
 

 

 

 

 

 

Department of Mechanical and Aerospace Engineering  

 

Statistical models in wind resource assessment and 

energy yield forecasting 

 

 

 

Author: Olatz Uriarte Pérez de Nanclares 

Supervisor: David McMillan 

 

 

A thesis submitted in partial fulfilment for the requirement of the degree  

Master of Science   

Sustainable Engineering: Renewable Energy Systems and the Environment 

2019 



Copyright Declaration 

 

This thesis is the result of the author’s original research.  It has been composed by the 

author and has not been previously submitted for examination which has led to the 

award of a degree. 

 

The copyright of this thesis belongs to the author under the terms of the United 

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. 

Due acknowledgement must always be made of the use of any material contained in, 

or derived from, this thesis. 

 

Signed: Olatz Uriarte Pérez de Nanclares   Date: 21/08/2019 

 



 

iii 

Abstract 

 

Wind power is increasing its production around the world even if its variability and 

unpredictability make difficult its management and the incorporation of this energy to 

the grid. For this reason, researchers are focusing on methods to improve 

measurements which can provide the opportunity to learn about future fluctuations at 

an early stage in the grid, and handle them in advance. The wind resource assessment 

can have an important role regarding the energy network, the cost, and its efficiency.  

 

This project focuses on investigating and assessing the reanalysis data available to 

avoid the cost of the met mast equipment and installation. For this, it is assessed the 

role that statistical linear models have on wind speed (and other variables), finding the 

best model and testing it in regions such as United Kingdom, Germany, Scandinavia, 

France, and Turkey. The model was implemented in R and authenticated in two cross-

validation frameworks: k-fold cross-validation and backward cross-validation.  

 

The model formed by the four reanalysis tools (MERRA, ConWX, RVM, and ERA5) 

and periodicity was the most successful one and it was tested for wind speed in 

different periods of the year. It was concluded that the regressive model has useful 

and significant importance on the resource assessment. The results were evaluated by 

the evaluation metrics RMSE, MAE; BIAS, R2, and correlation. K-fold cross-

validation had widely successful performance and backward cross-validation 

performance depended on the site and the training and testing lengths of the iterations. 

 

The potential of the predictions obtained from the cross-validation frameworks was 

tested when converted into power. It was concluded that predictions were efficient 

and could match with site data reducing the costs of resources and avoiding the 

installation of masts with a further investigation of the study. 
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1. Introduction 

1.1. Motivation 

Renewable energies have achieved significant importance in modern society as well 

as a necessary increase in the future. These energies represent the key to attend to the 

queries of climate change. They can offer alternative economic opportunities and 

provide access to the electricity supply to people who do not have modern amenities 

(REN21, 2015). Despite being limited for the moment, the depletion of fossil fuels is 

allowing this deployment, and they have achieved to be cheaper than other options 

around the world (Mora, 2008).  

 

Wind energy is an intermittent renewable source which extracts the power of the wind 

and it turns into electricity. The deployment of wind energy assumed the creation of 

turbines of different types and shapes in different heights, but the maximum 

theoretical performance is still to be achieved (Schubel & Crossley, 2014). The 

reduction in the cost of wind energy production, which achieved to be the cheapest, is 

attracting more and more researches to focus on this energy.  

 

For this reason, wind energy is, within all the renewable energies, the most developed 

one. Table 1 shows the increase of the total wind energy installed capacity per year, 

the total number and the installed capacity for each country. 
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Table 1 - Total wind energy installed capacity per year (MW). Source: WWEA 

Country/Region 2018 2017 2016 2015 

China 221,630 195,730 168,730 148,000 

United States 96,363 88,775 82,033 73,867 

Germany 59,313 56,190 50,019 45,192 

India** 35,017 32,879 28,279 24,759 

Spain* 23,031 23,026 23,020 22,987 

United Kingdom 20,743 17,852 14,512 13,614 

France 15,313 13,760 12,065 10,293 

Brazil** 14,490 12,763 10,800 8,715 

Canada 12,816 12,239 11,898 11,205 

Italy* 10,090 9,700 9,257 8,958 

Rest of the 

World* 
91,473 83,473 76,325 67,695 

Total general 600,278 546,388 489,939 435,284 

*Preliminary data 

**By November 2018 

 

By the end of 2018, the global capacity of wind turbines reached 600 GW according 

to World Wind Energy Association (WWEA) (WWEA, 2019). Related to that, wind 

energy met 14% of the electricity of EU’s electricity demand considering not only 

onshore energy but also offshore energy. This assumed to represent 2% more than in 

2017. The countries that more contribution received from wind energy were Denmark 

(41%), Ireland (28%) and Portugal (24%) (Wind Europe, 2019). 
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Figure 1 - Percentage of the average annual electricity demand covered by wind 

(Wind Europe, 2019) 

 

As wind energy is a non-programable generation form and it can be only produced 

when the wind blows, it can vary even in a very short term, with intermittency 

possibility and broad change in intervals (Lobo, 2010). Wind energy helps to support 

in every change of that demand, but the grid needs to ensure the stability in light of 

variable energy sources (Würth, et al., 2019).  

 

The penetration of wind energy into the grid is growing, so the optimization of 

diverse methods or parameters/variables are gaining relevance, with the aim to help 

the turbines capture more wind for electricity generation and gain its reliability (GE 

Renewable Energy, 2018). 

 

For this reason, it is challenging to forecast in advance and accurately the amount of 

energy that it is going to produce at each moment. This variability makes especially 
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complex its operation, this is why its future production should be examined, being this 

affected by an error or uncertainty.  

When the wind is reduced, the lack of power must be replaced by other sources with 

adequate backup power in scale and speed response so that the electricity demand 

would not be affected.  

 

Other times, it could happen that the total available wind power cannot be embedded 

into the grid, since wind power is not generated according to the consumption 

requirements, and it is necessary to reduce the supply of this energy. Therefore, 

energy resource assessment has become a key issue to make feasible the development 

and deployment of wind energy and its integration into the power grid (Lobo, 2010).  

 

The volatility of output of wind energy barely allows to the grid take 10% of the wind 

energy without drastic technical changes or significant costs according to some 

studies (Beaudin, et al., 2010). Wind power output variability depends on the size of 

the evaluated site and the wind variations. Small wind farms usually variate hourly 

more than bigger ones. Variations can be of three types: microscale, mesoscale or 

macroscale. The first affects regulation (seconds to minutes), the second can affect 

from minutes to hours and the last from hours to days. The two latter ones can affect 

an entire region (Beaudin, et al., 2010).  

 

Nowadays, the interconnections with other countries and the linkage with storage 

sources or hydroelectric also increase the reliability and efficiency (The New 

Economy, 2018). Hence, some studies are focused on the smoothing effect of the 

interconnection of wind installations with other regions to reduce the volatility of 

output, experiencing a direct reaction in the integration costs of the wind energy 

(Beaudin, et al., 2010).  
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1.2. Objectives 

The project would focus on the reconstruction of past observations of wind speed that 

would allow assessing the feasibility of the resources in light of replacing the 

expensive met mast with reanalysis data. The principal statistical method employed is 

a linear model, varying it in numerous ways to obtain lower errors.  

 

The database is obtained from Renewable Energy Systems (RES) and it is utilised to 

assess the efficiency of the reanalysis data and develop an appropriate cross-

validation framework. It is pursued to obtain the relationship between site data and 

reanalysis data and generating long term wind speed on-site series. Variable selection 

will be material for this aim.  

 

1.3. Methodology 

First, research is done on the field to know about the state-of-the-art. This idea is 

outlined in the literature review section. Next, it is decided the tool and language in 

which the project shall be conducted, and the basic programming commands are 

learned to interact with the data Renewable Energy System (RES) provided. Next, the 

familiarisation of statistical models is done, and how these can be implemented in the 

tool. It is substantial to diagnose the data for the assessment of the quality of this in 

linear model regressions. Data diagnosis would also help to discover which reanalysis 

tool is best fitted to the on-site data.  

 

In order to validate the models, a cross-validation framework should be built. Two 

cross-validations are used: k-fold CV and backward chaining or back-test CV. After 

this, prediction, training and testing are done, fitting the models on it.  

 

The cross-validation would decide which model is the one that best fits to all the sites 

available. When analysing the results, comparison of both cross-validations is 

performed and finally, the predictions are used to see how they fit the on-site data, for 
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the reconstruction of the power output forecast and to see how much potential these 

would have, using theoretical power curves of the turbines.  

 

 

 

Figure 2 - Representation of the methodology of the project  

 

1.4. Scope 

The general goal of this project is to investigate the implementation of the wind 

resource with the use of a model based on a linear model that fits best any site. 

 

In order to achieve the target, different variables were used to design a linear model 

that more requirements met. The contribution of all these variables is assessed for the 

best match in all the sites.  

 

The benchmark for assessing the validity of the model could rely on cross-validation 

framework. Moreover, two CV’s were undertaken to assert the model. These CVs 

would help to know the error and the effectivity of the model and once the model is 

selected, this was converted to energy to simulate real conditions.  
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2. Literature review 

2.1. Physical basics of wind energy 

The wind is a mass of air in movement and it contains kinetic energy that depends on 

the speed of the wind, and this is determined by the temperature and the atmospheric 

pressure. In other words, by the density of the air: 

 

 

(1.0) 

 

Where,  is the mass of the air and  is the speed.  

The wind direction determines the design of the turbine. Upwind turbines face into the 

wind while downwind turbines face away (Energy.gov, 2019).  

 

A wind turbine has two/three blades around a rotor which is connected to the main 

shaft for the spinning of a generator. The turning shaft the kinetic energy of the wind 

is converted into electricity with the aid of the generator. This electricity is passed 

through a transformer which allows the use of this being transported into the grid or to 

a local site (goodenergy, n.d.).  

 

Considering the kinetic energy equation, it can be concluded that the relation between 

wind speed and the electric power is the energy that goes through the turbine in time. 

 

 

(1.1) 
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Where P is the electric power generated by the turbine,  is the density of the air, 

 is the area it covers, defined by the diameter of the rotor or the size of the blades 

and  is the speed.  

The equation for the maximum available power allows knowing how power increases 

with the cube of the wind speed. The power is linear with density and the area. 

 

The available wind speed is measured over a period of time in a specific site before a 

project is carried out. As wind speed cannot be reduced to zero, a power coefficient 

Cp is defined with a maximum value of 0.593, which takes the name of Betz limit. 

The power curve of Figure 3 shows three different velocities: the cut-in velocity is 

given when the turbine starts generating power (3 m/s).  

 

 

Figure 3 - Power curve of a 1.5 MW wind turbine (Universidad de Chile, n.d.) 

The rated speed depends on the rated power and therefore, on the turbine. The rated 

power is the maximum power allowed by the generator and the control system is 

responsible for ensuring that this power is not exceeded in high winds (Hansen, 

2013). Finally, when the wind achieves the cut-out velocity (25 m/s), the turbines are 

shut down due to the danger of break (Manwell, et al., 2009).  

 



 

9 

Within the main characteristics of the wind, the time variability does not allow 

predicting the output with accuracy. It is a non-stationary process due to the change of 

the mean and the variance of the wind speed over long time scales. As most of the 

wind farms are commissioned, it makes more difficult to deal with the variability of 

the output.  

 

The height of the tower represents a significant characteristic of a wind turbine since 

the more is the height of the hub, the more is the wind speed obtained, and therefore, 

the wind power (Hansen, 2013).  

  

2.2. State-of-the-art of wind power assessment 

The substantial changes in wind power generation make the integration of this energy 

to the grid a challenge, as well as for the developer of a wind farm. Wind speed and 

direction are principally responsible for these drastic changes. Minor changes in these 

variables can achieve the cut-out speed and lead to a considerable loss of generated 

power with the shutdown of the wind turbines (Würth, et al., 2019).  

 

Wind power assessment uses wind speed (or more variables) from weather forecasts 

and on-site real-time measurements for wind power. The developer of a wind farm 

must do a wind speed measurement and analysis program, providing a prediction of 

the wind farm’s lifetime energy production (Wind Energy - The Facts, 2019).  

 

For countries that have a high penetration of wind energy into the grid, this prediction 

is indispensable. It provides the information of how much wind power is expected, 

when and for how long. The key to this prediction lies in the transformation of the 

numerical weather data into the power output (Lange & Focken, 2005). 
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There are five categories in the types of wind energy potential estimation: 

• Meteorological potential: available wind resource. 

• Site potential: it is based on the previous one but reduced to the geographically 

available sites. 

• Technical potential: calculated from the previous one considering the 

technology available. 

• Economic potential: it is based on the previous one, considering the economic 

view. 

• Implementation potential: it is based on a certain time frame that considers 

constraints and incentives to asses the capacity of the wind turbine (J. F. 

Manwell, 2009). 

 

The first efforts for creating forecast algorithms in electric systems were focused on 

the electricity demand. Demand assessment helped in the decision-making of advance 

start-up or the condition monitoring of elements of the electric system. But the 

development of renewables in the last decade made the researchers focus on a new 

assessment: the production forecast that these energies are going to have. As wind 

energy is the energy that increased the most in the last years, it is a challenge to 

transform this energy into a reliable and efficient one.  

