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Abstract	  
With the increasing need of incorporating intermittent renewable energy 

sources and other alternative supply/demand management strategies into the energy 

grid, a need to forecast future demand arises. Knowing, or at least estimating, future 

consumption, even on a short-term basis can greatly help shift loads or optimize 

stochastic power sources and stored energy. 

This paper focuses on investigating neural network strategies and tests it in 

three different grid levels, Great Britain’s macrogrid, Findhorn’s community in 

Scotland and a single house also in Findhorn. Different input selections along with 

different database sizes were attempted. 

It was concluded that on the macrogrid level, with little effort very good 

results were generated. The community level can reach a 10% error margin quite 

reliably with at least one month worth of data. The single house level did not perform 

well, since single human families behaviour can be too chaotic to produce usable 

results. Still, on the community level, a not too complex and very adaptable neural 

network algorithm can be implemented to aid a microgrid better manage its energy 

needs with a workable level of uncertainty. 
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1 Introduction	  

1.1 Motivation	  
Just staying in the most concrete and direct uses, energy is needed to produce 

goods, services and provides productive capacity, or jobs, for the population. This 

allows some experts say that energy consumption is a proxy for economic growth. 

Countries fiercely aim to improve their status in the world. With that, a lot must be 

invested in generation capacity. Curiously, ways to diminish the need for said 

capacity often does not receive the attention it deserves. This often results in energy 

cost increases. At the same time the capacity market often is fossil fuel based. 

 

Figure 1.1: Electrical energy demand for the 6th of June 2016. 

Data retrieved from G.B. National Grid Status. 

As seen on Figure 1.1, the curve for one random day (6th of June 2016) the 

overall UK grid demand can vary by nearly 50% in 2 hours (from 5h to 7h). All this 
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capacity isn’t free, there must be power stations apt to supply more than 10 GW for 

specific times of one single day and do that within the aforementioned 2-hour period. 

That single day of June consumes around 705 GWh of energy. Ideally, that 

would require roughly a steady 30 GW throughout the day. This would lower the 

necessary installed capacity by more than 4 GW not to mention the costs associated 

with modulating the power output. 

Therefore, instead of solely trying to supply more power, demand-side 

management must come into focus. Load management is a valuable tool to smoothen 

the demand curve and ease unnecessary financial impacts of unbalanced energy 

supply/demand relationships through time. 

Since large companies have equally large amounts of operational inertia, the 

smaller more varied residential consumer appears to be a more varied and possibly 

adaptable market. Strategies for the residential user are especially interesting if the 

country incentivises demand behaviour with dynamic energy pricing. 

“Aspirations of grid independence could be achieved by residential power 

systems connected only to small highly variable loads if overall demand on the 

network can be accurately anticipated. Absence of the diversity found on networks 

with larger load cohorts or consistent industrial customers makes such overall load 

profiles difficult to anticipate on even a short term basis.” (Stephen, et al. 2015) 

In the same vein, “knowing” the future demand is very important for 

renewable microgeneration integration. Prompting the quote “knowledge is power” to 

become “knowledge greatly aids power (systems)”. 

 

1.2 Project	  Objectives	  
Any attempt to create optimized energy systems will pass through the issue of 

predicting future behaviour. Processing advancements and technical innovations 
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sprouted and computational intelligence became a more available tool for a wide 

variety of problems. 

The primary aim in this paper is to investigate one aspect of supply and 

demand matching that is forecasting electrical energy demand. This will be done on 

different grid levels, and assess ways to optimize it through machine learning using 

neural networks. 

Since most of the knowledge regarding the use of neural networks is mostly 

empirical in nature this paper will explore different neural network concepts and 

compare them in order to find the best results with limited data availability. 

With reliable forecasting software an energy management control system can 

potentially incorporate intermittent renewable energy sources and other alternative 

supply/demand management strategies into the energy grid. Knowing, or at least 

estimating, future consumption, even on a short-term basis can greatly help shift loads 

or optimize stochastic power sources and stored energy. Microgrids would be most 

potentially benefited from this forecasting and control scheme. 

 

1.3 Methodology	  
First, a research was conducted to find how much was done within the 

specified field. Additionally, tools and strategies were collected to inspire possible 

solutions later to be used. A short review of relevant information is shown on the 

Literature Review section. 

In order to evaluate and optimize a neural network for short-term energy 

forecast MATLAB’s Neural Network Toolbox was identified as a good tool for the 

coming tests. Also, a structure was formulated for said tests. This information can be 

found on the Tools and Test Structure section. 
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MATLAB was used to perform a series of tests with varying parameters and 

goals. They inform on their efficacy and how to use a machine-learning tool in order 

to extract the best result possible with limited information. 

The tests were performed on three different grid levels: 

• Macrogrid level with Gran Britain’s demand historic data on 

Application at Macrogrid Level section. 

• Community level with Findhorn’s demand from ORING project data 

on Application at Community Level section. 

• House level with two houses from Findhorn’s community from 

ORIGN project data on Application at House Level section. 

An array of different error and efficacy measures (description on section 3.2) 

will be produced and then evaluated on the Discussion section. 

Lastly, conclusions will be made and presented on the Conclusion section. 

 

1.4 Scope	  
The overall goal of this project is to evaluate different neural network 

strategies for short-term forecasting. Within this context, short-term shall mean a 24-

hour lead, or one full day ahead. 

Data availability is one of the great issues of any forecasting endeavours. For 

the writing of this paper limited information was available for this sort of testing. Part 

of the problem was to deal with the limited amount of data available and use it to 

create a parallel with real world applications. This issue depends greatly on the grid 

level being observed, since higher levels (macrogrid) tend to receive more attention 

than lower ones (communities and housings). 

This paper will limit itself on a few parameters in order to make a more 

concise and adapt to the time scope. Therefore, unless otherwise specified, to 

following constraints were determined: 

• The activation function of the hidden layers will be the tan-sigmoid. Other 

functions are available, but they will not be evaluated. 
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• The topology being observed will be a combination of single and two layered 

neural networks ranging from 5 to 10 neuron on the first layer and 0 to 10 

neurons on the second layer. 

• The training algorithm will be Levenberg-Marquardt and no exploration was 

conducted on different ones. 

Lastly, to mimic a real application testing will be done with data separate from 

the training set and always use the latest part of the data set. This means, for example, 

that if only January, February and March of the same year are available, both January 

and February will be used for training and March will be left solely for testing. 
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2 Literature	  Review	  

2.1 Neural	  Networks	  
Artificial Neural Networks or just Neural Networks is a machine-learning 

model inspired on the brain structure of animals. It is a system that is designed to 

recognize and approximate the pattern of specific problems on its own when 

presented a sample pool with both inputs and output of previously measured data or 

historic database in order to serve as a prediction tool. In essence it is a adaptive 

problem solver.  (MacKay 2005) 

As seen on the example presented in Figure 2.1 a 

Neural Network is composed of “neurons” (or nodes) and 

connections. On that picture there are 3 input (red), 4 

hidden (blue) and 2 output nodes (green). The topology 

used on that case is of one with a single hidden layer. More 

could be added to add a greater capacity to simulate more 

complex relationships while also slowing down the 

learning process of the neural network. 

During the process of training the network 

compares the results of the samples give to it and update 

the weights of the connections between each neuron in 

order to follow more closely the behaviour presented to it. 

Connections are formed between each neuron of 

adjacent layers. Figure 2.1 depicts this, as each single input 

is connected to each hidden layer node and each hidden 

layer node is connected to each output node. The input layer does not communicate 

directly with the output layer. 

Figure 2.1: Example Neural 

Network. 

(image from Wikipedia) 
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As shown on Figure 2.2, each neuron 

receives each previous layer’s values multiplied 

by their individual weights, adds them all up 

along with a bias and goes through an 

activation/transfer function that will be feed to 

another neuron or the output. 

The bias works the same way as the b 

coefficient found in a linear function (y=ax+b) in 

the sense that it is responsible to shift the result 

of the function in order to better fit the data 

prediction and not be stuck cutting the origin (0,0). 

The role of the activation funtion is to take all the inputs 

and attempt to generalize their combination into a probabilistic 

function to extract how much they fit into a specific category, 

in short terms the neuron is a classifier. The neural network 

does this throughout a couple of layers with a number of 

neurons in each. They are limited between -1 to 1 or 0 to 1. The 

sigmoid functions are a very common type of activation 

function. Although not limited to depending on the problem, 

they are frequently used within the hidden layers of the neural 

network. 

Alternatively, problems that require a real output value 

must eventually go trough a transfer function that is not limited 

to -1 and 1, therefore a transfer function like the linear one can 

be used to make a linear combination of all weighted inputs. 

The topology and parameters used on a neural network 

can vary greatly and there are few predefined right and wrong 

answers. Usually, each problem must go trough a series of tests to determine how to 

best approximate the desired targets. 

Figure 2.2: Single neuron internal 

diagram. 

(from MathWorks site) 

Figure 2.3: 

Activation/transfer 

functions examples. 
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Figure 2.4: Three kinds of data samples. 

(from MATLAB’s Neural Networks Toolbox app) 

Figure 2.4 shows MATLAB’s Neural Networks Toolbox app’s explanation of 

each different type of data samples created from the data pool offered for the training 

of the NN. 

The kind that will take the biggest part of the data pool is the Training type. 

This will be the one used to adjust the weight values of each of the connections. 

Validation will be used as a separate pool to help the model decide when to stop 

training, or when to stop presenting the NN with the training data samples. Lastly, the 

Testing data pool is used to have a separate unbiased measurement of the NN’s 

performance. 

Neural networks depend quite a lot on how the model is designed, especially 

how the inputs are specified. There are many ways to present different data sets. 

Usually, experimentation is the usual route as each problem has it’s own 

particularities. Therefore, a lot of work is necessary to prepare the data to better 

prepare the NN. 

The order and how many times each sample is presented to the NN also 

greatly influences the outcome. For example, if too many training cycles are executed 

the issue of over fitting can arise. If this happens the network becomes very accurate 

with the training data in detriment of samples outside the training pool. In essence, 

this is analogous to using a regression with an unnecessarily high order, the result 

might be good but the general sensibility of the model is diminished. The validation 

type of data sample is especially important to avoid this issue. 
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2.2 Demand	  Prediction	  Using	  Neural	  Networks	  
Using a case study on a relatively small commercial building in Rome (Italy), 

the paper Energy consumption control automation using Artificial Neural Networks 

and adaptive algorithms Proposal of a new methodology and case study  (Benedetti, 

et al. 2015) attempts to use neural networks as a demand forecasting tool. 

Using feedforward perceptron neural 

networks three different topologies are 

attempted. One has a single hidden layer, which 

the author informs that the optimal number of 

neurons was identified where the error is 

minimized. On the second model the first layer 

has the same number of neurons than the inputs 

and the second hidden layer with the number of 

neurons than the inputs plus one (2 n + 1). The last model has four times the number 

of inputs plus two (4 n + 2) on the first layer and twice the number of inputs plus one 

(2 n + 1) on the second. These numbers were defined by another paper about 

perceptron neural networks approximations (Ismailov 2014). 

Before selecting the inputs, a correlation (R) analysis is conducted between 

possible input candidates to identify possible linear relationships and simplify the 

model. Considering the different limitations on the case being studied the final 

variables identified as good input sources identified for this specific scenario were: 

1. Hour of the day. 

2. External temperature (°C).  

3. Illuminance (lux). 

4. Relative humidity (%). 

5. Number of people inside the building. 

In particular the building population was estimated from the energy 

consumption from the personal computers. Naturally every situation will allow for 

better or worse inputs, this is no different. Additionally it is not explicitly informed 

how the humidity or illuminance are added to the system, if the values used is the one 

before the demand is forecast or if the input is forecast first. The building seems to be 

equipped with sensors that measure these variables. Therefore the question stands. 

Other weather conditions considered were: 

Figure 2.5: A perceptron neuron 

(from MATLAB) 
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• Absolute humidity (%). 

• Visibility (km). 

• Windiness (m/s). 

