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Abstract 

This thesis is a contribution to the field of wind turbine maintenance management. 

The first chapters provide a review of wind turbine maintenance management, in 

particular the motivations for reliability-centred maintenance. The data requirement 

of this maintenance approach is considered, and the role of work order free text data 

as an information source are highlighted. Methods from the field of text mining are 

however required to extract this information in an actionable format, and an 

overview of the most relevant text mining approaches is given in the final chapter of 

the literature review. 

The main output of this work is a supervised text mining algorithm for structuring 

maintenance data that is recorded as free text work orders. The method is applied on 

two datasets of SAP work orders from major onshore wind farms in Scotland. 

Common issues found in the raw data are highlighted and data cleaning rule sets are 

developed to overcome these issues. A lexicon of domain terminology is developed 

that can be used on these datasets as well as extender for wider use. The 

methodology is developed in Matlab and consists of nine modules for data cleaning, 

vectorisation, transformations, supervised prediction of missing values. The outputs 

are given both as a two-level Pareto chart and frequency tables that allows their use 

in maintenance decision-making. Results are analysed in terms of algorithm 

performance and validated against the research aims. 

Improvements are also suggested to reduce supervision requirement, raise accuracy, 

and make the approach more universal in terms of turbine models and terminology. 

Finally, the economic benefits of automated work order mining, and potential ways 

to increase its industrial appeal are discussed.  
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1. Introduction 

1.1. Background and motivations 
Renewable energy generators have so far been built, and continue to operate, largely 

with support from some form of financial subsidy or incentive. However, the energy 

market is changing - subsidies are being withdrawn while the cost of energy from 

renewable sources is beginning to compete with that of conventional generators. 

Wind energy in particular has shown the closest energy price competition, as the 

technology is maturing, becoming cheaper and more reliable (1). This encourages 

new wind farm developments and provides a level of certainty for a future without 

subsidies. 

Existing wind farms, on the other hand, need to find different means to also remain 

competitive on the changing energy market. For onshore wind turbines, around 12% 

of the lifetime cost of energy is from O&M costs (2). Offshore this can raise up to 

33%. Minimising OPEX by O&M planning and financial risk management can offer 

significant reductions in the overall cost of energy production. Risk management is 

also gaining importance for operators due to an increasing number of assets 

exceeding their warranty period (3).  

Accurate reliability information is essential for maintenance planning, risk 

management and insurance purposes. For a rapidly evolving technology like wind 

turbines, long-term operating experience and reliability records, other than those 

provided by the OEM, are mostly not available (4). Instead, reliability information 

can be obtained statistically from the maintenance records of existing wind farms. 

Maintenance data analysis is one of the three key areas identified in (3) to inform 

decisions that lead to OPEX reduction. 

Work order (WO) records are a particularly underexploited information resource in 

the wind industry (3–5) as well as other industries (6). Analysing historical work 

orders can provide unique site- and asset-level statistical information, such as the 

frequency of different maintenance procedures, the spare parts needed, the number 
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and qualification of technicians required (4). Using this data, the operator can then 

estimate component failure rates, prioritise and schedule maintenance, estimate man-

hours required, plan spare parts logistics – in effect reducing OPEX (1,3,5). 

However, the inconsistent, semi-structured nature of free text data complicates the 

data analysis process significantly (7). Standard quantitative methods cannot be 

applied to such data directly; the necessary information needs to be extracted and 

structured first (8–10). Operators often consider this process too costly or time-

consuming, which leaves potentially valuable information unused (6). 

As a result, there are industry-wide efforts to standardise and structure the collection 

of maintenance and reliability data (1,7,11). A coal mine in Canada has encountered 

similar problems, and admitted to a poor understanding of what should be included 

in WO descriptions and how, if at all, that information would be used (7). In this 

case, a reliability analysis system was used on historical SAP work order data to 

improve maintenance procedures, followed by successful adaptation of a 

standardised maintenance management language. 

Similarly, many existing wind farms were not built with data analysis considerations 

- their records can be noisy and may require extensive restructuring before analysis. 

For example, a major Scottish onshore wind farm operator attempted manual sorting 

on a SAP work order dataset from a single wind farm with a view to use the results 

in maintenance planning (12). The process took an estimated two weeks of specialist 

working time, which was considered too expensive and inconvenient. The company 

has since left the data unused. 

This clearly identifies a demand for an automated solution for processing work order 

data. Computational methods for extracting information from semi-structured 

sources for statistical analysis come under the general terms of data or text mining 

(8,9). The need for these methods in the wind energy sector has been highlighted (3), 

however specific literature on mining work order data is scarce. Much of existing 

research, including (7) has been done on a commercial basis, where details of the 

methods are not disclosed. 
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The benefits of research into mining work order free texts are numerous. On the one 

hand, it is a way to lower operator workloads, optimise maintenance decisions and 

reduce OPEX in existing wind farms. On the other hand, it is an opportunity to build 

on the knowledge from current systems, leading to increased intelligence and 

standardisation in the industry overall (13). 

1.2. Aims and objectives 
The present report is a contribution towards standardising the wind farm work order 

management system, so that the reliability information it contains can be easily 

exploited in O&M planning. For standardising the work order system of the future, 

an insight is needed into the system in its present form, as well as the maintenance 

demand of wind turbine assets (12). 

The primary aim of this work is to explore the opportunities for mining work order 

free text data, to estimate the maintenance demand of different components. 

A second aim is to use the method development stage as a pilot study, to prepare a 

knowledge base of data specifications and suitable methods for further research 

using advanced methodologies. 

The overall approach to these aims was narrowed into the following objectives: 

1. Establish the state of the art in work order mining by a literature review: 

1.1. demands of the industry – input data sources, desired outputs 

1.2. existing efforts to mine work order data 

1.3. methods and solutions  

2. Describe the data type in detail based on a training dataset of SAP work orders, 

and highlight issues in the text mining context. 

3. Develop a robust algorithm for mining SAP work order data 

4. Apply the algorithm on a test dataset and analyse the frequency of maintenance 

tasks. 

5. Propose: 

5.1. Improvements for WO data collection, including standard list of tasks. 

5.2. Improvements for the text mining methodology. 
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1.3. Materials 
The practical work in this project was based on two SAP work order datasets from 

modern megawatt-scale turbines, located in major onshore wind farms in Scotland. 

Both wind farms were operated by the same company. Additional information 

included the wind farm operator’s asset portfolio. 

1.4. Scope 
Due to the diverse nature of available data across the industry, it is difficult to 

develop a universal work order mining application. This project focused on the SAP 

maintenance management system, which is widely used for assigning and storing 

work orders.  

In terms of text mining methods, the scope is limited to those applications which are 

considered relevant in the work order analysis context. There are other useful 

functionalities, such as automated translation, web analytics, sentiment and polarity 

analysis (8), which were excluded from this work. 

In terms of technological coverage, method development was limited to analysing 

work orders that regard turbine assemblies themselves. Other functional locations 

within a wind farm, such as turbine transformers, substations, array cables, or roads, 

were not within the scope. However, many of the terms used in this study are also 

applicable in those fields, and the lexicon can be expanded for full coverage. 

Based on the dataset that was made available for this project, the focus is on onshore 

turbine maintenance. The efforts required for each maintenance task can be vastly 

different onshore vs offshore. For example, a manual restart onshore is a simple task, 

but offshore requires a vessel to be sent out (13). Accessing a turbine offshore 

requires a stricter range of weather conditions to be met. There can also be structural 

and technological differences between onshore and offshore turbines, as well as 

different failure modes due to operating conditions (14). While there are no inherent 

limitations to using this approach for analysing offshore records, that may require 

adjustments which are not within the scope of the present project. 
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2. Role of data in wind turbine management 

Focusing on Objective 1, this chapter presents a literature review of wind turbine 

maintenance management practices. It focuses on reliability-centred maintenance 

(RCM), which was identified as the maintenance strategy that could benefit most 

from work order analysis. A summary of general principles of RCM is followed by a 

description of fundamental decision-making tools, the data requirement of these 

tools, and finally possible sources of that data, including work orders. 

2.1. Reliability-centred maintenance 
Letcher (1) presents an excellent overview of the challenges in wind turbine 

maintenance: “The wind turbine application is uniquely featured by a stochastic duty 

cycle, which is similar to automotive applications, and an expected long asset 

lifetime, which is more similar to aerospace applications. It is also characterized by 

difficult access, remote and regional resources, strained supply chains, and new 

functional requirements“. 

After safety, the principal motivation for asset management in a cost-driven energy 

market is O&M cost reduction (2). Due to the challenges outlined above, state-of-

the-art wind turbines are optimised using complex O&M models. These may involve 

aspects such as prediction of the stochastic wind resource itself; behaviour of the 

wind turbines in given conditions; the possibility to carry out maintenance in given 

conditions, and reliability of turbine components (4,15). Maintenance activities are 

normally managed as part of this wider O&M strategy, through a computerised 

maintenance management system (CMMS). 

2.1.1. Preventive and predictive maintenance 

It is generally acknowledged (although not always implemented in practice in 

onshore wind), that preventive maintenance should be preferred to corrective (2). 

The higher the consequence of a failure, the more efforts should be invested in 

preventing it. For example, major assemblies such as generators have a high capital 
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cost and their long lead times cause a high loss of profit in case of unexpected 

failure. Consequently an operator should implement a condition monitoring strategy, 

so that the spares could be ordered in advance, replaced before they fail, and the loss 

of profit thereby avoided. Some of the main arguments concerning predictive and 

preventive maintenance are presented below: 

• Availability. It is desirable for a wind turbine to be in a fully functional state 

at all times (including when idle due to low wind, curtailment or other 

operating decision). Insufficient maintenance can cause unexpected failures 

and reduce availability. 

• Spare part logistics. Lead times are associated with ordering most 

components; on the other hand, keeping a stock requires an upfront 

investment as well as storage facilities. 

• Logistics and cost of equipment such as cranes can cause delays if not 

planned in advance (2). 

• Weather windows (downtime for maintenance should be planned so that it 

corresponds to low wind, both for minimising lost yield, and due to the strict 

weather limitations of most maintenance operations.) 

• Economies of scale (i.e. timing a replacement so that the same assembly is 

replaced in several turbines simultaneously, and resolved under one contract 

(2)). 

Ideally a component should be replaced immediately before failure, so as to 

maximise its useful life, but not experience the uncertain consequences of failure. 

Higher precision in anticipating failures and timing of maintenance can increase 

O&M savings. This is shifting operators towards evidence-based decision-making 

(6,16). 

The first approach is condition-based maintenance (CBM), implemented using a 

condition monitoring system (CMS). A modern wind turbine may have up to 500 

channels for data transfer, including controls and sensors (temperature, oil flow, 

position, voltage, vibration, etc.). Sensor data is collected and processed at a high 

frequency (on the order of 10 kHz), as phenomena such as vibration occur in that 
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frequency range. However, it is not practical to record the full data stream at this 

frequency. Instead, the inputs are averaged over a certain period. For condition 

monitoring, the suitable averaging frequency is up to 50 Hz. Accordingly the CMS 

can make first conclusions about asset health, and detect anomalies, on that 

timescale. Yet most major mechanical failures develop over longer periods (weeks, 

months) and their progress can be followed using longer-term averaging of signals 

(2).  