 

The value of resource assessment for wind energy in economic terms gains two 

perspectives. On one hand, the reduction in operational costs produces from the 

reduction of the necessary reserve. On the other hand, the economic penalisations that 

the agents have due to the deviations of generation in the electricity market (Lobo, 

2010).  
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2.3. Time series analysis 

Forecasting means providing information about the expected variables in a 

determined time horizon. (Alencar, et al., 2017). They are analysed to interpret the 

past and predict the future.  

 

This divides time series analysis into four. Very short-term analysis can predict from 

seconds to minutes and are used for turbine control and load tracking. The short-term 

analysis is extended to hours and is applied to preload sharing. The medium-term 

analysis is extended to a day and accepts significant responsibilities with power 

system management and energy trading. Finally, there is the long-term analysis that 

can be extended to weeks or years and can monitor a wind farm. Long-term 

correlation is important for the consideration of variations and seasonal effects. The 

last two analysis can collect data between 10 minutes and a few hours depending on 

the predicted period length. Many improvements have been applied to forecast with 

the use of more input data and the estimation of uncertainties (EMHART, 2018).  

 

2.4. Wind speed assessment 

For the wind resource assessment, wind speed/power prediction models have been 

developed. However, the most recent available measurement is the persistence 

forecast. It assumes that the wind speed stays the same as in the previous time step 

(dt) (McMillan, n.d.). It is more accurate than other physical and statistical methods 

for short-term analysis. Thus, any other method should be compared with this to 

check the effectiveness of the comparable method (Soman, et al., 2010).  

 

As the value of the wind speed comes from meteorological conditions, historical 

values of wind speed can be used to predict future values. Numeric Weather 

Prediction (NWP) is the method used for wind forecasting. Not only the wind speed 

and direction variables are available in this method, but also pressure, humidity, and 

temperature (S. M. Lawan, 2014).  

 



 

12 

Computational programming allows obtaining wind power from weather forecast and 

on-site real-time measurements. The general assumption in this type of predictions is 

the stationarity of data. This means that the mean, variance, and autocorrelation 

structure do not change over time. Non-stationary methods can be turned into 

stationaries for the use of statistical methods of forecasting. These are typically based 

on time-series models, such as autoregressive model or neural networks. They allow 

obtaining a relationship for the differentiation between predicted and actual wind 

speeds. This forecasting is based on the relation between variables. It is useful since it 

is easy, cost-effective and provides information timely. Statistical models used, so far, 

are Algebraic Curve Fitting (ACF), Auto-Regressive Moving Average (ARMA), and 

ARMA with exogenous inputs (ARMAX), Auto-Regressive Integrated Moving 

Average (ARIMA), seasonal and fraction ARIMA, among others. Furthermore, neural 

networks are useful non-linear approaches for wind prediction issues, as it constructs 

an input/output mapping with interconnected processing units. 

 

Finally, hybrid models also have been developed, which consists of the combination 

of the two above-mentioned approaches. These models can be evaluated with metrics, 

such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean 

Bias Error (MBA) (S. M. Lawan, 2014). 

 

2.5. The value of wind resource assessment 

As mentioned before, the electricity of the grid needs to cope with the demand at 

every moment and this is obtained with the balancing of generation and consumption 

of the electricity.  

 

There are several sources of uncertainty in wind resource assessment, so the accuracy 

would suppose the improvement of the reliability on the source. The value of a 

measurement plan is resumed in the aid of the scheduling and anticipation to the 

future behaviours that would affect the system, managing the necessary resources far 

enough in advance (Lobo, 2010).  
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The operation and monitoring of a wind farm require accurate wind measurement 

technology. The equipment for the measurement and the correct location of a MET 

mast will ensure the quality of data, but these are cost-effective procedures (Ammonit, 

2019). An error of even 3% in the wind speed measurement can also wield a drastic 

influence on the cost. As weather conditions can vary depending on the season and 

the year, the interannual variability of the wind can be estimated by a well-correlated 

long-term reference station, so the uninterrupted wind measurement data gathering 

can last more than 12 months. The data gaps should be kept to a minimum (less than a 

week) and it is then processed and evaluated to compare it with long-term 

meteorological data (NREL, 1997). Longer measurements reduce the uncertainties 

and they can have a more accurate perception of the wind in the area (Miceli, 2017).  

 

Within the measurement parameters, there are: 

• Equipment type, quality, and cost  

• Number and location of monitoring stations  

• Sensor measurement heights  

• Minimum measurement accuracy, duration, and data recovery  

• Data sampling and recording intervals  

• Data storage format  

• Data handling and processing procedures  

• Quality control measures  

• Format of data reports (NREL, 1997) 

 

Apart from the wind speed, wind direction is also crucial for this measurement; it 

avoids sheltering effects in wind farms. Other variables can significantly improve the 

performance of the measurement, such as air density, air pressure and humidity 

(Ammonit, 2019). 

 

The use of a wind index can help to estimate the energy production with the historical 

record of mean speed. Trend information would help to predict the lifetime of a wind 

farm, which can last between 20 and 30 years. Climate can change from what was 

assumed at the beginning of the plan.  
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Meteorological variables predictions are converted to power predictions using the 

power curve. Statistical methods help to estimate the conversion function, which is 

non-linear, bounded and non-stationary due to the time period or environmental 

situation (Pierre Pinson, 2008). 

 

The components for a measuring system depend on climatic and regional conditions, 

as well as, the size of the wind farm. The height of the measuring tower is dependent 

on the turbine hub height. The hub height will set the wind performance and this the 

return on investment (Ammonit, 2019).  

 

The horizontal values of wind speed have a different value depending on the height, 

which adopts the name of wind shear. The higher the height the lower the friction this 

would have. So, adapting the model to the time series of wind speed, the wind speed 

must be scaled to an electrical output. Typically, the wind shear component (hub 

height scaling factor) is 1/7. This depends on the roughness and atmospheric stability, 

and this value is specifically applicable to a low surface and well-exposed site. It is 

converted following the next equation (Dean Laslett, 2016):  

 

 

(1.4) 

 

Where, v is the wind speed at height h, vref: is the wind speed at MET station, z is the 

typical turbine hub height and zref: is the typical MET station height.  

 

2.6. Uncertainties 

As it is not possible the exact reconstruction of observations of wind energy of a wind 

farm, it is practical to determine or give information about the uncertainties of 

prediction. This would help to know the distribution of error and handle the 

production of the energy in an optimum way. 
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Among the wind uncertainties, there is the instrument accuracy, the measurement 

period, long-term wind data correlations, historical wind potential, future wind 

potential, and wind flow modelling. Also, the consistency of reference sources that 

determine the extent to which the wind measurements are consistent and the systemic 

errors or other external factors with which the measurements are influenced by. 

Finally, there is the wake modelling due to the complexity of inter-turbine impact and 

the climatic variability (the trend that wind speed will have in the future) (Hawker, 

2019). 

 

Uncertainties can be reduced providing to the evaluation metrics an estimation of the 

error associated with the prediction, these are the prediction intervals, which limit the 

estimation of the probability of real production within the generation band expected. 

These prediction intervals are frequently used in statistical literature.  

 

The location of the mast is a crucial variable of a wind farm performance. Turbulence, 

terrain inclination, and vertical wind component are the primary parameters when 

examining the decision of location, conditioning the wind regime of the site. Every 

installation requires previous wind analysis (Kalkan, 2015). 

 

Within the energy uncertainties, selecting a power curve to obtain final power 

prediction is a controversial issue since each turbine has a different power curve, that 

unfortunately often go hand in hand with. The location of the masts, the location of 

the reanalysis nodes can also affect the accuracy of resource assessment (I.González-

Aparicio & A.Zucker, 2015).  
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3. Reanalysis products  

Reanalysis is a reproduction of consistent and systematic meteorological data using a 

few observations in a specific time of period, for example, hourly. Reanalysis 

products create global datasets that are based on the historical data of the atmosphere, 

land surface and oceans. They are used for monitoring climate change. The reanalysis 

has developed during the centuries achieving a significantly improved spatiotemporal 

resolution (Hyun-Goo Kim, 2018). 

The data from RES is measured with the tools RVM, MERRA2, ConWX, and ERA5.  

 

3.1. MERRA 

MERRA (Modern Era Retrospective-Analysis for Research and Applications) is a 

tool that allows obtaining global reanalysis datasets from meteorological models. 

Available data is from 1979 on and provides information of variables, units and data 

files (NASA, n.d.).  

 

Examples of the parameters that can be downloaded are wind speed at different 

heights/pressure levels, wind direction, displacement height, temperature, moisture 

content, air pressure (Olauson & Bergkvist, 2015).  

 

The basic approach of this only uses wind speed and direction but it has many other 

variables to use, such as pressure, temperature, relative humidity, time of the year and 

time of the day (Olauson & Bergkvist, 2015).  

 

3.2. ERA5 

ERA5 provides hourly information about atmospheric, land and oceanic climate 

variables. The data cover the Earth on a 30-km grid, and it provides uncertainties for 

variables at reduced spatial and temporal resolutions.  
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3.3. ConWX 

ConWX provides weather analysis up for any site or region, with different variables 

such as the wind, temperature, and precipitation. It provides the essential information 

for the wind power forecasting with any height wind speeds ensuring maximum 

accuracy. It can also provide parameters that influence energy pricing and trading 

decisions (ConWX, 2019).  

 

3.4. RVM 

No information found.  

 

Table 2 - Reanalysis Tool's features 

Reanalysis 

dataset 
Institution 

Resolution 

(⁰lat x ⁰lon) 

Vertical level 

(m) 

Time resolution 

(h) 

MERRA2 NASA 1/2 x 2/3 50 
1 (time 

averaged) 

RVM - - 80 
1 (time-

averaged) 

ConWX ConWX (1-10 km) 50 
1 (time-

averaged) 

ERA5 ECMWF 0.25 x 0.25 100 
1 (time 

averaged) 

 

 

Each reanalysis tool has nodes of measurement around Europe. These nodes could be 

closer or far away from the masts to assess. It is assumed that the less the distance the 

better the accuracy predictions will achieve, and a relationship between these and the 

site data should be captured for the evaluation. In the following figure (Figure 4), 

there is a visual representation of a proposed site mast measurement in yellow and the 

reanalysis tool measurement point location in red or orange.  

https://www.ecmwf.int/en/research/climate-reanalysis
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Figure 4 - Visual representation of nodes and site measurement location (Technical 

projects in the renewables industry, 2019). 

• Proposed site 
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4. Methods 

Once the basic principles of the literature review are assimilated, data diagnosis 

would allow knowing the patterns of the data for the use of statistical models 

afterwards. Data diagnosis would also help to discover which reanalysis tool is best 

fitted to the on-site data. Then the statistical models are explained. In order to validate 

the models, a cross-validation framework should be built. After this, prediction, 

training and testing are done, fitting the models on it.  

 

Every programming part of the project is implemented in language R and using 

RStudio.  

4.1. Statistical approach 

Statistical prediction consists of the analysis of the values of a variable to compare it 

with other variable values to find significant patterns that would conclude in the 

knowledge of the value that this variable would take over a period of time.  

 

The regression analysis has a first step which consists of the data collection process 

and it will be then based on that data. The data collection methods can be a 

retrospective study based on historical data, and observational study or a designed 

experiment. An accurate data collection can end in a more applicable model. There 

are a lot of forms of regression, but each form has its condition where they are best 

suited to. Regression analysis is a form of predictive modelling technique and can be 

used for data description, parameter estimation, prediction and estimation and control 

(Peck & Vining, 2012). 

 

It obtains a relationship between a dependent and independent variable, as well as the 

strength of the impact of independent variables on a dependent one. It is used for 

forecasting and time series modelling. It is a tool for modelling and analysing data 

and compare the effects that a variable has on different scales.  
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There are two types of implementation considering the regression. First, the linear 

model and sophisticated splines, where quadratic and cubic splines are analysed. 

 

Data Regression Diagnosis 

To begin with regression models, four assumptions associated with the linear 

regression model should be assessed.  

- Linearity: X and the mean of Y have a linear relationship. 

- Homoscedasticity: X values have the same variance of residual. 

- Independence: Observations are independent of each other. Ensuring the 

independence of the responses of y is one of the aims of data collection. As the 

responses have the same source, they can present dependency (Peter K. Dunn, 

2013).  

- Normality: Y is normally distributed for X values. F- and t-tests are used for 

the evaluation of this assumption. Even if the residuals are not normally 

distributed, these two tests have good responses if the number of observations 

is large and the outliers are not serious. This assumption is more critical when 

applying to small size data (Peter K. Dunn, 2013).  

 

First, a histogram is used to see the distribution of the data. This would show whether 

the data is normally distributed.  