Data is divided into training and testing sets for simulating how the system 

would actually be used. Performance indexes used were MSE, MAPE and R2. It is 

unknown how many attempts were made for any of the different formulations, a 

unsuspecting reader might understand the results as final and not just one iteration of 

a neural network formulation. 

Two different retraining strategies are attempted, one named Mobile and the 

other Growing training, the first uses the most recent data and second considers all the 

data collected so far. Both returned similar result, although the tests were not 

extensive. A minimum R2 value is determined to trigger a new training of the 

network. 

Uncertainty handling using neural network-based prediction intervals for 

electrical load forecasting (Quan, Srinivasan and Khosravi 2014) presents an 

interesting idea of instead of traying to find one specific result for each time step a 

upper and lower range is produced instead. This way a band is introduced and 

therefore the incertainty prevalent within any type of forecasting is more plainly 

accounted for. 

Additionally, a heat map with the results of different network topologies (how 

many neurons on each layer) is introduced to show what is the optimal structure. But 

the paper is non-transparent with how those test were run, or how many attempts were 

made. There are issues of sheer randomness that greatly hinder the certainty of any 

sort of optimal parameter selection within neural networks. 

The results table of the paper sugests that a low amount of five tests, all of 

which are very similar to each other. 

On Incorporating Practice Theory in Sub-Profile Models for Short Term 

Aggregated Residential Load Forecasting (Stephen, et al. 2015) a few forecasting 

techniques are compared against one another on a community level case study. In this 

paper the best results are achieved by combining a few different techniques such as: 

Presisten Forecast, Flat Forecast, ARIMA, Neural Network and Gaussian Load 

Profile. 
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Daily profiles were identified and labeled to aid the prediciton power of their 

algorithms. No other data beyond time and demand were available, therefore 

enviromental data was absent as an input. The inputs were, for the more elaborate 

forecasting algorithms, the past demand for every 30 minutes and the day of the week. 

The paper also gives some expected reference values for MAPE at different 

grid levels, 13.8%, at village level, 5.15% at university campus and 1.97% at national 

level. Additionally, the paper The Real-Time Optimisation of DNO Owned Storage 

Devices on the LV Network for Peak Reduction  (Rowe, et al. 2014) sugests that an 

aggregation of houses can be forecast with an error ranging between 10% to 35%. 

These number are far from set in stone, but they serve as a comparison parameter. 
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2.3 ORIGIN	  Project	  
The Orchestration of Renewable Integrated Generation in Neighbourhoods (or 

ORIGIN) is a completed project that implemented a renewable energy integration 

system as shown in Figure 2.6. 

 
Figure 2.6: ORIGIN control architecture and Operation. 

From ORIGIN Final Report 

It includes local energy demand and supply and informs the user through an 

UI all the data required to better take advantage of the current situation. It helped 

consumers to shift their demands in accordance with the current/forecast renewable 

energy availability. Which is the overarching goal of ORIGIN, to maximize the use of 

renewable energy sources shifting the use of loads to times of day were supply is 

more abundant. This way less energy is imported, diminishing on and off site 

emissions along with energy costs. 

Although ORIGIN is dependant on technological solutions it also heavily 

relies on the social side. The users gained the tools to better adjust their behaviour 

while also being taught how to use it. 

The eco-communities benefited by the system were Damanhur in Italy, 

Findhorn in Scotland and Tamera in Portugal. The dataset generated by Findhorn was 

used in this paper to explore forecasting solutions with neural networks. 
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3 Tools	  and	  Test	  Structure	  
This section describes the tools used and how the tests worked. 

3.1 Software	  
The software used in this paper is MATLAB with the Neural Network 

Toolbox. This software and toolbox are very flexible while still keeping a very simple 

UI, in a way that usual worries and pitfalls with “regular” programming are avoided 

in favour of focusing on the actual problem at hand. 

Additionally, the Parallel Computing Toolbox is also used to employ all cores 

of the CPU for extra processing power since the sheer amount of training required in 

the test batteries is quite great. Far larger than what would be required to actually 

deploy this type of system, therefore being valid for use within the confines of the 

testing here presented. 
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3.1.1 Neural	  Network	  Toolbox	  
The four types of neural networks defined by the toolbox are for clustering, 

data fitting, pattern recognition and time series. 

Clustering is used to classify 

data into clusters, therefore grouping 

samples that are alike. In this type no 

predefined cluster types are defined, 

only the number of categories that will 

be available to the NN. 

Data fitting is good creating a 

relationship function between numeric 

inputs and outputs. 

Pattern recognition will 

attempt to classify samples with 

previously known and classified 

training samples. 

Time series can be used to 

forecast dynamic time series. A user-

defined number of past inputs are used 

to predict future behaviour. 

Clustering could be used to find 

demand patterns on each day. Therefore having different profiles that repeat 

throughout the year. Some pre-testing was done with the strategy, the results were not 

outstanding and there is a great risk of creating two layers of errors within different 

neural networks. 

The time series type is quite promising in using past values of the network to 

predict future ones. Pre-tests were conducted with interesting results, but not many 

feedback delays were required to significantly slowdown the process. Therefore, data 

fitting was chosen instead. 

In order to give a greater focus on the problem itself both clustering and time 

series network types within MATLAB were dismissed in favour of data fitting was 

used exclusively. 

 

Figure 3.1: MATLAB’s NN example 

architectures 

From top to bottom: clustering, data 

fitting, pattern recognition and time series 
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3.1.2 Test	  Structure	  and	  Approach	  
Unless otherwise 

specified, the standard type 

used was Neural Net Fitting 

with a varying amount of 

inputs, one output and 

network topology. A 6 input, 

10 neuron single hidden layer 

and single output architecture 

is exemplified in Figure 3.2. 

The tests used 

random data division (between Training and Validation sample kinds) and 

Levenberg-Marquardt training algorithm. 

 

In order to mimic as best as possible an actual implementation of a demand 

forecasting neural network the data will be separated and used according to the 

guidelines below. 

Training data: 

• Most of the data will be used to train the network. 

• Whenever possible the train data will contain preferably at least one year. 

• Within the NN this set will be split between the Training, Validation and 

Testing data types in a 0.75, 0.25 and 0.00 ratio. The absence of the test type 

is explained by the external testing performed, being therefore unrequired for 

the actual training. This is done in the mind-set of getting a more realistic 

result than testing data points spread around training ones. 

Testing data: 

• The data used to test the network accuracy will be the most recent one. 

• When the training data is large the test data will contain preferably at least one 

month. During more limited tests it will span a single week. 

• Test data, when not specified means the data used to test 

• Test data does not mean section 2.1’s Figure 2.4 data unless otherwise 

specified. That section talks about a data type within the neural network that 

will separate some samples to independently evaluate the network with no 

Figure 3.2: Neural network topology example with 10 

cells on a single hidden layer. 

(taken from MATLAB NN Toolbox) 
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direct effect on the training. This data is usually random. Since the goal here is 

to predict future behaviour with past values this form of testing does not serve, 

therefore a separate testing mechanism was employed. 

 

Since redoing a neural network with the same parameter will very likely yield 

different results it is necessary to make many repetitions of the same test and evaluate 

the overall tendency. This will be done through the averaging of the results of each 

architecture and input set. 

Unless otherwise specified, each of these tests will be run 50 times for 

different network topologies ranging from 5 to 10 neurons in the first hidden layer and 

from 0 to 10 neurons in the second hidden layer 

The following page show the test results form to be used for the input 

strategies sections. 
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Test Number: Title 

Inputs: Input1 (lower_bound1~upper_bound1), Input2 

(lower_bound2~upper_bound2), Input3 (lower_bound3~upper_bound3), … , InputN 

(lower_boundN~upper_boundN) 

Time step: number of minutes 

Training Duration: number of days or months 

Testing Duration: number of days or months 

 

Figure 3.3: Network topology example testing result average 

MSE R MAE MAPE Time [sec] L1 L2 

	   	   	   	   	   	   	  

	   	   	   	   	   	   	  

	   	   	   	   	   	   	  

Table 3.1: Template top 3 results table 

Plot of the best run including Measured and Predicted. 

Comments: Short commentary of this test battery. 
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These forms include: 

• Test number (sequential) and title. 

• Input names with lower and upper bounds in parenthesis. 

• Time step, or how much is the time difference between each 

measurement/sample. 

• The number of days or months of the training dataset. 

• The number of days or months of the testing dataset. 

• A table with each run’s evaluation parameters (MSE, R, MAE, MAPE) 

that are explained in section 3.2 and the test battery average. 

• Time is the training duration taken by the test computer to train the 

network. 

• Plot of the best network’s Measured and Predicted curves. 

• Short commentary of the findings. It is optional since the Discussion 

section is supposed to house the core concepts extracted from the tests. 

 

The criterion used to define the 3 best networks in a test battery was chosen 

based on MSE. The other measurements are more easily understood, but MSE is the 

variable being optimized by the neural network using the Levenberg-Marquardt 

algorithm, resulting in it being chosen as the primary efficacy measurement. 

The top 3 best networks table will have a slight variation when the test is 

aimed at evaluating the necessary training duration to achieve good results. On that 

part of the testing a “Start Time” was added to inform when the measurement started 

to take place to train the network. 

Unless otherwise specified, each pair of neuron count (on the first and second 

hidden layer) will be tested for a total of 50 times and the results will be averaged in 

the result matrixes. This number was reached after a couple of attempts with higher 

and lower values in order to achieve a good result while not consuming too much 

time. During the pre-test phase the test count was attempted at 100 times and the 

whole process took over 10 hours, this is not only long but the computer is more 

exposed to some type of fault that may render the whole process useless. 
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3.1.3 Test	  Hardware	  
The test computer specifications were: MacBook Pro running OSX Yosemite 

v. 10.10.5 with 2.5 GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 RAM 

memory. 

Since the sheer amount of neural networks being calculated for all the tests 

were so high, the need for additional computing power was obvious. MATLAB’s 

Parallel Computing toolbox became a necessity. All four core of the processor were 

employed by activating the 'useParallel' parameter. Although, there is no certainty in 

how well the process is spread between each core. 

Unfortunately, the GPU could not be called upon with the 'useGPU' parameter 

since the graphics card was an AMD Radeon R9 M370X 2048 MB and MATLAB 

apparently only supports CUDA-enabled NVIDIA GPUs. (MathWorks n.d.) 
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3.2 Error/Efficacy	  Measurements	  
In order to compare how effective each formulation of the neural networks 

outcomes it is necessary to have a quantitative error or efficacy measurements. The 

ones used in this paper are MSE, R, MAE and MAPE. Each of them are described in 

this section and will be utilized on the tests performed on the “Application” sections. 

MSE is the objective function being minimized by the Levenberg-Marquardt 

algorithm on the neural network. But, it is wise to have additional measurements that 

explain the performance of the system from different points of view. Although 

tending to increase or decrease together, this is not a rule and the behaviour of a 

system can be better understood with the help of multiple quantitative evaluation 

tools. 

Acronym Definition Short Synthesis 

MSE Mean Squared 

Error 

Average squared difference between measured and 

predicted variables. The squared characteristic gives 

greater emphasis on large errors. 

R Correlation 

Coefficient 

Linear correlation coefficient, or how much does the 

measured and predicted values have a good linear 

relationship. Since it is bounded from -1 to 1 it is 

easier to compare different systems. 

MAE Mean Absolute 

Error 

Average difference between the measured and 

predicted variables. 

MAPE Mean Absolute 

Percentage Error 

Average perceptual difference between the 

measured and predicted variables. It is a more 

intuitive error measurement. Does not have an overt 

bias such as MSE. 

Table 3.2: Error/Efficacy Measurements short synthesis 

Each individual error/efficacy measurement is discussed and shown in more 

detail below. 

 

3.2.1 MSE	  –	  Mean	  Squared	  Error	  
As the name suggests, MSE is an average measurement of all squared values 

of individual errors, or the difference between predicted and measured variable of 



37 

interest. The MSE should be as low as possible for an effective NN. The formula used 

is as shown bellow. 

MSE = 1
n

Xi −Yi( )2
i=1

n

∑  

where: 

• n is the number of samples. 