SCADA (Supervisory Control and Data Acquisition) is a type of control system 

architecture that is widely used as the interface between a wind farm operator and 

turbine assets. Information about an asset’s condition and operation is collected 

usually at a 10-minute interval (30 minutes on older systems). SCADA allows the 

operator to analyse data in more depth, and make operating decisions on a timescale 

that is manageable for a person. Outputs from SCADA can be comprehensively 

analysed for correlation between parameters and long-term changes in asset 

behaviour (2). That makes it an important tool in condition-based predictive 

maintenance. 

Conversely, reliability-centred maintenance (RCM) attempts to predict component 

failures from previously gathered downtime and failure data (2). It is becoming a 

mainstream approach to wind turbine maintenance (6). 

Although conceptually different, the two approaches are generally used together in 

maintenance management. CBM provides a more immediate means of predicting 

failures and reacting to anomalies, while RCM enables long-term strategic decisions 

(2). 

2.1.1. Downtime and loss of profit 

The consequence of a failure and the priority of remedial actions is not determined 

solely by the reliability or failure rate of a given component (17). Each failure and 

failure mode has a different consequence in downtime and loss of profit, labour 

intensity, provision of spare parts, and ultimately O&M cost (2). 
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Redundancy is very limited in wind turbines - most component failures result in 

downtime, which directly causes loss of generation, and loss of profit. Those failures 

that cause a longer downtime also cause a higher loss of profit, and from this simple 

perspective, should be a higher priority to repair. According to (2), the proportion of 

repair time of a sub-assembly should be equal to the proportion of downtime it 

causes. 

However, the exact downtime due to a failure is difficult to predict. A simpler 

approach is to rank failure events in classes by the length of downtime they cause. 

Table 1 compares two such scales. The approach by Rademakers et al. (17) is 

motivated by the labour demands of a task, but the total downtime may be different 

due to other factors (labour, logistics, expected delays due to necessary weather 

conditions, etc). Tavner’s approach (2) is technically less discriminative, so that 

those factors can be combined for a more accurate final expectation. An accurate 

estimation still depends on reliable historical data for each of the factors. 

Table 1. Comparison of downtime event priority scales 

Downtime Tavner (2) Rademakers et al. (17) 
Longest Category 4: 

Major replacement 
Category 1: 
Replacement using external crane 

 Category 3: 
Major repair 

Category 2: 
Replacement using internal crane 

 Category 2: 
Minor repair 

Category 3: 
Replacement of small parts 

Shortest Category 1: 
Manual restart 

Category 4: 
Inspection and repair 

2.1.1. Pareto and ABC analysis 

The Pareto analysis is based on the “law of the vital few” – the observation that most 

downtime is caused by a small variety of significant events. Usually around 80% of 

downtime is caused by 20% of events. Those maintenance events that form the 20% 

can be considered the most resource-intensive - these require most attention and 

potentially include the most savings (18). According to Tavner (2), recent work by 

Faulstich et al. has found that for onshore wind turbines, 25% of events cause 95% of 

the downtime. This is mainly attributed to major replacements such as blades, 
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generators, drive trains. These observations are used for prioritising preventive 

maintenance based on O&M cost according to two standard methods: Pareto and 

ABC analysis. 

If the number of failures of a component and downtime per failure are known, then 

lost profit due to failures of that component during the given period can be estimated. 

Each failure also adds a certain repair cost comprised of equipment, labour and spare 

parts. The sum of lost profit and all repair costs is roughly the total cost consequence 

arising from the particular component in that period. If a cost is calculated in this 

way for each component of interest, and the values are ordered, then an empirical 

distribution of costs is formed. By integration (or adding the costs in categories), the 

categories are found that make up 80% of the costs – according to the assumption, 

these should form 20% of the total number of events. 

In a maintenance planning context, ABC analysis divides a Pareto distribution into 

three categories. Thereby, the events that contribute the top 80% of consequences 

form category A, the next 30% form category B, and the remainder are in category 

C.  It is convenient to represent the consequences on a Pareto plot – a bar chart with 

the bars ordered by value, from which the relative contributions of each category can 

easily be compared. The strength of the method is that it is straightforward - based on 

a simple model with a reasonable data requirement. For these reasons, the method is 

widely used as a link between reliability and engineering data, and business 

management. 

A similar analysis is possible based on another measure of consequence as 

mentioned in the previous section. For example, Wilkinson et al. (13) used Pareto 

charts for plotting failure rate and downtime data. 

2.1.1. Bathtub curve 

The bathtub curve is a widely used model of failure rates over component life span. 

It gives a prediction of estimated failure rates for a type of component based on 

knowledge of previous failures. A bathtub curve is generally divided into three 

stages of component life (Figure 1, where λ stands for failure intensity function or 
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hazard function (which can be simplified as failure rate), and β is the rate of change 

of failure rate) (2,19). It begins with a “break-in” period of high, but decreasing 

failure rates; followed by constant failure rate; and “end-of-life” with an increasing 

failure rate over time. Break-in failures cannot be avoided with maintenance 

decisions, except for installing used components (which is rarely done except for 

major replacements, such as generators (12)). Yet there is considerable value in an 

accurate bathtub curve as a tool to predict failures towards the end of a component’s 

life. The operator can choose to intensify monitoring of certain parts that are nearing 

their expected end of life, or to predictively replace such parts (2). 

 

Figure 1. A generalised bathtub curve, adapted from (19) 

However, it has been indicated (4) that for offshore turbines, there are many 

frequently failing systems that do not follow the bathtub curve, and so the entire 

turbine also might not follow it. The bathtub curve is a model, and needs verification 

to be reliably used. Constructing a reliable failure rate model such as the bathtub 

curve is an application where accurate component-specific failure data is essential. 

Moreover, the data needs to be a time-series, where both the times when a failure 

occurs, and the failed component’s age at that time, are known (2). 

2.2. Work order data 
Various efforts have been made to create informative databases of wind turbine 

failure data and allow accurate estimation of failure rates and downtimes of different 
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components (4,13,15). However, these databases are a generic source of data; more 

value could be obtained from data that has been gathered from the specific wind farm 

for which maintenance planning is done (3). 

On-site data is kept in CMMS systems of various kinds. Differences include 

component identification standards (6,11,20), database structure, amount of available 

data (3), use of terminology and abbreviations (6,7), extent of standardised 

maintenance procedures. 

SAP is among the most widely used asset management platforms. It is used for 

keeping maintenance logs, part orders, work orders. It is a link between the SCADA 

system, the decision-maker (operator), and technicians  (12). A work order is created 

for every wind turbine maintenance task, to which the person responsible adds a free-

text description. Over the years of operation, this generates hundreds of descriptions 

per turbine, reaching the order of 105 per wind farm, which forms a valuable, but 

underexploited source of information (3). 

Work orders are inherently a filtered source of information in terms of significance 

of the maintenance they represent. All WOs are cases where manual operator 

intervention was necessary and therefore some resources were consumed, including 

labour and spare parts. This also corresponds to one of the two criteria that were used 

to select data for the Reliawind analysis (13). The other – the resulting downtime 

exceeding one hour – cannot be concluded from the WO data directly. 

Work order free texts include particular types of information (such as failure mode, 

system, subcomponent, maintenance activity) (6). The data type is invariably 

nominal, and only categorical data analysis methods can be used. This allows few 

direct inferences. However, value could be added by combining this information 

with downtime, cost or time series data (21), which in the present context could 

include a Pareto or ABC analysis or a bathtub failure rate model. 
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2.2.1. Reference designation systems 

Various conventions are used to nominate and refer to turbine components being 

addressed by a work order. Reference Designation System for Power Plants (RDS-

PP) is the international standard that replaced KKS, although around 90% of code 

letters are the same in both (20). It has also been adapted for wind turbines (11). 

In RDS-PP, as well as its predecessor KKS (which was the standard at the time when 

the wind farms analysed in this work were installed (12)), a component can be 

described by its of location, functionality, and construction. Each of the aspects form 

part of component codes. Hierarchically, a wind turbine is classified into Main 

system (the wind turbine itself); System (such as yaw system); Subsystem (yaw 

drive); Function (e.g. Drive); Product (e.g. Motor), and components (11). 

The ways in which the relationships between wind turbine components are described 

are not limited to reference designation systems. Especially as the level of detail 

increases to the product or component level, entities may be present that are not 

coded under a particular RDS. The KKS system in the wind farms in this study,  for 

example, only covers the hierarchy up to the subsystem level (13 systems with a total 

of 29 subsystems) (22). Analysis of maintenance records by Wilson (15) was based 

on the RDS-PP, but also covered only the systems and subsystems. Manufacturers 

may have more detailed referencing hierarchies in place, but the component codes 

there tend to deviate from widely used RDS codes. 

If work order data is to be used for failure rate estimation, it is important to consider 

assembly-component-subcomponent relationships in determining their life span. 

When a major assembly is replaced, the new assembly is usually installed as a whole 

with new subcomponents, which means premature end of service for subcomponents 

of the old assembly, although these were still functional (6). Major assemblies have 

ID codes to simplify tracking, but many components do not (12). 
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2.2.2. Issues with data 

Data quality has been highlighted as the first concern when deciding to use historical 

work orders for reliability analysis (7). Users often struggle to adopt the CMMS in 

full extent, resulting in a hybrid system where much of the knowledge is held in the 

minds of the staff and not systematically stored in data (23). Such “tribal knowledge” 

of technicians and paper work orders were mentioned as a very ineffective means of 

WO management, yet very common in the USA (16). 

Difference in functional location hierarchies poses a problem for analysis, especially 

when several organisations are involved (6). The lack of a universal, comprehensive 

wind turbine specific referencing system has been recognised before (15). 

Furthermore, the Reliawind project proposed a standard wind turbine taxonomy (13). 

An example from the mining sector is presented in (6), where four of the seven 

companies involved only specified functional location codes down to asset level, 

while a detailed code hierarchy was available to specify down to the actual 

component maintained. For those companies where more detailed codes were used, 

up to 37% of WOs for a particular asset type were recorded without component-level 

codes. This proportion of falsely identified work orders means that functional 

location codes alone are not a reliable source of information for estimating the 

distribution of maintenance activities. More specific data could be found from free 

text to associate WOs with their actual functional locations. 
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3. Data and text mining 

This chapter continues the literature review for Objective 1. It uses the previous 

conclusions about the information that is available in WO free text fields, and 

explains a selection of methods that enable the information to be extracted. The list is 

not fixed, nor complete: within each stage, different methods may be chosen and 

combined; steps may be added or removed depending on raw data and output 

requirements. 

3.1. Purpose of mining work orders 
Work order data mining, text mining, and data mining of free texts, with notable 

variation in the use of these terms, has been suggested and used as a source of 

valuable reliability information in various cases: 

1. Data mining techniques based on word associations have been used to extract 

reliability information from WOs in a coal plant (7). 

2. Mining mixed data sources, including WOs, can help associate failures, 

causes, repair time and downtime (21). 

3. Hodkiewicz et al. (6) mined WO free texts from heavy machinery 

maintenance, to structure missing and problematic data. They found the 

approach to offer significant advantages in maintenance planning, but 

indicated that progress in the field is limited because the literature seldom 

discusses the methods in detail. 

4. McMillan et al. (3) highlight WO mining as one of the key areas of OPEX 

reduction in the wind energy sector. 

Text mining deals with the analysis of text documents. It builds on the principal 

functionalities of data mining; the main distinction is that while data mining deals 

with structured data, text is considered semi- or unstructured information, and is 

thereby more difficult to process. The added capabilities of text mining will be 

covered below, including recognising natural language elements, semantic meaning 

and grammatical structure. The purpose of text mining is to generate actionable 
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outputs – structured, analysable using computers, or more easily comprehensible for 

the user than the original dataset (24). 

