm; it is yet unclear up to what point and under which 

conditions, these correlation values would be enough to form clear clusters for a more 

data-constrained scenario, such as the ones presented in this thesis. 

This is tested in section 8, 9 and 10, where the proposed methods are applied to the case 

studies and their capability of identifying SM phases correctly is investigated for several 

scenarios, of particular interest is how PV-DG can affect the accuracy of the methods. In 

addition, in the next chapter, the rationale behind these two preliminary methods is further 

detailed. 
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5 Description of the Proposed Methods 

This chapter outlines the preliminary machine learning techniques chosen to 

tackle the phase identification problem, that is, hierarchical and k-means 

clustering. Besides, the techniques used to evaluate the quality o f the cluster 

used in Analysis 1, 2, and 3 are also explained. In addition, the improved k-

means algorithm employed in Analysis 3 is described as well.  

5.1  Introduction 

After reviewing methods from literature, it was concluded that considering the constraints 

and type of data, these unsupervised machine learning techniques could be proved to work 

for solving the phase identification problem. It should also be noted that the two methods 

presented below, would be tested in practice with the objective of determining which of 

them provides more accurate results for matching results. 

These two machine learning methods fall into the category of unsupervised techniques, 

which are described to understand the suitability of this type of methods for the case 

studies of this thesis. 

5.2 Unsupervised Machine Learning Description 

Unsupervised learning techniques are a type of machine learning approaches which allow 

identifying the natural patterns or groupings in a data set. In this case, the voltage 

measurements from the customers SM need to be grouped in 3 different clusters according 

to the phase they are connected to, uniquely based on the patterns that will be identified 

by analysing their voltage profiles based on correlation factors. 

The main goal of clustering is to disclose hidden structure in a data set (Vathy-Fogarassy 

& Abonyi, 2013). Clustering algorithms use this structure to divide the given data into 

groups, so that objects belonging to the same group or cluster are the most similar to the 

other objects in the same group, and dissimilar to those in other clusters (Berkhin, 2006). 

These techniques can be used, in addition to finding intrinsic structures in data, as a 

method for initialising regression models, classification of data, correlation analysis, and 

anomaly detection among other utilities (Vathy-Fogarassy & Abonyi, 2013) (Han, 2006). 
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Clustering approaches may be divided into two main groups: hierarchical and 

partitioning. 

(Jain, et al., 1999). The former generates different levels of partitions, placing at the top 

of the sequence, only one cluster including all the objects of the data set, and at the bottom, 

all the clusters composed by one object. Furthermore, hierarchical techniques can be split 

into agglomerative and divisive as well. 

Partitioning, however, strives to divide the data set into non-overlapping clusters, so that 

the dissimilarity between clusters is as high as. The most commonly used partitioning 

method is K-means clustering (Cui & Potok , 2005). 

Both agglomerative hierarchical and k-means clustering techniques are tested for the case 

studies of this project and are explained in detail below. 

5.3  Hierarchical clustering 

Hierarchical clustering partitions data sets into groups, and those groups into larger 

groups, resulting in a hierarchical nesting of clusters. Dendrograms are the illustrations 

representing the hierarchical tree where the branches are the observation belonging to the 

data set, and the nodes are the clusters. This method allows to investigate the groupings 

that can be obtained for different granularities. 

As previously mentioned, hierarchical methods are further divided into agglomerative 

and divisive. The difference between these techniques boils down to the structure and 

operation of the algorithm. Divisive (top-down) approaches starts from a single cluster 

enclosing all the observations and proceeds to gradually partition the initial cluster until 

the stopping criterion is met. On the contrary, divisive (bottom-up) clustering starts from 

cluster formed by a single observation, and then combines clusters with the highest 

similarities to create bigger clusters until the stopping criterion is met too. It should be 

noted that the stopping criterion is usually achieved when the number of k clusters is met 

(Berkhin, 2006). It should be noted that the agglomerative approach is the one applied in 

this thesis, and deployed using Matlab functionalities, as explained further below. 

In Figure 5.1, it can be observed the results that can be obtained using hierarchical 

algorithms. At the left of the Figure, the observations and their assigned cluster are 

represented, while at the right, it is shown the resulting dendrogram tree which represents 

the nested clustering of the observations. 
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5.3.1 Hierarchical Algorithm in Matlab 

Here is explained, how the agglomerative hierarchical technique works and can be 

implemented in Matlab, since this is the way it was employed to perform the analyses in 

this thesis. 

As above mentioned, the clustering algorithm splits data into a hierarchical multilevel 

tree or dendrogram, which enables to find the most suitable level of clustering for 

different conditions (MathWorks, 2018). 

By installing the Statistics and Machine Learning Toolbox in Matlab, hierarchical 

clustering can be applied to a given data set. The following Matlab function enables to 

apply this clustering technique, by following the next steps: 

1. Firstly, by using the ‘pdist’ function to calculate the distance between the points. 

In other words, in order to later cluster the observation, firstly it is needed to 

compute how close each pair of observation are to others. This calculated by 

using correlation distances, although other methods such as quadratic Euclidean 

distances could be used. For this thesis, however, the ‘pdist’ function is 

programmed to use the correlation coefficient to measure the similarity between 

observations, as it can be observed in Figure 5.2,. 

Figure 5.1 - Clusters and the dendrogram obtained using the hierarchical algorithm (Jain, et al., 1999) 
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2. Secondly, the ‘linkage’ function is used to start the clustering by initially forming 

clusters formed by only two pair of observations: This pairing is based on 

similarity degree computed for each pair of observation in the previous steps. 

This process is then continued by merging cluster whose observations are closest 

among them, and this is repeated until the forming the hierarchical tree.  

3. In order to determine the optimal clustering, the function ‘cluster’ is used to prune 

branches from the bottom of the tree up to the clustering level specified as an 

input to the function. For this project, the objective is dividing the data set into 

three groupings, and this is specified in the Matlab code, as it can be seen in 

Figure 5.2. 

5.4 K-means Clustering 

As already mentioned in section 4, k-means clustering is being very successful in 

allocating phases for LV networks.  

5.4.1 Description of k-means Algorithm 

K-means clustering (MacQueen, 1967) is a commonly used approach when the number 

of groups to be formed is known. Since this algorithm allows to divide an M-dimensional 

data set into a predefined k-number of groups (Wagstaff, et al., 2001). This approach is 

very suited for phase identification problem since it is known that there can be three 

different phases connections, and therefore, the partitioning of the data set into three 

clusters is sought. 

Figure 5.2 - Example Matlab code for hierarchical clustering 
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This is done by firstly randomly determining the centre of the clusters. There are as many 

centroids as specified clusters. Then, each observation in the data set is assigned to the 

closest cluster centre. This means that the k-means method is sensitive to the initial 

location of the centroids, since the algorithm finds the optimal solution for this initial 

location.  

For this reason, the algorithm needs to be iterated, using different initial cluster locations 

until  there is so as to the centroids converge to the same location after a number of 

iterations or the squared error decrease is negligible, that is the optimal clustering is 

achieves, as illustrated in Figure 5.3 (Berkhin, 2006)  

 

 

. 

 

 

 

 

 

 

Equation ( 5.1) (Vathy-Fogarassy & Abonyi, 2013) represents how this algorithm works, 

where: 

• 𝐶𝑖, is the cluster number ith. 