• Xi is the i sample’s predicted value. 

• Yi is the i sample’s measured value. 

 

Since the error value is squared, bigger error values receive more emphasis 

than smaller ones. Therefore, outliers have a greater impact on MSE. Therefore it is a 

good indicator of the present of large errors and not the average error of the system. 

MSE cannot be used to compare systems that have different ranges if they are 

not normalized first. E.g.: a system in which the output goes from 0 to 300 kW cannot 

be compared using MSE on a system that goes from 0 to 1,000 kW, since it will vary 

a lot in function with the squared error measurements. 

MSE is one of the more frequent objective functions used by neural networks. 

Minimizing it is the whole point of the algorithm. 

 

3.2.2 R	  –	  Correlation	  Coefficient	  
The correlation coefficient R is a coefficient that informs how much two 

arrays correlate to one another linearly. The equation below demonstrates how to 

calculate R. 

R =
Xi −My( ) Yi −Mx( )( )

SSx( ) SSy( )( )i=1

n

∑  

SSx = Xi −Mx( )2
i=1

n

∑   SSy = Xi −My( )
2

i=1

n

∑  

where: 

• n is the number of samples. 

• Xi is the i sample’s predicted value. 

• Yi is the i sample’s measured value. 

• Mx is the mean of Xi values 
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• My is the mean of Yi values 

 

The value of R ranges from -1 to 1. A value of -1 indicates total negative 

linear correlation, while a 1 indicates a total positive linear correlation and a 0 

represents no correlation at all. 

If the goal is to compare two arrays that are supposed to be as similar as 

possible a near positive one value is to be expected. 

 

3.2.3 MAE	  –	  Mean	  Absolute	  Error	  
This error metric is the average of the module of all error measurements. So, it 

shows the positive error average of a sampling pool. MAE should be as low as 

possible for an effective NN. 

MAE = 1
n

Xi −Yi
i=1

n

∑  

where: 

• n is the number of samples. 

• Xi is the i sample’s predicted value. 

• Yi is the i sample’s measured value. 

 

This tool is useful to give a feeling of how much error each sample has 

produced in average. Again, as the MSE it does not translate well between two 

different systems with different output ranges. Therefore, there are better tools than 

MAE, such as MAPE. 

 

3.2.4 MAPE	  –	  Mean	  Absolute	  Percentage	  Error	  
MAPE, is the average of the module of the perceptual error. MAPE should be 

as low as possible for an effective NN. 

MAPE = 1
n

Yi − Xi

Yii=1

n

∑  

where: 

• n is the number of samples. 

• Xi is the i sample’s predicted value. 

• Yi is the i sample’s measured value. 
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MAPE in essence represents how much in average a model is distant from the 

measured reality. This measurement is very interesting in the sense that the result is in 

percentage form, therefore a value that humans are more used to encounter and more 

easily understood. Differently from MSE and MAE different systems can be 

compared even when they gave different output ranges. 

One weakness of the MAPE is that null values of the measured variable take 

the result to infinity. Since during the tests performed in the Application sections 

some of these where encountered a safeguard was put in place that if the measured 

sample was zero the error value for that data point would be set to 1, or 100%. 

MAPE can be shown as a percentile value. This paper will adopt this format 

since it is easier to be understood that way. 
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4 Application	  at	  Macrogrid	  Level	  
This section encompasses “hard” results of the testing done with Macrogrid 

level datasets. 

The objective of the tests was to find if with only time and demand data 

information a good prediction could be made on what is considered the easiest level to 

forecast. Additionally, what form or treatment the inputs required to reach the desired 

results. Since, data on this level is abundant there was no exploration on dataset size. 

 

4.1 Introduction	  
G.B. Grid Watch is an online 5-minute step database of the behaviour of Gran 

Britain’s grid behaviours. There are plenty of data available for past years to be found 

of not only demand, but also supply (from different sources) and frequency. 

Using the G.B. Grid Watch database an attempt was made to create a NN that 

would predict future demand behaviour. This section will explore how the tests 

evolved to reach good forecasting results. 

The following attempts trained the network with data from the calendar year 

of 2015 (January to December) to train the network and data from 2016 (January to 

July) to test the forecasting proficiency of the network.  
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4.2 Test	  Results	  

4.2.1 Input	  Strategies	  
This sub section is focused on different input sets and how they affect the end 

result. Firstly, the histogram for each both the training and testing datasets will be 

analysed. 

 

Training dataset histogram: 

Figure 4.1 shows the histogram 

for the day of year samples within the 

training data set, or the data pool used by 

the network to train its weights in order to 

reach a good generalization of the rules 

driving the demand. The values range 

from 1 to 365, or from January to 

December of 2015. There are entries for 

each of the demand samples. 

Just like the test set there are a few 

missing points missing from the data pool. 

Overall this dataset represents the whole 

year of 2015 for the G.B. Grid Watch. 

Figure 4.2 shows a close-up of the 

demand histogram for the training data 

set and its unit is mega-watt (MW). The 

curve is nicely distributed. Therefore, 

there is not much of a bias towards any 

particular value, which avoids making the 

network less of a generalist. 

The actual histogram is 

represented in Figure 4.3. There are 3 

very big outliers that simply spike on 

Figure 4.1: GB training dataset day of 

year histogram 

Figure 4.2: GB training dataset demand 

histogram close-up 
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three different dates. Since they are so 

few it is not visible on the graph. Due to 

them being so high and lasting a mere 30 

minutes time step it is very likely that 

they are reading errors, but will be kept 

regardless. 

The G.B. Watch training pool 

includes a total of 17,491 entries. 

 
Figure 4.3: GB training dataset demand 

full histogram 

m 
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Testing dataset histogram: 

Figure 4.4 shows Grand Britain’s 

Grid Watch histogram for the day of year 

samples within the test data set, or the 

data pool used after the network is trained 

to evaluate the forecasting power of the 

network. The values range from 1 to 190, 

or from January to mid-July of 2016. 

There are entries for each of the demand 

samples. 

Although G.B. Grid Watch has a 

5-minute interval between each sampling 

a time step of 30 minutes was used since higher levels of detail is unneeded. Each day 

that was fully sampled will have 48 entries on the histogram. It can be noted that there 

are missing data points on the [0,10[ and [20,30[ columns. The last column is slightly 

larger because its range is [180,190], therefore including one additional day beyond 

its peers. 

Figure 4.5 shows Great Britain’s 

Grid Watch demand histogram for the 

test data set, its unit is mega-watt (MW). 

Overall it is a good curve to work with 

since it has a “normal like” aesthetic to it. 

There are some outlier data points 

where the demand can reach low values. 

This can be due to blackouts or straight 

reading errors. Just 5 entries were lower 

than 19,000 MW and they were all within 

the same week, which could indicate 

plausible reasons for happening. 

Regardless, it was kept and the networks will have to deal with this sort of “trash 

data”. 

The G.B. Watch testing pool includes a total of 9,075 entries. 

 

Figure 4.4: GB test dataset day of year 

histogram 

Figure 4.5: GB test dataset demand 

histogram 
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Test 4.1 – GB, Date/time inputs only 

Inputs: Year (2015~2016), Month (1~12), Day (1~31), Hour (0~23.5), Day of 

the week (1~7) 

Time step: 30 minutes 

Training Duration: 12 months 

Testing Duration: 6.5 months 

 

Figure 4.6: Test 4.1 – GB, Date/time inputs only average test results 

MSE R MAE MAPE Time [sec] L1 L2 

7,141,251.7	   0.9390	   1,923.3	   6.51	   3.14	   9	   10	  

7,210,620.2	   0.9365	   1,924.8	   6.50	   4.52	   9	   4	  

7,218,014.3	   0.9383	   1,958.3	   6.60	   5.75	   10	   4	  

Table 4.1: Test 4.1 – GB, Date/time inputs only top 3 results 
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Figure 4.7: Test 4.1 – GB, Date/time inputs, best general and close-up graph 

X-axis = Time Step (30 min), Y-axis = Demand (MW) 

Comments: Interestingly, Gran Britain macrogrid demand is so predictable 

that a network with only the most basic date inputs and trained with only 2015 data is 

enough to yield quite accurate results. But, better results are likely with better input 

strategies. 

It recommends ideally above 8 neurons in the first hidden layer. 
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Test 4.2 – GB, Year removed 

Inputs: Month (1~12), Day (1~31), Hour (0~23.5), Day of the week (1~7) 

Time step: 30 minutes 

Training Duration: 12 months 

Testing Duration: 6.5 months 

 

Figure 4.8: Test 4.2 – GB, Year removed average test results 

MSE R MAE MAPE Time [sec] L1 L2 

7,089,826.7	   0.9391	   1,920.5	   6.53%	   3.36	   9	   5	  

7,166,602.8	   0.9333	   1,969.5	   6.67%	   10.94	   7	   6	  

7,176,580.4	   0.9370	   1,914.7	   6.54%	   5.12	   10	   7	  

Table 4.2: Test 4.2 – GB, Year removed top 3 results 
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Figure 4.9: Test 4.2 – GB, Year removed, best general and close-up graph 

X-axis = Time Step (30 min), Y-axis = Demand (MW) 

Comments: Figure 4.10 compares the results with and without the year. In it, 

the values for the testing done for each battery are subtracted from one another and 

the resulting number signal is analysed. Red values lean towards the yearless 

networks while blue towards the one that contains the year. The removal of outliers, 

e.g. on MSE [9,6] and [5,10], further this notion. 

Since the training data only contains one year (2015) the network is not 

supposed to actually learn anything from it. Therefore it is not seen as useful to keep 

it as an input. 
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Figure 4.10: Test 4.1 and Test 4.2 comparison 

Red values represents a better result on Test 4.2 (without year input) and blue 

indicates a better result on Test 4.1 (with year input). 

 



49 

Test 4.3 – GB, Previous hour demand 

Inputs: Month (1~12), Day (1~31), Hour (0~23.5), Day of the week (1~7), 

Previous hour demand (0~220,00 MW) 

Time step: 30 minutes 

Training Duration: 12 months 

Testing Duration: 6.5 months 

 

Figure 4.11: Test 4.3 – GB, Previous hour demand average test results 

MSE R MAE MAPE Time [sec] L1 L2 

552,772.9	   0.9937	   399.0	   1.49%	   1.46	   10	   9	  

571,266.1	   0.9935	   393.0	   1.49%	   2.71	   10	   7	  

579,174.7	   0.9935	   397.4	   1.47%	   1.66	   10	   10	  

Table 4.3: Test 4.3 – GB, Previous hour demand top 3 results 
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Figure 4.12: Test 4.3 – GB, Previous hour demand best general and close-up graph 

X-axis = Time Step (30 min), Y-axis = Demand (MW) 

Comments: The previous hour demand of each point was included to give the 

NN a better idea of the demand output to be expected. Therefore, this network 

forecasts with one hour in advance. This result is very good, but it is a shorter term 

forecast then what this report is aiming for. 
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Test 4.4 – GB, Previous hour demand and day of year 

Inputs: Day of year (1~365), Hour (0~23.5), Day of the week (1~7), Previous 

hour demand (0~220,00 MW) 

Time step: 30 minutes 

Training Duration: 12 months 

Testing Duration: 6.5 months 

 
Figure 4.13: Test 4.4 – GB, Previous hour demand and day of year average test results 

MSE R MAE MAPE Time [sec] L1 L2 

559,966.4	   0.9937	   384.7	   1.41%	   1.25	   9	   8	  

583,143.2	   0.9934	   369.6	   1.34%	   1.64	   8	   10	  

584,951.8	   0.9934	   392.9	   1.47%	   3.23	   10	   10	  

Table 4.4: Test 4.4 – GB, Previous hour demand and day of year top 3 results 
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Figure 4.14: Test 4.4 – GB, Previous hour demand and day of year, best general and 

close-up graphs 

X-axis = Time Step (30 min), Y-axis = Demand (MW) 

Comments: The substitution of the month and day for the “day of year” 

produced similar results. 