A dataset on which text mining is performed is known as a document collection. 

Each individual body of text that is analysed is known as a document, the size of 

which can range from a web site or a book to single post on social media or a chapter 

or sentence within a book (25). However, the analysis itself usually takes place 

within documents - the basic unit in most text mining systems is a character string 

(such as a word, phrase, or other similar entity), usually known as a token. 

Documents are represented as collections/vectors of tokens. In this work, a WO 

dataset from one wind farm is considered a document collection, each WO free text 

is referred to as a document, and the term “token” is used for words or their numeric 

representations (9). 

3.2. Data cleaning 
One of the most basic necessities in text mining is data cleaning. It involves the 

removal of excessive language elements such as punctuation or uninformative words. 

Processes for correcting spelling and other errors are also included. However, not all 

of these steps are performed by a single method or algorithm, and they can be 

distributed over the course of the data mining process (9,26). 

Hodkiewicz et al. (6) used a rule-based approach for data cleaning, also known as  

data transformation. With this approach, a set of rules are usually sequentially 

applied to the data within an algorithm. An indication of the complexity and 

importance of data cleaning is that 407 different rules were used, but conflicts still 

remained. In a rule-based approach, not all necessary transformations can be 

anticipated and covered by specific rules; a manual verification step may still be 

necessary in the end of the cleaning process (6). 

If any analysis of existing data is undertaken, the results should be used as lessons 

for improvement, especially in the data cleaning stage. Cleaning brings all relevant 

data quality issues into focus. A rule-based approach makes it easy to identify their 

causes (rule-by-rule) and avoid the same issues in the future; otherwise, data 
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cleaning will remain a constant work (6). Any conclusions about data quality issues 

should be acted upon – either by somehow compensating for problematic data, or by 

leaving it out and taking the resulting errors into account. 

In the English language, the most frequent words are function words such as articles, 

or stop words, which carry little meaning. These are usually removed in the cleaning 

stage, both as a means of dimensionality reduction and to reduce noise that may 

affect later methods. Additional selective procedures can be undertaken to identify 

and remove less important words and increase the concentration of informative ones. 

Some classifiers, for example, remove 90-99% of text features without degradation 

in performance (25). 

Some applications, on the other hand, rely on stop words as delimiters that separate 

content words and semantic classes or help to distinguish terms. The methods that 

follow need to be considered before removing stop words. 

3.3. Tokenisation 
Tokenisation involves dividing the documents into the basic units – words or terms, 

collectively known as tokens (8). Geometrical methods depend on a vector 

representation of each document - tokens need to be translated to numeric values so 

that vector calculations can be performed. This can be done by coding – assigning 

each term to a numeric token – or by a binary representation such as those in section 

3.6 (8,9). Depending on data quality issues present, tokenisation is often required 

already to perform some of the tasks of data cleaning – an example is stop word 

removal. For syntactic and semantic analysis of documents, tokens can be associated 

with several layers of information, including part-of-speech tags, categories or 

association trees. The assignment of such properties partly overlaps with the 

lexicalisation stage described later in section 3.5. 

3.4. Collocations and term extraction 
Majority of technical terms found in dictionaries are compounds of more than one 

word (27). When mining for lexical terms, it is important to capture the term as a 
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whole entity, because omission of any of its component words would usually refer to 

a different entity. 

According to Evert (28), a co-occurrence is the presence of words in a text within a 

certain distance of each other – a statistical term without any semantic background. 

On the other hand, he defines: “A collocation is a word combination whose semantic 

and/or syntactic properties cannot be fully predicted from those of its components, 

and which therefore has to be listed in a lexicon.”  

This inevitably involves careful manual work. Any two adjacent words in a text form 

a co-occurrence – it is not reasonable to assess and lexicalise or discard each one 

manually. Also the frequency of word pairs alone is not sufficient to determine that 

two co-occurring words are associated. For common words, this might only be by 

chance. Instead, various association scoring techniques are used to reduce manual 

work by ranking co-occurrences, high potential ones first, or removing those that are 

statistically not meaningful (28). This falls among the applications of automatic term 

recognition (ATR). 

3.5. Lexicalisation 
Lexicalisation of terms or tokens is a way to involve background, or domain, 

information in the text mining process. In text mining, domains are areas of interest 

that form the scope of individual mining applications (25). Some text mining 

approaches have been developed for universal (cross-domain) capability and depend 

on a wide array of information (dictionaries, thesauruses, word almanacs, standard 

text corpuses), which is used as a background to process the task at hand. These 

include powerful algorithms used for knowledge discovery within large databases, 

search engines, automatic translation, etc. 

On the other hand, a narrow domain allows to create and manage domain-specific 

knowledge bases such as lexicons, taxonomies and attribute relationship rules with 

relative ease (25). If highly specific technical terms are present, then some 

lexicalisation might be inevitable for effective information extraction or 

classification, as shown in the previous section. 
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 “Determining what activity has taken place or failure mode was observed the ability 

to relate a variety of phrases to a common term is required. For example the 

following examples are all associated with a replacement activity: C/O, Change out, 

change out, CO, change out, swap, replace, and rep” (6). In a lexica, equivalents such 

as synonyms or alternative spellings are normally lemmatised – semantically 

grouped under a single representative key word, or lemma (9). 

3.6. Models of the document collection 
In preparation for further analysis, the documents and terms need to be represented in 

a consistent way, i.e. according to a model. Most models can be divided into two 

major categories: statistical and geometrical. Statistical models represent the 

documents based on observable regularities: term frequencies, probabilities, and 

other statistical inference. Statistical models depend on a good representation 

(number of occurrences) of terms, and are therefore suitable for larger documents 

(28). Geometrical models represent documents in a vector space, where they are 

compared based on distances and angles (8). Models that do not consider word order 

are known as bag-of-words models.  

3.6.1. TDM 

The term-document matrix (TDM) is a matrix where each row corresponds to a term 

and each column to a document (8) (or vice versa in other sources (25)). In a binary 

TDM, the presence or absence of each word in each document is noted by a binary 1 

or 0, respectively (9). This translates the document collection into vector space: term 

space represented by row vectors, and document space represented by column 

vectors. Such representation provides a good overview of the document collection 

and its vocabulary. Based on non-zero values in the appropriate row or column 

vectors, it is easy to retrieve terms that are present in a given document, or 

documents that include a given term (8). Being in the vector space, the TDM 

classifies as a geometrical model, and allows document distance measures to be 

calculated directly. In addition, the TDM representation can be used as an input to 

learning and classification algorithms (25). 
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TDM is a “bag-of-words” model, and consequently does not carry word order 

information. However, Banchs (8) notes that this mostly does not affect semantic 

analysis, such as information retrieval and document categorisation. 

3.6.2. TF-IDF 

Insensitivity to the number of term occurrences can be compensated by replacing 

binary TDM with a weighted alternative. 

The simplest approach is to replace each binary 1 with a count of all occurrences of 

the term in the document (or the entire collection) known as term frequency (TF). 

However, this is likely to highlight mainly stop words. To make practical 

conclusions about a document, the weighting should instead reflect how much 

unique or contextual information each word carries. 

Inverse document frequency (IDF) is the ratio between the number of all documents 

in the collection and the number of documents that contain a term - i.e. inverse of the 

proportion of documents that contain the term. The rarer a term, the more unique is a 

document that includes it, and the higher its weighting (8,25). Mathematically, rare 

terms are the most informative in a dataset and can be used to describe or set apart 

particular documents (8). 

However, as thoroughly discussed in (28), statistical inference based on rare terms is 

meaningless - a model or distribution fitted to a very small sample cannot be 

accurate. Document collections often include a large proportion of terms that occur 

only once, especially if multi-word compounds are treated as individual entities. 

Based on single or rare occurrences, it is not reasonable to draw conclusions about 

the remaining dataset, or probability of the term occurring in other collections. 

The product of the two weights – known as TF-IDF weighting – has been described 

as the optimal weighting scheme. It applies a relatively higher weighting in the 

middle part of the term frequency scale, which reduces the complications of applying 

TF and IDF individually (8). 
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3.7. Dimensionality reduction 
The so-called “Curse of dimensionality” applies in text mining. A TDM is mostly a 

sparse matrix (one with a large proportion of zeros), because not all documents 

contain all terms in the vocabulary, and vice versa (8). A large matrix takes 

considerable time to process, and therefore it is desirable to carry out analysis (e.g. 

construct a TDM) with the minimal possible set of terms (9). A smaller dataset is 

faster to process, easier for the operator to verify, reduces clustering complexity. A 

straightforward means of dimensionality reduction is lemmatising, which was 

described in section 3.5. A normalised TDM, such as a TF-IDF weighted one, can 

also save processing time compared to one where direct occurrence counts are used 

(9). 

3.8. Similarity, clustering and classification 
Presence of common words in different documents is a fundamental part of similarity 

assessment, based on which documents can be grouped (26). However, semantically 

equivalent documents do not necessarily need to be composed of exactly the same 

words. Various similarity measures are used. Although geometrical measures usually 

compute the distance, or dissimilarity, similarity is simply the opposite of that value: 

either s=1/d or s=1-d (s – similarity; d – distance) (8). 

Firstly, similarity measures can be used on the character level, which is useful for 

identifying and bypassing spelling errors. According to Banchs (8), the most 

common of these is the Levenshtein distance, which he defines as “the minimum 

number of character editions that are required to transform one of the strings into the 

other” (p 62). Therefore the distance is given as a discrete measure. There can be 

three types of editions: 

• insertions – adding a new character in any position in the string 

• deletions – removing a character without replacing it 

• replacements – substituting one character in a string with another one in its 

place 
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• transpositions - switching the position of two characters – is added in the 

Damerau-Levenshtein distance. Together these four editions make up over 

80% of spelling errors in search engines (29). 

Other measures are used to compare entire documents on the token level. The Dice 

and Jaccard coefficient both give a normalised count of common non-zero elements 

between two vectors (despite different normalisation factors) (8). Both represent a 

binary dependency (present or absent) on non-zero elements, not the absolute values 

of these elements. That makes them suitable for comparing nominal variables, 

including text represented as a sequence of tokens (26). 

Clustering and classification are approaches for grouping documents or terms 

according to a similarity measure. In classification, the classes are predefined – it is 

therefore a supervised approach. Clustering, on the other hand, is unsupervised – it 

works solely based on database contents, does not require external knowledge base 

or prior knowledge of documents (9). 

Unsupervised clustering algorithms define clusters during the process. Much less 

user input is required and it is easier to adapt between fields the results may be 

unexpected and need to be confirmed by an expert. Domain knowledge and 

familiarity with the dataset are essential at this stage (26,30). Supervised methods are 

more case-specific and require manual inputs. However, they can generally be tuned 

to a higher accuracy as long as they are applied within the context for which they are 

developed. Supervised methods are also better suited for small datasets, large 

proportions of unique or rare entries and noisy data. 

Both clustering and classification are implementations of machine learning, a form of 

artificial intelligence. Machine learning is the application of computational methods 

to perform an inductive process. In text mining, it can also be used for data cleaning 

(8,25). Machine learning algorithms perform best on large amounts of data. The data 

needs to include a training set – a subset which is representative of the whole dataset, 

to allow the algorithm to learn the association rules between known values, before 

predicting the unknowns (8,9). 
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A suitable dataset is not easily achieved with unstructured data such as CMMS, 

where up to 40% of entries are unique. In such cases, different types of supervised 

methods can be used, known as rule-based algorithms. In these, the algorithm 

performs transformations that have been fully defined by the operator (6). 