 

Applying a simple linear regression, the output in R provides a brief numerical 

summary of the residuals, estimated regression results, and statistical tests. The output 

provides the value of r-squared which explains the variation of the response variable 

Y is explained by predictors, and not by error (James, et al., 2013) 

 

The basic tool for the examination of the fitness of a model are the residuals. In R, 

using the command which=1:4, the first plot describes the residuals versus the fitted 

values, being the residual values the subtraction between the observed y and y model 

predicted. This plot can help to assess linearity and homoscedasticity. The assumption 

is not useful if the residuals obtained are very large with big positive and negative 

values (people.bu.edu, 2019). The second plot shows the standardized residuals versus 
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theoretical quantiles. Keeping with the assumption of linearity, the residuals could not 

be far away from 0. This is called the QQ-plot and can also affirm the normality 

assumption whether the observations chart a 45-degree line. It is expected to obtain a 

straight line if the data come from a normal distribution with any mean and standard 

deviation. The third plot assesses the homoscedasticity. Square rooted standardized 

residual vs. predicted value plot is represented, and this cannot prove a pattern since 

they would be distributed evenly across the line y = 0 (James, et al., 2013). Finally, 

the fourth plot is Cook’s distance plot, which provides the information of how much 

does the estimation model change with each observation. Any observation should not 

be close to 1 or more (people.bu.edu, 2019).  

 

Simple linear regression (SLR) 

An autoregressive model predicts future behaviour based on past behaviour, in other 

words, it is the product of past observation. Its coefficients are calculated by least 

squares regression. It is a type of linear regression based on historical data. The 

formula for simple linear regression is:  

 

  
(4.0) 

 

Yt is the response variable at some point in t directly related to Xt the predictor 

variable. Autoregression model differs from linear regression because apart from Y 

being dependant on X, it is also dependent on previous values of Y. β0, the intercept, 

β1 the slope, and εt, a random error component, are unknown values that are taking 

values depending on the data owned. 

 

After fitting a linear regression model, it should be determined how well the model 

fits the data. It must be carefully checked if there is a strong relationship between the 

data (correlation) and if the relationship is linear enough to be approximated by a 

straight line. The data used to fit the model parameters (β0 and β1) is representative of 
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the range of normal operating conditions and that the assumptions regarding the 

residual hold (Peck & Vining, 2012).  

 

Linear regression helps to identify which is the smallest difference between the 

observed and fitted values, that is, it identifies the sum of squared residuals (Frost, 

2018). 

 

Least-Squares Estimation 

β0 and β1 are the regression coefficients and they can be interpreted with the Least-

Squares Estimation (LSE). This means according to (Peck & Vining, 2012) that ‘the 

sum of the squares of the differences between the observations yt and the straight line 

is minimum’.  

 

 

(4.1) 

 

Figure 5 - Minimise sum of squares (Cast Massey University, 2017) 



 

23 

Figure 5 provides an explanation of Equation 4.1. The vertical distances from the 

crosses to the line, the residuals, indicate the matching between predictions and actual 

data. 

 

Non-linear Regression 

When the variables have not a linear relationship between them, it is suggested to 

shift the regression to a polynomial model. This could have different degrees. When 

the degree is 2 is called quadratic, 3 cubic, 4 quartic and so on.  

 

Polynomial models allow having other predictor variables by raising each of the 

original predictors to a power. The standard method to extend linear regression is to 

replace the linear model with a polynomial function. Polynomial regression is 

sometimes difficult to handle due to the number of features that appear with the 

complexity of the formula and it has an over-fit tendency (Singh, 2018).  

 

Cubic spline regression gives more flexibility to the data to be fitted. A few knots 

should be selected for the usage of this regression. They have been used in the 

prediction of wind turbine power and power curve modelling (Shahab Shokrzadeh, 

2014).  

 

Multiple linear regression (MLR) uses explanatory variables for the prediction of the 

principal variable. It is an extension of the SLR. The independent variables cannot be 

highly correlated between each other (Kenton, 2019). 

 

4.2. Evaluation metrics  

The evaluation of the models is essential for any project. A model can provide 

different results if measured with different metrics, so more than one should be used 
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for the assurance of good performance and accuracy (Mishra, 2018). According to 

(Swalin, 2018), MAE and RMSE are the two most popular metrics in regression. 

 

MAE 

Mean Absolute Error is the average of the difference between observations and 

predicted values. It shows the positive error average. However, this metric does not 

provide information about the under or overprediction of the data (Mishra, 2018).  

 

 

(4.2) 

• N is the number of samples 

•   the j predicted the value 

•  the j measured value 

 

RMSE 

Root mean squared error is the index most often used to measure prediction accuracy 

(McMillan, n.d.). It is the average deviation of the residuals. Residuals are the 

differences between the observed and the predicted values. It is useful in climatology, 

forecasting, and regression analysis (Glen, 2016).  

 

 

 

 

(4.3) 

Parameters are the same as in MAE. These results must be higher than MAE error 

values.  
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This gives information about the observed unknown outcome and the predicted ones 

from the model.  

 

BIAS 

Bias provides the high or low results of estimation compared to actual values. The 

value of bias is the mean of the difference between the estimated and the actual 

values. Bias can be a positive or negative error (Smith, 2017).  

 

 

 

(4.4) 

Parameters are the same as in MAE and RMSE. 

 

R-squared and Correlation 

R2 (multiple-R-squared) value indicates how much variation (percentage) is captured 

by the model. The closer to 1 the R2, the larger value of the variance of the model is 

explained, and hence, a good fit. As it is squared, it can never be negative. 

 

Correlation, instead, is the degree of relationship between the two variables and it can 

be between -1 and 1, having the meaning of the unison movement of the variables 

(Glen, 2016).  
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5. Model validation - Cross-validation framework 

Cross-validation (CV) framework is used to verify the skills of the machine learning 

models used. It compares and selects a model for predictive problems since it 

estimates lower trends. It is straightforward to understand, to implement and compare 

with other methods. It is used when the forecasting is the final objective and it is 

wanted to estimate the precision of a model that is going to put into practice 

(Brownlee, 2018).  

 

5.1. K-fold Cross-Validation 

k-fold Cross-Validation consists of the data partition into two datasets. The first is the 

training data (and validation data) and the second is the test set. The training set is 

used to train the model and it can vary. Validation data set is used to run the model 

trained in the training set. It provides a cogent evaluation of the model’s fitness. 

Finally, the test dataset is used for the evaluation of the final model, being this 

between 5% and 20% of the dataset. 

 

Once training data is divided into k folds, one-fold is used as a training data and the 

other as validation. This is repeated k times changing the testing fold in each iteration. 

Once the iterations are finalised, the precision and the error of each model is 

calculated with the mean of the training models.  

 

Obtained the mean accuracy for the mode, cross-validation process can be repeated 

for the other classification methods and the one which has the best values and lowest 

error is chosen. Finally, this model can be applied in the validation set mentioned 

before, since it is assumed that this model is the best result obtained during the 

training phase (Delgado, 2018).  
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Figure 6 - k-fold cross-validation (Shaikh, 2018) 

 

5.2. Backward/Forward chaining cross-validation 

Backward chaining CV (BCV) is used for time series models since it is conditioned 

by temporal dependencies. In this CV, datasets are split again, given a different length 

to the training window and before the testing window. The testing window is located 

before the training window, in other words, the training set only considerate the 

observations that occurred before that observation. So, it consists of a single 

observation. As the training and test sets are chosen randomly, each iteration can 

obtain diverse results (Hyndman, 2016). Many numbers of samples are carried out for 

the better efficiency of the model.  

 

As represented in Figure 7, the training set is the one in which MERRA wind speed 

and on-site wind speed are represented. The model is obtained for that window and 

tested in the previous set where only MERRA wind speed is represented. Predictions 

are obtained for this set, obtaining on-site data for the whole graph, represented in red 

as Hindcast on-site wind speed.  

 



 

28 

 

Figure 7 - Backward/forward chaining cross-validation (Technical projects in the 

renewables industry, 2019) 

 

There are two types of windows in cross-validation, sliding window and expanding-

window. It can be stated that in the two CV used both are used. In k-fold CV, sliding 

window, as the same training size is maintained and the window slides across the 

data. In Backward CV, expanding-window, the training set is random, and it is 

expanded or narrowed depending on the iteration.  
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6. Data 

In this project, the observations of the wind are done with different data sources. 

Surface wind speed from anemometer recording is available at the hourly frequency 

and the data is extended between 2010 and 2016. In the following table, the location 

of each mast is represented.  

 

Table 3 - Location of the masts 

MAST REGION LATITUDE LONGITUDE 

ENGgraM277 

ENGdenM224 
England 

52.750507 

50.786999 

0.166926 

-3.860358 

FRAotrM510 

FRApdlM29 
France 

47.841888 

43.68219 

3.89383 

3.89383 

GERlacM1 

GERlirM1 

GERpr1M2 

GERpruM1 

Germany 

48.32077 

48.029728 

48.22121 

50.284874 

8.189299 

8.247731 

8.167225 

6.385167 

NIRccgM352 

NIRcgrM78 

NIRnidM2 

Northern 

Ireland 

54.62513 

54.99501 

54.805318 

-7.579291 
-6.805172 
-6.063413 

NORskvM30 

NORvarM32 
Norway 

58.646568 

58.833626 

7.383308 

5.905409 

SCOdunM103 

SCOfreM73 
Scotland 

57.225857 

55.77282 

-4.274011 

-5.461154 

SWErodM39 Sweden 57.986187 12.499485 

TURcigM41 

TURevrM105 

TURhvzM20 

Turkey 

38.571198 

41.642799 

40.955791 

30.256189 

27.694426 

35.558552 

WALbryM578 

WALglhM294 

WALmmrM281 

Wales 

52.011795 

52.414738 

51.709217 

-4.173964 

-3.276726 

-3.794198 
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Doing this table more visual, the sites are represented in maps which will help in the 

error interpretation and comparison later in this document.  

 

 

 

 

 

 

 

 

 

Figure 8 - Visual location of masts 

 

It should be considered that between these regions the United Kingdom is the region 

that strongest wind (21,4 km/h in January and 15,5 km/h in August) has. This has its 

softest months between April and October and the wind with increased frequency is 

given between April and May. This is followed by Germany (19,4 km/h in January 

and 14,3 km/h in August), which has its softest months between April and November. 
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Then comes Turkey (19,2 km/h in January and 13,8 km/h in August), which changes 

the pattern a bit having its softest months between March and July, and the increased 

frequency wind is given between September and November. France (18,8 km/h in 

January and 12,6 km/h in August) has its softest months between April and October 

and the wind with increased frequency is given between April and May. Finally, 

Scandinavian winds (17,7 km/h in January and 9,1 km/h in August) are the softest 

ones between April and October and the increased frequency months are between 

April and June. All this data should be considered when analysing the results 

(WeatherSpark, 2019).   

 

The first step when analysing the data is the identification of the variables it has. Data 

is complemented by the wind speeds at the site and the wind speeds of reanalysis 

tools. With this information, a model of relationships can be built between two 

different wind speed variables. In this way, a ‘normal behaviour model’ can be 

established.  

 

It is also important to analyse the length of the data and how far the reanalysis 

measurement points are from the site anemometer. This can be easily interpreted in 

Table 4. 
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Table 4 - Data length and distance to the mast  

MAST 
Length 

(hours) 

Length 

(years) 

Mast to 

MERRA 

distance 

(km) 

Mast to 

RVM 

distance 

(km) 

Mast to 

ConWX 

distance 

(km) 

Mast to 

ERA5 

distance 

(km) 

ENGgraM277 

ENGdenM224 

14481 

8476 

1.7 

1.0 

24.9 

25.8 

0.8 

0.2 

1.1 

1.2 

10.1 

4.1 

FRAotrM510 

FRApdlM29 

56073 

30320 

6.4 

3.5 

20.6 

21.4 

0.4 

0.3 

0.4 

1.6 

15.8 

14.9 

GERlacM1 

GERlirM1 

GERpr1M2 

GERpruM1 

9780 

8440 

9598 

6720 

1.1 

1.0 

1.1 

0.8 

20.5 

9.7 

24.8 

25.8 

1.4 

2.3 

0.6 

0.7 

3.8 

1.2 

1.4 

1.7 

7.0 

11.5 

10.1 

14.2 

NIRccgM352 

NIRcgrM78 

NIRnidM2 

47693 

32756 

45455 

5.4 

3.7 

5.2 

14.8 

4.5 

24.7 

0.5 

0.6 

1.0 

0.8 

1.9 

0.7 

5.8 

12.2 

11.3 

NORskvM30 

NORvarM32 

8328 

7871 

1.0 

0.9 

17.7 

27.1 

4.6 

5.3 

1.1 

1.5 

17.7 

6.6 

SCOdunM103 

SCOfreM73 

13570 

35596 

1.5 

4.1 

25.9 

27.3 

0.5 

1.4 

3.8 

1.5 

9.4 

4.9 

SWErodM39 22728 2.6 1.5 3.1 0.7 11.3 

TURcigM41 

TURevrM105 

TURhvzM20 

26944 

28004 

17782 

3.1 

3.2 

2.0 

23.7 

22.7 

7.4 

1.0 

1.5 

0.7 

0.4 

1.9 

19.8 

14.8 

10.1 

20.0 

WALbryM578 

WALglhM294 

WALmmrM281 

35279 

29915 

10653 

4.0 

3.4 

1.2 

13.8 

14.0 

23.5 

1.0 

1.7 

0.4 

0.5 

1.7 

0.3 

12.6 

9.6 

14.2 

 

Before applying any model, all the reanalysis data is compared with the site data in a 

time series to see if there can be a relationship between them. After doing the data 

diagnosis, the best option to do this is through a selection of the data limiting it to the 

first 100 points. This would do the visualisation easier to analyse. Although the 

figures and graphs that are shown after in this document are not for every site, each 
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step explained is done with every site and reanalysis data. It should be highlighted 

that R uses ordinary squares method to fit the linear model. 