Figure 4.15 compares the results from the “day of year” and the month/day 

combination. Red values lean towards the month/day inputs while blue towards the 

“day of year” scheme. There is a slight predominance of the regular date scheme. The 

removal of outliers, e.g. on MSE [8,3], aid this scenario. 

This result is plausible from the standpoint that with a full year’s data set the 

most important aspect is not on the day itself and more on the season, in this case 

better represented by the months. This might change with different tests and data set, 

specially with incomplete ones. 

Further testing is required. Regardless, the month/day scheme will be kept. 
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Figure 4.15: Test 4.3 and Test 4.4 comparison 

Red values represents a better result on Test 4.4 (with day of the year) and 

blue indicates a better result on Test 4.3 (with month and day inputs). 
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Test 4.5 – GB, Previous day’s average demand 

Inputs: Month (1~12), Day (1~31), Hour (0~23.5), Day of the week (1~7), 

Previous day’s average demand (0~55,00 MW) 

Time step: 30 minutes 

Training Duration: 12 months 

Testing Duration: 6.5 months 

 
Figure 4.16: Test 4.5 – GB, Previous day’s average demand average test results 

MSE R MAE MAPE Time [sec] L1 L2 

3,800,879.9	   0.9569	   1,380.5	   4.70%	   2.81	   9	   7	  

3,823,317.6	   0.9563	   1,383.6	   4.71%	   2.65	   9	   10	  

3,853,457.7	   0.9575	   1,375.7	   4.72%	   6.16	   7	   9	  

Table 4.5: Test 4.5 – GB, Previous day’s average demand top 3 results 
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Figure 4.17: Test 4.5 – GB, Previous day’s average demand, best general and close-

up graphs 

X-axis = Time Step (30 min), Y-axis = Demand (MW) 

Comments: The network learned a standard demand pattern and scales it 

according to the last day’s average demand while taking into consideration the date 

variables. With this it is possible to have a day lead forecast. 
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Test 4.6 – GB, Previous 24 hour demand 

Inputs: Month (1~12), Day (1~31), Hour (0~23.5), Day of the week (1~7), 

Previous 24 hour demand (0~220,00 MW) 

Time step: 30 minutes 

Training Duration: 12 months 

Testing Duration: 6.5 months 

 
Figure 4.18: Test 4.6 – GB, Previous 24 hour demand average test results 

MSE R MAE MAPE Time [sec] L1 L2 

4,223,905.6	   0.9531	   1,385.3	   4.78%	   2.84	   6	   7	  

4,261,385.1	   0.9535	   1,391.9	   4.83%	   2.06	   10	   7	  

4,281,058.9	   0.9532	   1,395.7	   4.81%	   2.52	   6	   9	  

Table 4.6: Test 4.6 – GB, Previous 24 hour demand top 3 results 
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Figure 4.19: Test 4.6 – GB, Previous 24 hour demand, run 1 general and close-up 

graphs 

X-axis = Time Step (30 min), Y-axis = Demand (MW) 

Comments: In order to expand the forecasting capabilities an attempt that 

uses the demand 24-hour in the past (the same time of day on the day before) as an 

alternative from Test 4.5. The results are very good and show a small absolute error of 

a little above 5%. Differently from Test 4.5 the shape of the demand changes 

depending on the previous 24 hour demand and the graph is not as smooth. 

The comparison made in Figure 4.20 indicates that the previous day’ average 

demand is a better forecasting strategy, especially if the outlier [7,5]  in the MSE is 

removed. 
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Figure 4.20: Test 4.5 and Test 4.6 comparison 

Red values represents a better result on Test 4.6 (previous 24-hour) and blue 

indicates a better result on Test 4.5 (previous day’s average demand). 
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Test 4.7 – GB, No date and previous day’s average demand 

Inputs: Hour (0~23.5), Day of the week (1~7), Previous day’s average 

demand (0~55,00 MW) 

Time step: 30 minutes 

Training Duration: 12 months 

Testing Duration: 6.5 months 

 
Figure 4.21: Test 4.7 – GB, No date and previous day’s average demand average test 

results 

MSE R MAE MAPE Time [sec] L1 L2 

4,455,212.3	   0.9490	   1,507.7	   5.04%	   5.30	   8	   7	  

4,539,204.3	   0.9476	   1,523.7	   5.09%	   2.42	   10	   7	  

4,539,496.2	   0.9481	   1,529.2	   5.11%	   4.50	   9	   7	  

Table 4.7: Test 4.7 – GB, No date and previous day’s average demand top 3 results 
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Figure 4.22: Test 4.7 – GB, No date and previous day’s average demand, best general 

and close-up graphs 

X-axis = Time Step (30 min), Y-axis = Demand (MW) 

Comments: Figure 4.23 shows that this configuration is only marginally 

better in this scenario. Therefore, for the macrogrid level where information is 

supposedly abundant it is advisable to keep date variables in the model. 
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Figure 4.23: Test 4.5 and Test 4.7 comparison 

Red values represents a better result on Test 4.7 (without date inputs) and blue 

indicates a better result on Test 4.5 (with date inputs). 
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4.3 Overview	  
The following table contains the best run for the test batteries with one-hour 

ahead forecast capability. 
Test # / Title 

MSE R MAE MAPE 
Time 

[sec] 
L1 L2 

Test 4.3 – GB, 

Previous hour demand 
552,772.9	   0.9937	   399.0	   1.49%	   1.46	   10	   9	  

Test 4.4 – GB, 

Previous hour demand 

and day of year 

559,966.4	   0.9937	   384.7	   1.41%	   1.25	   9	   8	  

Table 4.8: GB Grid Watch, one hour lead forecast test best results overview 

 

The following table contains the best run for the test batteries with one-day 

ahead forecast capability. 
Test # / Title 

MSE R MAE MAPE 
Time 

[sec] 
L1 L2 

Test 4.1 – GB, 

Date/time inputs 
7,141,251.7	   0.9390	   1,923.3	   6.51	   3.14	   9	   10	  

Test 4.2 – GB, Year 

removed 
7,089,826.7	   0.9391	   1,920.5	   6.53%	   3.36	   9	   5	  

Test 4.5 – GB, 

Previous day’s 

average demand 

3,800,879.9	   0.9569	   1,380.5	   4.70%	   2.81	   9	   7	  

Test 4.6 – GB, 

Previous 24 hour 

demand 

4,223,905.6	   0.9531	   1,385.3	   4.78%	   2.84	   6	   7	  

Test 4.7 – GB, No 

date and previous 

day’s average demand 

4,455,212.3 0.9490 1,507.7 5.04% 5.30 8 7 

Table 4.9: GB Grid Watch, one day lead forecast test best results overview 
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Test 4.5 had the best run that with a day ahead forecasting capability. These 

tests show that for a macro grid level with minimal data (time/demand) a very decent 

forecast can be made with relative ease. Even with only date/time inputs the results 

were quite good. Additionally, it is worth repeating that the data sets had untreated 

gaps derived from the G.B. Grid Watch. 

More tests could be made to further optimize this network: like checking how 

much data is needed to train it properly and evaluating retraining requirements. But, 

on the macrocrid level the demand is shared between many consumers and produces a 

more consistent load profile. Therefore, more effort should be allocated elsewhere, on 

a lower network levels. 

Since data availability is not an issue with the macrogrid there is no shortage 

of information. A new database is not necessary to be constructed before any type of 

forecasting can be deployed. Therefore, it is not necessary to test how much data is 

required to properly train a neural network. 

At this level even a very poor set of inputs yielded good results, therefore 

testing further in this level is unrequired. 
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5 Application	  at	  Community	  Level	  
This section encompasses “hard” results of the testing done with Community 

level datasets. 

The objective here is to explore input selections, the impact of the database 

size on the performance and analyse how different is the impact of the prediction 

depending on the time of day. These will be explored in Input Strategies, Dataset 

Build-up Time and Performance Distribution sub-sections respectively. 

 

5.1 Introduction	  
Findhorn is a village in Moray, Scotland. The ORIGIN project developed 

there created a year worth of demand readings that will be used in this section to test 

at the community level forecasting using neural networks. 

With a community level grid the foreseeability of the demand is expected to 

be lesser than that of the macrogrid. With a larger set of consumers the macrogrid 

averages out their uncertainties. A benefit that is greatly reduced on communities. 

The database available for Findhorn community’s electrical energy demand 

ranged from September 2014 to September 2015. 
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5.2 Test	  Results	  

5.2.1 Input	  Strategies	  
This sub section is focused on different input sets and how they affect the end 

result. Firstly, the histogram for each both the training and testing datasets will be 

analysed. 

 

Training dataset histogram: 

Figure 5.1 shows Findhorn’s 

training data set, or the data pool used by 

the network to train its weights in order to 

reach a good generalization of the rules 

driving the demand. It can range from 1 

to 365, and covers from August 2014 to 

July 2015. There are entries for each of 

the demand samples. 

The missing data is mostly from 

the month separated for the test dataset. 

Figure 5.2 shows Findhorn’s 

demand histogram for the training data 

set, its unit is kilo-watt (kW). The values 

encountered ranged from 0 to 300 kW. 

The curve is nicely distributed. 

Therefore, there is not much of a bias 

towards any particular value, which 

avoids making the network less of a 

generalist. 

There are 58 outlier data points 

where entries were lower than 1 KW. 

Some of them occur continuously, quite 

likely due to planned maintenance, a few 

others are more spurious and are probably reading errors. They were kept in the 

database. 

Figure 5.1: FH training dataset day of 

year histogram 

Figure 5.2: FH training dataset demand 

histogram 
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Findhorn’s training pool includes a total of 15,984 entries. 

 

Testing dataset histogram: 

Figure 5.3 shows Findhorn’s test 

data set, or the data pool used after the 

network is trained to evaluate the 

forecasting power of the network. The 

values range from 213 to 244, August 

early September of 2015. There are 

entries for each of the demand samples. 

As the histogram depicts there are 

no missing data points, which is a good 

sign of clean data. 

Figure 5.4 shows the demand 

histogram for Findhorn’s test data set, its 

unit is kilo-watt (kW). The values 

encountered ranged from 0 to 180 kW. 

No biases are expected from the form. 

There are 3 outlier data points 

where entries were 0 KW. They occur in 

the last 1.5 hour of the 1st September 

2015. Since they are continuous it might 

be due to technical faults in the network. 

They were kept in the database. 

Findhorn’s testing pool includes a 

total of 1,536 entries. 

 

 

Figure 5.3: FH test dataset day of year 

histogram 

Figure 5.4: FH test dataset demand 

histogram 
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Test 5.1 – FH, Previous day average demand 

Inputs: Month (1~12), Day (1~31), Hour (0~23.5), Day of the week (1~7), 

Previous day average demand (0~300 kW) 

Time step: 30 minutes 

Training Duration: 11 months 

Testing Duration: 1 month 

 
Figure 5.5: Test 5.1 – FH, Previous day average demand average test results 

MSE R MAE MAPE Time [sec] L1 L2 

175.5	   0.7951	   9.8	   10.11%	   2.79	   10	   5	  

175.9	   0.7972	   9.8	   10.13%	   2.01	   9	   6	  

176.7	   0.7910	   9.8	   10.05%	   13.93	   5	   10	  

Table 5.1: Test 5.1 – FH, Previous day average demand results 
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Figure 5.6: Test 5.1 – FH, Previous day average demand, best graph 

X-axis = Time Step (30 min)(kW), Y-axis = Demand (kW) 

Comments: The network shows a decent performance. But it is clear that the 

unpredictability of this gird level induces some hard errors due to unforeseen spikes in 

demand. 
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Test 5.2 – FH, Previous 24 hour and day average demand 

Inputs: Month (1~12), Day (1~31), Hour (0~23.5), Day of the week (1~7), 

Previous day average demand (0~300 kW), Hour (0~23.5), Previous 24 hour demand 

(0~300 kW) 

Time step: 30 minutes 

Training Duration: 11 months 

Testing Duration: 1 month 

 

Figure 5.7: Test 5.2 – FH, Previous 24 hour and day average demand average test 

results 

MSE R MAE MAPE Time [sec] L1 L2 

164.4	   0.8105	   9.6	   9.83%	   1.21	   9	   6	  

166.8	   0.8057	   9.5	   9.59%	   5.16	   10	   4	  

168.2	   0.8013	   9.7	   9.86%	   1.37	   7	   6	  

Table 5.2: Test 5.2 – FH, Previous 24 hour and day average demand results 
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Figure 5.8: Test 5.2 – FH, Previous 24 hour and day average demand, best plot 

X-axis = Time Step (30 min)(kW), Y-axis = Demand (kW) 

Comments: As Figure 5.9 shows, this input selection outperforms one with 

just the previous day’s average demand. 