3.9. Output analysis 
The previous steps in the text mining workflow are means to extract certain 

information from the sources. There is usually an added interface through which the 

user can exploit the information gained – a statistical analysis procedure or a data 

visualisation step (9,25). Alternatively, results such as common terms or key words 

could be associated with the documents and stored, so that they can be queried later. 

For example, most search engines and scientific databases use this functionality to 

retrieve quick search results (29). 
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4. Overview of SAP work order data 

This section aims to give a detailed description of SAP work order free text data in 

preparation for text mining method development. In accordance with Objective 2, the 

purpose is to highlight any problems that could affect the choice or effectiveness of 

text mining methods. Each of the following paragraphs discusses a category of 

problems found in the data, while characteristic examples are given in Table 2. 

Table 2. Common issues identified in the training dataset, with real examples from the text. 

Sparsity	

	

• Field	length	limit:	40	characters	

• Poor	grammatical	structure	

• Both	excessive	and	lacking	punctuation	present	

Term	

frequency	

• 41.8%	of	tokens	were	unique	

• 4657	tokens	per	12425	free	texts	

Spelling	

mistakes	

• 25	different	ways	to	spell	“replace”	

• 18	different	ways	to	spell	“investigate”	

Duplicates	 • “Fault	finding	...	fault”	

• “Failure”	and	“fault”	

• “Failure”	and	“error”	

Homonyms	

	

• “Stop”	–	activity	or	failure	mode	

• “Seal”	–	activity	or	part	(gasket)	

• “Grease”	–	activity	or	lubricant	

Compound	 • “Gear	Box	“	



31 
 

mistakes	

Abbreviations	 • G/BOX	or	BOX	meaning	“gearbox”	

• “SWGR”	meaning	“switchgear”	

•  “Inv”	meaning	“Investigate”	or	also	“Inverter”	

Ambiguity	 • “Oil	error”	

• Circuit	break;	thermal	break;	yaw	break	

 

4.1. Short, sparse texts 
Due to sparsity and noise, the grammatical structure of WO free texts is absent or 

distorted. This limits the use of existing NLP applications. Part-of-speech recognition 

could help with classification (verbs represent mostly maintenance activities, nouns 

mostly part names). But cannot be used to full advantage, as word associations and 

hierarchies become ambiguous under a poor grammatical structure. 

Short and sparse texts have become one of the research fields in text mining due to 

the rise of social media and instant messaging. Issues with SMS and tweets also 

apply here: both these forms of communication suffer from abbreviations and 

ungrammatical expression. 

4.2. Noise 
In case of the training dataset free text fields, noise appears in several forms, such as 

spelling mistakes, excessive punctuation, unnecessary words, duplicate words, etc. 

Across the dataset, there was a wide array of issues such as misguiding component 

references, mismatch between component description and functional location code. 
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4.3. Missing and incomplete data 
In the training dataset, empty cells were not a major concern, although some were 

present (only one WO was excluded as a result). However, partially incomplete data 

might be harder to detect and treat than empty cells. Excessive use of stopwords is a 

common example where a field appears full of information, but little of it is 

significant or associable to a particular activity or component. WO data is often 

incomplete, inconsistent, includes missing fields – the extent of the problem varies, 

so that there is no standard effective approach (7). Hodkiewicz confirms this by 

stating that for rule-based cleaning approaches, rules mostly need to be recreated for 

every separate case (6). 

4.4. Duplicates 
WOs carried out over several days may be represented as duplicates for each day, but 

still represent one activity to repair one failure (6). Duplicates were also present 

within fields. Repetition of (nearly) equivalent terms within text fields was a 

common practice. This was caused by limited information being available to the 

operator at the time of creating the work order. When a fault code is raised through 

SCADA, for example, the corresponding part or sensor is often all that is known 

about the fault, and therefore it is common to include both of the most likely 

activities in the work order (22). 

4.5. Multiple senses 
Across the entire dataset, there were certain cases where a token could represent 

different taxonomical entities at different levels of hierarchy. For example, in case of 

“yaw gearbox”, it was important to recognise the functional location as the yaw 

system, not the gearbox; the gearbox in this case was the subassembly.  

Rule-based approaches are not well suited for handling sense ambiguity. When a 

word appears in a document collection in several senses, it invokes a conflict 

between rules for each sense. It is important to recognise such conflicts and bring 
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them to the operator’s attention for manual resolution to avoid false interpretation 

(6). 

4.6. Spelling and abbreviations 
The numerous spelling mistakes for many words in the texts indicated that a standard 

dictionary was not sufficient to capture all variations of each term. Spelling mistakes 

can make tokens harder to match, and can additionally add a level of ambiguity to 

the meaning. 

Due to the 40-character limit, longer terms were often abbreviated to a stem, mostly 

the first 2-3 characters. A stem this short can be common to words of different 

meanings. Sense disambiguation can be used as an additional step to distinguish the 

correct meaning semantically, but a straightforward matching of stems to dictionary 

terms is in this case ineffective. 
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5. Text mining algorithm 

This chapter is concerned with the development of the text mining methodology, in 

short concluding Objective 3. The first section sets the overall approach and 

functional requirements that motivated the process. It is followed by more detailed 

sections for each individual stage or functionality, where each decision is explained 

with regard to the data description and literature review above. The completed 

methodology is illustrated by a flow chart in the end of the chapter (Figure 2) and 

complete scripts and custom functions have been included in Appendices 1 and 2, 

respectively. 

5.1. Approach 

5.1.1. Methodical goals 

Challenges in work order free text mining due to data type have already been 

discussed in the previous chapter. In addition, the following methodical demands had 

to be considered throughout the process. 

5.1.1.1. Required outputs 

In the present work, the aim of the text mining process was to structure the 

information to allow categorical data analysis. The focus of the analysis was on 

corrective maintenance, and was also limited to turbine assets, which were 

highlighted by MacLean (22) as requiring most attention. The following 

requirements were considered, in order for the outputs to be usable as described in 

Chapter 2: 

• Different aspects of the task needed to be extracted, most importantly 

maintenance activity, component, and failure mode. 

• Accurate frequency information was required for each term in these main 

classes. 
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5.1.1.2. Precision 

Modern text mining systems mostly work with large collections (on the order of 106) 

of full text documents or web sites. When the length of a document exceeds a 

paragraph, terms and phrases commonly start to repeat. That means there are several 

occurrences based on which an algorithm could draw conclusions about the context 

of the document, and associate it with a few outputs. Semantic ambiguity can be 

reduced with statistical measures. This is loosely known as a many-to-one approach. 

According to Hodkiewicz et al. (6): “Extracting the output fields from the Shorttext 

field is a one-to-many mapping rather than the many-to-one mapping that machine 

learning systems excel at.” Here, the number of words in a work order is roughly 

similar to, and often smaller than, the number of semantic classes they represent. 

There is little additional information for ambiguity resolution. Therefore a rule-based 

method is better suited in the WO application.  

The classification success rate for each term – not only each document as a whole - 

needs to be high in every instance. 

5.1.1.3. Adaptability 

The desired output required a classification of terms, some of which follow a 

hierarchical relationship in practice. However, as described in Chapter 2, component 

hierarchies and taxonomies are not comprehensive, or universal. Therefore the aim 

was to develop an inductive approach, which does not depend on previous 

knowledge about the dataset, but uses information contained in free text records 

themselves as an alternative to RDS functional location codes, to establish how the 

terms in each maintenance task are related. 

5.1.2. Development workflow 

Method development in this study was a heuristic process carried out in the stages 

below. The algorithm was developed in a modular layout, so that steps could be 

added to it later. 
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1. Empirically review the problem 

a. Data input 

b. Desired output 

2. Identify necessary steps 

3. Identify data issues in each step 

4. Choose appropriate methods 

5. Test methods on small sample of data to identify issues 

a. Record conflicts 

b. Either choose other method or adjust 

6. Verify on training dataset 

7. Apply on test dataset 

8. Analyse results and generate outputs 

5.1.3. Assumptions 

Method development was based on the following assumptions: 

1. Work orders and all words within them are in English 

2. Every free text describes a single work order and single objective. 

3. Every WO describes work done on a single turbine – repeated tasks are 

assigned a separate WO for each turbine.  

4. Work orders are treated independently: if a common cause failure occurs in 

different components, they are considered different failures. 

5. In case of a replacement at a high hierarchical level, all necessary 

subcomponent replacements are included in the high level procedure. 

5.1.4. Software 

5.1.4.1. MATLAB 

There are specialist tools and programming languages developed specifically for 

complex applications in text and data mining. However, not all capabilities of 

specialist text mining tools are necessary in this application. Moreover, these tools 

are not commonly available, and would need to be obtained, likely with a financial 
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cost as well as a learning period for the user (25). Therefore using an existing 

software instead would make the work order mining process more widely accessible. 

Matlab is a familiar and widely used software throughout the engineering sector, and 

is capable of the tasks (8). Another advantage of Matlab is its effectiveness at data 

analysis and reporting, which can be used after the data/text mining stage, without 

the need to switch between software. 

5.1.4.2. MS Excel 

Simple manual manipulation of two-dimensional data is more convenient in Excel 

than in Matlab. For ease of access, inputs to the algorithm as well as outputs were 

stored as .xlsx files whenever possible. When data manipulation by the user was 

necessary, data were exported from Matlab to Excel, handled as required, and then 

imported to Matlab to continue analysis. 

5.2. Data cleaning and filtering 
The first step after gathering inputs and loading files was filtering. Upfront filtering 

was found to significantly reduce processing time. By default, all WOs where the 

raw data contained an empty field in any of the necessary columns, were filtered out. 

Additional filters could be specified by the user. The maintenance type filter allows 

to enter SAP abbreviations for the maintenance types of interest. In this work, MCP 

(Minor Corrective Maintenance), MCG (Major Corrective Maintenance), and MRL 

(Local Reset Maintenance) were entered, as the main focus was on corrective 

maintenance (22). The work area filter allowed to select which of the following - 

turbine assets (A), transformers and switchgear (T), or site infrastructure (C) - should 

be included in the analysis. This was set as A in the present work. 

Finally, the turbine model corresponding to each asset was retrieved, and the user 

could then select ones of interest. The size of the example datasets was considered 

insufficient to allow for statistical inference for individual turbines. All turbines of 

each site were included, and since only one model was used per site, the different 

datasets also represent different turbine models.  
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In the cleaning step that followed, syntactic issues such as excessive punctuation or 

whitespace were resolved first. 10 rules were constructed and maintained directly 

within the algorithm. This approach was chosen due to numerous conflicts that 

required the rule sequence be carefully maintained. 

In addition, stop words were removed, lists of which were maintained in .xlsx tables. 

Stop list was based on (31). Some words that were meaningful but not important for 

this analysis, for instance qualifications of the technicians involved in the work, were 

also removed together with stop words. A separate list was made for tokens whose 

meaning could not be identified, including severely misspelled words or 

abbreviations. The two types of unimportant words were separated, so that 

depending on later analysis, the removal of meaningful stop words could be switched 

off in the script, while the unidentified words are still removed. 

A separate step was added to treat words where spaces may be missing. All words 

were compared to pairs of tokens in the lexicon. If it was found that two known 

tokens make up a word that had been found, the user was prompted to decide 

whether to split that word into those two tokens. If the choice was made to split, then 

this was recorded in a .xlsx table, so that the same decision could be repeated without 

prompting in the future. 

All data cleaning steps took place within the “CleanTokenise” script (Appendix 2, 

Error! Reference source not found.Figure 2), using custom functions from 

Appendix 3. 