• ‖𝑥𝑘 − 𝑣𝑖‖, is the selected measurement for distances between the observation (𝑥𝑘) 

and the cluster centroid (𝑣𝑖). 

𝐽(𝑋, 𝑉) = ∑  

𝑐

𝑖=1

∑ ‖𝑥𝑘 − 𝑣𝑖‖2

 

𝑥𝑘∈𝐶𝑖

 ( 5.1) 

The k-means algorithm is very simple to implement since it is easily processed by digital 

computers. As a matter of fact, k-means is even embedded in the Machine Learning 

Toolbox for Matlab, which was used to develop this project.  

Figure 5.3- Example of k-means clustering algorithm (Jain, et al., 1999) 
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5.4.2 K-means Clustering in Matlab 

The k-means algorithm can be employed in Matlab (MathWorks, 2019) as well, by using 

the function ‘kmeans’, which likewise the mathematical algorithm, groups the data into 

k clusters. Yet, this function also yields a vector as an output which relates each 

observation with its corresponding cluster index. The code in Matlab looks as depicted in 

Figure 5.4: 

While hierarchical clustering operates with multilevel dissimilarity distances, k-means 

works with the actual data-set objects, resulting in single-level groupings. Consequently, 

k-means method tends to be more adequate for bigger data sets.  

The ‘kmeans’ function algorithm in Matlab “uses a two-phase iterative algorithm to 

minimise the sum of point-to-centroid distances, summed over all k clusters” 

(MathWorks, 2018). 

• ‘Batch updates’ is the first phase algorithm, which assigns all the observations to 

the closest cluster centre simultaneously in each iteration, and then calculates the 

new centroids. It may happen that the ‘batch updates’ phase does not meet the 

local minimum, i.e. when any observation cannot be moved to any other cluster 

where the sum of distances would be higher. This is sometimes the case of a small 

number of observations. Although this first phase does not usually yield the 

definite solution, it is used to get a fast approximation that will be considered in 

the second phase algorithm. 

• In the second phase, the ‘online updates’ algorithm is used. This method reassigns 

the cluster index of each observation, only when it would decrease the sum of 

distances. If so, the centroids are recalculated as well. Unlike the first phase, the 

‘online updates’ does converge to the local minimum. However, this does not 

mean that there could be another local minimum which is more optimal. 

As above-mentioned the solutions obtained with the kmeans function is dependent on the 

initial cluster centres. In Matlab, to avoid the local minimum, it can be specified the 

Figure 5.4 - Example of code in Matlab for k-means clustering 



Description of the Proposed Methods                                                  University of Strathclyde 

46 

number of iteration, by using the ‘Replicates’ option (also used in the code shown in 

Figure 5.4 ). In addition to this, in the kmeans function it can also be specified the type of 

distance measures. If not specified, squared Euclidean distance metrics are computed. 

However, to analyse voltage profile correlation, measures are more suitable, since voltage 

SM data connected to the same phase have higher correlation values, when compared to 

voltage profiles corresponding to other phases. 

5.5 Methods for Evaluating the Clusters 

The main objective of cluster analysis is to determine the optimal number of clusters. 

Therefore, these techniques can very helpful tools for unsupervised techniques. Since the 

main drawback of k-means and hierarchical clustering is the fact that the number of 

clusters needs to be defined. 

As it can be seen in section 8, Analysis 1 uses both hierarchical and k-means clustering 

in one of the test networks with the goal of comparing their resulting phase identification 

outcomes. Within analysis 1, two cluster evaluation techniques are applied, silhouette and 

confusion matrix, which are detailed below. 

5.5.1 Clustering Evaluation Techniques Used in Analysis 1 

Silhouette Plot 

The silhouette plot (MathWorks, 2019) represents in the x-axis the silhouette value, 

between -1 and +1, which is used to compare how close each observation to other 

observation in its same cluster, with observations in the other clusters. In this case, the 

function was programmed to calculate these distances based upon correlation approach. 

Silhouette plots are used to analyse the quality of the cluster in Analysis 1, as tools for 

comparing the results obtained with k-means and hierarchical clustering. 

Confusion Matrix 

In addition, although confusion matrix was used for the first analysis, with the goal of 

representing the accuracy of the phase matching for both methods. 

Confusion matrixes can be generated in Matlab using the function ‘plotconfusion’ 

(MathWorks, 2019). This function enables to compare the target outputs of the algorithm 

with the real results. Therefore, a matrix with the real known phases corresponding to 
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each SM, as well as, a matrix with the phases allocated with the hierarchical algorithm 

will be compared.  

The columns in Figure 5.5, correspond to the target class (results), while the rows 

correspond to the estimated outputs with the hierarchical clustering. Also, while the 

diagonal cells are those observations that were correctly allocated their phases, the other 

cells correspond to the amount of SMs that were allocated the incorrect phases. 

Furthermore, the column on the right in addition to the row at the bottom, show the 

successful (green percentage) and failure (red percentage) rate corresponding to each 

class. 

5.5.2 Clustering Evaluation Technique used in Analysis 2 and 3 

After comparing the results yielded both by hierarchical and k-means clustering, as 

discussed in section 8, it was decided to proceed with the next analysis with just the k-

means clustering. 

In Analysis 2 and 3, therefore, the accuracy of the phases allocated with the k-means 

algorithm are analysed for different factors. In order to represent the varying accuracy 

levels, bar chart and radar charts are used.  It is of particular interest to explain the use of 

radar charts. 

Radar charts (also called spider plots) allow to illustrate how more than 3 variables affect 

each other.  In these analyses, they were used to depict how the percentage of each of the 

three phases, as well as, the total percentage of SM coverage in the network, affects the 

accuracy of the phase identification. 

Figure 5.5 – Example of confusion plot 
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5.5.3 Improved Algorithm Description 

For reason later explained in the results chapter, the originally proposed algorithm was 

decided to be improved. This is because sometimes, for lower levels of SM penetration it 

may happen that the available SM are only connected to two different phases (or even 

one). Since k-means algorithm needs to be inputted a defined number of clusters to be 

formed, this is a huge drawback when only two phases are required to be identified.  

Therefore, as a solution to this issue, it is proposed to use the gap clustering evaluation 

criterion. As explained below, it allows to determine the optimal number of clusters.  

Gap Statistic Criterion.  

Gap statistic, as defined in (MathWorks, 2018)is based on the graphical method of 

representing error measurements versus the number of potential clusters, with the 

objective of finding the ‘elbow’ between both variables. This point occurs when the 

highest gap value for a number of clusters is achieved. This gap value is defined in 

equation 5.2: 

In addition, the function ‘evalclusters’ in Matlab can be programmed to use gap criterion, 

as well as the potential number of k-clusters to evaluated for a given data set. This 

function creates an object, which includes the variable OptimalK, which can be used as 

input for the k-mean function. This way, the k-means algorithm will always partition the 

data into the optimal number of groups. The code required to do so is shown in Figure 

5.6: 

Therefore, this is the improvement proposed for the k-means algorithm, which is 

supposed to yield better results when the number of different phases to be identified for 

a SM set is lower than three. This improved algorithm will be tested in practice in chapter 

10. 