 

 
Figure 5.9: Test 5.1 and Test 5.2 comparison 

Red values represents a better result on Test 5.2 (with both previous day’s 

average demand and previous 24-hour demand) and blue indicates a better result on 

Test 5.1 (with only previous day’s average demand). 
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Test 5.3 – FH, Previous 24 hour, 168 hour and day average demand 

Inputs: Month (1~12), Day (1~31), Hour (0~23.5), Day of the week (1~7), 

Previous 24 hour demand (0~300 kW), Previous 168 hour demand (0~300 kW), 

Previous day’s average demand (0~300 kW) 

Time step: 30 minutes 

Training Duration: 11 months 

Testing Duration: 1 month 

 

Figure 5.10: Test 5.3 – FH, Previous 24 hour, 168 hour and day average demand 

average test results 

MSE R MAE MAPE Time [sec] L1 L2 

162.9	   0.8082	   9.3	   9.42%	   5.43	   10	   6	  

165.4	   0.8087	   9.5	   9.73%	   2.94	   9	   8	  

166.4	   0.8093	   9.5	   9.66%	   2.83	   10	   5	  

Table 5.3: Test 5.3 – FH, Previous 24 hour, 168 hour and day average demand 

results 
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Figure 5.11: Test 5.3 – FH, Previous 24 hour, 168 hour and day average demand, 

best plot 

X-axis = Time Step (30 min)(kW), Y-axis = Demand (kW) 

Comments: According to Figure 5.12 including the previous 168 (week) 

demand appears marginally better in average. Not enough to say to use this 

configuration instead of the one without. But, beyond that, it requires the user to 

discard the first week of the database to be used since it will not include the previous 

week’s values to be used as inputs. Therefore, it should be less prioritized based on 

that fact alone. 

 

 

Figure 5.12: Test 5.2 and Test 5.3 comparison 
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Red values represents a better result on Test 5.3 (with previous day’s average 

demand, previous 24-hour and 168-hour demand) and blue indicates a better result on 

Test 5.2 (with both previous day’s average demand and previous 24-hour demand). 
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Test 5.4 – FH, No date inputs 

Inputs: Hour (0~23.5), Day of the week (1~7), Previous 24 hour demand 

(0~300 kW), Previous day average demand (0~300 kW) 

Time step: 30 minutes 

Training Duration: 11 months 

Testing Duration: 1 month 

 
Figure 5.13: Test 5.4 – FH, No date inputs average test results 

MSE R MAE MAPE Time [sec] L1 L2 

178.0	   0.7942	   9.8	   9.99%	   1.40	   7	   9	  

178.4	   0.7960	   10.0	   10.09%	   1.03	   7	   9	  

178.5	   0.7935	   9.8	   9.97%	   5.27	   7	   10	  

Table 5.4: Test 5.4 – FH, No date inputs results 
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Figure 5.14: Test 5.4 – FH, No date inputs best graphs 

X-axis = Time Step (30 min)(kW), Y-axis = Demand (kW) 

Comments: Regardless of the result, this format becomes necessary when the 

data pool is small, therefore not having enough different samples to properly train the 

date variables. 
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Test 5.5 – FH, Binary day of the week 

Inputs: Hour (0~23.5), Sunday (0 or 1), Monday (0 or 1), Tuesday (0 or 1), 

Wednesday (0 or 1), Thursday (0 or 1), Friday (0 or 1), Saturday, Previous 24 hour 

demand (0~300 kW), Previous day’s average demand (0~300 kW) 

Time step: 30 minutes 

Training Duration: 11 months 

Testing Duration: 1 month 

 
Figure 5.15: Test 5.5 – FH, Binary day of the week average test results 

MSE R MAE MAPE Time [sec] L1 L2 

131.7	   0.8522	   8.5	   8.82%	   6.85	   7	   8	  

133.3	   0.8525	   8.6	   9.07%	   7.60	   10	   2	  

133.8	   0.8508	   8.5	   8.87%	   3.49	   5	   9	  

Table 5.5: Test 5.5 – FH, Binary day of the week results 
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Figure 5.16: Test 5.5 – FH, Binary day of the week, best general and close-up graphs 

X-axis = Time Step (30 min)(kW), Y-axis = Demand (kW) 

Comments: As shown on Table 5.5 when compared to Table 5.2, the binary 

format helps the network achieve more optimal performances. Figure 5.17 shows that 

it indeed performs better when the topology is more complex (more neurons on the 

hidden layers). This can be specially seen on the top right corner of the comparison 

where the topology is 10 neurons on both layers. 

 

 

Figure 5.17: Test 5.4 and Test 5.5 comparison 

Red values represents a better result on Test 5.5 (with binary day of the week) 

and blue indicates a better result on Test 5.4 (integer day of the week). 
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Test 5.6 – FH, Whole day network demand 

Inputs: Sunday (0 or 1), Monday (0 or 1), Tuesday (0 or 1), Wednesday (0 or 

1), Thursday (0 or 1), Friday (0 or 1), 48 demand inputs (0~300 kW) one for each 

time step of the previous day  

Output: 48 outputs (0~300 kW) one for each time step of the day being 

forecast 

Time step: 30 minutes 

Training Duration: 11 months 

Testing Duration: 1 month 

 
Figure 5.18: Test 5.6 – FH, Whole day network demand average test results 

MSE R MAE MAPE Time [sec] L1 L2 

169.3	   0.8026	   9.5	   9.77%	   1.72	   7	   1	  

169.7	   0.8011	   9.5	   9.61%	   1.51	   8	   1	  

170.2	   0.8056	   9.9	   10.20%	   2.18	   8	   2	  

Table 5.6: Test 5.6 – FH, Whole day network demand results 
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Comments: This configuration differs in the sense that it has multiple outputs 

(one for each time step of the day being forecast). It is also a very common way 

adopted to use neural networks for demand forecasting. Interestingly it performs 

better with simpler networks (small amount of neurons). 

From what is seen on Figure 5.19, at least with the neuron count constraints 

adopted here, this configuration underperforms the single output network. 

 

 

Figure 5.19: Test 5.4 and Test 5.6 comparison 

Red values represents a better result on Test 5.6 (whole day network) and blue 

indicates a better result on Test 5.4 (previous day’s average demand and pervious 24-

hou demand). 
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5.2.2 Dataset	  Build-‐up	  Time	  
On this section, differently from what was done in the previously, will focus 

on how much the time used for training will affect the results. Also, the tests 

performed here swept the whole data available. This means that training was 

performed for example on January then tested on the first week of February, then 

another run trained with February and was tested with the first week of March and so 

on and so forth. 

Test weeks that contained near zero values had could not be used and were 

skipped. This had to be done because near zero values skyrocket the error 

measurements and the reading become unreasonable. This issue will be discussed on 

later section and can be visualized on Figure 5.32. 
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Test 5.7 – FH, Previous 24 hour and day average demand, 7 days training 

Inputs: Hour (0~23.5), Day of the week (1~7), Previous 24 hour demand 

(0~300 kW), Previous day average demand (0~300 kW) 

Time step: 30 minutes 

Training Duration: 7 days 

Testing Duration: 7 days 

 

Figure 5.20: Test 5.7 – FH, Previous 24 hour and day average demand, 7 days 

training average test results 

MSE R MAE MAPE Time 

[sec] 

L1 L2 Start 

Date 

168.6	   0.7785	   10.0	   0.1023	   0.36	   8	   4	   27/07/15	  

177.5	   0.7424	   10.4	   0.1087	   0.32	   7	   2	   13/07/15	  

185.1	   0.7223	   10.4	   0.1052	   0.27	   7	   0	   13/07/15	  

Table 5.7: Test 5.7 – FH, Previous 24 hour and day average demand, 7 days training 

best results 
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Figure 5.21: Test 5.7 – FH, Previous 24 hour and day average demand, 7 days 

training best graph 

X-axis = Time Step (30 min)(kW), Y-axis = Demand (kW) 

Comments: With only 7 days worth of training the results is quite bad as 

expected. It is not a complete waste, but the error values are indeed high. 
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Test 5.8 – FH, Previous 24 hour and day average demand, 30 days training 

Inputs: Hour (0~23.5), Day of the week (1~7), Previous 24 hour demand 

(0~300 kW), Previous day average demand (0~300 kW) 

Time step: 30 minutes 

Training Duration: 30 days 

Testing Duration: 7 days 

 

Figure 5.22: Test 5.8 – FH, Previous 24 hour and day average demand, 30 days 

training average test results 

MSE R MAE MAPE Time 

[sec] 

L1 L2 Start 

Date 

121.3	   0.8451	   8.4	   0.0839	   1.02	   7	   10	   05/07/15	  

124.7	   0.8192	   9.0	   0.0923	   1.15	   10	   0	   29/06/15	  

126.9	   0.8159	   8.9	   0.0910	   1.32	   6	   3	   29/06/15	  

Table 5.8: Test 5.8 – FH, Previous 24 hour and day average demand, 30 days 

training best results 
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Figure 5.23: Test 5.8 – FH, Previous 24 hour and day average demand, 30 days 

training best graph 

X-axis = Time Step (30 min)(kW), Y-axis = Demand (kW) 

Comments: Interestingly, the binary days of the week configuration 

performed worse with less data available, therefore it might be interesting to change 

the strategy depending on how much data is available. 
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Test 5.9 – FH, Previous 24 hour and day average demand, 90 days training 

Inputs: Hour (0~23.5), Day of the week (1~7), Previous 24 hour demand 

(0~300 kW), Previous day average demand (0~300 kW) 

Time step: 30 minutes 

Training Duration: 90 days 

Testing Duration: 7 days 

 

Figure 5.24: Test 5.9 – FH, Previous 24 hour and day average demand, 90 days 

training average test results 

MSE R MAE MAPE Time 

[sec] 

L1 L2 Start 

Date 

105.1	   0.8551	   8.1	   0.0843	   0.67	   6	   5	   13/04/15	  

105.8	   0.8813	   7.9	   0.0805	   0.60	   5	   8	   21/05/15	  

107.6	   0.8545	   8.1	   0.0831	   0.53	   8	   3	   05/05/15	  

Table 5.9: Test 5.9 – FH, Previous 24 hour and day average demand, 90 days 

training best results 
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Figure 5.25: Test 5.9 – FH, Previous 24 hour and day average demand, 90 days 

training, best graph 

X-axis = Time Step (30 min)(kW), Y-axis = Demand (kW) 

Comments: As expected more data means more accuracy as the comparison 

on Figure 5.26. 