5.3. Lexicalisation and tokenisation 
The present work is concerned with a particularly well-defined domain that can be 

described as the domain of “wind turbine maintenance operations”. This gave two 

main arguments for choosing a lexical approach. Firstly, a narrow domain meant the 

size of its vocabulary was also limited, and could be lexicalised with reasonable 

effort. Secondly, the dataset contained domain jargon and specialist terms, which 

could be more easily resolved by including background knowledge. 
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Some major works such as main bearing replacements take place very rarely, but 

mean a significant downtime and expense for the wind farm operator. It is important 

to capture rare terms as well as more common ones. The method should not depend 

on a good statistical representation of every term. In coherence with Evert in chapter 

3.4, a suitable statistical approach was not found during literature review. Common 

methods such as TF-IDF (8) are ineffective for term recognition in case of very rare 

terms. Similarly, the algorithm by Justeson (27) requires at least two instances of a 

term, and more to increase the probability of identifying significant terms. Therefore 

an approach was chosen where all terms need to be manually listed for matching. 

5.3.1. Mistakes and abbreviations 

Various ways of abbreviation and spelling mistakes were commonly used in the 

documents, some of which required careful comparison with full terms to be 

recognised. One of the approaches used to deal with such issues is known as 

stemming. Stemming reduces a lemma to the fewest first letters by which it can still 

be uniquely identified, and all words beginning with that stem are then assigned 

under the same stem (9). 

However, stemming algorithms may struggle if terms appear in a non-lexical form – 

this includes prefixes and suffixes, and also mistakes (9). Considering the extent of 

mistakes in the present vocabulary, some words would need to be reduced to a stem 

of only 2 to 3 characters to avoid mistakes within the stem. That, on the other hand, 

means that more than the intended term may begin with the same characters as the 

short stem. Some such cases could be solved by allowing stems to be longer, and 

allowing their matching within a certain Levenshtein distance. Importantly, among 

the matches within 1 Levenshtein distance to a stem, is the stem 1 character shorter. 

For a stem length of 4-5 characters, a distance higher than 1 would therefore be 

impractical, as the above issues concerning short stems would arise. On the other 

hand, longer stems start to approach term length, in which case the usefulness of 

stemming is reduced, and full terms can be matched instead. The use of the 

Levenshtein distance for terms is similar to stems. For longer words, a higher 
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distance could be allowed. However, words or stems with more spelling differences 

than the allowable distance can still not be matched. 

It was considered that for the present dataset, stemming and Levenshtein distance 

measures were unreliable due to excessively noisy data. This further justified manual 

lexicalisation and lemmatising of all variants of each word, to increase singular 

identification of terms. 

5.4. Term classification 
According to the output requirement set in 5.1.1.1, term classification was motivated 

by the distinct types of information that free text terms represented. The aim was to 

convey the maximum amount of information with the minimal number of classes. 

Not all possible hierarchical relationships were therefore registered as a separate 

class. Similarly, not all parts of speech were separately tagged. 

The approach was to classify all terms that were discovered, but not to restrict a class 

to the terms of a predefined taxonomy. This was due to several reasons: 1) Different 

turbine models can consist of different components; 2) Semantically equivalent ideas 

can be expressed in vastly different ways; 3) the use and range of domain vocabulary 

can change between datasets; 4) failure modes and their frequencies vary depending 

on particular components and site conditions. 

During initial testing of the algorithm, particular types of information were clearly 

distinguished, that largely overlap with (6,21). These were: maintenance activities, 

failure modes, component codes, and component names. Some less discriminative 

terms were also tokenised, which were classed as supporting details, or parameters 

and values, which could be used to identify sensors or further specify failure modes. 

The full list of classes is shown in Table 3. 

5.4.1. Component taxonomy 

Exact component taxonomy may differ depending on the RDS used by the turbine 

manufacturer, on a given turbine model or year of manufacture. If an operator’s 

maintenance databases were based only on functional location (part) codes, then a 
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translation would be necessary for them to be analysed on an equal basis. For 

example, when one manufacturer considers the pitch system to be part of the blade 

system, but another considers it a part of the hydraulic system, then a dictionary 

could be used to associate the two. 

However, a one-for-one translation of part codes may not always be possible, as 

technologies are constantly evolving, and not all models use the same functional 

components. Newer models tend to have a more complex control system with 

numerous sensors and more power electronics that did not exist in older turbines. 

The increasingly wide use of direct drive machines with permanent magnet 

generators means yet another change of component taxonomy at a very high (system 

and subsystem) level. 

The advantage of free texts is that they do not follow any particular RDS, so the 

extracted information can be classified directly according to any taxonomy. Instead 

of a predefined component map, the present study assumes a hierarchical relationship 

between components, but leaves the exact taxonomy to be defined by the information 

obtained during the process. Han et al. (26) call this a schema-level specification, and 

compare the level of predefinition to classifying streets, cities and countries. 

Table 3. Term classes with arbitrary examples drawn from text (the whole list does not 

represent a single WO). 

Class	number	 Class	name	 Arbitrary	example	

1	 Activity	 Investigate	

2	 System	 Yaw	

3	 Subsystem	 Gearbox	

4	 Basic	function	 Cooling	

5	 Product	 Fan	

6	 Component	 Sensor	

7	 Failure	mode	 Failure	

8	 Parameter/type	 Temperature	

9	 Part	code	 FG008	

10	 Other	 Outside	
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It is important to note that the hierarchical levels are described by different terms 

depending on source. The present work adapted the hierarchical terminology from 

RDS-PP (11) with the addition of the component level, based on examples from 

Tavner (2) and the KKS system (20). Importantly, while Tavner uses the term 

“system” to mean the entire wind turbine, then in RDS-PP, the wind turbine is a 

“Main system”. Consequently, “system” in this work means the level that 

accommodates the generator, rotor, etc. Another distinction is that the hierarchy in 

this work consisted of 5 levels below the wind turbine itself, compared to 4 used by 

Tavner (2). The difference was mainly in the lower two levels, where components 

(cables, hoses, bolts) could in this way be distinguished from products (motors, fans). 

A full hierarchy with examples is available in Table 3. 

5.4.2. Supervised classification 

After rule-based transformations were completed, a large proportion of entries 

remained where the system was not named. These could be fully elaborate 

(subsystem-function-product-component); only a high-level value (subsystem); or a 

low-level value (e.g. product, component) without specifying the higher taxonomical 

units. Missing taxonomical values could usually be estimated empirically by a person 

with sufficient background knowledge. It was desirable to develop a text mining 

method that is equally adaptive. The assumption was made that all named parts 

follow a hierarchical relationship. A system could be determined based on its 

constituent parts; a more accurately defined list of parts would result in a more 

accurately defined system. Some systems also have characteristic failure modes or 

maintenance activities. 

Such predictions can be made using a supervised or unsupervised classification 

algorithm. In the present case, examples of correct component-to-system mapping 

were available in the form of well-worded WOs that contained both system and 

component names. It was assumed that all system levels present in the data were also 
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mentioned in these examples. With possible levels (response classes) thus defined, a 

supervised algorithm was preferred. 

The Matlab Classification Learner was used to compare algorithms and select the 

optimal solution. The KNN (k Nearest Neighbour) algorithm showed the highest 

overall cross-validation accuracy in preliminary tests with the same dataset (followed 

by complex decision tree), and was therefore chosen as the default. This choice was 

confirmed by the fact that the KNN algorithm was listed in several sources (9,26) as 

among the most widely and successfully used classifiers. The following parameters 

were then determined as offering the highest accuracy estimates on the training 

dataset, and were used in every case of the final analysis: Hamming distance; 

squared inverse distance weighting; 10 nearest neighbours; 10-fold cross-validation. 

Prediction accuracy during individual analyses was estimated based on the confusion 

matrix provided in the toolbox. 

5.5. Rule sets 
The proportion of unclassified or falsely classified tokens was reduced during 

development by creating new rules. A heuristic, rather than methodical process was 

chosen for this due to dataset size and large proportion of unique entries, which were 

found to cause unexpected rule conflicts and invalidate any methodical assumptions 

about the dataset. Rule-based transformations were carried out after converting to 

document vectors. Each rule was created based on the following sequence: 

1. Data issue heuristically identified 

2. Information gathered about the issue: 

a. frequency: unique/rare/common? 

b. type: syntactic or semantic issue? 

c. variations: does the issue appear in one common form that can be 

solved by a single, or are there conflicts? 

3. Syntactic issues were documented and resolved together during the cleaning 

phase; semantic issues were considered as follows. 

4. If a semantic issue was unambiguous and corresponded to a known construct, 

a rule was added to the appropriate .xlsx rule table (sections 5.5.1 to 5.5.4). 
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This was the simplest case and was done regardless of its frequency, for 

example when any two words were found to form a compound word every 

time they co-occurred. 

5. If the issue was found to be representative of frequent cases, but not a known 

construct, a new rule type with an accompanying .xls table was created, 

employing a different algorithm (sections 5.5.1 to 5.5.4). 

6. If a rule conflict could not be avoided or would have required more than two 

conditional rules, the case was left untreated. Leaving rare cases of raw data 

was preferred to false transformations. 

5.5.1. Compounds 

Rules for identifying compound terms were implemented before other major 

transformations: if any component words were modified by other rules, the 

compounds would not be identified correctly. Terms that are correctly spelled as 

closed compounds were lexicalised as normally, but a reference rule was created that 

connects its two parts, should they be mistakenly spelled as a loose compound. For 

loose compounds, surrogate tokens were created where the parts of the compound 

were separated by a dot (as demonstrated in Table 4). The rule then exchanged the 

separate tokens in the TDM for the surrogate. This effectively consumed all words 

that formed the compound, so that they would not be considered as part of a 

compound and their individual meanings at the same time. 123 rules of this class 

were used altogether, with examples given in Table 4. In addition, this syntax could 

be used to reduce ambiguity in the way demonstrated by changing “blade pitch” to 

“pitch” in the table. Compound rules were applied as part of the “RuleTransform” 

script (Appendix 2, Figure 2). 
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Table 4. Examples of rules for joining compound words and removing excess words 

IF 

This word is present 

AND 

This word is present 

AND 

This word is present 

THEN 

Replace all with 

Low Speed Shaft Main.Shaft 

Ball Bearing - Ball.Bearing 

Blade Pitch - Pitch 

 

5.5.2. Mapping of equivalent terms 

Two approaches were used to treat equivalent tokens. Firstly, obvious cases were 

lemmatised at the lexicalisation stage. Secondly, if there was additional need to 

assign one lemma under another, then mapping was done directly in the lexicon. A 

separate column was created in the .xlsx file that contained the lexicon, wherein 

references from one lemma to another could be manually added in the form of token 

numbers. Synonym references were then resolved within the “RuleTransform” script 

(Appendix 2, Figure 2). 

5.5.3. Sense disambiguation rules 

These rules were used for words whose meaning varied depending on collocated 

words, or also the absence of certain other words. Altogether, 14 presence-based 

rules were used in the form presented in Table 5, and another 4 absence-based rules 

in the form shown in Table 6. Both sets of rules were applied within the 

“RuleTransform” script (Appendix 2, Figure 2). 
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Table 5. Rules for words whose meaning depended on other words present 

IF 

Word 1 is present 

AND 

Word 2 is present 

THEN 

Word 2 is replaced with 

Circuit Brake Breaker 

Table 6. Rules for words whose meaning depended on the absence of certain words 

IF 

This word is present 

AND 

This word is NOT 

THEN 

 Word 1 is replaced with 

Sonic Anemometer Sonic.anemometer 

5.5.4. Classification rules 

In addition to the previous rules where tokens were replaced, there were another 33 

rules which enabled tokens to be reclassified, as shown in Table 7. Since the TDM 

terms had not been classified at the time when the first rule-based transformations 

were carried out (“RuleTransform”, Appendix 2, Figure 2), classification rules were 

applied as a separate step later (“Reclassify”, Appendix 2, Figure 2). 