 

6.1. Application of the linear regression in data 

First, different models are explained. As wind speed is the only variable available in 

the datasets, new variables should be created for the implementation of the model. 

The selection of parameters is crucial for the best performance of the resource 

assessment.  

 

The models used are the following ones: 

 

• Simple linear regression (SLR) 

• Polynomial regression 

• Cubic spline regression 

• Multiple linear regression  

 

o Encoding cyclical continuous features (CCF) - 24-hour time 

 

 

(5.0) 

 

(5.1) 

 

Previous formulas are also assessed with 4  and 6 .  

Also, different slopes and intercepts for hours and months: 

 

• Multiple linear regression with wind speed multiplied by the hour 

• Multiple linear regression with wind speed multiplied by the month 
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Variables modified for these models were every reanalysis data, using some of them 

and, obtaining the difference between them. In the next table, this can be easily 

understood. 

 

Formulas from Appendix I are formulas already shifted. As some of the formulas had 

poor results from the beginning, they were directly discarded, such as the slopes an 

intercept of month and year. It should be highlighted that not every model is 

represented in the document.  
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Figure 9 - Comparison between best models and a simple linear model for each region 



 

37 

 

In Figure 9, it is done a comparison between the simple linear model, polynomial 

model, cubic model, and multiple linear models. In this way, the flexibility that a 

linear model can give is proven, only with the use of new variables. This is done for 

each region available and it can be detected that Germany’s and Turkey’s data is more 

scattered, so those two regions are more difficult to adjust to the linear model than the 

others. This should be considered in later results. 
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7. Analysis and Results 

In this section, results for different cross-validations, training lengths and folds were 

calculated for all the available datasets.  

 

7.1. k-fold Cross-Validation testing 

k-fold CV was created splitting every site data into folds. Data was trained in a fold 

and tested in the rest, creating in this way a k iteration process. Once that all the 

iterations were done, the mean of all the results was worked out. Here, the training 

length of the data depends on the number of folds chosen.  

 

All the models from Appendix I are tested in the k-fold cross-validation framework, 

which obtains a BIAS, RMSE, MAE, correlation and the R2 values for each fold, 

each model and each site. As mentioned, the mean is obtained for every evaluation 

metric of each dataset. The rise of folds was done with 5, 6 and 10 folds and the later 

one is assumed to obtain better results in the datasheets with larger lengths. 

 

Model selection 

At this point, a decision should be reached for the shifting of models. All the 

reanalysis tools were assessed individually but the interactions between them 

provided better results. The coefficients that variables were assigned in the linear 

model can provide a useful tip about the relative importance of the variable. 

Generally, the higher the value (absolute value) of the standardised regression 

coefficient, the higher the weight (importance) a variable is assigned. For this reason, 

every model was assessed, and the coefficients of the reanalysis tools in the regression 

model indicated that ERA5 is the tool that more importance had. This is followed by a 

conflict between ConWX and MERRA, and the last position was given to RVM.  
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The behaviour of the reanalysis tools, globally, was based on the height of the mast 

and the distance from the measurement points to the mast. ERA5 was one of the best 

models in every site since it obtained great contribution irrespective of the height or 

distance. It was considered that MERRA and ERA5 were the reanalysis tools that 

further away were from the masts in the analysis. However, other reanalysis tool 

equaled or overcame ERA5’s contribution when they had characteristics that 

supported them. ConWX was the only reanalysis tool that could overcome ERA5 in 

some models, which best contribution was given when the mast’s height was between 

50 and 70.  

 

There was no pattern found for MERRA, but RVM had a good contribution in those 

sites in which the mast had a similar height to 80 m (the measurement height of 

RVM). It only failed this pattern in NORvar, where the distance to the mast distanced 

to 5.3 km.  

 

Once this was carried out, since the gap between the error of the different models 

tested was not wide, a For loop was created for the choice of best models. Models 

were shifted by the minimum error in every evaluation metric and the maximum R2 

and correlation. In this way, it was concluded that BIAS was an ambiguous metric 

that did not help in the decision-making of the models but RMSE and MAE did. The 

models that achieved the lowest BIAS did not coincide with the ones that had lower 

RMSE and MAE. However, all the sites coincided that the most successful models 

were the ones that considered the four-reanalysis tool in the datasheets. Also, the 

periodicities were added to increase the chance to succeed.  

 

Principally, 5-, 6- and 10-fold did not coincide in the lowest BIAS model, since this 

was given almost once for every model. Even though, model 29 was the model that 

most times achieve this lowest value. When it comes to speaking about RMSE and 

MAE, models 35, 36, 41 and 45 performed better. Correlation agreed that models 35 

and 36 were the best for every fold, although in other models were also given high 

values. Nevertheless, there was no doubt when considering R2, since all the sites 

coincided that model 36 had consistently the highest value.  
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5-fold cross-validation 

In Appendix II, all the results are represented for each analysis. First, the models 35 

and 36 were compared in the 5-fold CV as shown in 5-fold cross-validation. Models 

did not show a large difference between their evaluation metrics, but, as mentioned 

before, model 36 was the model that best fits, due to it was the model that most of the 

times had the highest R2 and correlation most of the times. Below this table, the worst 

case of the linear models is represented, this was given by model 33 (variable created 

by the difference between ConWX and RVM) and there is a lot of difference 

compared with the previous table.  

 

Considering the sites of the best models, sites from Turkey were the ones that 

achieved lower R2. One of the R2 of Turkey’s masts reduced its value into 0.58 

which was low compared with the others. The next lowest value stood around 0.72 

and was given by the other two masts of Turkey. However, as shown in Figure 9 it 

was already known the difficulties Turkey would cause.  

 

As mentioned before, none of the most adequate models had minimum BIAS, but 

they did with RMSE and MAE values. These errors had not the same pattern as the 

R2 and correlation. It occurred with the case of Turkey, that the error values were the 

highest and R2 and correlation lowest, but in the case of NORvar M32 in Norway, the 

errors were one of the highest (after Turkey), as well as the R2. Generally, the values 

obtained for BIAS were low, but sites with more data points had lower BIAS than 

others. WALbry M578 was the site with the lowest BIAS value with 4 years of data. 

This was followed by NIRnid M2 with 5.2 years and FRAotr M510 with 6.4 years. 

 

6- and 10-fold cross-validation 

In the case that the number of folds was increased to obtain better results, (this is in 6- 

and 10-fold cross-validation comparison for the best model) when comparing them 
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between each other, when the data rows were larger (in those mentioned before, for 

example), 10-fold CV had better behaviour in errors and the difference in the values 

of RMSE was larger between two CVs. In the case of the R2 and correlation was also 

better in 10-fold but not in correlation, where 6-fold obtained higher results. 

Generally, 10-fold CV obtained less BIAS, RMSE, and MAE.  

 

Comparison between 5-fold CV and 6- and 10-fold CV 

Comparing these two with 5-fold CV, 6-fold CV was overlapped by 5-fold CV, since 

this was better in the metrics that 6-fold used to win to 10-fold. As mentioned, 10-fold 

CV obtained less BIAS, RMSE, and MAE, but 5-fold CV achieved to obtain higher 

R2 and correlation values. It should be highlighted that the only metric that made the 

difference between the others was the BIAS in 10-fold, between the other metrics the 

difference was not enough remarkable to assess one better than others. Even though, 

the effect of this CV would be assessed afterward in the section of Power Approach. 

 

Another aspect to mention is that the error was not lower in those sites in which the 

number of k was a divisor. There was not found a pattern that followed this 

assumption.  

 

All mentioned before is visualised in the following figures (Figure 10, Figure 11 and 

Figure 12), all the sites are plotted, and each site is assigned to three bars. The first 

bar is assigned to 5-fold CV, the second to 6-fold and the third to 10-fold.  
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Figure 10 - Comparison of BIAS in 5-, 6- and 10- fold CV 

 

In Figure 10, it is affirmed that 10-fold CV had principally lower BIAS than the 

others but a pattern was not found to assess this fact.  
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Figure 11 - Comparison of RMSE in 5-, 6- and 10- fold CV 

 

In Figure 11, it can be concluded that globally 10-fold had again lower error than the 

other folds. MAE was not shown since it had the same pattern as RMSE. It should be 

highlighted that there were sites that are exceptions when following the pattern. 

Another aspect that it was concluded from here was that site that had a similar 

location and indeed similar data length used to have similar errors. This can be seen 

between Site 2 and 14 (North of England and South of Scotland), Sites 9,10 and 11 

(North of Ireland), Sites 17,18 and 19 (Turkey) and Sites 20 and 21 (Wales).  

 

This is not the case of the R2 plotted in Figure 12. Here, 5-fold CV is the CV that 

higher values obtained for this evaluation metric.  
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Figure 12 - Comparison of R2 in 5-, 6- and 10- fold CV 

 

Mean of reanalysis tools 

While testing the CV, a new column was included in the datasets with the mean of the 

four datasets available. It should be noted that every reanalysis tool should not gain 

the same weight in the model, and this new column took each of them as they would. 

Results are represented in Appendix II. Models discarded in the previous analysis 

were restored for this one and they obtained better results than in the previous 

analysis. However, in the findings, only the previous best models were used for the 

comparison. 
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Table 5 - Models used for the mean of the reanalysis tools in R language 

• for1<- Site~  MRT + sinh + cosh 

• for2 <- Site~ bs(MRT,3)  + sinh + cosh 

• for3 <- Site~  MRT + sinh4 + cosh4 + sinh + cosh 

• for4 <- Site~ bs(MRT,3) + sinh4 + cosh4 + sinh + cosh 

• for5 <- Site~ bs(MRT,3) + sinh4 + cosh4 + sinh + cosh + sinh6 + cosh6 

• for6 <- Site~ bs(MRT,3) + sinh + cosh + sinh6 + cosh6 

• for7 <- Site~ bs(MRT,3) + sinh4 + cosh4  + sinh6 + cosh6 

• for8 <- Site~ bs(MRT,3) + sinh6 + cosh6 

• for9 <- Site~ poly(MRT,2) 

• for10 <- Site~ poly(MRT,2)+ sinh + cosh 

• for11 <- Site~ poly(MRT,2)+ sinh4 + cosh4  

• for12 <- Site~  MRT + sinh4 + cosh4  

• for13 <- Site~ poly(MRT,2)+ sinh6 + cosh6 

 

For this new variable, the model that most of the times achieved the lowest BIAS was 

the for12, a polynomial regression with 4π periodicity. RMSE and MAE coincided 

that the best model to obtain both lowest errors was the model 10 and this model was 

followed by models 5 and 9. The total highest R2 was obtained by model 5 and this 

once again achieved the best results for the best correlation, followed by formula 10.  

 

As formula 5 was equivalent to the model that stood out in the previous analysis, this 

was taken for the implementation of the study. Formula 10 of this analysis was a 

polynomial model that was not specially highlighted earlier. The model that worst 

results obtained from this analysis was the model 12. 

 

Even if the worst-case scenario was used, much better findings were achieved with 

this new variable. RMSE and MAE values were much lower in this analysis, reducing 

some of those to less than 1 and not surpassing the value 2 in RMSE. R2 values were 

higher than in the previous analysis. Even for the worst case that Turkey obtained in 

the previous section, here, R2 increased 0.2. The only evaluation metric that was 

higher in this analysis was the BIAS but having wee numbers did not make a 

difference. Moreover, the site’s R2 is more balanced in this analysis. For the 
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correlation, this was higher too in every site, not being lower than 0.88 which was 

provided by Turkey again.  

 

Comparing best and worst cases of the mean, it should be highlighted that although it 

was mentioned before that the fifth model was not completely the best one it was 

chosen because it jutted out from the others and it was also taken for the previous 

analysis. For this reason, when analysing the worst model, it sometimes had better 

results than best cases, but the difference in the evaluation metric when model 12 was 

better was wee and wider when model 5 stood out.  

 

 

 

Figure 13 - Comparison of RMSE in 5- fold and MRT’s best model 
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Figure 14 - Comparison of R2 in 5- fold and MRT’s best model 

 

Now, in Figure 13 and Figure 14, RMSE and R2 were plotted again in a comparison 

between 5-fold CV and 5-fold MRT CV to observe how much better results were 

obtained with the application of the mean to the reanalysis tools. This time the first 

value of the site is assigned to 5-fold and the second to MRT values. Here, the pattern 

concluded before about the similarities between the sites from the same region and the 

similar data length was more consistent. 