 

 

Figure 5.6 - Evaluation Gap code in Matlab 
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6 Description of the LV Test Networks 

This chapter describes the LV distribution networks that ha ve been used to 

analyse the proposed methods. It is detailed its topology, the type of available 

data, and how this data was generated. 

In this thesis, six different LV networks will be used as case studies for the proposed 

methods. These networks are existing LV circuits selected from Scotland Central Belt, 

although the voltage measurements used for the methods, were synthetically obtained and 

provided by Scottish Power, as explained in 6.2. 

In this chapter, the topologies of the six circuits are firstly described, followed by an 

explanation of the type of data available for the test circuits; and finally, the method 

employed to obtain the voltage profile is presented.  

6.1 Main Characteristics of the LV networks 

These six circuits were selected as case studies with the objective of representing different 

levels of topology complexity, that is varying degrees of branching and the number of 

households connected to the network. Furthermore, the presence of PVs installed on the 

rooftops of these households is represented in three of the test circuits. 

Although already mentioned throughout the thesis, it is worth stressing, that these circuits 

were chosen to represent the current data-constrained situation in the UK for network 

operators. Where:  

• Only half-hourly voltage profiles from the customer's points in the network are 

available. This is because the current SM settings are programmed to send 

information to the network operators each half an hour, and also because of 

privacy-related issues. 

• These circuits are lacking measurements at the transformer point, since apparently 

this a widespread situation even nowadays.  

• Note that the circuits represented are formed by domestic users uniquely, and all 

the SMs represented in the circuit are connected to the same transformer, and the 

voltage profiles for all customer’s SM are available, as if there was a 100% level 
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of penetration, which will allow to simulate varying levels of penetration in 

chapters 8, 9 and 10. 

• It should also be noted that the type of voltage measurements for the three first 

circuits is instantaneous voltage, while for the last three networks is the half-

hourly average voltage. Note that the current setting of SM establishes that the 

readings sent to network operators correspond to the average measurement. 

Although this could be easily changed if better results are obtained for a type of 

data. 

The following are the circuit’s topologies and their specific characteristics: 

LV Circuit 1 

 

Circuit 1 is the least complex LV network, composed of 31 SMs3 with a limited level of 

branching. The length of the feeder is 450 m.  

There is no presence of PV-DG in this circuit. In addition, instantaneous half-hourly 

voltage measurements are generated for this circuit. 

 

3 Note that the numbers in the LV circuits represent the number of SM per building, that is, the number of 

customers connected to the network in that point. 

Figure 6.1- Topology of the LV Circuit 1 
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LV Circuit 2 

The length of the feeder of circuit 2 is 

approximately 300 m, and supplies 56 customers  

Like circuit 1, there is no presence of PVs on the 

rooftops, and half-hourly instantaneous voltage 

data is available. 

This circuit also presents a low level of 

branching and therefore, limited topology 

complexity. 

LV Circuit 3 

 

 

 

 

 

 

 

 

The length of the feeder of circuit 3 is approximately 450 m, and supplies 56 customers  

Likewise, there is no presence of PVs on the rooftops, and half-hourly instantaneous 

voltage data was generated for this circuit. 

The branching in the circuit is also limited, and topology can be considered rather simple. 

Figure 6.3 - Topology of the LV circuit 3 

Figure 6.2 - Topology of the LV circuit 2 
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LV Circuit 4 

Circuit 4 is composed of 111 households, with a 

feeder length of around 400 m. 

This circuit presents a higher level of branching 

compared to the three previous case studies.   

For this circuit the following voltage profiles are 

generated: 

• Half hourly average data for both scenarios 

with no PV penetration and 50% of penetration. 

 

 

 

 

 

LV Circuit 5 

The length of feeder is of around 560 m and 

supplies 69 customers. 

This circuit also presents a higher level of 

branching compared to the three first case 

studies.   

For this circuit the following voltage profiles 

are generated: 

• Half hourly average data for both scenarios 

with no PV penetration and 50% of penetration. 

 

 

Figure 6.5 - Topology of LV circuit 5 

Figure 6.4 - Topology of the LV circuit 4 
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LV Circuit 6 

This circuit represents the network with the 

highest level of branching and complexity, 

among the case studies. 

The length of the feeder is approximately 320 m, 

and it is formed by 63 customer SMs. 

For this circuit the following voltage profiles are 

generated: 

• Half hourly average data for both scenarios 

with no PV penetration and 50% of penetration. 

 

 

 

6.2 Generated SM Voltage Data 

The above presented LV circuits were randomly chosen from Scotland Central Belt. The 

process followed to generate the voltage profiles per household for a month is explained 

in great depth in the article by (Mokhtar, et al., 2019). 

Considering the already mentioned fact that the SM coverage in the UK is rather low, this 

method enabled to generate realistic voltage profiles of customers, using Deep Learning 

Neural Network (DLNN). This method allowed to obtain the generated voltage profiles 

for all the customers in the networks, even for those households that did not have SMs, 

and without needing high granularity demand power data from all customers on the 

circuit. 

In the research presented in (Mokhtar, et al., 2019),  the approach was developed by using 

OpenDSS software, to generate 1-month power measurements without DG.  

However, the generated data, provided by Scottish Power, in this thesis although obtained 

using the same methodology as in (Mokhtar, et al., 2019), was modified for the interest 

of analysing a more realistic situation for network operators in the UK nowadays. That 

is, instead of power demand data, the profiles generated are the voltage profiles for a time 

Figure 6.6 - Topology of the LV network 6 
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period of a month. Depending on the circuit instantaneous or average half-hourly profiles 

were created since currently SM settings can provide this type of data. Yet, as already 

mentioned currently SMs in the UK are programmed for measuring average voltage 

measurements. 

In addition to the voltage profiles, there is also information about the real phases to which 

each SM is connected to, and the distances from the SM to the transformer. The former 

will only be used in order to compare this real phase with the results obtained with the 

proposed methods. Conversely, the latter is not really for the development of the 

algorithm applied to the voltage data, but it could be used to analyse how topology affects 

the results of the proposed methods, as it is discussed in chapter 13. 

6.3 Data Limitations and Assumptions 

As mentioned in previous chapters, LV networks traditionally have had little monitoring, 

and even nowadays there is an existing lack of data that, in some cases, does not enable 

to apply many phase identification methods presented in the literature review.  

The generated voltage profiles that will be used for the analyses in this project are 

therefore highly constrained and limited. However, it should be highlighted that this is 

precisely why they are of great interest, since they represent the current situation in terms 

of data availability for network operators in the UK. And it is very likely that in the near 

future this situation is not going to undergo significant changes.  

6.3.1 Data Constraints 

The main data constraints in comparison with similar existing phase identification studies 

are listed next:  

• Lack of measurement reading at the transformer/feeder point 

• There is no power demand data from the SM. 

• Half-hourly discrete data are only available, which reduces the number of possible 

methods to apply significantly. This is because many studies use continuous time-

series approaches to solve the phase identification problem. 

6.3.2 Assumptions 

- It is assumed that the measurements from the SMs are synchronised 
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- All the SMs used in the simulations are assumed to be single-phase. These SMs 

are the most common meters in domestic LV network at the moment. 

- Also, it is assumed that the information of the distribution transformer 

connectivity is known by the operator network. That is, it is known to which 

distribution transformer each SM is connected to. All the SMs studied in the six 

circuits are assumed to be connected to the same transformer. 