Table 7. Rules for reclassification 

IF  (Optional) IF THEN (Or) THEN 

This class Includes  This class Includes This class Is set to Then this 
word 

Is changed 
to 

(any) Anemo-
meter - - System Meteoro-

logical - - 

Failure 
mode (is empty) Activity Stop - - Stop Failure 

mode 

5.6. Model of document collection 
The TDM model of the document collection was used, as it could facilitate rule-

based transformations, and be used for categorical data analysis later. Its limitations 
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as a bag-of-words model were acknowledged: the method distorts any grammatical 

structure and positional information in the text, so that grammatical analysis of its 

outputs is not meaningful. However, this limitation was not significant in the current 

context, as previously confirmed by Arif-Uz-Zaman et al. (21). The grammatical 

structure and word order in the free texts were already inconsistent and difficult to 

exploit. Most words occurred only once per documents, so the extent of frequency 

information wasted was minimal. 

5.7. Conflict resolution 
There were examples where several terms of the same class were present, allowing 

the WO to be classified in multiple ways. According to the assumptions made in 

section 5.1 that each WO represents a single task, such conflicts needed to be 

unanimously resolved. Each entry had to be reduced to a single failure mode, single 

activity, and a unanimous component identification. This was particularly necessary 

in the system class, which carried most importance in the output analysis.  

There were three main considerations when choosing a solution: 

1. It was necessary to identify the most important or most discriminative term; 

2. It needed to apply across the dataset, regardless of which terms were causing 

each conflict; 

3. It had to be adaptable to other datasets, where different terms may be 

important. 

The most basic approach was that if there were several tokens present in a cell, only 

the first one was left, but this was considered unreliable. 

A user-defined term hierarchy would offer reliable solutions to the first two 

conditions, but not always the third. Also a user’s judgement may be biased 

depending on which cases are taken as an example to determine where a word stands 

in the hierarchy. Using examples from the dataset, “Error” is a meaningful word 

compared to “not OK” in one document, but is definitely less informative than 

“Overtemperature” in another. 
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Computational approaches can provide a more neutral ranking. In this word, the TF-

IDF ranking (calculated across the entire dataset, not individual documents) was used 

to determine term hierarchy. This approach also satisfies the third condition, as the 

hierarchy can be recalculated for each new dataset. However, the outcome may not 

always be according to user preference (e.g. when there is a particular term of 

interest), so it may be necessary to review the hierarchy before implementing it. 

The TF-IDF term hierarchy was applied on the classified overlay of the TDM 

(Appendix 2, Figure 2). Where more than one term of any one class was present in a 

document, only the highest ranking one was maintained. Each class of each 

document was treated separately. That allowed the same term hierarchy be used 

universally, but from it, only terms within the same class could be ranked against 

each other (and inferior ones removed). After settling conflicts in the classified 

overlay of the TDM, the basic TDM was also updated. 

5.8. Output analysis 

5.8.1. Data formats 

Visualisation was considered the most intuitive way to present categorical data to a 

user when precise numerical information is not required. It can be useful when 

numerous classes of information need to be compared (such as to select subgroups 

for further study), or when simple decisions need to be made at speed (such as to 

check whether a newly created transformation rule has functioned). 

Word clouds were used to highlight the most important terms in the vocabulary at 

each stage of the analysis. 

The Pareto chart has been used previously to illustrate the failure rates of wind 

turbine components (18). A particularly informative version of the Pareto chart was 

used by (13), which presented two hierarchical levels simultaneously: a Pareto chart 

on the system level (rotor, control system, etc.), with each column in turn containing 

a Pareto chart of its subsystems (blades, sensors, etc.). This double-level chart was 

also adapted for the present study. A Matlab function was created (“ParetoPlot”, 



49 
 

Appendix 2, Figure 2) that presents an overall Pareto plot on the system level, with a 

subplot for each system showing its most frequent subunits. The same script also 

outputs the two classes of input data on a frequency-sorted basis to allow for its 

further numerical analysis. 

5.8.1. Standardising vocabulary 

Assuming that the terminology and maintenance profile will be similar for each wind 

farm in the future, the most common terms found in historic records should be the 

foundation for a standardised vocabulary in the future. Similarly to conflict 

resolution (section 5.7), term frequency does not directly reflect how important or 

discriminative a term is. Yet when constructing a standard vocabulary, the operator’s 

and technicians’ preference for specific terms should be taken into account. 

Replacing their accustomed vocabulary with one produced via term importance 

weighting such as TF-IDF may cause confusion. The TF and TDF ranking were used 

to compare how informative the vocabulary is provided by each. 

5.9. Complete methodology 
The flow chart in Figure 2 presents the sequence in which the scripts in Appendix 2 

formed the final methodology. Each stage is initiated manually and it is possible to 

alter the sequence, provided that the workspace variables that each stage uses have 

been created by the previous stages. In the original sequence, the variables are 

created and named so that user manipulation is not necessary. However, execution 

stops for lexicalisation if new tokens are found (B), and pauses for model fitting (D). 

The outputs described in the following section were obtained by the scripts under the 

“OUTPUT” headings in the figure, but intermediate results are kept in workspace 

variables and can be accessed by other means of categorical data analysis. 
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Figure 2. The text mining workflow 
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6. Results and improvements 

6.1. Lexicalisation 
Lexicalisation was one of the foundations of this study, before other operations could 

be carried out. An example of the resulting lexicon in MS Excel is shown in Figure 

3. Different words are assigned in rows under each lemma, and assigned a numeric 

TokenID. Class numbers are also managed by the same table. The ReferenceTo 

column allows the user to specify a higher lemma. For example, by following 

reference TokenID 164 in the table, all cases of “Refill” will be merged under “Fill”. 

Note also how the TokenID does not match its row index – this is caused by 

rearrangement and deletion during lexicon development, and is the reason for using 

additional TokenID values, not simply indices. 

 

Figure 3. Excerpt from the lexicon 

Based on the training dataset, a lexicon of 2443 words and compounds was created, 

arranged under 592 lemmas. The test dataset introduced an additional 227 terms and 

97 new lemmas, and in effect created a more comprehensive vocabulary for use in 

future analyses. On the other hand, the introduction of new rare terms complicated 

classification and grouping of the lexicon terms. 

Manual lexicalisation involved approximately 15 days of labour throughout the 

duration of the project. This includes the identification of semantic relationships, 

resolving word sense conflicts, associating abbreviations and jargon with the 

equivalent terms, classifying terms, etc. The amount of time spent on this basic task 
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signifies again how a standardised nomenclature could help to reduce the workload 

in analysing maintenance records. 

The lexicon can be used as a foundation for similar projects in the future, without 

significant modification in its structure or the semantic associations between terms. 

A major drawback of manual lexicalisation is the need to recognize and capture all 

new terms, and compounds in particular. The present method also depends heavily 

on the operator’s judgement on grouping and classifying terms. Justeson et al. (27) 

give a warning that lexical methods of term recognition do not guarantee a match, 

because terms in a given context might be too specific, and not included in the 

dictionary. 

The inclusion of a term extraction algorithm could increase the effectiveness, and 

reduce time consumption. Yet as discussed in Chapters 3 and 5, the dataset is noisy 

and inconsistent for reliable automatic term extraction. 

Miner (9) describes the use of singular value decomposition (SVD) as a way to 

reduce the representation of each document in a TDM to its most meaningful, 

descriptive values. This is achieved by determining which combinations of terms, 

when other terms are removed and documents much shortened, result in the highest 

remaining distinction between documents. Miner describes SVD in a context of 

larger documents and with the purpose of dimensionality reduction. However, in the 

present work, an improved term ranking mechanism would be highly useful in two 

applications. Firstly, as part of a supervised lexicalisation process, it could recognise 

candidate terms for lexicalisation by the user. Secondly, the term importance values 

calculated initially could be used later to replace the TF-IDF measure for conflict 

resolution. 

6.2. Data cleaning 
A summary of the effects of each stage in the text mining process is given in Table 8 

and Table 9 for the training and test datasets, respectively. 
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Data cleaning was the first stage of the process, and chiefly intended to standardise 

the document collection for further methods. Yet the removal of noise and stop 

words already had its effect in increasing the similarity between documents, or 

rather, making semantically similar documents appear similar by syntactic 

comparison. The number of different WOs was thereby reduced by 38% and 29% for 

the training and test datasets, respectively (Table 8, Table 9). 

Table 8. Main parameters during the text mining process - TRAINING dataset 

Stage	
Number	of	
documents	

Number	of	
different	

WOs	
Number	of	

words	

Size	of	
vocabulary	
(including	

compounds)	

Percentage	of	
unknown	systems/	

subsystems	

Raw	 12425	 4657	 63032	 2443	 N/A	

Filtered	 6372	 3473	 33904	 1464	 N/A	

Cleaned	(F)	 6371	 2150	 25674	 494	 N/A	

Transformed	 6371	 2022	 22764	 486	 N/A	

Classified	(G)	 6371	 2022	 22764	 486	 4357/1215	

Reclassified	(H)	 6371	 1912	 25778	 488	 1843/1215	

TF-IDF	filtered	(I)	 6371	 1756	 23763	 438	 1843/1215	

KNN	prediction	(J)	 6371	 1697	 25504	 438	 102/1215	

 

Table 9. Main parameters during the text mining process - TEST dataset 

Stage	
Number	of	
documents	

Number	of	
different	

WOs	
Number	of	

words	

Size	of	
vocabulary	
(including	

compounds)	

Percentage	of	
unknown	systems/	

subsystems	

Raw	 3431	 1530	 17873	 1047	 N/A	

Filtered	 1431	 926	 8358	 684	 N/A	

Cleaned	(F)	 1431	 653	 5461	 317	 N/A	

Transformed	 1431	 622	 4695	 313	 N/A	

Classified	(G)	 1431	 622	 4695	 313	 919/386	

Reclassified	(H)	 1431	 608	 5121	 315	 624/386	

TF-IDF	filtered	(I)	 1431	 588	 4842	 276	 624/386	

KNN	prediction	(J)	 1431	 568	 5347	 276	 119/386	
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6.3. Similarity and grouping 
Table 10 presents the most frequent free text entries after the first filtering, and after 

all stages of transformations had been completed. The grouping and counting is 

based on direct similarity on a character level. The most frequent WOs after filtering 

maintained the same, or very similar, frequency after the transformations. Among the 

slightly less frequent WOs that followed (data not shown), many were related to 

inspection and servicing. MacLean (22) attributes the latter to a stricter supervision 

and regulation of safety-related tasks. However, it is clear that the more frequent and 

standardised a procedure, the more uniform and standardised is its description. 

On the other hand, certain tasks that were most frequent in the final results, were not 

initially in the top ten. These were therefore expressed in several different ways in 

the original data, and the information extraction process interpreted them to a similar 

form. One of the major factors in homogenising equivalent expressions was the KNN 

classifier’s successful prediction of “control” and “lifting.system”: if some of the 

entries were previously described without the system, and some included it, then 

after processing they were all expressed in the same way. Cleaning and removing 

excess words such as “AT” and “AAT” also had a major role in homogenising 

expressions. Data cleaning effects can be seen in more detail in Table 13 and Table 

14 (Appendix 1).  