 

7.2. Backward Chaining Cross-Validation testing 

Backtesting or backward CV is a random process which has different results in each 

iteration. Three iterations are represented in Appendix II. However, more iterations 

were done for the efficient performance of the model. It was assumed to get higher 

errors than in k-fold cross-validation, but those errors must reduce when the training 
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length is larger. This CV made more difficult the decision-making of the model, but 

the total best correlation was obtained by model 36 which was used in both previous 

analysis. For this reason, in this CV the same model was used. It should be repeated 

and highlighted that as this CV is random, and although the best correlation always 

stood at model 36, the efficiency of the model changed in each iteration. The 

iterations that could contrast between each other are shown below.  

 

For this first iteration, the randomness of the process seemed to affect its 

performance. Iterations that had better results were also obtained but the ones that 

most representatives were, are plotted.  

 

Sites GERlir M1 (Site 6) and SWErod M39 (Site 16) were the sites with fewer 

training lengths, the first with 63 points and the second with 106, this was reflected in 

the errors which increased to 8 and 5. Values that were not assessed until now in the 

previous CV. However, site 8 had both, short training and testing lengths and it 

obtained a usual value of RMSE.  

 

Correlation decreased importantly while training length window was short. For the 

first time, it was obtained a negative correlation and a value that was near 0 in 

SWErod M39, however, the error this site obtained was not such high, compared with 

the error GERlir M1 obtained. These values did not affect negatively to R2 but it did 

to BIAS which achieved a value of 2.  
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Figure 15 - Comparison of RMSE with training and testing lengths for each site in 

iteration 1 

 

In Figure 15, RMSE is plotted in each site and compared with the training and testing 

length used in each site to affirmed what mentioned before. The highest errors were 

obtained where apart from the training length, also the testing window is narrow. For 

those in which the training length was wide and the testing length is short, the RMSE 

achieved acceptable values. Even though, short testing length added to short training 

length was the factor that most affect the value of the error.  

 

In the second iteration, another iteration with short data lengths was chosen to analyse 

the effect this had and for the best understanding of the graphs. Here, Site 7 and 13 

are the sites that worst results obtained and also the ones that least training length 

were assigned. However, in the last site, the error obtained was low and the training 

had similarities with site 13 in the training lengths, testing lengths and also in the total 

length of the data.  
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Figure 16 - Comparison of RMSE with training and testing lengths for each site in 

iteration 2 

 

Finally, in the third iteration, the same pattern is repeated. Here, the shortest training 

length is assigned to GERlir M1 again, with 31 points this time. This time the testing 

length is much longer, but the RMSE error stood for 71.71. The BIAS and MAE 

errors were high compared with other values from different sites and despite having a 

high R2 (probably because of the long test length), correlation represented a value 

near to 0.  

There are not a lot of short test lengths in the iterations, but in those that its value is 

between 0 and 200, the R2 reduces slightly its value to 0.7.  
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Figure 17 - Comparison of RMSE with training and testing lengths for each site in 

iteration 3 

 

In Figure 17, the fact that the value of an RMSE was 71, makes the other errors 

negligible and this last graph is not as visual as the previous ones.  

 

Generally, as expected, errors were higher and model efficiency lower, but this CV 

also can provide good results. Other comparisons between correlation, R2, and 

training lengths are represented in Appendix III. 

 

So, having observed Figure 15, it is interesting to look at the graphs plotted below 

(Figure 18). While the training length was increasing, it was common that the RMSE 

values also did.  

 

In Site 6 the graph does not show the value of 71 since the rest of the RMSE for 

different sites seem negligible. But all sites do not seem to follow this pattern since if 

it is observed in Figure 18 d) some of the errors increased with the training length. It 

cannot say that it follows the same pattern with testing length, because testing length 

is dependent on the training length when assessing the RMSE. 
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a)  
b)  

c)  d)  

Figure 18 - RMSE vs Training length in BCV 
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8. Power Approach 

For each cross-validation and each iteration, predictions were saved for the approach 

of the power. For this, the predictions were compared with the power curve of 

different turbines. The turbines were chosen depending on their hub height and 

compared with a similar hub height mast. After this, the power density of some sites 

is represented.  

 

For this analysis, it should be highlighted that wind speed was not the only variable to 

consider when assessing the power. Density, which changes with the site and height 

and different turbines were relevant variables to be considered, as mentioned in 

Uncertainties section.  

 

8.1. Enercon E-40/500 

The first turbine used is the Enercon E-40/500, its characteristics are taken from 

(Enercon, 2019). From this, the rated power, the hub height (50.3 m), and the power 

curve were taken and considered for the assessment. The sites compared with the 

power curve of this turbine were Sites 1, 11, 14 and 17. Most of the sites managed to 

obtain the rated power in all the sites, besides the first one, where it is close to it in 

every CV. It is concluded that as the site’s data is not wide, 10-fold iteration takes tiny 

training/testing lengths and affect the power output.  
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Table 6 - Maximum power obtained from ~ 50.3 m mast heights  

Mast 

Height 

(Hub height 

50.3 m) 

k-5 fold k-6 fold k-10 fold 

Backward 

CV 

Iteration 2 

1 ENGgra 60.13 
498.5673 498.5469 449.9734 500 

11 NIRnid 50 500 500 500 500 

14 SCOdun 50.2 500 500 500 500 

17 TURcig 63.24 500 500 500 500 

 

In Figure 19 a comparison between on-site data and 5-fold CV was done first. 

Predictions values were lower than on-site data ones, so they did not reach the value 

of 15 m/s, so neither the rated power. This was not the case in Figure 19 b) where the 

predictions of BCV achieved the maximum power. 
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a)  

b)  

Figure 19 - Comparison between On-site data and a)5-fold CV and b) BCV iteration 

2 predictions made for Site 1, 50 m masts 

 

From the previous figure, it is concluded that k-fold cross-validations obtain more 

constant values and it did not have as many spikes as BCV. 

 

Once the predictions of wind speed were analysed, it was observed how they affected 

the power density in Figure 20. The fact that BCV had larger testing length made the 
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predictions obtained the higher and the lower power values. The spikes mentioned 

before, made BCV obtain the rated power. 

 

 

Figure 20 - Power density for Site 1 

 

8.2. Siemens SWT-2.3-113 

For the masts that were 100 m high, a Siemens SWT-2.3-113 was chosen and its 

characteristics can be found in (Wind Turbine Models, 2019). Here, the sites with 

similar hub height are sites 3, 5, 6, 7 and 8.  
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Table 7-Maximum power obtained from ~ 99.5 m mast heights 

Mast 

Height 

(Hub height 

99.5 m) 

k-5 fold k-6 fold k-10 fold 

Backward 

CV 

Iteration 2 

3 FRAotr 102 2300 2300 2300 2300 

5GERlac 100.73 2300 2300 2300 2300 

6 GERlir 100.73 2300 2297.127 2297.232 2300 

7 GERpr1 100 2300 2300 2300 2300 

8 GERpru 118.5 2019.165 
2025.769 2028.682 1830.841 

 

Same occurs in Table 7, where sites 6 and 8 did not manage to obtain the rated power. 

GERlir in 6- and 10-fold and GERpru in all of them. This may be concluded for 

having the shortest data points (and training lengths).  
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a)  

b)  

Figure 21- Comparison between On-site data and a)5-fold CV and b) BCV iteration 2 

predictions made for Site 8, 100 m masts 

 

In Figure 21, the same pattern can be concluded. BCV had several spikes that make 

more irregular predictions which are represented afterwards in Figure 22. 5-fold CV 

did not even obtain 13 m/s value so neither the rated power. This can be easily seen in 
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the following figure, where 5-fold CV having more testing points than BCV, it took 

the lowest values of the power.  

 

 

Figure 22 - Power density for Site 8 

 

8.3. GE Energy 2.75-103 

For the masts that are 75 m high, GE Energy 2.75-103 was chosen, and its 

characteristics can be found in (GE-Energy, 2019). Finally, sites left were assessed.  
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Table 8 - Maximum power obtained from ~ 75 m mast heights 

Mast 

Height 

Hub height 

(75 m) 

k-5 fold k-6 fold k-10 fold 

Backward 

CV 

Iteration 2 

2 ENGpkh 80.1 2750 2750 2740.447 2750 

4 FRApdl 78.05 2750 2750 2750 2750 

9 NIRccg 80.31 2750 2750 2750 2750 

10 NIRcgr 80.44 2750 2750 2750 2750 

12 NORskv 83.9 2750 2750 2750 2750 

13 NORvar 83.66 2750 2750 2750 2750 

15 SCOfre 75 2750 2750 2750 2750 

16 SWErod 79.99 2750 2750 2589.993 2724.28 

18TURevr 81 2750 2750 2750 2750 

19 TURhvz 81 2750 2750 2750 2670.364 

20 WALbry 79.59 2750 2750 2750 2750 

21 WALglh 70.1 2750 2750 2750 2750 

22 WALmmr 70.6 2750 2750 2750 2750 

 



 

61 

More sites were added to this analysis group since their mast heights were between 

the other two turbines’ hub heights.  

 

Here, all the 5- and 6-fold predictions achieved to obtain the rated power. There were 

weaknesses on the other two CV predictions in site 16, and with backward CV in site 

19. Following the same analysis of the previous turbine, the testing length for site 19 

was more limited (106 points) than in any other k-fold it happened in the months in 

which the wind is gentle, thus, the power was again lower. In the case of site 16, the 

testing length of backward was larger than the others, before, even though this CV 

obtained almost the rated power, and 10-fold did not. This time, the length of the 

datasets was not as short as in the previous analysis.  



 

62 

 

a)  

b)  

Figure 23 - Comparison between On-site data and a) 5-fold CV and b) BCV iteration 

2 predictions made for Site 16, 75 m masts 

 

Finally, in Figure 23, the pattern mentioned before was weak due to the testing length 

of the BCV and 5-fold cross-validation seemed to have more spikes. In Figure 24 the 
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power density of this is provided again. Testing points are so different that it is 

unavoidable to k-fold cross-validation to obtain better results. Nevertheless, 10-fold is 

still weak in the highest values of power.  

 

 

Figure 24 - Power density for Site 16  
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9. Discussion 

Following the document structure, the first discussion point is given to the individual 

analysis of the reanalysis tools. Here, MERRA was the tool that larger distances had 

to the masts, however, there was not found a pattern that could justify its efficiency in 

the linear model. It could be said that it could improve its performance in sites that 

have a similar height to the measurement height of MERRA, but it did not match with 

the distances to the mast. Nevertheless, its efficiency is not the worst. For the others, a 

pattern was found.  

 

The observation of k-fold cross-validation between RMSE errors and training and the 

testing length was not useful since error between k-folds assessed were very similar 

and many folds must be added to increase the error to a high value.  

 

It is recommended that the best k to fit a model to the database is the one that is a 

divisor of the total data length. In this case, when k=5, the sites that are multiples to 

that were the sites 6, 8, 14, 20 and 21, when k=6, sites 8, 12 and 16, and when k=10, 

sites 6, 8, 14, 20. Considering this, the results analysed did not seem to include a 

pattern that matched with that.  

  

MRT, being the mean of the four-reanalysis data, it assigned the same weight to all 

the reanalysis tools, but these were not equally good when assessing the wind speed. 

All in all, all the reanalysis data demonstrated a similar tendency since the wind had a 

daily, monthly and a yearly pattern. This can be termed as multicollinearity, and it 

tends to produce larger errors. In Figure 25, the coefficients of the multiple linear 

models are represented, where they seem to behave adequately since all of them were 

positive and it was similar for every dataset, so this option was discarded.  

 

The contribution that each reanalysis tool has in the linear model would depend on the 

height of the mast, the height of the reanalysis tool, the efficiency of the reanalysis 

tool and the distance this has to the mast. 
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Figure 25 - Linear model coefficients for ENGgra site 

 

In Figure 25, ERA5 is the reanalysis tool that most contribution had in the model. 

However, it should be considered that the mast was located at 50 m, as well as 

MERRA and ConWX and having a distance to it of 24.9 and 1.1 km. ERA5 grid point 

was located at 100 m and 10.1 km far from the mast. This happened in lots of the sites 

analysed. This discussion point is also linked to the first discussion point of this 

section.  

 

Also, for the identification and avoidance of multicollinearity, correlation matrixes 

(Figure 26) were analysed. Here, Turkey case was the worst with a -0.24, a value 

which discarded the collinearity issue.  

 

 

Figure 26 - Correlation matrix of Site 17 for the identification of collinearity between 

variables 

 

However, a solution to apply for the unknown reason would be the gradient boosting 

machines, which is an automatic learning technique used for regression analysis and 
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for statistical classification problems. In order to reduce the BIAS and the variance, it 

produces a predictive model converting weak learners into strong learners. It is like 

other types of regression in which they consider other independent variables to 

explain a final variable. As a tandem method for regression, it uses decision trees 

optimization, in which its model is a tree and its consequences. The objective of this 

is to clarify in a determined level of the tree which variables must be considered 

(Mark Landry, 2016).  

 

As it was known, backward CV had larger errors than a k-fold CV. Even though they 

were expected larger, they only achieved excessive values for wee training lengths, 

generally, lower than 200-point lengths. The randomness of this process did not result 

negatively for the results obtained. However, the fact that the testing window is 

followed by the training window, made that if the windows are narrow, a lot of 

months of the year not being assessed, the model could be only trained and tested in 

the same season, or by contrast in different seasons, providing better or worse results 

based on that.  