- The noise in the voltage measurements is assumed to be negligible. 
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7 Method Description 

The following section details the process  followed to find the approaches that 

can effectively identify phases for SM in the test networks. In addition, it 

details the analysis to be performed in order to assess how di fferent scenarios 

and variables affect the accuracy of the proposed methods.   

As explained in the previous chapter, given the limitations of the available data, most of 

the existing phase identification approaches are not applicable to the dataset under study.  

This is precisely the main challenge, and at the same time contribution of this project, 

since the methods developed will be adapted to work even in highly-data constrained 

scenarios.  

Consequently, the first step followed, as shown in Figure 7.1, was to carry out a profound 

revision of all the existing methods, of which an overview is provided in section 4. Next, 

and considering and understanding the constraints of the given data, two preliminary 

methods (hierarchical and k-means clustering) were chosen.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 - Methodology process flow diagram 
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It should be noted that the chosen software to implement the potential methods and used 

to treat the data (which was provided as .csv files) was Matlab. This decision was taken 

on the grounds that after reviewing literature, the potentially most suitable methods were 

all machine learning techniques. And considering that Matlab offers a Machine Learning 

Toolbox, which makes these algorithms easy to implement and adapt to the given 

conditions and dataset. Other software and tools, such as Python or R, were considered, 

yet. 

Once the software was chosen, the selected methods, k-means clustering, and 

Hierarchical clustering were implemented in Matlab to test their suitability for the test 

network. And the next analyses were performed with the objectives of firstly, determine 

the most suitable method for the cases studied, and then, investigate under what 

conditions of SM and PV-DG penetration the proposed method would be reliable. 

7.1 Analyses Performed on the Test Networks 

7.1.1 Analysis 1: Comparison between Hierarchical and K-means Clustering 

In order to check which method is more suitable for the given data constrained test 

networks.  

In this case, only LV circuit 1 data set is used for the analyses, so that, the algorithm that 

is proven to be more effective will be later applied for the rest of circuits and analyses.  

Firstly, the algorithms were tested for a scenario of full coverage of SMs in the network. 

To check if significant differences between the effectiveness of both algorithms could be 

found. Confusion matrix and silhouette plots were generated in order to visualise how 

these two methods compared in cluster quality. 

On second place, it was tested how lower SM penetration in circuit 1 would affect the 

algorithms’ accuracy. The decrease in the degree of penetration of SM in the network was 

simulated by reducing the number of SMs in each loop. This was done using two different 

methods: 

• Method 1 consists of randomly knocking out SMs.  

Both clustering techniques are initially applied to all voltage profiles from the 

customer’s SM. But in each loop, one voltage profile (corresponding to one SM) 

is removed from the data set, until there are no more SMs. This way, it is very 
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likely that for most of the loops, SMs connected to three phases are present in the 

data set. 

• Conversely, Method 2 knocks out SMs in order, that is, voltage profiles of SMs 

connected to phase 3 are firstly removed, followed by those connected to phase 2, 

and finally phase 1. This method allows checking how clustering techniques can 

work when there is no information about if the SMs to be analysed can be 

connected to three (or less) different phases. 

It is worth noting that the voltage measurements used for this analysis, were half-hourly 

instantaneous voltage. Also, in each loop, the accuracy of the phase matching was 

calculated in order to observe how it changes as the penetration decreases. 

7.1.2 Analysis 2: Effect of a 50 % Level of Penetration of PV-DG (Method 1) 

In this analysis, voltage profiles generated for networks with a 50% level of penetration 

of PVs are tested. This analysis is very important since one of the main focus of this 

project is to find successful phase identification methods so that PV-DG could flourish. 

Since, as previously discussed in section 3, PV-DG is one of the major factors causing 

phase imbalances, and therefore reducing the hosting capacity of these technologies.  

For the above reasons, Analysis 2 is focused on investigating the effect of PV-DG on the 

accuracy of the phase matching obtained with k-means clusters. In this section, this is 

only analysed following Method 1, which outputted really accurate results in the first 

analysis without PV presence. 

The average half-hourly SM voltage measurements of LV circuits 4, 5, and 6 are used for 

this analysis. 

7.1.3 Analysis 3: Introduction of Improved K-means Algorithm for both scenarios 

without and with 50% level of PV penetration. 

In light of the results obtained in Analysis 1 and 2, k-means is the chosen method to be 

used in the remaining analyses. Nonetheless, an improvement to the initial k-means 

algorithm tested is presented in this chapter.  

This improvement consists of using the evaluation gap function from Matlab, which as 

explained in chapter 6, allows to determine the optimal number of clusters for a data set 

based on the gap criterion. Therefore, this function is applied to the data set as the number 

of SMs is decreased in order to simulate different levels of SM penetration.  Next, this 
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optimal number of clusters is used as an input for the k-means algorithm, instead of 

determining that 3 clusters are to be formed (as it was programmed for Analysis 1) 

The potential improvements in the accuracy of the phase allocation by k-means clustering 

is tested for the six circuits. It is worth recalling that for circuits 1, 2 and 3, half-hourly 

voltage profiles are used; while for circuits 4, 5 and 6 the instantaneous voltage 

measurements are instantaneous. Therefore, this analysis will also enable to test how 

these two types of voltage measurements work for the improved algorithm.  

In addition, for the last three circuits both scenarios without PVs and with 50 per cent of 

penetration will be tested. And the method used for simulating the decreasing levels of 

SM penetration will be Method 2, since it allows to check how the algorithm will work 

when the amount of different phase connection is lower than 3. 
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8 Results for Analysis 1 and Discussion 

This section presents the results obtained for Analysis 1, which it is intended 

to compare the accuracy of hierarchical and k-means clustering. Firstly, both 

algorithms are compared for full coverage of SMs, and then how their 

efficiency is affected as lower levels of penetration of SMs are simulated. 

8.1 Results for a 100 per cent Level of SM Penetration 

The following are the results obtained with hierarchical clustering and k-means clustering 

for full coverage of SMs in the LV circuit 1: 

8.1.1 Hierarchical Clustering 

In order to assess the accuracy of the groupings formed with the hierarchical algorithm, 

several techniques were employed. These are the dendrogram tree, confusion matrix, and 

silhouette plot, which are presented next: 

As explained in section 5, agglomerative hierarchical clustering algorithm can be 

implemented with Matlab, and enables to group the SM data set into three groups. In 

addition to this, the algorithm allows for generating a dendrogram, which is depicted in 

Figure 8.1.  

 

Moreover, Figure 8.2 represents the confusion plot outcomes for hierarchical clustering.  

Figure 8.1 - Dendrogram tree for circuit 1 with full SM coverage 
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This plot was generated to easily assess the accuracy of the algorithms for the different 

scenarios. As it can be observed in Figure 8.2, the success rate for all the SMs and phases 

is 100% with the hierarchical algorithm. 

Since all the SMs haven allocated the correct phase, the number inside the diagonal phase 

accounts for the number of SM phases connected to each phase, and the percentage 

corresponds to the total percentage of presence of each phase in the network. 

 

 

 

 

 

 

 

 

In Figure 8.3, the silhouette plot is obtained to assess the clustering quality of the groups 

obtained with hierarchical clustering, and it can be used to determine the optimal number 

of clusters for a given data set.  