 

 

 

Figure 5.26: Test 5.8 and Test 5.9 comparison 

Red values represents a better result on Test 5.9 (60 days of training) and blue 

indicates a better result on Test 5.8 (30 days of training). 
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Test 5.10 – FH, Previous 24 hour and day average demand, 180 days training 

Inputs: Hour (0~23.5), Day of the week (1~7), Previous 24 hour demand 

(0~300 kW), Previous day average demand (0~300 kW) 

Time step: 30 minutes 

Training Duration: 180 days 

Testing Duration: 7 days 

 

Figure 5.27: Test 5.10 – FH, Previous 24 hour and day average demand, 180 days 

training average test results 

MSE R MAE MAPE Time 

[sec] 

L1 L2 Start 

Date 

102.4	   0.8610	   7.8	   0.0817	   1.79	   8	   8	   13/01/15	  

104.8	   0.8518	   7.8	   0.0809	   0.78	   7	   2	   13/01/15	  

105.6	   0.8561	   8.0	   0.0827	   1.17	   10	   0	   13/01/15	  

Table 5.10: Test 5.10 – FH, Previous 24 hour and day average demand, 180 days 

training best results 
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Figure 5.28: Test 5.10 – FH, Previous 24 hour and day average demand, 180 days 

training, best graph 

X-axis = Time Step (30 min)(kW), Y-axis = Demand (kW) 

Comments: As shown on Figure 5.29 a larger training set reduced MSE, 

which is the target variable to be minimized by the neural network. But the results 

from MAPE and R were not so cut and dry. They both slightly weight towards less 

days, on the case of MAPE this holds true for simples networks (lower left side). It is 

likely that since the database had to be cut differently between both training sizes that 

best results could be more easily found on the early part of the dataset, which the 180 

days could not use for testing purposes. 
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Figure 5.29: Test 5.9 and Test 5.10 comparison 

Red values represents a better result on Test 5.10 (180 days of training) and 

blue indicates a better result on Test 5.9 (60 days of training). 
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5.2.3 Performance	  Distribution	  
From the information found on the Input Strategies and Dataset Build-up Time 

sections a new exploration took place to investigate the performance of the network 

trought time. This has the goal of finding where the errors are most concentrated at on 

a day-by-day and year wide basis. 

 

Test 5.11 – FH, Previous 24 hour and day average demand, 30 days training 

Inputs: Hour (0~23.5), Day of the week (1~7), Previous 24 hour demand 

(0~300 kW), Previous day average demand (0~300 kW) 

Time step: 30 minutes 

Training Duration: 30 days 

Testing Duration: 7 days 

 

Figure 5.30: Test 5.11 – FH, Previous 24 hour and day average demand, 30 days 

training, MSE Distribution Map 

X-axis=Date of year (d/m/y), Y-axis = Time of day (hour) 
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Figure 5.31: Test 5.11 – FH, Previous 24 hour and day average demand, 30 days 

training, MAPE Distribution Map 

X-axis=Date of year (d/m/y), Y-axis = Time of day (hour) 

Comments: Both Figure 5.30 and Figure 5.31 appear to have a generally 

similar appearance. Errors are more aggravated a little before noon and the earlier part 

of the afternoon. These errors are very likely due to demand spikes on that time 

period. Some individual days perform very poorly, especially ones with near zero test 

values that will be better discussed on the Overview section. 



92 

5.3 Overview	  
The following table contains the best run of each of the test batteries of the 

neural networks during the Input Strategies section. 
Test # / Title 

MSE R MAE MAPE 
Time 

[sec] 
L1 L2 

Test 5.1 – FH, 

Previous day average 

demand 

175.5 0.7951 9.8 10.11% 2.79 10 5 

Test 5.2 – FH, 

Previous 24 hour and 

day average demand 

164.4 0.8105 9.6 9.83% 1.21 9 6 

Test 5.3 – FH, 

Previous 24 hour, 168 

hour and day average 

demand 

162.9 0.8082 9.3 9.42% 5.43 10 6 

Test 5.4 – FH, No date 

inputs 
178.0 0.7942 9.8 9.99% 1.40 7 9 

Test 5.5 – FH, Binary 

day of the week 
131.7 0.8522 8.5 8.82% 6.85 7 8 

Test 5.6 – FH, Whole 

day network demand 
169.3 0.8026 9.5 9.77% 1.72 7 1 

Table 5.11: Findhorn, inputs strategies best test results overview 

 

Using a demand reading from the previous week entails having to discard the 

whole previous week from the database since it will not include that input and only 

serve to feed future samples’ inputs. Therefore, it delays, or weakens, the database 

slightly. Not using it is preferable when the results are similar. 
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The following table contains the best run of each of the test batteries of the 

neural networks during the Dataset Build-up Time. 
Test # / Title 

MSE R MAE MAPE 
Time 

[sec] 

L

1 

L

2 

Start 

Date 

Test 5.7 – FH, 

Previous 24 hour and 

day average demand, 

7 days training 

168.6 0.7785 10.0 0.1023 0.36 8 4 27/07/15 

Test 5.8 – FH, 

Previous 24 hour and 

day average demand, 

30 days training 

121.3 0.8451 8.4 0.0839 1.02 7 10 05/07/15 

Test 5.9 – FH, 

Previous 24 hour and 

day average demand, 

90 days training 

105.1	   0.8551	   8.1	   0.0843	   0.67	   6	   5	   13/04/15	  

Test 5.10 – FH, 

Previous 24 hour and 

day average demand, 

180 days training 

102.4	   0.8610	   7.8	   0.0817	   1.79	   8	   8	   13/01/15	  

Table 5.12: Findhorn, dataset build-up best test results overview 

 

The same strategy used on Test 5.5, which was the binary day of the week, 

underperformed compared to using an integer to denote it. Therefore, these tests all 

kept it as an integer. Keeping in mind that distinct sample sizes behave differently 

depending on the input selection. 

Since the database available was limited to one year worth of samples the 

results are expected to have some form of bias. Some times of the year are easier to 

predict than others. This becomes evident on Table 5.7, Table 5.8, Table 5.9 and 

Table 5.10. The best results for each of the different training sizes focus their start 

date on small portions of the year. This induces that the best weeks to test the 

algorithms are near one another. The database limitation forces a different range of 

time ranges for each test setup, therefore introducing the bias. But still, the results 
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improved quite consistently. Even with reservation are to be had on the comparison 

between 90 days and 180 days of training. 

One big issue that arose 

during this phase of testing, 

which took snippets of the 

whole dataset was with using 

samples with near zero values 

on the test data pool. Those 

cases had to be removed since 

a seemingly random near zero 

value skyrocketed the error 

measurements, creating a huge 

distortion. Figure 5.32 greatly 

exemplifies this, on the final 

time steps of the test week the 

measured demand drops to near 

zero values while the predicted 

value stays “normal”. The division between those numbers creates high error and low 

performance results. 

Table 5.12 show the single best runs of each test battery. It shows that 

potentially even a low 7-day training can be used. But, care should be given to their 

reliability since a total of 3,300 different networks were tested in each individual test. 

 

Figure 5.32: Bad data sample returning skewed results 

example. 
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6 Application	  at	  House	  Level	  
This section encompasses “hard” results of the testing done with House level 

datasets. 

The objective here is to explore input selections on a neural network to 

forecast a single house’s demand. This level is usually considered very hard to 

predict, but number are not often shown. Therefore, having the actual error 

measurements aids in assessing the potential use of forecasting on the single residence 

level. 

 

6.1 Introduction	  
Findhorn the ORIGIN project also produced demand datasets for single 

residences. One of those will be used in this section to test at the house level 

forecasting using neural networks. 

This level of forecasting is often deemed, if not impossible, very hard to 

predict. This is due to the unpredictable nature of averaged human behaviour. With a 

larger number of consumers this problem is greatly alleviated, but looking at one 

single person or family problems may arise. Therefore, bad results are expected. 

The database available for this single Findhorn house demand ranged from 

January 2015 to October 2015. 
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6.2 Test	  Results	  

6.2.1 Input	  Strategies	  
This sub section is focused on different input sets and how they affect the end 

result. Firstly, the histogram for each both the training and testing datasets will be 

analysed. 

The original database spanned from the 1st of January 2015 to 5th of October 

2015. But, due to null values in the database, signifying that the equipment was turned 

off or some kind of failure occurred. Regardless, zero values must be removed if a 

large amount of them is present, otherwise they might disrupt the calculations. 

Therefore, the histograms shown bellow have the zero demand value removed from 

both the demand, the day of the year and outside temperature pools. The same had to 

be done on the outside temperature data set. 

 

Training dataset histogram: 

Figure 6.1 shows the case study’s 

house day of year histogram for the 

training data set, or the data pool used by 

the network to train its weights in order 

to reach a good generalization of the rules 

driving the demand. The values range 

from 1 to 253, or from January 2015 to 

September 2015 with many missing 

samples along the way. Again, this is due 

to times where the wattmeter was turned off, communication errors or the power to 

the house was shut down. These points were detected for having a zero/null value and 

had to be removed due to the large amount of them being present. 

Figure 6.1: House training dataset day of 

year histogram 
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Figure 6.2 shows the case study’s 

house demand histogram for training data 

set, its unit is kilo-watt (kW). The values 

encountered ranged from 0 to 8 kW. 

As previously stated all entries 

with a null value had to be removed. But, 

low, non-zero values were not only 

accepted but also found in large amounts. 

Those are low consumption periods that 

can very plausibly occur in a single-family house, unlike what is expected from the 

macrogrid and community levels. Although, this excess of low values (around 1900 

samples just on the first bucket of the histogram) can be a problem since the neural 

network can attach itself too much on them and develop a bias. 

Training demand samples with non-zero values have a total of 8,439 entries. 

Lastly, Figure 6.3 shows the case 

study’s house outside temperature 

histogram for training data set, its unit is 

degrees Celsius (°C). The values 

encountered ranged form -5 to +30 °C. 

The curve looks quite good, within what 

can be expected as a balanced sample 

space. 

The outside temperature data pool 

Figure 6.2: House training dataset 

demand histogram 

Figure 6.3: House training dataset 

outside temperature histogram 
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also contained many null values, which were considered as invalid samples. 

Therefore, when using both demand and outside temperature the resulting dataset 

being much smaller. 

Training outside temperature samples with non-zero values that also have non-

zero demands total 6,755 entries. 
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Testing dataset histogram: 

Figure 6.4 shows the case study’s 

house day of year histogram for the test 

data set, or the data pool used after the 

network is trained to evaluate the 

forecasting power of the network. The 

values range from 254 to 278, or from 

September 2015 to October 2015. 

Differently from the training dataset, this 

pool was selected in a ways to take 

almost a whole month with full 

consecutive samples, therefore there are 

no holes in it. 

Figure 6.5 shows the case study’s 

house demand histogram for test data set, 

its unit is kilo-watt (kW). The values 

encountered ranged from 0 to 3.5 kW. No 

null values were present. 

It suffers the same problem with 

the training dataset, which is the over 

abundance of low, non-zero values, 

adding up to nearly 550 on the first bucket. 

Test demand samples with a non-zero value have a total of 1,181 entries. 

Finally, Figure 6.6 shows the case study’s house outside temperature 

histogram for the test data set, its unit is degrees Celsius (°C). The values encountered 

ranged form +2 to +22 °C. The curve looks decent, fairly balanced. 

Figure 6.4: House test dataset day of year 

histogram 

Figure 6.5: House test dataset demand 

histogram 
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Again, the outside temperature 

test data pool was specifically selected to 

contain no null values, which could 

greatly distort test results. 

Test outside temperature samples 

with non-zero values that also have non-

zero demands total 1,181 entries. 