 

Whereas it has been clarified that the error was reduced while the training length 

increased. In the case of the testing length, this is dependent on the training length. It 

needed a short window of training length and a short window of testing length to have 

a high value of the error. This was not perceived in the other way around.  

 

Moreover, backward CV got some negative results for wind speed, which cannot be 

possible in a real situation. However, as the linear model was set without any 

constraints, the values of wind speed that were near to 0 could lead to giving negative 

predictions. This can be easily perceived in Figure 27.  
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Figure 27 - Negative wind speed values 

 

It is assumed that the wind speed has the range of being positive and a maximum of 

25 m/s, although between 0-3 m/s there is no power production. However, data may 

fall outside the range. There are two possibilities to limit this, censoring the data or 

truncating it. The first would report that data at the range limit, the second omits it 

completely (Messner, et al., 2016).  

 

There are some patterns to consider when assessing the power since it was linked to 

the training and testing lengths. This was harsher to analyse when those lengths were 

changing. First, although when results were analysed, there was not a k-fold number 

that was considerably better than the other, by contrast, it was in this case, where 5- 

and 6-fold dominated most of the times. 10-fold CV’s predictions were weak for some 

sites, which means that so many folds did not allow the datasheet to train and test. In 

those cases where BCV was slacking off, the training and testing lengths were 

happening in short lengths and gentle wind seasons. It was detrimental for BCV to 

have a short test length.  

 

From the predictions of the k-fold CV and BCV, it was concluded that BCV had 

much more spikes with which it allowed achieving the rated power. These can be 

convenient to assess when speaking about wind speed/power since it is an issue that 
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wind power already has and being able to handle these spikes would be an advance in 

the development of the energy. 

 

In terms of analysing the density of the power, BCV obtained better results, since it 

allowed to the turbine working in the rated power more times than the others (due to 

the spikes) and it was not severely affected by the data lengths used for the testing.  

 

Much more observations could be completed with every site and every iteration but 

too many data are available. Variables to consider and are missed in this document 

could be aggregated for future works.  
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10. Conclusion 

In the event of selecting an individual reanalysis tool, ERA5 is the reanalysis tool 

with the best efficiency in every site and model. This is followed by ConWX, which 

is the only reanalysis tool that can overcome ERA5’s efficiency when all the factors 

are favourable. Same occurs with RVM, but this was not able to achieve better 

efficiency than ERA5. Finally, MERRA can achieve good contribution but there is no 

pattern that can define that.  

 

This document uses a linear model to predict wind speed based on historical data. The 

simple linear model has been used in other studies for the wind speed resource 

assessment. It has been found that the linear model has a significant role in the field 

and can successfully be used for its measurement.  

 

Being wind speed the only variable available, new variables were added to the linear 

model and within them, the most effective option was (in R language), 

 

Site~ bs(ERA5,3)+bs(MERRA,3)+bs(ConWX,3)+bs(RVM,3) + sinh4 + cosh4 + sinh + cosh + 

sinh6 + cosh6 

 

which is composed of a cubic spline and three periodicities, 2 π, 4 π, and 6 π. This is 

the model that most times achieve the best performance (lower errors and higher R2 

and correlation), even if it did not have a remarkable advantage from others.  

 

In the k-fold cross-validation method, it was concluded that for the RMSE error (and 

MAE) that sites that were close to each other and their data lengths were similar, have 

similar errors between them. Between 5-, 6- and 10-fold CV, there is not a 

considerable change between the evaluation metrics. 10-fold is better for assessing 

RMSE and MAE but primarily the BIAS. 5-fold CV achieves better results for R2 and 

correlation. Moreover, a pattern was found in the error between datasets that are 

located next to each other in the map and indeed had similar data lengths.  
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Mean of Reanalysis Tool variable achieved better results than any other reanalysis 

tool. This was concluded to be since variables in the model selected had similarities, 

but it cannot be termed as multicollinearity since the correlation matrix of every site 

was analysed. Gradient boosting machine was chosen as an alternative option for 

future works. 

 

Regarding the Backward cross-validation, it is obvious that its performance was based 

on the training and testing lengths. There was a limit of data points when assessing 

wind speed, and the larger the training/testing length (especially training length), the 

lowest the error and the higher the efficiency. By contrast, the maximum power 

obtained was affected by the testing length. However, there was a slight mishap with 

this cross-validation, as the predictions obtained had negative values. For this, the 

linear model restrictions were needed, such as censored or truncated regressions. This 

makes less robust the model that seemed to be strong.  

 

Finally, predictions were evaluated with the power maximum and power density of 

the sites. 5-fold cross-validation’s predictions were the predictions that most of the 

times achieve rated power, but there was a conflict between this and BCV in the 

power density. In the cases were BCV have short training lengths, the power density 

was more equilibrated (due to spikes) and higher values were obtained.  

 

Both CVs proved that there are successful options when assessing wind resource, 

however, if BCV is accurate enough on assessing the spikes that wind speed produces 

in the generation of wind power, this cross-validation can be the best option for the 

long-term predictions.  

 

All in all, based on the results and if some restrictions and improvements mentioned 

(and highlighted in future works in the following section) are applied to the model, 

these data analysis methods could replace erecting a met mast at a site of interest for 

development and ERA5 and ConWX reanalysis tools would be the best options in the 

case of not using the four of them.  
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11. Future Work 

There was a first idea of the testing of the model in an earlier time period, but not 

having easy access to that and not even having mast data to compare it, it was 

pointless to do it. However, this must be added as future work to assess the efficiency 

of the cross-validations completely.  

 

There are too many variables to consider when analysing a linear model, and other 

variables such as wind direction, temperature and humidity would help to make the 

study more accurate. It would be interesting to apply this model adding those 

variables. Moreover, there are other types of regression that could also be considered, 

such as penalized regression. 

 

As negative values of wind speed were obtained in BCV, the linear model should be 

truncated for the most accurate performance of the model.  

 

For the reduced errors of the model, a gradient boosting machine method could be 

implemented as mentioned in the section Discussion. It may be interesting to focus on 

reducing the error for the assessment of the spikes in the predictions.  

 

Having analysed backward cross-validation, apart from limiting the linear model not 

to obtain negative results, this cross-validation could obtain better predictions with 

some other restriction that would be interesting to investigate in the future.  

 

Finally, as the project objective was to conclude the reduction in the cost that would 

have the avoidance of the installation of a mast, a cost analysis should be done. The 

model selected was formed by the four-reanalysis tool and it should be considered if 

this would have savings in the resource assessment.  
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13. Appendices 

13.1. Appendix I – Summary of formulas in R language 

• for1<- Site~  ERA5+ MERRA+ ConWX + RVM + sinh + cosh 

• for2 <- Site~ bs(ERA5,3)+bs(MERRA,3)+bs(ConWX,3)+bs(RVM,3)  + 

sinh + cosh 

• for3 <- Site~  ERA5+ MERRA+ ConWX + RVM + sinh4 + cosh4 + sinh + 

cosh 

• for4<- Site~  ERA5+ MERRA  + sinh + cosh 

• for5 <- Site~ bs(ERA5,3)+bs(MERRA,3) + sinh + cosh 

• for6 <- Site~  ERA5+ MERRA  + sinh4 + cosh4 + sinh + cosh 

• for7<- Site~  ERA5+  ConWX  + sinh + cosh 

• for8 <- Site~ bs(ERA5,3)+bs(ConWX,3) + sinh + cosh 

• for9 <- Site~  ERA5+  ConWX  + sinh4 + cosh4 + sinh + cosh 

• for10<- Site~  ERA5+ RVM  + sinh + cosh 

• for11<- Site~ bs(ERA5,3)+bs(RVM,3) + sinh + cosh 

• for12 <- Site~  ERA5+ RVM  + sinh4 + cosh4 + sinh + cosh 

• for13<- Site~  MERRA + RVM  + sinh + cosh 

• for30 <- Site~ (ERA5- ConWX) 

• for31 <- Site~ (ERA5- RVM ) 

• for32 <- Site~ (MERRA- RVM ) 

• for33 <- Site~ (ConWX- RVM ) 

• for34 <- Site~ (MERRA- ConWX ) 

• for35 <- Site~ bs(ERA5,3)+bs(MERRA,3)+bs(ConWX,3)+bs(RVM,3) 

+ sinh4 + cosh4 + sinh + cosh 

• for36 <- Site~ bs(ERA5,3)+bs(MERRA,3)+bs(ConWX,3)+bs(RVM,3) 

+ sinh4 + cosh4 + sinh + cosh + sinh6 + cosh6 

• for37 <- Site~ bs(ERA5,3)+ bs(MERRA,3)+ bs(ConWX,3)+ 

bs(RVM,3)+ sinh + cosh + sinh6 + cosh6 

• for38 <- Site~ bs(ERA5,3)+ bs(MERRA,3)+ bs(ConWX,3)+ 

bs(RVM,3)+ sinh4 + cosh4  + sinh6 + cosh6 

• for39 <- Site~ bs(MRT,3) + sinh6 + cosh6 

• for40 <- Site~ poly(ERA5,2) +poly(MERRA,2)+ poly(ConWX,2)+ 
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• for14<- Site~ bs(MERRA,3)+bs(RVM,3) + sinh + cosh 

• for15 <- Site~  MERRA+ RVM  + sinh4 + cosh4 + sinh + cosh 

• for16<- Site~  MERRA + ConWX  + sinh + cosh 

• for17<- Site~ bs(MERRA,3)+bs(ConWX,3) + sinh + cosh 

• for18 <- Site~  MERRA+ ConWX  + sinh4 + cosh4 + sinh + cosh 

• for19<- Site~  RVM + ConWX  + sinh + cosh 

• for20<- Site~ bs(ConWX,3)+bs(RVM,3) + sinh + cosh 

• for21 <- Site~  RVM + ConWX  + sinh4 + cosh4 + sinh + cosh 

• for22 <- Site~ ERA5+ MERRA  + sinh + cosh 

• for23 <- Site~ (ERA5- MERRA)+ sinh + cosh 

• for24 <- Site~ (ERA5- ConWX)+ sinh + cosh 

• for25 <- Site~ (ERA5- RVM )+ sinh + cosh 

• for26 <- Site~ (MERRA- RVM )+ sinh + cosh 

• for27 <- Site~ (ConWX- RVM )+ sinh + cosh 

• for28 <- Site~ (MERRA- ConWX )+ sinh + cosh 

• for29 <- Site~ (ERA5- MERRA) 

 

poly(RVM,2) 

• for41 <- Site~ poly(ERA5,2)+ poly(MERRA,2)+ poly(ConWX,2)+ 

poly(RVM,2)+ sinh + cosh 

• for42 <- Site~ poly(ERA5,2)+ poly(MERRA,2)+ poly(ConWX,2)+ 

poly(RVM,2)+ sinh4 + cosh4  

• for43 <- Site~ poly(ERA5,2)+ poly(MERRA,2)+ poly(ConWX,2)+ 

poly(RVM,2)+ sinh4 + cosh4  

• for44 <- Site~ poly(ERA5,2)+ poly(MERRA,2)+ poly(ConWX,2)+ 

poly(RVM,2)+ sinh6 + cosh6  

• for45 <- Site~ poly(ERA5,2)+ poly(MERRA,2)+ poly(ConWX,2)+ 

poly(RVM,2)+ sinh6 + cosh6 + sinh4 + cosh4 +sinh + cosh 

• for46 <- Site~ poly(ERA5,2)+ poly(MERRA,2)+ poly(ConWX,2)+ 

poly(RVM,2)+ sinh6 + cosh6 +sinh + cosh 

• for47 <- Site~ poly(ERA5,2)+ poly(MERRA,2)+ poly(ConWX,2)+ 

poly(RVM,2)+ sinh6 + cosh6 + sinh4 + cosh4  

• for48 <- Site~ poly(ERA5,2)+ poly(MERRA,2)+ poly(ConWX,2)+ 

poly(RVM,2)+ sinh4 + cosh4 +sinh + cosh 
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13.2. Appendix II - Results 

5-fold cross-validation 

5fold Model 35 Model 36 

Site BIAS RMSE MAE R2 Correlation BIAS RMSE MAE R2 Correlation 

ENGgra 

M277 
0.002528

865 
1.051
352 

0.81527
42 

0.853493
5 

0.9139752 0.00250
92 

1.0519
56 

0.815824
7 

0.85358

38 
0.9138638 

ENGden 

M224 
0.008583

246 
1.380
387 

1.06029 
0.804922

7 
0.8889423 

0.00845
7618 

1.3801
81 

1.059701 
0.80506

25 
0.8889685 

FRAotr 

M510 

-
0.000497
3749 

1.292
731 

0.98536
89 

0.822208
1 0.9031407 

-
0.00050
50063 

1.2927
05 0.985451 

0.82224
42 0.903145 

FRApdl 

M29 

-
0.001969

325 

1.742
41 

1.33331
7 

0.762983
5 

0.8697077 
-

0.00193
981 

1.7422
51 

1.333255 0.76306
64 

0.869734 

GERlac 

M1 

-
0.006989

778 

1.479
042 

1.15241
2 

0.796815
4 

0.8366889 
-

0.00700
7429 

1.1478
8 

1.152308 0.79685
72 

0.8367491 

GERlir 

M1 

-
0.006294

154 

1.418
556 

1.08180
9 

0.759413
7 

0.8288142 
-

0.00642
1292 

1.4191
96 

1.082555 
0.75954

68 
0.8286517 
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Site BIAS RMSE MAE R2 Correlation BIAS RMSE MAE R2 Correlation 