 

 

 

 

 

 

 

Since, in Analysis 1, these two algorithms are compared in order to find out the most 

optimal one. Thus, high silhouette values in the clusters are sought, and as it can be seen 

in Figure 8.3, the observations in the same cluster are highly correlated. 

Figure 8.2 - Confusion plot for circuit 1 with full SM coverage (hierarchical clustering) 

Figure 8.3 - Silhouette plot for circuit 1 (hierarchical clustering) 
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In addition, the graph shown Figure 8.4 represents how the half-hourly data for the time 

period of a month was grouped into three clusters for each phase: 

8.1.2 K-means Clustering 

In this section, the results of the different techniques are presented. These techniques are 

deployed with the objective of evaluating the accuracy and quality of the phase groups 

obtained with k-means clustering. The same techniques used in previous subsection are 

used, except for the dendrogram tree, which is a unique characteristic of hierarchical 

clustering. 

Figure 8.5 portrays the confusion matrix that compares the phase allocation results 

obtained with k-means clustering with the target (real) results. A 100% level of success 

is also obtained for k-means clustering, in the same way as the results achieved by 

hierarchical clustering. 

 

 

 

 

 

Figure 8.4 - SM voltage measurements grouped by phases (Hierarchical clustering) 
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Next, the results for the silhouette values are presented in Figure 8.6, which illustrates 

that the phase groups obtained with k-means clustering are largely correlated as well. 

 

 

. 

 

 

 

 

 

 

Lastly, in Figure 8.7, it is also represented how the voltage profiles were clustered in 

three-phase groups for data set corresponding to circuit 1 and the timespan of one month. 

Figure 8.5 - Confusion matrix for circuit 1(k-means clustering) 

Figure 8.6 - Silhouette plot for circuit 1 (k-means clustering) 
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8.2 Reducing the Level of Penetration of SMs 

As shown in the previous subsection, k-means and hierarchical clustering yielded equally 

accurate results for the phase allocation of the SMs in the LV network 1, for an ideal 

scenario where there is full coverage of SMs. 

Therefore, the next step is to check if they would also be equally accurate for lower levels 

of penetration of SMs.  

8.2.1 Method 1: SMs are Randomly Removal 

Hereafter, the results obtained with methods 1 and 2, for decreasing levels of SMs 

penetration are shown: 

Hierarchical clustering 

Since multiple loops needed to be programmed in Matlab in order to obtain the results for 

the accuracy levels of k-means algorithm, different techniques from the ones used in 

section 8.1, are employed here. 

It should be highlighted that since in this analysis SMs are removed on a random basis, 

the accuracy results may vary significantly. This is because the accuracy drops drastically 

when the algorithm is programmed to partition the data set into 3 groups, but all the SMs 

Figure 8.7 - SM voltage measurements grouped by phases (k-means clustering) 
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connected to one (or two) of the phases have already been removed from the set. For this 

reason, the bar graphs shown in Figure 8.8, represent the accuracy levels obtained for 

levels of SM penetration from 0 to 100 per cent for different iterations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to Figure 8.. in order to illustrate the level of presence of each phase as SMs 

are knocked out, that is, to show how the level of presence of SMs is being decreased, 

radar charts are presented for the four iterations.  

These graphs allow to portray how multiple variables, which in this case are the level of 

presence of each variable and the total level of presence of SMs can affect the accuracy 

of the phase allocation algorithm. 

 

 

 

Simulation 2 Simulation 2 

Simulation 3 Simulation 4 

Figure 8.8 - Accuracy results for Method 1 (hierarchical clustering) 
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It can be observed that both the level of penetration and the number of phases present in 

the network affect the effectiveness of the network. 

K-means clustering  

Similarly, in order to show the different outcomes that may result from randomly 

removing SMs, four simulations of the same k-means algorithm. Figure 8.. illustrates how 

these four simulations yielded somewhat varying results for different levels of SM 

penetration. 

Simulation 3 

Simulation 3 Simulation 2 

Simulation 4 

Figure 8.9 - Radar chart for Method 1 (k-means clustering) 
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As it can be observed, and the accuracy results obtained are the highest up to levels of 

SM penetration of 10-20%, which shows this algorithm is very successful at correctly 

allocating phases for circuit 1 data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth highlighting that more simulations were run, in order to check the variability 

of the results obtained with these methods, and the accuracy never was always 100 per 

cent for levels of SM penetration of 20 % or higher. 

Also, in order to understand how different levels of phases presence and total percentage 

of SM in the network affected the results for the accuracy of k-means, the code for 

obtaining a radar plot was created in Matlab.  The resulting graphs for the 4 simulations 

are presented in Figure 8.: 

 

 

Simulation 3 Simulation 4 

Simulation 2 Simulation 4 

Figure 8.10 - Accuracy results for Method 1 (k-means clustering) 
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The radar charts show that the accuracy of the k-means method is only decreased when 

there is no longer presence SMs connected to three different phases. This can be clearly 

observed in the iteration number 4 of Figure 8.: For this simulation, until the number of 

SMs analysed is 3 or less, the accuracy of the method is 100 per cent, since all the phases 

where present up to that moment. 

 

Simulation 5 Simulation 2 

Simulation 3 Simulation 4 

Figure 8.11 - Radar chart for Method 1 (k-means clustering) 
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8.2.2 Method 2: Orderly Removal of the SMs 

In this method, SMs are removed in an orderly basis. In other words, SMs connected to 

phase 3 are knocked out first, then SMs connected to phase 2, and lastly, those connected 

to phase 1. 

The objective of this method is to focus on how the accuracy of both methods is affected 

when only SMs connected two different phases are present in the data set. In addition to, 

the accuracy that can be achieved when there are SMs connected to only one phase. 

Hierarchical clustering 

Figure 8. shows the accuracy obtained for different levels of penetration with hierarchical 

clustering. Note that only SMs connected to phase 1 and 2 were still present, for 

percentages below 70%. And only phase 1 for percentages below 30%. 

This level of presence of different phases, as well as, the level of penetration of SM is 

depicted in the radar chart in Figure 8..  

Both graphs show that only when there are three different phases present in the circuit, 

the algorithm is completely reliable for allocating phases, 

 

Figure 8.12 - Accuracy results for Method 2 (hierarchical 

clustering) 
Figure 8.13 - Radar chart for Method 2 (hierarchical 

clustering) 
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K-means clustering 

In the same way, the results for the orderly SM removal, are presented in both Figure 8.9 

and Figure 8.. 

In this case, it can also be observed in both graphs, that only high levels of precision for 

the k-means clustering can be achieved when the number of phases corresponds to 

number of clusters  for which the algorithm has been programmed to partition the 

observations. 

8.3 Discussion on Analysis 1 Results 

In this analysis, both algorithms were firstly tested for an ideal scenario in circuit 1, where 

there is full SM coverage. This was done largely for two main reasons:  

• Firstly, to check that these methods could yield accurate phase identification 

results.  

• And if so, to check the differences in the accuracy results obtained with both 

techniques. 

After this first part of Analysis 1, it was proven that voltage correlation from SM 

connected to the same phase was enough to yield perfect phase matchings with both 

algorithms. What is more, no significant difference in the quality between the methods 

Figure 8.94 - Accuracy results for Method 2 (k-means 

clustering) 
Figure 8.15 - Radar chart for Method 2 (k-means 

clustering) 
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can be observed in neither the confusion matrix nor the silhouette plot. As a consequence, 

these two methods were compared again, but this time simulating their accuracy in the 

phase identification for decreasing levels of penetrations.  