 

Figure 6.6: House test dataset outside 

temperature histogram 
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Test 6.1 – House, Previous 24 hour demand 

Inputs: Month (1~12), Day (1~31), Hour (0~23.5), Day of the week (1~7), 

Previous 24 hour demand (0~8 kW) 

Time step: 30 minutes 

Training Duration: equivalent of 176 days (non-consecutive) 

Testing Duration: 24.5 days 

 

Figure 6.7: Test 6.1 – House, Previous 24 hour demand average test results 

MSE R MAE MAPE Time [sec] L1 L2 

0.2688	   0.5454	   0.4289	   92.91%	   1.03	   9	   2	  

0.2689	   0.5317	   0.4168	   84.64%	   0.71	   6	   4	  

0.2692	   0.5241	   0.4130	   82.73%	   0.60	   8	   8	  

Table 6.1: Test 6.1 – House, Previous 24 hour demand best results 
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Figure 6.8: Test 6.1 – House, Previous 24 hour demand best plot 

Comments: Very poor results. No capability of dealing with neither low 

demand nor demand spikes. 
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Test 6.2 – House, Previous 24 hour and previous day’s average demand 

Inputs: Month (1~12), Day (1~31), Hour (0~23.5), Day of the week (1~7), 

Previous 24 hour demand (0~8 kW), Previous day’s average demand (0~8 kW) 

Time step: 30 minutes 

Training Duration: equivalent of 176 days (non-consecutive) 

Testing Duration: 24.5 days 

 

Figure 6.9: Test 6.2 – House, Previous 24 hour and previous day’s average demand 

average test results 

MSE R MAE MAPE Time [sec] L1 L2 

0.2710	   0.5255	   0.4159	   87.75%	   0.45	   8	   7	  

0.2724	   0.5241	   0.4247	   89.52%	   0.69	   9	   2	  

0.2738	   0.5147	   0.4217	   87.76%	   0.40	   5	   9	  

Table 6.2: Test 6.2 – House, Previous 24 hour and previous day’s average demand 

best results 
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Figure 6.10: Test 6.2 – House, Previous 24 hour and previous day’s average demand 

best plot 

Comments: Results very similar to Test 6.1, still unusable. 
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Test 6.3 – House, Previous 24 hour demand, previous day’s average demand and 

outside temperature 

Inputs: Month (1~12), Day (1~31), Hour (0~23.5), Day of the week (1~7), 

Previous 24 hour demand (0~8 kW), Previous day’s average demand (0~8 kW), 

Outside temperature (-4~30 °C) 

Time step: 30 minutes 

Training Duration: equivalent of 130 days (non-consecutive) 

Testing Duration: 24.5 days 

 

Figure 6.11: Test 6.3 – House, Previous 24 hour demand, previous day’s average 

demand and outside temperature average test results 

MSE R MAE MAPE Time [sec] L1 L2 

0.2631	   0.5375	   0.3982	   78.02%	   0.54	   6	   3	  

0.2640	   0.5354	   0.4020	   80.60%	   0.42	   5	   9	  

0.2648	   0.5352	   0.4027	   80.14%	   0.34	   7	   1	  

Table 6.3:  Test 6.3 – House, Previous 24 hour demand, previous day’s average 

demand and outside temperature best results 
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Figure 6.12: Test 6.3 – House, Previous 24 hour demand, previous day’s average 

demand and outside temperature best plot 

Comments: It is important to note that this network test battery used as n 

input the precise knowledge of future temperature. Even then outside temperature did 

not help much. Although the best results improved, they still fall on the not usable 

category. 
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Test 6.4 – House, No date inputs 

Inputs: Hour (0~23.5), Day of the week (1~7), Previous 24 hour demand (0~8 

kW), Previous day’s average demand (0~8 kW) 

Time step: 30 minutes 

Training Duration: equivalent of 176 days (non-consecutive) 

Testing Duration: 24.5 days 

 

Figure 6.13: Test 6.4 – House, No date inputs average test results 

MSE R MAE MAPE Time [sec] L1 L2 

0.2677	   0.5352	   0.4126	   84.67%	   0.50	   6	   7	  

0.2698	   0.5297	   0.4201	   87.36%	   0.45	   6	   8	  

0.2701	   0.5324	   0.4243	   89.09%	   0.47	   7	   1	  

Table 6.4: Test 6.4 – House, No date inputs best results 
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Figure 6.14: Test 6.4 – House, No date inputs best plot 

Comments: The best result is marginally better than the one with date inputs. 

That is to be expected since the data available is so small and the algorithm has a hard 

time understanding how to use dates properly. But again, the results are unusable. 
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6.3 Overview	  
The following table contains the best run for the test batteries. 

Test # / Title 
MSE R MAE MAPE 

Time 

[sec] 
L1 L2 

Test 6.1 – House, 

Previous 24 hour 

demand 

0.2688	   0.5454	   0.4289	   92.91%	   1.03	   9	   2	  

Test 6.2 – House, 

Previous 24 hour and 

previous day’s 

average demand 

0.2710	   0.5255	   0.4159	   87.75%	   0.45	   8	   7	  

Test 6.3 – House, 

Previous 24 hour 

demand, previous 

day’s average demand 

and outside 

temperature 

0.2631	   0.5375	   0.3982	   78.02%	   0.54	   6	   3	  

Test 6.4 – House, No 

date inputs 
0.2677	   0.5352	   0.4126	   84.67%	   0.50	   6	   7	  

Table 6.5: Single house, inputs strategies best test results overview 

 

The results are very blatantly abysmal. Even the best performance found 

throughout all the tests had an average error (MAPE) of 78.02%, and that was only 

achieved with perfect knowledge of future temperature. Even that not usable at all, 

having to deal with an error margin that high. 

From the best plots shown on Figure 6.8, Figure 6.10, Figure 6.12 and Figure 

6.14 the NNs did a poor job to forecast both the low demand and demand spikes. 

Therefore, at least with the amount of data and selection here used, there is not much 

to salvage here. Some adjustments could still be made but nothing that would make 

the results usable in any shape or form. 
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7 Discussion	  
In this section the results found on sections 4, 5 and 6 are discussed along with 

the potential application of neural networks in demand forecasting. 

 

7.1 Energy	  Grid	  Levels	  
Outside some unforeseeable event, the macrogrid’s demand is fairly easy to 

predict, given that even a date/time only based NN produced very good results. 

Macrogrid is not only the easiest, but also the one with the most data readily 

available. In some cases even commonly available on the Internet, as G.B. Grid 

Watch proves. 

The community level is still quite forecastable. The error is of course larger 

than that of the macrogrid but it is still very reasonable. Although, there are quite a 

few spikes in demand that are hard to detect, at least without environmental data. 

On the house level results got grim. The issue with data holes of course did not 

help, but such low level of accuracy and even demand shape left a lot to desire. 

Forecasting a single house did not produce a usable system, non-averaged human 

behaviour was just too chaotic. Although, it is not necessarily impossible. 

 

7.2 Inputs	  
Obviously, the networks would greatly benefit from cleaner data sets, or sets 

without unreasonable samples (i.e. samples taken during maintenance or blackouts). 

But, cleaning it up is a time consuming and often a manual labour, therefore, not 

always possible. One possible strategy to counter that is to find outliers and substitute 

them for the value found on the last sample on the same time period. 

One of the more frequently used strategies is to use a whole day’s worth of 

demand with one single neural network. During the tests performed, for the neuron 

count limits here established the performance was lesser than with less, more targeted 

inputs and one single demand being forecast at a time. This should be better expanded 

upon to find the real answer. But like with many things in neural networks it might 

not be as straightforward as everyone would hope. 

During the tests it was shown that using dates or even the day of the year 

approach was indeed beneficial. But it comes with a caveat the training dataset 
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available must cover the whole sample space. Otherwise when a forecast is made with 

values beyond the ones used during training the network will very unlikely be able to 

deal with them. Therefore, they should only be used when a whole year’s worth of 

data is available for training. Similarly, the year should be avoided. It won’t have a 

huge effect (since the value will vary proportionally little) but often there wont be 

enough data for the network to appropriately grasp. 

It would be very beneficial to have more environmental data like outside 

temperature or humidity. Unfortunately, not every variable of interest (as the ones 

described in section 2.2) was available. As with this kind of problem, consistent data 

is not trivial to come by. But, if possible, to acquire or even decently estimate would 

generate better results. 

Additionally, techniques can be applied such as using a multi-output NN to 

determine upper and lower bounds of possible demand (Quan, Srinivasan and 

Khosravi 2014). This could be specifically interesting when using inputs that have 

similar strategies, such as the high and low temperatures used by weather forecasters. 

Input switch could be used depending on the size of the dataset. There are 

better strategies that require a fuller set and creating a network when it is in a more 

complete state would not be an issue. One interesting idea would be to have multiple 

networks trained with different strategies and keep watch on which performs better on 

each scenario. Of course there would be a dominant one, or used for the actual 

forecasting, but the others would simply be tested in parallel. 

 

7.3 Dataset	  Requirements	  
During initial attempts on the tests with a one-month database for training the 

“unclean” samples were a big issue, since outliers skewed the results by a large 

margin. One test a 388% MAPE was reached, which on paper is a horrible result. But, 

as seen on Figure 5.32 the problem was not the algorithm, it was near zero samples on 

the final time steps of the test week. 

Therefore, the algorithm itself resisted bad samples within the Training pool, 

but it would return theoretically bad results on the field if for example there was a 

black-out. In this scenario the system (on battery support) would indicate normal 

levels of demand on that time frame while no power consumption would register 

therefore giving out big error measurements. 
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Table 5.12 compares side-by-side the best neural network found for their 

training time. But, as shown on Figure 5.20, a 7 day training period, with the best 

topology, produced in average a ~17% error. Figure 5.22 shows a ~11% average error 

on a 30 day training period. This informs how much more reliable the network gets 

with a greater training time. Therefore, it can produce far better results without 

incurring in a too long waiting period. That is why at least one month worth of data 

should be produced before any control scheme is put into effect.  

The performance results, even with more limited training times was valid in 

general. A 10% error margin could potentially be dealt with.  

 

7.4 Neural	  Network	  Topology	  
There is no definitive way to prove which exact topology, or how many 

neurons in each layer, is the correct one for any specific problem. But, a general idea 

of which groups of topologies are better definitely can be identified. 

In general at least two layers were superior to a single one. This in in compass 

with the understanding that two layers offers the network the capability to simulate 

more complex logical operators such as the XOR (exclusive or). Although not strictly 

true for non-perceptron neural networks the concept still stands. 

It was very interesting to note that in general, the inclusion of a single neuron 

second hidden layer maimed the learning capacity of the neural network and held 

consistently worse results throughout most of the tests. That lone neuron had the task 

of compressing the information of the whole network and it resulted in it being more 

of a hindrance than if the network was left with a single hidden layer, in which all 

neurons (in the hidden layer) did not communicate with each other. This reinforces 

the idea to switch networks depending on the dataset size. 

Most of the time the second hidden layer only had a positive impact once it 

had four or more neurons. A notable exception of this was the network in Test 5.3, the 

one that included the demand from the previous 168-hour (or the same time of day 

one week prior) likely due to a good match between the weeks, therefore not too 

much was needed. But still, this proved inferior to other input sets with more neurons 

on the second hidden layer. 

Regardless, the results matrixes found give a general idea of how to choose a 

network topology. A concentration of good results merely indicates the best 
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performing topology concept (e.g. many neurons on the first layer and few neurons on 

the second). This occurs due to the uncertainty attached to the algorithm that can 

occasionally perform abnormally making it hard to pinpoint the exact optimal 

topology. 

Curiously, a smaller data set sprung the notion that simpler topologies could 

be better, at least in average, than more complex ones. This is seen on Figure 5.22, 

Figure 5.24, Figure 5.27 and where a shift on the best topology for average results 

goes from simple (bottom left corner of the result matrixes) to complex (top right 

corner of the result matrixes). 

 

7.5 Implementation	  
The test computer took a few hours (overall averaging on 3 hours) to sweep 

from 5 to 10 on the first hidden layer and from 0 to 10 on the second hidden layer 50 

times each. 

When trained, a neural network is not much more beyond the weight values 

found. One single neuron (including in the output layer) requires one weight value for 

each previous neuron connected to it. Even adding the code on top of it wont break 

the MB threshold. 

Additionally, it is required to store all the information to create the database. 

Given a sample with 5 inputs (e.g.: year, month, day, time, demand, temperature), a 

30 minute time step and even using solely high precision 8 byte double types (for 

every value) will consume take little more than 500 kB for a four year period. 

The test computer used a 2.5 GHz quad-core CPU and benefited from 

MATLAB’s parallel processing. Each individual test often kept the duration at a few 

seconds. Depending on the hardware being employed on an actual application of this 

system, the short training time found here might not be as realistic. Retraining 

sections will be infrequent, at maximum once a week, therefore not much of an issue 

is expected as long as the demand readings are acquired and up-to-date. Even so, a 

100 times slower processor would still take only a few minutes in average to finish 

one training section. In comparison, a hardware called Raspberry Pi 3 Model B  

(RASPBERRY PI 3 MODEL B 2016) that is basically a computer costing mere 

U$ 30,00 on Amazon (Amazon.com Raspberry PI 3 Model B Motherboard 2016) has 
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a 1.2GHz 64-bit quad-core processor while the test computer had a 2.5 GHz Intel 

Core i7 processor. Therefore, processing power is seldom an issue. 