GERpr1 

M2 
0.015679

92 
1.952
474 

1.51779
7 

0.76586 0.8642103 0.01579
375 

1.9528
04 

1.517696 0.76597
26 

0.8641218 

GERpru 

M1 

-
0.018422

31 

1.324
957 

1.01271
9 

0.83134 0.8654668 
-

0.01851
473 

1.3259
96 

1.01324 
0.83136

49 
0.8653208 

NIRccg 

M352 

-
0.001996

661 

1.343
672 

1.03912
9 

0.847663

9 0.9205574 
-

0.00199
52 

1.3435
64 1.038964 

0.84771
32 0.9205713 

NIRcgr 

M78 

-
0.000730
0241 

1.513
116 

1.15734
8 

0.837460
7 

0.9142368 
-

0.00073
00497 

1.5131
65 

1.157348 0.83746
71 

0.9142313 

NIRnid 

M2 

-
0.000390

91 

1.399
857 

1.07175
5 

0.870688
5 

0.9307885 
-

0.00039
50697 

1.3999
15 

1.071796 
0.87069

17 
0.9307822 

NORskv 

M30 
0.013354

18 
1.900
256 

1.39576
6 

0.847655
5 0.8956209 

0.01339
302 

1.9010
21 1.396329 

0.84767
53 0.8955396 

NORvar 

M32 

-
0.044385

4 

1.905
813 

1.41331
1 

0.910666
7 

0.9250528 
-

0.04414
954 

1.9063
96 

1.413957 0.91067
03 

0.9249766 

SCOdun 

M103 

-
0.003974

983 

1.777
52 

1.33943
6 

0.886284
6 

0.9271903 
-

0.00390
4594 

1.7776
36 

1.339454 
0.88631

67 
0.9271704 

SCOfre 

M73 

-
0.001018

7 

1.666
256 

1.28830
2 

0.823145
4 0.9072001 

-
0.00101
5916 

1.6663
4 1.288411 

0.82314
77 0.907191 

SWErod 

M39 

-
0.004522

026 

1.011
159 

0.78277
95 

0.849041
4 

0.9155016 
-

0.00451
1525 

1.0110
3 

0.782716
3 

0.84911
98 

0.9155196 
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Site BIAS RMSE MAE R2 Correlation BIAS RMSE MAE R2 Correlation 

TURcig 

M41 

-
0.010455

59 

2.076
666 

1.58401
3 

0.754695
9 

0.8610055 
-

0.01044
185 

2.0762
95 

1.583769 0.75478
17 

0.8610672 

TURevr 

M105 

-
0.001869

131 

1.936
073 

1.46773 
0.728277

2 
0.8552265 

-
0.00194
8446 

1.9348
81 

1.466862 
0.72855

22 
0.8554161 

TURhvz 

M20 

-
0.020660

67 

2.077
342 

1.58246
5 

0.585935
4 0.7671786 

-
0.02057

618 

2.0772
98 1.582303 

0.58614

33 
0.7671818 

WALbry 

M578 

-
0.000312
5738 

1.312
567 

1.01436
9 

0.840274
6 

0.9143865 
-

0.00031
64957 

1.3125
74 

1.0144 0.84028
25 

0.9143853 

WALglh 

M294 

-
0.003220

049 

1.282
565 

0.98110
33 

0.867620
9 

0.9227619 
-

0.00321
4867 

1.2825
48 

0.981163 
0.86763

3 
0.9227647 

WALmmr 

M281 

-
0.006820

559 

1.479
737 

1.13443
8 

0.823175
7 0.9060448 

-
0.00684
6585 

1.4806
15 1.135123 

0.82335
41 0.9059188 
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5fold Worst model: MODEL 33 

Site BIAS RMSE MAE R2 Correlation 

ENGgra 

M277 
0.001232987 1.295925 0.994828 0.7715745 0.8655232 

ENGden 

M224 
0.006147853 1.534876 1.180879 0.7388771 0.8586318 

FRAotr 

M510 
-0.0002409723 1.645146 1.269561 0.7113431 0.8375689 

FRApdl 

M29 
2.448222e-05 2.010801 1.520676 0.6794128 0.8218388 

GERlac 

M1 
-0.02491985 1.66346 1.294071 0.7318386 0.7975489 

GERlir 

M1 
-0.01602813 1.578631 1.212231 0.6997754 0.7877665 

GERpr1 

M2 
-0.004728241 2.175181 1.698538 0.7025565 0.8300779 

GERpru 

M1 
-0.003886951 1.851004 1.430793 0.6675457 0.7570942 
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Site BIAS RMSE MAE R2 Correlation 

NIRccg 

M352 
-0.002494987 1.64855 1.281903 0.7714802 0.8777568 

NIRcgr 

M78 
-0.0006814328 1.834937 1.412712 0.7629027 0.8712549 

NIRnid 

M2 
-0.0008547151 1.715197 1.314637 0.8031562 0.8941011 

NORskv 

M30 
0.01191901 2.140518 1.594456 0.7875889 0.8613584 

NORvar 

M32 
-0.01476225 2.590437 2.022119 0.8226851 0.8547487 

SCOdun 

M103 
-0.01118914 2.085747 1.572519 0.8416472 0.8961721 

SCOfre 

M73 
-0.000144947 1.955523 1.504612 0.7601213 0.8706532 

SWErod 

M39 
-0.00125983 1.265625 

0.979872
2 

0.7639148 0.8643913 

TURcig 

M41 
-0.001597728 2.382281 1.794984 0.6694211 0.8138813 

TURevr 

M105 
-0.003740463 2.132222 1.633396 0.6652523 0.8194285 
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Site BIAS RMSE MAE R2 Correlation 

TURhvz 

M20 
-0.007180739 2.283836 1.751667 0.4860944 0.7072149 

WALbry 

M578 
-0.0003406037 1.555172 1.198194 0.7733775 0.8774438 

WALglh 

M294 
-0.006051825 1.570303 1.199825 0.7987897 0.8807149 

WALmmr 

M281 
-0.003190619 1.801371 1.396267 0.7332066 0.8576365 
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6- and 10-fold cross-validation comparison for the best model 

Model 

36 
6 FOLDS 10 FOLDS 

Site BIAS RMSE MAE R2 Correlation BIAS RMSE MAE R2 Correlation 

ENGgra 

M277 
0.002857095 1.047828 0.8135081 0.8505836 0.9140445 -8.202271e-

05 
1.046234 0.8122577 0.8481829 0.9124449 

ENGden 

M224 
0.004453406 1.37897 1.058897 0.8020968 0.8851257 0.002899675 1.374811 1.055709 0.8182197 0.8743533 

FRAotr 

M510 
-0.000424468 1.29283 0.9853908 0.8201412 0.9031216 

-
0.0007038368 1.292693 0.9852509 0.8188199 0.9017793 

FRApdl 

M29 
-0.00325942 1.741338 1.332577 0.7643214 0.867778 -0.003566412 1.741852 1.333313 0.7624226 0.866 

GERlac 

M1 
-0.01290613 1.478855 1.153075 0.796471 0.8392581 -0.006384506 1.469846 1.147486 0.7915845 0.8352286 

GERlir 

M1 
-0.005243752 1.401615 1.075221 0.7641089 0.825836 -0.001427101 1.403302 1.074431 0.7580732 0.8195725 

GERpr1 

M2 
0.01495752 1.958031 1.521194 0.7638903 0.8518199 0.00635593 1.937411 1.508801 0.7599653 0.8538337 
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Site BIAS RMSE MAE R2 Correlation BIAS RMSE MAE R2 Correlation 

GERpru 

M1 
-0.02081572 1.331374 1.017262 0.830546 0.8660314 -0.01118604 1.320923 1.010557 0.8315843 0.8618804 

NIRccg 

M352 
-

0.0001359732 1.343304 1.038794 0.8474716 0.9209165 0.0002454331 1.343365 1.038759 0.8480681 0.9155703 

NIRcgr 

M78 
-0.00100753 1.511015 1.156098 0.8399567 0.9150402 -0.001352039 1.513213 1.157428 0.8421838 0.907487 

NIRnid 

M2 
0.0002570854 1.399369 1.071474 0.869672 0.9311324 -0.000570953 1.399953 1.071832 0.8688497 0.9264006 

NORskv 

M30 
0.01598027 1.902129 1.397697 0.8467653 0.8868799 0.0005126885 1.893958 1.390756 0.8361216 0.8795572 

NORvar 

M32 
-0.02893649 1.91004 1.415382 0.9058252 0.9224496 -0.008686274 1.886905 1.401989 0.8973563 0.9258672 

SCOdun 

M103 
-0.001031563 1.773145 1.338439 0.8854724 0.9305429 -0.003809221 1.775143 1.337685 0.8861367 0.9236509 

SCOfre 

M73 
-0.002161217 1.667085 1.288767 0.8241964 0.9069544 -0.001776397 1.665834 1.28811 0.8227552 0.9020142 

SWErod 

M39 
-0.00272227 1.012424 0.7838285 0.8487444 0.9108654 -0.004249542 1.010162 0.7819844 0.8477326 0.909258 
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Site BIAS RMSE MAE R2 Correlation BIAS RMSE MAE R2 Correlation 

TURcig 

M41 
-0.006729557 2.077457 1.584607 0.7521897 0.8607154 -0.002895401 2.074949 1.583425 0.7474298 0.8564331 

TURevr 

M105 
-0.007602974 1.933341 1.465196 0.7416467 0.850197 -0.004583383 1.935354 1.46769 0.7367479 0.8537642 

TURhvz 

M20 
-0.01151887 2.070329 1.577288 0.5863669 0.7686648 -0.007141275 2.064244 1.575484 0.6123737 0.759664 

WALbry 

M578 
0.00061501 1.314048 1.015512 0.8421207 0.9148431 0.001048274 1.314075 1.015615 0.8399781 0.9131192 

WALglh 

M294 
0.001511263 1.28254 0.9813373 0.8673936 0.9219812 

-
0.0003458732 

1.28094 0.9801426 0.8647706 0.920935 

WALmmr 

M281 
-0.009992744 1.479844 1.134406 0.8255147 0.905074 -0.006688157 1.479119 1.133986 0.8288341 0.902716 
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Models used with the mean of all the reanalysis tools 

 

 Best Model: Model 5 Worst Model: Model 12 

Site BIAS RMSE MAE R2 Correlation BIAS RMSE MAE R2 Correlation 

ENGgra 

M277 

0.002775
831 

0.9006829 0.694811
9 

0.890
6971 

0.9381785 0.002334
896 

0.90088
32 

0.6954
776 

0.8897169 0.9379368 

ENGden 

M224 

 
0.008901

025 

 
1.1204
59 

 0.8638929  
0.868
4873 

 0.9285452  
0.006480

203 

 
1.12366

2 

 
0.8649
785 

 0.8650875  0.927767 

FRAotr 

M510 

 -
0.000565

6798 

 
1.0653
63 

 0.811173  
0.878
7957 

 0.9353188  -
0.000312

28 

 
1.08111

2 

 
0.8250
007 

 0.8748029  0.9333481 

FRApdl 

M29 

 -
0.001122

165 

 
1.3919
88 

 1.067633  
0.846
7071 

 0.9187781  -
0.000244

3245 

 
1.39992

8 

 
1.0740

68 

 0.8441666  0.9178782 

GERlac 

M1 

 -
0.007957

384 

 
1.1205
62 

 0.8658906  
0.877
9985 

 0.9084924  -
0.007603

156 

 
1.13285 

 
0.8720

06 

 0.8747455  0.9073914 

GERlir 

M1 

 -
0.004794

631 

 
1.1032
79 

 0.8451062  
0.853
0363 

 0.8967866  -
0.007635

981 

 
1.10327

8 

 
0.8488
556 

 0.8518375  0.8972739 
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Site BIAS RMSE MAE R2 Correlation BIAS RMSE MAE R2 Correlation 