The following table summarises the results obtained both for Method 1 (randomly SM 

removal) and Method 2 (SM connected to the same phase are removed orderly): 

Table 1 - Summary of results for Analysis 1 

 Average accuracy of the phase identification clusters 

 Hierarchical K-means clustering 

Method 1 ~72% ~88 % 

Method 2 ~64% ~60% 

 

K-means algorithm was proven to be a more accurate method for the clustering of phases 

based upon customer SM voltage measurements when Method 1 was employed. This 

means that k-means clustering was able to accurately partition the voltage measurements 

into clusters according to their corresponding phase connections even when very low 

levels of penetration were simulated.  

On the contrary, k-means yielded way lower accuracy for the phase matching in Analysis 

2. This means that this algorithm does not work as efficiently when the variety of different 

phase connections is reduced from three different phases two, as it can be concluded from 

the radar charts. And it decreases even more, when only SM connected to phase 1 are 

analysed. This was predictable since the major drawback of k-means clustering is that the 

number of clusters needs to be specified, and the k clusters value in these analyses was 

set to 3. Therefore, it is reasonable that its accuracy levels decreased when only two or 

one cluster(s) needed to be formed, but the algorithm partition the data set into three. 

The effect of this phenomenon was not so apparent for k-means clustering with Method 

1, since as the SM removal was performed on a random basis, the data set tended to have 

SM connected to all three phases for most of the loops. 

However, hierarchical algorithm just proved to decrease its accuracy for identifying 

phases both when the level of total SM penetration is reduced, as well as when all the 

SMs connected to the same phase are knocked out. In fact, for both methods, when the 

level of SM penetration was lower than approximately 70% the predictability of the 
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accuracy that can be achieved with this method becomes somewhat chaotic. This because 

hierarchical clustering is only good at finding patterns in data when the data sets are large 

enough. Therefore, it can be considered that this is not a good method, if networks with 

low or intermediate levels of SM coverage should not be analysed with this approach. For 

this reason, even though hierarchical algorithm proved to be slightly better than k-means 

for Method 2, it was concluded that the drastic decrease in k-means accuracy be dealt 

with, by implementing an improvement in the k-means algorithm, which is presented in 

section 11. 

Consequently, it was decided to proceed with the following analyses uniquely employing 

the k-means method. 
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9 Results for Analysis 2 and Discussion 

In this section, the key outcomes from the analysis aimed at studying how the 

introduction of PV-DG in LV network can affect the phase identification 

problem, simulating decreasing levels of SM penetration with Method 1. 

9.1 Results for Analysis 2 

Among the given LV test networks, only circuits 4, 5 and 6 have available SM voltage 

data for both scenarios with a 50% level of PV penetration and with no PV penetration. 

For this reason, in this analysis, the k-means algorithm is tested in these circuits for both 

scenarios, with the goal of checking how the penetration of PVs can impact on the 

effectiveness of the method. 

9.1.1 Scenario 1: No PV-DG   

Firstly, the algorithm is applied to the voltage profiles generated for no penetration of 

PVs in the network.  

These are the results for the following circuits: 

LV circuit 4 

Simulation 1 Simulation 2 

Simulation 3 

Figure 9.1 - Accuracy levels for method 1 and  Analysis 2 (LV circuit 4 with no PV penetration) 
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These three graphs represent the accuracy levels for different levels of SM penetration. 

Radar plots are used to illustrate the amount of SM connected to different phases in the 

network, as the total SM penetration decreases in each loop. Figure 9.4 shows the radar 

chart for these three simulations: 

 

 

 

 

 

 

 

 

 

 

 

LV circuit 5 

The following graphs in Figure 9.3 depict the accuracy obtained for different levels of 

SM penetration for circuit 5. 

Simulation 1 Simulation 2 

Simulation 3 
Figure 9.2 - Radar chart for method 1 and Analysis 2 (LV circuit 4 with no PV penetration) 
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On the other hand, the radar charts represent the different percentage of phases and SM 

coverage, and how they affect the k-means accuracy in phase allocation. 

 

Simulation 1 Simulation 2 

Simulation 3 
Figure 9.4 - Radar chart for method 1 and Analysis 2 (LV circuit 5 with no PV penetration) 

Simulation 1 

Simulation 3 

Simulation 2 

Figure 9.3 - Accuracy levels for method 1 and Analysis 2 (LV circuit 5 with no PV) 

penetration ) 
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LV circuit 6 

Similarly, the results for the accuracy of the phase allocation method for SM penetration 

percentages ranging from 0 to 100, are presented in Figure 9.5: 

And the next graphs, in Figure 9.6, allow to represent how the percentage of each phase 

and the SM penetration affected the accuracy of the phase allocation for the three 

simulations runned. 

Simulation 1 

Simulation 3 

Simulation 2 

Figure 9.5 - Accuracy levels for method 1 and Analysis 2 (LV circuit 6 with no PV penetration ) 
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9.1.2 Scenario 2: 50% Level of PV-DG Penetration  

Hereafter, the results for the same simulations as in section 9.2.1 are shown, with the 

particularity, that for this scenario the k-means algorithm is applied to a voltage data set 

generated from test network with a 50% level of PV penetration. 

The results corresponding to circuits 4-5 are presented next: 

LV circuit 4 

Simulation 1 Simulation 2 

Simulation 3 

Figure 9.6 - Radar chart for Analysis 2 (LV circuit 6 with no PV penetration) 
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The accuracy results from three different simulations are presented in Figure 9.7: 

In addition to this, the radar chart resulting from comparing the several phase percentage 

and SM coverage with the accuracy obtained with k-means is shown in Figure 9.8 

 

Simulation 1 Simulation 2 

Simulation 3 

Figure 9.7 - Accuracy levels for method 1 and  Analysis 2 ( LV circuit 4 with 50% of PVs) 
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LV circuit 5 

Figure 9.9 depicts the resulting accuracy degrees for PV penetration from 0 to 100 per 

cent: 

Simulation 1 Simulation 2 

Simulation 3 

Figure 9.9 - Accuracy levels method 1 and  Analysis 2 (LV circuit 5 with 50% of PVs) 

Simulation 1 Simulation 2 

Simulation 3 
Figure 9.8 – Radar chart for method 1 and  Analysis 2 ( LV circuit 4 with 50% of PVs) 
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Radar chart for the three simulations of the accuracy analysis are presented in Figure 9.10 

 

 

 

 

 

 

 

 

 

 

 

LV circuit 6 

The accuracy results of the phase allocation for circuit and different levels of SM 

penetration are the following: 

 

 

 

 

 

 

 

 

 

 

Simulation 1 Simulation 2 

Simulation 3 
Figure 9.10 - Radar chart for method 1 and  Analysis 2 (LV circuit 5 with 50% of PVs) 

Simulation 1 Simulation 2 

Simulation 3 
Figure 9.11 – Accuracy levels method 1 and  Analysis 2 (LV circuit 6 with 50% of PVs) 
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Finally, the random removal of each phase percentage is represented in the radar chart, in 

Figure 9.11. In addition to how these varying amounts of phase and total number of SMs 

affect the accuracy of the results obtained with k-means. 