Table 10 also highlights some of the negative effects that the transformations had. 

The most significant one was misinterpretation of the initially most frequent WO 

(ranked 7th in the end). The classifier predicted “gear” to mean “yaw gear”, although 

most likely it was an abbreviation for the gearbox, and the system should be “drive 

train”. What is more, the “oil filter” was removed by the TF-IDF filtering, although it 

was the more discriminative term in this case. “G/box” was correctly identified as 

gearbox, and recognised as belonging to the drive train, but the term “gearbox” itself 

was missing from the final text. Also some excess words were not removed (e.g. 

“To” in this example). 
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Table 10. Most frequent WOs in the TRAINING dataset after first filtering and in the final 

results. 

Rank	 First	filtering	
	

Final	(J)	
	

1	
'INSPECT	GEAR	OIL	FILTER	AND	
EQUIPMENT'	 62	

'INVESTIGATE	CONTROL	INTERBUS	
ERROR'	 113	

2	
'AT-	REPLACE	G/BOX	STAT	&	
HOSES'	 61	

'MODIFY	LIFTING.SYSTEM	HOIST	
SYSTEM'	 82	

3	 'WTG	ENTRY	FOR	HV	
TRANSFORMER	WORKS'	

61	 'REPROGRAMME	TURBINE	SMP'	 75	

4	 'CARRY	OUT	PERSONNEL	LIFT	
WORKS'	

61	 'REPLACE	GENERATOR	SLIP.RING	FAN'	 68	

5	
'AAT	TO	RE-INSTALL	ELEVATOR	
COMPONENTS'	 61	 'REPAIR	CONTROL	INTERBUS	ERROR'	 64	

6	
'AT-CHANGE	POWER	FACTOR	/	
GROUND	CONTROL'	 60	

'INSTALL	LIFTING.SYSTEM	ELEVATOR	
COMPONENTS	TO'	 63	

7	 'AT	-	INVESTIGATE	COMMS	ISSUE	
AFTER	TRIP'	

60	 'INSPECT	YAW	GEAR	EQUIPMENT'	 62	

8	 'AT-SNAGGING	AND	PAINTING	
WORKS'	 60	 'WORK	LIFTING.SYSTEM	ELEVATOR'	 62	

9	
'AT-	INST.	GENERATOR	TO	SUPPLY	
POWER	WTG'	 60	 'PAINTING'	 61	

10	 'INSTALL	NEW	BREAKER	PLUG	
SOCKET'	

60	 'REPLACE	DRIVE.TRAIN	PRESSURE.STAT	
HOSE'	

61	

6.4. Class conflicts 
Some conflicts were detected in component taxonomy, mostly on lower levels of 

component taxonomy (data not shown). A common example was that “fan” and 

“motor” are both classed as products, but motors are also part of cooling fans. This 

indicates that the hierarchical classification may need further tuning. Alternatively, if 

it were known that all turbines in the analysis follow a particular taxonomy, then that 

predefined taxonomy could be used within this algorithm. Using a more standardised 

taxonomy such as the one developed by the Reliawind project (13) would also offer 

better comparison between different studies. However, as the authors point out, the 

industry still lacks a universal taxonomy. 

Some of the conflicts where two terms of the same class were present were caused 

by a single WO actually describing two separate replacements. Such cases were 

outwith the assumptions of this study. However, it is in principle possible to extract 

the two component names separately. Sometimes stop words could be used for this. 

Words like “and”, “in”, “of”, “between” often identify which part names are used as 



56 
 

location identifiers, and which represent the subjects of a maintenance task. These 

distinctions could be made with by straightforward syntactic approach, but stop word 

removal would need to be carefully reconsidered. 

6.5. Classification and clustering 
Above, the KNN classifier was found to misinterpret the system as “Yaw” instead of 

the expected “Drive train” (Table 10). The confusion matrix for that classifier is 

shown in Figure 4. 

 

Figure 4. Confusion matrix created when learning KNN classifier for test dataset 

It shows that the same happened for in 20% (which corresponds to 9 times) of the 

cases during cross-validation. It can be concluded that the learning and prediction 

datasets were different in terms of the prediction variables present – insead of 20%, 

all of the gearbox entities were falsely identified. In addition, the confusion matrix 

shows that 100% of “Emergency” values were misinterpreted. In absolute count, this 
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was 1 occasion. This demonstrates that the KNN classifier is a method that needs to 

be verified not just by cross-validation during training, but via the predicted results. 

Despite effective term classification based on the lexicon, there remained an 

impractically large number of different WOs (Table 8 and Table 9), and different 

levels in each component class (Table 15 and Table 16). Many semantically 

equivalent WOs differed by a few tokens so that they could not be matched directly 

on a character level. Regardless, the KNN classification algorithm was trained with a 

high accuracy rating (89 to 96% depending on predictor classes). This indicates that 

the outputs may be suitable for training a similar classifier to match equivalent WOs 

based on a distance measure, rather than direct comparison. However, for a more 

accurate analysis in the future, the 40 character limit should be used to the full extent 

by the person assigning the work orders. 

An even more practical approach would be to match all work orders to a predefined 

taxonomy based on, for instance, the Jaccard distance (prior confirmation would be 

needed that the turbine model under consideration follows that particular taxonomy). 

This was presently not attempted as one of the underlying aims of this method was to 

develop an algorithm independent of a predefined taxonomy. The method was 

initially applied without any defined component relationships, however that caused 

considerably more coarse results (a more spread-out taxonomy). For instance, instead 

of classifying all sensors as part of the control system, that approach assumed that 

every system had its own sensors as a subsystem. This was not considered 

informative, nor correct in practice. Therefore some of the most significant cases 

such as the above example were referred to their correct locations by specially 

defined rules. 

6.6. Distribution of maintenance efforts 
The first results using the ParetoPlot script are shown in Figure 6 (Appendix 1). It 

can be seen that around 68% of the system level taxonomical units are unknown, 

which means the results are inaccurate for practical use. Additionally, multiple 

tokens per class were interpreted as separate categories, which appeared as the dense 

text labels. This clearly identifies that firstly, more narrow categories have to be 
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selected, and secondly, that further specification of categories was necessary. Both 

aspects were improved, as shown for example in Figure 5. 

The present methodology requires careful selection of grouping variables. Some 

variable combinations for plotting/analysis are more meaningful than others. For 

example, if the intention was to find out how many generators were replaced, it is not 

sufficient to choose “generator” as the system and “replace” as the activity. Doing so 

would ignore any additional component descriptions that followed “generator”, 

including a large number of cooling fans etc. A false impression of very frequent 

generator replacements would be created. Instead, the entire component hierarchy 

should be concatenated and used as subcategories of the activity “replace”. In that 

case, subcomponents like “generator cooling fan” and “generator” itself could be 

clearly distinguished. 

Unknown values formed a large proportion of most classes. Unknown values in 

system and subsystem names were attributed to the fact that certain components 

could be unambiguously identified without specifying a system. The operator may 

not consider a full description necessary, assuming that the text would be read by 

another human. Similarly, some components can be identified by failure mode. There 

are also cases where failure mode or maintenance activity cannot be estimated at the 

time of writing the work order – this often takes place before a technician is able to 

investigate the fault in person (22). Regardless of the cause, unknown values posed 

difficulties in systematic classification of each WO. 

6.7. Data fusion 
WO free texts contain valuable information, but not all consequences of a fault or 

remedial action can be found in this one source. For maximal value in maintenance 

planning, each task should be associated with the number of technicians and number 

of working hours, as well as the cost and lead time of any components, materials or 

externally provided services. This can be achieved by using data mining methods on 

alternative source fields (6), incorporating present results with technicians’ labour 

time tables, SCADA fault code databases. WO tables also contain other fields apart 

from free text, such as functional location, maintenance type, and dates. Arif-Uz-
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Zaman et al. (21) used a data fusion approach where work orders provided details of 

component identification, failure mode and remedial activities undertaken, while 

consequences of each event were obtained from downtime data. Thereby full ABC 

analysis and failure modelling would be possible, which offer significantly more 

grounds for maintenance planning than failure rates alone, as described in Chapter 2. 

6.8. Verification and confidence 
Due to the high proportion of unknown values in most classes, the actual frequency 

of terms in each class cannot be accurately estimated. To make any practical 

conclusions from data with such high uncertainty, a reliability or confidence interval 

is essential. Most work orders or components, when grouped, follow a certain 

frequency distribution. The same can be expected of the unknowns. However there is 

no basis to assume that the two distributions are similar: the unknowns may be 

caused by a bias such as operator decision; it may also include values that are not 

found in the known groups. Nevertheless, it is possible to estimate a distribution for 

the unknowns, either based on expert opinion or some assumptions. The distribution 

could then be used to estimate the actual frequency in each group. Confidence 

intervals could be calculated and used together with the frequency data in the 

analysis. 

Nevertheless, there is useful information in a dataset regardless of the unknowns. 

Successfully identified values give a minimal frequency for each group, which 

provides a best-case estimate of how many corresponding spare parts may be 

necessary over time. The worst case, or maximum possible failure frequency in each 

group, would be the sum of itself and all the unknown values. 

Another factor that can influence the results is that the rule-based algorithms here 

depend heavily on operator’s judgement. Any new dataset or discovered rule 

exception required significant user input to update the lexicon and term associations, 

as well as other rules. It would be desirable to reduce the operator to the role of a 

supervisor, rather than the principal decision-maker. Some methods such as 

additional machine learning steps and statistical term recognition have been proposed 

above. However, also shown, the data conditions reduce the accuracy and reliability 
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of the suggested improvements (8,25). Different authors agree (6,13,21) that 

semantic ambiguity and poor statistical representation (e.g. unique terms/spellings) 

are inevitable in this type of data. Any improvement methods should therefore be 

designed with this consideration. A confidence metric should be applied to highlight 

any instances of low accuracy, which could then be forwarded to the user for 

reviewing. 

Alternatively, verification could be done by comparing a sample set of results to a 

previously approved manually annotated set. A benchmark set would be useful for 

further testing and development of wind turbine specific text mining tools. This 

should be a fully tagged dataset of work orders, including component classifications, 

failure modes and maintenance activities. Several turbine models and technologies 

should be included. The size of the dataset should be sufficient to provide a 

representative learning set for machine learning algorithms. Such a dataset would 

allow training and testing sets to be taken from a uniformly reliable source, so that 

methods could be validated to a higher standard and compared to one another. 

6.1. Computational performance 
During algorithm development, several decisions were made taking computing time 

requirement into account. Testing the algorithm revealed that this is not a major 

concern with the current dataset and lexicon size: running time was under three 

minutes in all cases, including classifier training, but excluding rule creation and 

other manual inputs. Computing time may become an issue when repeated runs of 

the algorithm are required, for example when testing new rule sets. To save time, it is 

advisable to test and adjust one section of code at a time, or run the full algorithm 

with a reduced sample size. 

During development, the modular layout and saving of intermediate outputs 

increased the transparency of the process. This enabled the user to take outputs for 

testing after each stage, and simplified fault-finding where that was necessary. After 

the recommendations in this chapter have been applied to improve the text mining 

methodology, it is advisable to make certain adjustments to its layout. Scripts should 

be arranged in an automated continuous workflow as far as possible. Variables 
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should be cleared from memory when not needed. Related variables, e.g. TDM and 

its classified overlay, should be arranged in a structure, which allows more effective 

referencing between functions. 