GERpr1 

M2 

 
0.006944

882 

 
1.3917
25 

 1.083262  
0.874
5424 

 0.9327281  
0.001868

105 

 
1.40501

1 

 
1.0954

46 

 0.8713945  0.9309371 

GERpru 

M1 

 
0.005003

987 

 
1.1156

7 

 0.8624382  

0.877

6055 

 0.9099346  
0.005850

234 

 
1.13406

4 

 
0.8760
506 

 0.8711499  0.9047531 

NIRccg 

M352 

 -
0.000677

3408 

 
1.1097
03 

 0.8567796  

0.896

3487 

 0.9466977  -
0.000346

8827 

 
1.10981

5 

 
0.8572
803 

 0.8962545  0.9467137 

NIRcgr 

M78 

 -
0.000331

4909 

 
1.2329
31 

 0.9503267  
0.891
6278 

 0.9437158  -
0.000804

1765 

 
1.23957

1 

 
0.9546
901 

 0.8906775  0.9432191 

NIRnid 

M2 

 
0.000225

4314 

 
1.1718
67 

 0.8943095  
0.909
1561 

 0.9521604  -
0.000107

8286 

 
1.17261

4 

 
0.8950
772 

 0.908719  0.9520853 

NORskv 

M30 

 
0.006386

823 

 
1.3937
54 

 1.028855  
0.915
0242 

 0.9438572  
0.005546

596 

 
1.39453

2 

 
1.0301

54 

 0.9133997  0.9434786 

NORvar 

M32 

 
0.001395

472 

 
1.5155
02 

 1.116123  
0.942
2718 

 0.955594  
0.008231

753 

 
1.50976

2 

 
1.1134

59 

 0.941741  0.9555828 

SCOdun 

M103 

 -
0.001165

26 

 
1.3268
13 

 1.00423  
0.935
014 

 0.9597673  -
0.004032

767 

 
1.32750

9 

 
1.0034

19 

 0.9347507  0.9597947 

SCOfre 

M73 

 -
9.915207

e-05 

 
1.3558
43 

 1.048497  
0.882
9498 

 0.9395837  
7.541166

e-05 

 
1.35666

4 

 
1.0492

99 

 0.8825808  0.9395046 
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Site BIAS RMSE MAE R2 Correlation BIAS RMSE MAE R2 Correlation 

SWErod 

M39 

 
0.001136

067 

 
0.8823
529 

 0.6813962  
0.885
3633 

 0.936345  -
0.000570

253 

 
0.88924

98 

 
0.6856
494 

 0.8833287  0.9353439 

TURcig 

M41 

 -
0.006266

717 

 
1.5070
53 

 1.148519  
0.868
7118 

 0.9290775  -
0.001208

253 

 
1.52133

7 

 
1.1601

12 

 0.865247  0.9274709 

TURevr 

M105 

 -
0.000491

0995 

 
1.4660
99 

1.109518  
0.841
5375 

 0.9197094  -
0.001830

225 

 
1.48911

2 

 
1.1333

46 

 0.8356259  0.9168871 

TURhvz 

M20 

 
0.011143

84 

 
1.5144
46 

 1.153356  
0.777

3 

 0.8831946  -
0.002465

26 

 
1.49732 

 
1.1472

1 

 0.775587  0.8848446 

WALbry 

M578 

 
0.000674

6581 

 
1.0948
87 

 0.8414453  
0.889
1024 

 0.9416628  -
0.000201

3035 

 
1.10005

5 

 
0.8457
772 

 0.8875852  0.9410984 

WALglh 

M294 

 -
0.002742

816 

 
1.0521
73 

 0.8068253  
0.910
1899 

 0.9484078  -
0.003789

549 

 
1.06090

6 

 
0.8145
431 

 0.9075871  0.9477893 

WALmmr 

M281 

 -
0.001591

154 

 
1.1512
94 

 0.8891493  
0.891
146 

 0.9445503  -
0.000712

9613 

 
1.15359

1 

 
0.8918
963 

 0.8900533  0.9443622 
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Backward cross-validation iteration 1 

 

Model 36 Iteration 1 

Site BIAS RMSE MAE R2 Correlation Training length Testing length 

ENGgra 

M277 
0.06182642 1.048725 0.8144492 0.8662356 0.91545837 4429 6551 

ENGden 

M224 
0.18521143 1.355536 1.0397687 0.7858919 0.91004712 3024 897 

FRAotr 

M510 
-

0.08062451 
1.275716 0.9724612 0.8283262 0.87799777 27665 7028 

FRApdl 

M29 
-

0.05484661 1.771017 1.3715593 0.7549403 0.87758789 5160 5038 

GERlac 

M1 
0.08136051 2.414170 1.5684318 0.6177428 0.73795626 1817 4515 

GERlir 

M1 
-

2.48316964 
8.096747 3.8000896 0.9062263 -0.34299612 63 308 
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BIAS RMSE MAE R2 Correlation Training length Testing length BIAS 

GERpr1 

M2 
0.23247005 1.870869 1.4922833 0.7449620 0.77686866 7561 376 

GERpru 

M1 
-

0.20337771 
1.734639 1.2976393 0.7140781 0.53497205 377 283 

NIRccg 

M352 
-

0.11883236 1.360706 1.0450249 0.8547279 0.90007143 26474 2314 

NIRcgr 

M78 
-

0.05879001 
1.484023 1.1358500 0.8393586 0.90394638 16086 4730 

NIRnid 

M2 
-

0.02239385 
1.425334 1.0811376 0.8472362 0.92860531 5246 20220 

NORskv 

M30 
0.28463380 1.428409 1.1127922 0.8110261 0.87185618 2737 2579 

NORvar 

M32 
-

0.01376786 
1.314981 1.0107322 0.8982791 0.94015599 2078 774 

SCOdun 

M103 
0.10328312 1.855462 1.3900613 0.9004612 0.93153220 4473 5020 

SCOfre 

M73 
0.04940184 1.678738 1.3034302 0.8379415 0.90055614 16424 15528 
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BIAS RMSE MAE R2 Correlation Training length Testing length BIAS 

SWErod 

M39 
1.04188643 5.231028 2.6564780 0.6981269 -0.05673556 106 7682 

TURcig 

M41 
0.07647497 2.110091 1.5822682 0.8133742 0.83443564 5313 4849 

TURevr 

M105 
-

0.07485176 1.963595 1.4833863 0.7149356 0.82325592 6362 5698 

TURhvz 

M20 
-

0.49413476 
2.071736 1.5564767 0.6180733 0.72064442 1683 4990 

WALbry 

M578 
-

0.09936856 
1.347502 1.0332070 0.8520165 0.90847392 15697 6732 

WALglh 

M294 
-

0.47117238 1.475378 1.1236295 0.7876610 0.92087551 2370 19436 

WALmmr 

M281 
-

0.26545882 
1.465068 1.1117919 0.8369204 0.91517385 2296 3382 
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Backward cross-validation iteration 2 

Model 36 Iteration 2 

Site BIAS RMSE MAE R2 Correlation Training length Testing length 

ENGgra 

M277 
0.02700271 

 
1.144074 

0.8557655 
 

0.8580825 
 

0.9040867 
 

1114 5045 

ENGden 

M224 
0.07950555 

 
1.337504 1.026978 

 
0.8332033 

 
0.8914762 

 
4772 2483 

FRAotr 

M510 
-0.0650047 

 
1.295561 

0.9826312 
 

0.8240383 
 

0.8966841 
 

38251 6071 

FRApdl 

M29 

-
0.07939894 

 
1.709128 

1.311773 
 

0.7593096 
 

0.8705348 
 12525 15809 

GERlac 

M1 
-0.1938498 

 
1.465224 1.152948 

 
0.7395885 

 
0.7138831 

 
3226 1298 

GERlir 

M1 

-
0.00304398 

 
1.345476 

1.031558 
 

0.744646 
 

0.8842528 
 

3487 3255 

GERpr1 

M2 
0.681578 

 2.860182 
2.099432 

 
0.8615686 

 
0.7814341 

 302 5753 
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Site BIAS RMSE MAE R2 Correlation Training length Testing length 

GERpru 

M1 
-0.5214247 

 1.452462 
1.067587 

 
0.8020812 

 
0.9142957 

 1788 822 

NIRccg 

M352 
0.0439089 

 
1.343559 

 
1.046783 

 
0.8329967 

 
0.9286844 

 
12302 12900 

NIRcgr 

M78 
-0.1192146 

 
1.390228 

 
1.059705 

 
0.8390514 

 
0.9020519 

 
14939 1649 

NIRnid 

M2 
-0.109443 

 
1.431162 

 
1.086894 

 
0.8712275 

 
0.9319812 

 17734 14359 

NORskv 

M30 

-
0.09904026 

 

1.862193 
 

1.368756 
 

0.8668946 
 

0.906178 
 

1633 4758 

NORvar 

M32 

-
0.01018693 

 

5.971422 
 

4.866319 
 

0.9185023 
 

0.2830074 
 

45 453 

SCOdun 

M103 
-0.1478576 

 
1.599233 

 

1.223289 
 

0.8765169 
 

0.9338542 
 4725 623 

SCOfre 

M73 
0.0301963 

 
1.46961 

 

1.151755 
 

0.8166488 
 

0.8942263 
 

18228 2192 

SWErod 

M39 
0.06053092 

 
0.9400583 

 

0.7300726 
 

0.8619899 
 

0.8811379 
 

5807 841 
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Site BIAS RMSE MAE R2 Correlation Training length Testing length 

TURcig 

M41 
-0.1163565 

 
2.250711 

 
1.690572 

 
0.8021131 

 
0.7924664 

 
6636 1109 

TURevr 

M105 

-
0.07704549 

 

1.987549 
 

1.502095 
 

0.7506023 
 

0.8434608 
 

14576 12066 

TURhvz 

M20 
-0.1179281 

 
1.769403 

 
1.344583 

 
0.6422155 

 
0.742885 

 
3478 1186 

WALbry 

M578 
0.1922963 

 
1.420767 

 
1.087134 

 
0.8364519 

 
0.911753 

 
2181 6797 

WALglh 

M294 
0.01399584 

 
1.101505 

 
0.8584282 

 
0.885014 

 

0.910624 
 

13256 5962 

WALmmr 

M281 
0.01487057 

 
1.635589 

 
1.265431 

 
0.8485595 

 
0.8861552 

 1276 695 
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Backward cross-validation iteration 3 

 

Model 36 Iteration 3 

Site BIAS RMSE MAE R2 Correlation Training length Testing length 

ENGgra 

M277 
0.25841452 1.133083 0.8786231 0.8562031 0.9212563 1366 4341 

ENGden 

M224 
0.10221593 1.352681 1.0507031 0.8112891 0.8888864 956 2166 

FRAotr 

M510 
-

0.04096578 
1.268623 0.9779087 0.8136266 0.9302599 23831 1752 

FRApdl 

M29 
0.01639916 1.774158 1.3928273 0.7558991 0.7035405 13369 73 

GERlac 

M1 
-

0.33571238 
2.594011 1.5477783 0.5793273 0.1789955 194 3013 

GERlir 

M1 

-
26.7849745

8 
71.710102 37.6413022 0.8054692 -0.3807553 31 3799 
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Site BIAS RMSE MAE R2 Correlation Training length Testing length 

GERpr1 

M2 
-

0.08880560 
2.067301 1.6285930 0.7245372 0.8725241 1480 2172 

GERpru 

M1 
-

0.76974499 
1.954621 1.3717365 0.7159777 0.8370237 3239 2808 

NIRccg 

M352 
-

0.09985635 1.343540 1.0376839 0.8619290 0.9218756 10163 25198 

NIRcgr 

M78 
0.04706435 1.437672 1.0973066 0.8381406 0.9256202 13784 5511 

NIRnid 

M2 
-

0.19346915 
1.425683 1.0665575 0.8697569 0.8566567 5558 1489 

NORskv 

M30 
-

0.26479373 2.027256 1.4679255 0.8640144 0.8977605 1437 4050 

NORvar 

M32 
0.26016919 2.928205 2.1875169 0.9140720 0.9162450 906 655 

SCOdun 

M103 
0.16311968 1.865103 1.3855161 0.8564223 0.9361338 1913 8715 

SCOfre 

M73 
0.48090803 1.718108 1.3515027 0.8377683 0.9165008 11268 2708 
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Site BIAS RMSE MAE R2 Correlation Training length Testing length 

SWErod 

M39 
-

0.10736118 
1.071544 0.8376026 0.8490871 0.9234342 13699 2933 

TURcig 

M41 
-

0.39720245 
2.230375 1.7270936 0.8455338 0.8049952 1518 7256 

TURevr 

M105 
0.62979384 1.734604 1.3671737 0.7136580 0.8884581 1889 129 

TURhvz 

M20 
0.13200816 1.934800 1.5014051 0.6156447 0.7763803 11756 3879 

WALbry 

M578 
0.04901661 1.271998 0.9850143 0.8530165 0.9100164 18666 13376 

WALglh 

M294 
-

0.09800852 1.217821 0.9199974 0.8634734 0.9444574 13330 3598 

WALmmr 

M281 
-

0.04260814 
1.589535 1.2203326 0.8845419 0.9136900 1157 5163 

 

 



 

106 

13.3. Appendix III – Graphs 

 

Comparison of MAE and correlation in 5-, 6- and 10- fold CV 
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Comparison of R2, correlation and training length in BCV 
Iteration 1 

 

 

 

 

 

Iteration 2 
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Iteration 3 

 

 

Comparison between predictions and power density (Rated power order) 
Site 11 
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Site 14 

 
Site 17 
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Site 3 

 

Site 5 
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Site 6 

 
Site 7 
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Site 9 

 
Site 10 
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Site 12 

 
Site 13 
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Site 15 

 

Site 18 
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Site 19 

 

Site 20 
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Site 21 

 

Site 22 

 