9.2 Discussion on the Analysis 3 Results 

The main findings of this analysis are the following:  

• Likewise in Analysis 1, the results obtained for Analysis 2 enabled to prove that 

k-means clustering is also highly accurate for scenarios both with no PV 

penetration and with 50% of penetration, as long as, the number of different phase 

connection is known.  

• The most significant contribution of this analysis is that it can be concluded that 

at least moderate PV penetration does not affect the accuracy of the phase 

Simulation 1 Simulation 2 

Simulation 3 

Figure 9.12 - Radar chart method 1 and  Analysis 2 (LV circuit 6 with 50% of PVs) 
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identification method. Since the results obtained for both scenarios were virtually 

the same.  

• In fact, the decrease in the accuracy of the phase identification is given because 

of either really low SM penetration levels (~10-20%) or the complete removal of 

all the SM connected to one of the phases. 

• In addition, the type of data used for this analysis is the average half-hourly data. 

Since the accuracy levels were quite similar to those obtained with the same 

method in Analysis 1, it can also be concluded that accuracy of k-means is not 

affected significantly by using either instantaneous or average voltage 

measurements. 
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10 Results for Analysis 3 and Discussion 

This chapter provides the accuracy results obtained with the improved k -

means approach, following Method 2, for simulating decreasing levels of SM 

penetration. Firstly, this section provides the comparison between the 

accuracy results that would be obtained for Circuits 1, 2 and 3 with the 

original k-means algorithm versus the improved one. This analysi s is also 

performed for Circuits 4, 5 and 6, but for these circuits, it also compared the 

results obtained with and without PV penetration.   

As explained in the method section, after analysing the results for method 2, it became 

apparent that k-means algorithm needed to be somewhat modified in order to overcome 

the fact it was programmed to partition the data set into 3 clusters, by introducing a gap 

evaluation before the clustering. 

10.1 Results for the Three First LV Test Circuits 

It should be noted that the data used for LV circuits 1, 2 and 3 is instantaneous half-hourly 

data. 

10.1.1 LV Circuit 1 

These are the accuracy levels of the phase matching obtained with the original k-means 

clustering vs the improved version with gap evaluation. 

 

Figure 10.2- Accuracy levels for circuit 1(improved k-means 

approach) 
Figure 10.1 - Accuracy levels for circuit 1 (original k-

means approach) 
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10.1.2 LV Circuit 2 

These are the results for circuit 2 with both k-means methods 

 

 

10.1.3 LV Circuit 3 

The accuracy for the phase matching of both k-means approaches for circuit 3, can be 

observed in the following graphs: 

 

 

 

Figure 10.3 - Accuracy levels for circuit 2 (original k-means 

approach) 
Figure 10.4 - Accuracy levels for circuit 1(improved k-means 

approach) 

Figure 10.5 - Accuracy levels for circuit 3(original k-means 

approach) 

Figure 10.6 - Accuracy levels for circuit 3(improved k-means 

approach) 
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10.2 Results for the Last Three Circuits 

The voltage profiles, in this case, are average half-hourly measurements. And note that 

the improvements in the accuracy levels are compared firstly, for the scenario with no 

PV-rollout, and then for a 50 per cent of PV penetration. The results for LV circuits 4, 5, 

and 6 are shown below: 

10.2.1 Circuit 4 

With no PV penetration 

The following four graphs show the bar and radar charts showing how the accuracy level 

is affected by different levels of penetration (as well as, phase connections of SMs) 

Figure 10.10- - Radar chart for circuit 4 with no PV-DG 

(improved k-means approach) 

 

Figure 10.7 – Accuracy levels for no PV penetration in circuit 

4 (original k-means approach) 

  

 

Figure 10.9 - Radar chart for circuit 4 with no PV-DG (original k-means 

approach) 

 

 

Figure 10.8 – Accuracy levels t for no PV penetration in circuit 

4 with (improved k-means approach)  
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With 50% of PV penetration 

The same results are presenteed in the following figures, but for the voltage profiles 

generated for a 50% of penetration of PVs in the circuit: 

 

 

 

 

Figure 10.12 - Accuracy levels for a 50% of PV penetration 

in circuit 4 (improved k-means approach) 
Figure 10.11 - Accuracy levels for a 50% of PV penetration in circuit 

4(original k-means approach) 

Figure 10.14 - Radar chart for circuit 4 with 50% of PV penetration 

(improved k-means approach) 
Figure 10.13 - Radar chart for circuit 4 with 50% of PV penetration 

(original k-means approach) 
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10.2.2 Circuit 5 

Hereafter, the phase identification results are presented for the half-hourly average 

voltage profiles from customer SM corresponding to circuit 5. 

With no PV penetration 

Firstly, the bar charts illustrating the accuracy levels for different SM penetration obtained 

with both algorithm are presented. Followed by their corresponding radar charts 

 

 

Figure 10.16 - Accuracy levels for no PV penetration in circuit 

5 (improved k-means approach) 
Figure 10.15 - Accuracy levels for no PV penetration in 

circuit 5 (original k-means approach) 

Figure 10.18 – Radar chart for circuit 5 with no PV-DG 

(improved (k-means approach) 
Figure 10.17 -Radar chart for circuit 5 (original k-means 

approach 
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With 50% of PV penetration 

The following figures illustrate the accuracy results obtained with the original and the 

improved algorithm for circuit 5, and a moderate level of penetration of PVs. 

 

 

 

Figure 10.20 Accuracy levels for 50% of PV penetration in circuit 5 

(improved k-means approach) 

Figure 10.22 - Radar chart for circuit 5 with PV-DG 

(improved k-means approach) 

Figure 10.19 - Accuracy levels for 50% of PV penetration in circuit 

5 (original k-means approach) 

Figure 10.21 - Radar chart for circuit 5 with PV-DG (original k-

means approach) 
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10.2.3 Circuit 6 

Finally, the results obtained with both algorithms for circuit 6 are shown next: 

With no PV penetration 

The scenario with no PV-DG in the LV network, presents the accuracy results for the 

different SM penetration levels, as shown in the following figures 

 

 

 

 

Figure 10.23 - Accuracy levels for no PV penetration in circuit 

6 (original k-means approach) 

Figure 10.24 - Accuracy levels for no PV penetration in 

circuit 6 (improved k-means approach) 

Figure 10.25 - - Radar chart for circuit 6 with no PV-

DG (original k-means approach) 
Figure 10.26 - Radar chart for circuit 6 with no PV-

DG (improved k-means approach) 
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With 50% of PV penetration 

Finally, these next four graphs represent the accuracy obtained with the original k-means 

clustering and the improved algorithm: 

 

 

 

Figure 10.27 - Accuracy levels for 50% of PV penetration in circuit 

6 (original k-means approach) 
Figure 10.28 --Accuracy levels for 50% of PV 

penetration in circuit 6 (improved k-means approach)  

Figure 10.29 - Radar chart for circuit 6 with no PV-DG 

(original k-means approach) 
Figure 10.30 - Radar chart for circuit 6 with PV-DG 

(improved k-means approach) 
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10.3 Discussion on the Results from Analysis 3 

As it was expected, higher accuracy levels for the correct matching of phases was 

obtained with the improved algorithm.  