6.2. Adaptation by the industry 

6.2.1. Advantages and economic benefit 

The method development process above, and in particular the distribution of labour 

intensity, highlighted several advantages that an automated WO text mining process 

has over the manual alternative. 

MacLean (12) had previously performed the classification process manually on the 

test dataset in this work, and estimated the labour time at around two weeks (10 

working days). The economic benefit of automating the WO free text analysis was 

considered directly equivalent to the expenses of carrying out equivalent analysis 

manually. Since manual handling of domain-specific data requires background 

knowledge, it was assumed that the minimal qualification level for this work would 

be associate professional, but a professional might be more effective. The two pay 

scales were obtained from Labour Force Survey data (32), and were £798 per week 

for professional, and £671 per week for associate professional levels. The average 

value of £734.5 per week was used. Assuming a constant earning rate for 52 weeks 

per year, the annual salary accounts to £38194. This was used as input to The True 

Cost of an Employee calculator (33), which was the most comprehensive tool found 

for estimating an employee’s cost to an employer. National insurance rate and 

threshold were updated, but otherwise default values were used in the calculator. The 

cost of the employee was found to be £34.09 per hour. Assuming that a working day 

lasts 8 hours, this accounts for £2727 pounds for the 10 days that it takes to manually 

transform 3431 WOs in the test set. Assuming a similar rate of productivity for larger 

datasets, the training set would cost the company 3.62 times more to analyse, which 

is £9876. For comparison, the algorithm runs for under 3 minutes without 

lexicalisation. With lexicalisation of the additional 227 tokens of the test dataset, the 

total time was under two hours, which accounts for less than £70. 
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For a company that operates several wind farms and has an internal terminology or 

reporting structure, it might be necessary to customise the rules and lexicon, but they 

are complemented with each dataset, and the effort is thereby reduced every time. 

Whereas when done manually, the workload is related to the number of records in a 

dataset, regardless of previous experience. The work is also tedious and repetitive, 

which may reduce employee satisfaction and decrease their productivity. 

Manual analysis may be more transparent and trusted than an algorithm. The 

operator’s expert judgement should be the benchmark to determine how each text 

entry should be treated and classified to best inform a particular analysis. However, a 

person’s judgement is inevitably subjective, and may vary over time. How a person 

classifies a particular term or work order is not necessarily consistent. This is 

especially true for large, diverse, and granular (detailed) datasets. Two main types of 

bias may affect the manual WO analysis procedure: anchoring bias (failing to adjust 

the approach when new information is found that actually demands it), and 

inconsistency bias (forgetting or changing assumptions or approaches during process, 

here due to dataset size) (34). Noisy data affects a person’s judgement during manual 

classification in the same way as when writing rules for an algorithm. A well-defined 

set of rules may therefore offer consistency equal to or better than a human, but will 

perform the classification task considerably faster. 

Automation is advantageous if the analysis is done on a larger scale. If an operator of 

several wind farms needs to perform a comparative analysis, then the records from 

each site first need to be analysed individually. Assuming dataset size similar to the 

one in this study, the manual workload would be two weeks per site. The work could 

be done by the same person over a longer period, or by different persons 

simultaneously. In the former case, the drift in judgement over time may affect the 

results; in the latter case, it would be difficult to achieve consistency between the 

people (34). 

As outlined in Chapter Error! Reference source not found., the ultimate purpose of 

WO free text analysis is to obtain reliability data to inform the wind farm operator 
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during a decision-making process. Those benefits were considered equal regardless 

of the methods used for text analysis, and were not separately quantified. 

6.2.2. Data collection 

Despite the requirement to fine-tune the algorithms and methods, the fundamental 

classification approach in this work was found effective. As existing terms could be 

accommodated under this system, it is also possible to adapt a similar classification 

for data collection in the future. Classifying parts of each work order at its creation 

would save the effort - and uncertainty - of text mining, if the intention is to use such 

data in a reliability analysis. 

6.2.3. Standard terminology 

Standard technical terms are coined to facilitate effective communication between 

experts in a field (27). The term list of 1330 terms in the present results was 

inconveniently long to be used by field technicians. A choice needs to be made 

which historical terms to standardise. 

To illustrate how the choice of vocabulary would depend on the choice of ranking 

scale, the top 10 words of the maintenance activity, system, and failure mode classes 

were ranked using both TF and TF-IDF weighting Table 11. In this case, the TF-IDF 

ranking in did not provide suitable grounds for an overall importance ranking. Term 

frequency ranking gave more informative and relevant terms that could all be 

expected from a standard list. Yet the TF-IDF ranking brought up terms such as 

“Contactor” or “Battery” that are not frequently used, but are still uniquely 

descriptive in wind turbine maintenance. These also need to be included in the 

database to maintain the level of detail. Regardless of how terms are ranked, the 

choice of should be led by the natural development of technical language: frequently 

used terms should be short and concise (27). 
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Table 11. TF and TF-IDF ranking of terms before and after transformations in TRAINING 

dataset 

		 After	cleaning	(E)	 	After	TF-IDF-based	sorting	(I)	
Rank	 Word	 TF	 Word	 TF-IDF	 Word	 TF	 Word	 TF-IDF	

1	 'REPLACE'	 468	 'FAULT'	 16.91	 'REPLACE'	 425	 'HIGH'	 16.91	

2	 'RESET'	 441	 'CABINET'	 16.91	 'BASE.RESET'	 322	 'TOP'	 16.91	

3	 'BASE'	 314	 'CB'	 16.91	 'INVESTIGATE'	 215	 'FAILURE'	 16.90	

4	 'REPAIR'	 201	 'MODULE'	 16.91	 'REPAIR'	 201	 'BATTERY'	 16.90	

5	 'ERROR'	 170	 'OK'	 16.91	 'CONTROL'	 189	 'CONTACTOR'	 16.90	

6	 'YAW'	 158	 'VALVE'	 16.91	 'ERROR'	 170	 'FRECUENCY'	 16.90	

7	 'TOP'	 153	 'HIGH'	 16.90	 'YAW'	 133	 'TOG'	 16.89	

8	 'ACCUMULATOR'	 130	 'BATTERY'	 16.90	 'ACCUMULATOR'	 110	 'NO'	 16.89	

9	 'INVESTIGATE'	 100	 'CONTACTOR'	 16.90	 'HYDRAULIC'	 84	 'PROPORTIONAL.VALVE'	 16.89	

10	 'HYDRAULIC'	 86	 'NITROGEN'	 16.90	 'PITCH'	 83	 'ANEMOMETER'	 16.88	

 

6.2.4. User interface 

Firstly, for work order creation, instead of a plain list of standard terms it is possible 

to use a tree-style interface where terms are classified similarly to the results here. 

When specifying a work order, the user would choose terms from one class at a time, 

starting from more general, e.g. on the system level with only 13 separate choices. 

With all historical combinations of tokens known to the computer, the database 

would perform as a truth model (26). Each choice the user makes would narrow 

down the remaining combinations, and with it reduce the number of terms they are 

allowed to choose in each class. The full lexicon could be made available in this 

way, but if the amount of information forwarded at any one time is small, it is not 

expected to overwhelm the user (34). 

Secondly, to be able to extract most value from historical WO records, the industry 

should be provided with an automated tool for WO text mining. The text mining 

process developed in this project is not capable of providing results at the required 

reliability level. However, the TDM model, lexical approach, term classes and in 

some cases KNN-based predictive capabilities could be effective as part of such a 

toolbox. 
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7. Conclusions 

The present thesis is an investigation into the opportunities and challenges in mining 

work order free text data. Literature review was carried out in two chapters. The first 

chapter established that failure rates, downtimes, repair times, lead times, and cost 

can be used for evidence-based decision making in wind turbine maintenance. The 

Pareto and ABC analysis were identified as the principal methods in which these 

data can be exploited. It was also concluded that failure frequency information for 

this purpose can be extracted from work order free text data. The second review 

chapter provided an overview of text mining methods that could be used to extract 

the failure information from work order free text in an actionable format. 

Following the results of the two review chapters, the development of a robust text 

mining methodology for the specific domain of wind turbine SAP work orders was 

undertaken. During preparation of the algorithms, a list of main issues detected in 

this data type was constructed and supplied with examples, which can be used to 

inform future studies in this field. In addition, a lexicon of 1330 tokens under 597 

lemmas was developed to support the rule-based algorithm. The algorithm itself was 

constructed of 9 separate functional modules, each based on a custom Matlab script. 

The method was used on two separate sets of SAP work orders from large-scale wind 

farms in Scotland. In both cases, the number of different work orders was 

significantly reduced by cleaning and transformations. Furthermore, missing values 

were predicted by a KNN classifier, which reduced the extent of uncertainty in the 

final results. 

Several advantages of using the algorithm in an industrial context were identified, 

including consistency and cost savings compared to performing the same analysis 

manually. To help advance the use of work order data mining methods in the 

industry, two possible user interfaces and a means to standardise maintenance 

terminology were also proposed. 
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The results of this work conform with previous studies in the field, showing work 

order free texts to be a difficult data type to mine. Missing and noisy data, 

ambiguous expression, and spelling errors were found to degrade the quality of the 

results most significantly; other more specific issues were also described. 

The effect of noisy data was more severe on rare terms, where each instance 

contributes more to its final interpretation, but statistical basis to determine the 

correct one is limited. This was noticed to influence both the rule-based approach, 

and especially the machine learning classifier. However, a well-defined confidence 

metric was not found that would allow to quantify the negative effects. This was 

recognised as one of the major shortcomings of the present analysis. It is strongly 

recommended that for further analysis using the methods in this study, or the 

suggested improvements, a framework should be developed where each stage of the 

analysis could be associated with a suitable accuracy or error metric, so that final 

results could be presented with a confidence interval. This would both provide a 

basis for fine-tuning the methodology, as well as increase the appeal of the analysis 

as a decision-making tool in the industry. 
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9. Appendices 

9.1. Appendix 1. Detailed results 
Table 12. Comparison of term ranking scales - TEST dataset 

		 After	cleaning	(E)	 	After	TF-IDF-based	sorting	(I)	

Rank	 Word	 TF	 Word	 TF-IDF	 Word	 TF	 Word	 TF-IDF	

1	 'INVESTIGATE'	 1737	 'DOOR'	 23.71	 'INVESTIGATE'	 1383	 'DEHIBERNATE'	 23.71	

2	 'FAULT'	 1373	 'FEEDBACK'	 23.71	 'REPLACE'	 1266	 'DOOR'	 23.71	

3	 'REPLACE'	 1141	 'MEASUREMENT'	 23.71	 'REPAIR'	 1138	 'FEEDBACK'	 23.71	

4	 'REPAIR'	 1138	 'TWIST'	 23.71	 'CONTROL'	 1068	 'FILL'	 23.71	

5	 'ERROR'	 724	 'DE'	 23.71	 'FAULT.FIND'	 919	 'TWIST'	 23.71	

6	 'FIND'	 596	 'NO'	 23.71	 'FAULT'	 767	 'SEAL'	 23.71	

7	 'GENERATOR'	 525	 'TANK'	 23.71	 'ERROR'	 713	 'LEAK.TANK'	 23.71	

8	 'TO'	 459	 'POSITION'	 23.71	 'DRIVE.TRAIN'	 549	 'POSITION'	 23.71	

9	 'HYDRAULIC'	 444	 'LEVEL'	 23.71	 'GEARBOX'	 528	 'LEVEL'	 23.71	

10	 'OIL'	 444	 'SEAL'	 23.71	 'GENERATOR'	 505	 'MODULE'	 23.71	

 

 