However, the accuracy obtained for circuits 1 and 2 is rather low, compared to the results 

obtained for Circuits 4, 5, 6. In particular, there is a drastic decrease for levels of 

penetration from 20-50%, this is for those levels, there were only SMs connected to phase 

1 and 2, but the evaluation gap estimated that the optimal number of clusters was three. 

This means that the instantaneous half-hourly voltage profiles corresponding to customer 

SMs connected to phase 1 and 2 do not have high correlation factors different enough 

between clusters. 

 It is worth recalling that the clustering is performed in order that the SMs belonging to 

the same cluster have the highest correlations values among them, while the correlation 

values with the SMs belonging to other clusters is minimal. If clear clusters are not 

achieved, this is an indicator that correlation of instantaneous voltage measurements of 

customers connected to two different phases only is not enough to predict their phases 

correctly. These results may be surprising because the topology of circuits 1, 2, and 3, is 

simpler. However, it is also true that the amount of SM is more limited for these circuits, 

which reduces the accuracy of the gap evaluation criterion for this method. Wrong gap 

evaluation results lead to partition the data set into more (or less) clusters than the actual 

number; and therefore, triggering mistakes in the phase identification, and resulting in 

significantly lower results. 

On the other hand, the evaluation gap criterion, and thus, the improved k-means algorithm 

proved to provide almost 100% average accuracy results for circuits 4, 5 and 6. This, 

therefore means, that the correlation between SMs connected to the same phase was high 

enough to form clearly defined clusters, even when the number of phase connection was 

reduced. Considering that the topology of these circuits is more complex, and that could 

have led to lower correlation values, it means that the success of the clustering may have 

resulted from evaluation half-hourly average data instead of instantaneous data. More 

research should be done in this area, but from analysing this six circuits, it can be 

concluded that average data present higher levels of correlation in the SMs connected to 

the same phase, and hence, this type of data is more desirable for achieving optimal results 

with the proposed methods. 
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In addition, it is remarkable that such high levels of accuracy could be obtained for 

circuits with a considerable level of branching and number of consumers, and most 

importantly, with a 50 per cent of PV penetration.  

Consequently, the main contribution of this thesis, therefore, is that accurate phase 

identification can be achieved even in data-constrained scenarios with moderate PV-DG 

scenarios with a variation of the k-means clustering technique. 

 



Conclusions                                                                                                University of Strathclyde 

93 

11 Conclusions 

This thesis investigated the feasibility of implementing a phase identification approach 

for the given highly constrained scenarios. After an extensive literature review, two 

methods that had already been used successfully for solving the phase identification 

problem were tested in the LV networks under study. 

From this analysis, it was concluded that hierarchical clustering is less effective than the 

k-means clustering technique. The accuracy of the phase allocation results with the 

hierarchical technique was more seriously affected by decreasing levels of penetration. 

This was expected from the literature review since hierarchical clustering is thought to 

work less efficiently for large data sets.  

Therefore, the remaining analyses were performed uniquely with the k-means clustering, 

which is a method that has been broadly used in literature. However, it had never been 

used for analysing voltage measurements from the customers’ SMs uniquely. And 

although it was also learnt from literature that voltage profiles from SMs connected to the 

same phase are correlated, it was unknown up to what point that correlation would allow 

to correctly partition the measurement into clusters, identifying the phases of the SMs. In 

order to test this, two more analyses were performed, with the objective of determining 

how different scenarios and factors could affect the accuracy of the phases allocated with 

the k-means algorithm. 

From the whole three analysis, it can be concluded that the following are the main 

contributions of this thesis: 

• Hierarchical clustering requires levels of SM penetration around 70% or higher in 

LV circuits similar to the ones studied in this thesis. That is, with limited data sets. 

Further research is required in order to analyse how this limitation could be 

tackled. 

• The original k-means clustering demonstrated to be rather limited when the 

number of different phases to which customer’s SMs are connected to are 

unknown. However, accuracies close to 100% were achieved even for low levels 

of penetration, when the number of clusters to be formed were known (i.e. the 

number of different phase connections) 
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• An improvement for this original k-means clustering technique was introduced 

with highly accurate phase identification results when average voltage profiles 

were analysed. Therefore, concluding that average voltage measurements are 

preferable over instantaneous ones, when k-means clustering techniques are to be 

applied. 

• The presence of a moderate percentage of PVs on the rooftops of the LV networks 

did not prove to disturb in any way the results obtained with the k-means method. 

Meaning that, at least moderate penetration levels of PVs, do not alter the 

correlation factors present in voltage measurements of customers connected to the 

same phase. Once again, further research is needed in order to investigate how 

higher levels of PV penetration can affect these correlation factors, and therefore, 

the quality of the phase identification by clustering techniques. 

Overall, it can be concluded that the objectives presented in section 1.2, have been 

fulfilled, but this topic resulted to be a very interesting and important topic, which would 

need further research in order to verify that the results achieved with the proposed 

methods are accurate enough for other scenarios and LV networks. Future lines of 

research are discussed in the next chapter.  
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12 Future Lines of Work 

The following section details suggestions for future work to be carried out to 

address the limitations of this thesis.  

Although satisfactory results were achieved in this thesis considering how challenging 

the scenarios analysed were, this topic could have been further developed in many ways. 

Phase identification-related investigations are an exciting topic, and it will become more 

significant as the uptake of embedded systems grows. 

Given the possible electrification scenarios that may happen in the near future, this same 

analysis could have been developed but considering the roll-out of EV charging points, 

or CHP at the household level. It should be noted that the deployment of these 

technologies may have the similar effect as PVs; that is, they can lead to a higher level of 

imbalance in the network. As a consequence, it is very likely that in the future, there will 

be more factors that can trigger imbalances and losses. Therefore, it would be very 

important to study their impacts, and how they interact with one another. Even  if these 

technologies are deployed, there are certain areas where it would be very difficult to have 

a 100% of penetration for SM, and therefore, methods such as the one put forward in this 

thesis will be required to keep the network as balanced as possible to avoid losses. 

Regarding the limitations of the presented methods in this thesis, there are many areas of 

improvement as well:  

• Further research on hierarchical clustering and its capacity to cluster data sets 

based on the correlation among voltage measurements is required. Since its low 

accuracy for lower SM penetration levels was attributed to the fact it works better 

for larger data sets. However, it would be interesting to investigate why voltage 

correlations are not enough for shaping clear clusters that allow phase 

identification. 

• In addition, regarding the impact of PV-DG on the accuracy of the phase 

identification results obtained with k-means. While it is good news that moderate 

scenarios do not pose a problem for the accuracy of this method, it should be 

further investigated if higher levels of penetration will indeed affect the voltage 
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correlation values among customer’s profiles. Thus, leading to inaccuracies in the 

phase matching of k-means clustering. 

• In addition, from comparing the results from the three first circuits with the three 

last ones, it was concluded that average voltage measurements are more desirable 

since they present higher correlation values in SMs connected to the same phase. 

However, this is probably not enough evidence, and it should also be further 

investigated. This could be done by obtaining instantaneous and average voltage 

measurements for the same circuit, and comparing the results obtained with the k-

means clustering. This way, more revealing results could be achieved. And 

therefore, network operators could decide on whether changing the current setting 

of SMs should be changed or not. 
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