The usage of the Testing data pool (as discussed on section 2.1) was seen as 

innocuous as it seldom detected a good or bad NN forecasting prowess. It usually 

performs similarly as the Training and Validation data pools when they are 

randomly chosen from the original dataset. Very large error measurements on these 

pools usually lead to bad performing NNs, but low error measurements don’t 

correspond necessarily to good performances, therefore it can be used as an indicator 

at best but not much more. 

The goal of Test 5.11 was to find if there was parts of the day that were easier 

or harder to forecast. A little before noon and early afternoon induced the most error 

due to hard to predict demand spikes. This is very unfortunate since that is the most 

important period to forecast. 

Beyond everything there is a certain luck element to a good performing neural 

network. Neural networks is a quite hard to debug. Even on good configurations, bad 

performing outliers still appear. Therefore, its results should not be treated as a hard 

fact, uncertainty treatments must be considered. 

There is potential to design control schemes that revolve around this type of 

forecasting. Naturally, the other part of the problem would be to actually develop a 

good control strategy, one that takes into account the probabilistic nature of the 

forecasting. It is very clear that it should not be done in the house level just yet, but a 

community’s microgrid would fit quite nicely. Combining stochastic power sources 

with some form of energy storage could potentially be greatly optimized if the system 

were to have an idea of what will be demanded of it in the near future. In terms of 

hardware there is no limitation but a good deal of tests are still required to be 

performed on both the forecasting and control sides. 

 

7.6 Future	  Work	  
Both clustering and time series neural network types (discussed in section 

3.1.1) within MATLAB are promising in the profiling of daily curves and the actual 

demand forecasting. Although this paper limited itself on the more direct data fitting 

type the other options are quite valid and deserve consideration on dedicated future 

works. 
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It is plausible to think that a dedicated network for specific times of the day 

can generate better results. Thereby, shifting attention to more critical periods. An 

investigation on that should be an interesting endeavour. 

Few tests with a third hidden layer or larger neuron count were done here with 

less than impressive results. Although very time consuming, since the time required 

increases quite a lot, checking larger network topologies would be very welcome. 

Also, the differing results depending on dataset size would be very interesting 

to further study. Finding the optimized configuration depends on many factors and 

they should be further explored. 

Additionally, each study case has its particularities and slightly different 

results are expected. But more should be tested to better certify base concepts. It is 

plausible that different scenarios perform better with different configurations. 

Since individual houses create such less accurate results and microgrids 

consist of communities it is not necessary to deploy the system on cheap hardware, 

but it is quite feasible to implement it on microcontrollers and other small hardware, 

such as Arduino and Raspberry PI. It would be a good proof of concept to deploy and 

field-test it. 

During the tests, on the community level the average error could get as low as 

8%. Beyond just predicting values it is important to establish how to use the 

predictions having in mind the uncertainty that is still present. So, developing said 

control strategies goes hand-in-hand with forecasting. 
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8 Conclusion	  
In order to optimize the use of energy, and specially the use of renewable 

energy, some case studies on different grid levels were attempted. 

On both the macrogrid and community levels the results can be considered 

useful. Sadly, on a single house that is not true. 

Utilizing neural networks is far from being a perfect tool with strong pre-

established techniques. A lot of the hardships come from having a good pre-existing 

knowledge of how the system being analysed works and even then the results can be 

surprising. Regardless, more documentation must be created on each the specific 

subject to better guide their application. 

Nevertheless, neural networks is an important tool that, if applied with enough 

care, can have a lasting effect in how uncertain systems are modelled and predicted. 

Hopefully, with the advent of smart metering options for the end user more 

data will be available to better calibrate future models. 
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10 Appendix:	  MATLAB	  Scripts	  
 

%	  Neural	  Network	  test	  battery	  script	  
%	  for	  2	  layers	  
%	  This	  script	  assumes	  these	  variables	  are	  defined:	  
%	  
%	  ti	  =	  training	  inputs	  
%	  to	  =	  training	  outputs	  
%	  ei	  =	  test	  inputs	  
%	  eo	  =	  test	  outputs	  
	  
tic	  %	  Algorithm	  chronometer	  start	  
	  
%	  Initialize	  Variables	  
trainFcn	  =	  'trainlm';	  %	  Training	  Function	  Levenberg-‐Marquardt	  
backpropagation.	  
hl1low	  =	  5;	  	  	  	  hl1high	  =	  10;	  %	  Hidden	  layer	  1	  range	  
hl2low	  =	  0;	  	  	  	  hl2high	  =	  10;	  %	  Hidden	  layer	  2	  range	  
iend	  =	  50;	  %	  Number	  of	  tests	  per	  topology	  
MMSE	  =	  zeros(hl2high	  -‐	  hl2low	  +	  1,	  hl1high	  -‐	  hl1low	  +	  1);	  %	  MSE	  result	  per	  
topology	  
MR	  =	  zeros(hl2high	  -‐	  hl2low	  +	  1,	  hl1high	  -‐	  hl1low	  +	  1);	  %	  R	  result	  per	  
topology	  
MMAE	  =	  zeros(hl2high	  -‐	  hl2low	  +	  1,	  hl1high	  -‐	  hl1low	  +	  1);	  %	  MAE	  result	  per	  
topology	  
MMAPE	  =	  zeros(hl2high	  -‐	  hl2low	  +	  1,	  hl1high	  -‐	  hl1low	  +	  1);	  %	  MAPE	  result	  
per	  topology	  
Mtime	  =	  zeros(hl2high	  -‐	  hl2low	  +	  1,	  hl1high	  -‐	  hl1low	  +	  1);	  %	  time	  result	  
per	  topology	  
net1	  =	  fitnet([1],trainFcn);	  %	  Number	  1	  best	  result	  network	  
net2	  =	  fitnet([1],trainFcn);	  %	  Number	  2	  best	  result	  network	  
net3	  =	  fitnet([1],trainFcn);	  %	  Number	  3	  best	  result	  network	  
BRM	  =	  zeros(3,7);	  BRM(:,1)	  =	  Inf;	  %	  Best	  Results	  Matrix	  
sz	  =	  size(eo);	  
x	  =	  [1:1:sz(1,1)];	  
	  
%	  Test	  loops	  
for	  hl2	  =	  hl2low:hl2high	  
	  	  	  	  for	  hl1	  =	  hl1low:hl1high	  
	  	  	  	  	  	  	  	  for	  i	  =	  1:iend	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Define	  network	  topology	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (hl2	  ==	  0)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  topology	  =	  hl1;	  
	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  topology	  =	  [hl1	  hl2];	  
	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Innitialize	  a	  Fitting	  network	  
	  	  	  	  	  	  	  	  	  	  	  	  net	  =	  fitnet(topology,trainFcn);	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Setup	  Division	  of	  Data	  for	  Training,	  Validation,	  Testing	  
	  	  	  	  	  	  	  	  	  	  	  	  net.divideParam.trainRatio	  =	  75/100;	  
	  	  	  	  	  	  	  	  	  	  	  	  net.divideParam.valRatio	  =	  25/100;	  
	  	  	  	  	  	  	  	  	  	  	  	  net.divideParam.testRatio	  =	  0/100;	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Train	  the	  network	  
	  	  	  	  	  	  	  	  	  	  	  	  [net,tr]	  =	  train(net,ti',to','useParallel','yes');	  
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	  	  	  	  	  	  	  	  	  	  	  	  %	  Test	  the	  network	  
	  	  	  	  	  	  	  	  	  	  	  	  res	  =	  net(ei')'	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Auxiliary	  function	  for	  performance	  results	  
	  	  	  	  	  	  	  	  	  	  	  	  error	  =	  gsubtract(res,eo);	  
	  	  	  	  	  	  	  	  	  	  	  	  aux	  =	  rdivide(abs(eo-‐res),eo);	  
	  	  	  	  	  	  	  	  	  	  	  	  aux(isinf(aux))	  =	  1;	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Performance	  results	  
	  	  	  	  	  	  	  	  	  	  	  	  MSE	  =	  mse(res,eo);	  
	  	  	  	  	  	  	  	  	  	  	  	  R	  =	  regression(eo,res,'one');	  
	  	  	  	  	  	  	  	  	  	  	  	  MAE	  =	  mae(error);	  
	  	  	  	  	  	  	  	  	  	  	  	  MAPE	  =	  mae(aux);	  
	  	  	  	  	  	  	  	  	  	  	  	  time	  =	  max(tr.time);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Add	  result	  to	  Result	  Matrixes	  
	  	  	  	  	  	  	  	  	  	  	  	  MMSE(hl2high-‐hl2+1,	  hl1-‐hl1low+1)	  =	  MMSE(hl2high-‐hl2+1,	  hl1-‐
hl1low+1)	  +	  MSE;	  
	  	  	  	  	  	  	  	  	  	  	  	  MR(hl2high-‐hl2+1,	  hl1-‐hl1low+1)	  =	  MR(hl2high-‐hl2+1,	  hl1-‐
hl1low+1)	  +	  R;	  
	  	  	  	  	  	  	  	  	  	  	  	  MMAE(hl2high-‐hl2+1,	  hl1-‐hl1low+1)	  =	  MMAE(hl2high-‐hl2+1,	  hl1-‐
hl1low+1)	  +	  MAE;	  
	  	  	  	  	  	  	  	  	  	  	  	  MMAPE(hl2high-‐hl2+1,	  hl1-‐hl1low+1)	  =	  MMAPE(hl2high-‐hl2+1,	  hl1-‐
hl1low+1)	  +	  MAPE;	  
	  	  	  	  	  	  	  	  	  	  	  	  Mtime(hl2high-‐hl2+1,	  hl1-‐hl1low+1)	  =	  Mtime(hl2high-‐hl2+1,	  hl1-‐
hl1low+1)	  +	  time;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Check	  and	  update	  if	  new	  best	  result	  was	  found	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (MSE	  <	  BRM(3,1))	  %	  If	  new	  is	  in	  the	  	  top	  3	  (included	  for	  
speed)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (MSE	  <	  BRM(1,1))	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(3,:)	  =	  BRM(2,:);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net3	  =	  net2;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(2,:)	  =	  BRM(1,:);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net2	  =	  net1;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(1,:)	  =	  [MSE	  R	  MAE	  MAPE	  time	  hl1	  hl2];	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net1	  =	  net;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (MSE	  <	  BRM(2,1))	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(3,:)	  =	  BRM(2,:);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net3	  =	  net2;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(2,:)	  =	  [MSE	  R	  MAE	  MAPE	  time	  hl1	  hl2];	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net2	  =	  net;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (MSE	  <	  BRM(3,1))	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(3,:)	  =	  [MSE	  R	  MAE	  MAPE	  time	  hl1	  hl2];	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net3	  =	  net;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  end	  
	  	  	  	  end	  
end	  
	  
%	  Average	  Result	  Matrixes	  
MMSE	  =	  MMSE/iend;	  
MR	  =	  MR/iend;	  
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MMAE	  =	  MMAE/iend;	  
MMAPE	  =	  MMAPE/iend;	  
Mtime	  =	  Mtime/iend;	  
	  
%	  Error	  histogram	  for	  Net1	  
res	  =	  net1(ei')'	  
error	  =	  gsubtract(res,eo);	  
histogram(error);	  
%	  Plot	  Measured,	  Predicted	  for	  Net1	  
plot(x,eo,	  x,res),	  legend('Measured',	  'Predicted');	  
	  
toc	  %	  Algorithm	  chronometer	  stop	  
	  
%	  END	  OF	  Neural	  Network	  test	  battery	  script	  
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%	  Neural	  Network	  with	  moving	  test	  battery	  script	  
%	  for	  2	  layers	  
%	  This	  script	  skips	  test	  periods	  that	  contain	  near	  zero	  (<4)	  values	  in	  it	  
%	  the	  <4	  value	  was	  selected	  for	  one	  specific	  database	  and	  should	  be	  
%	  changed	  according	  to	  what	  can	  be	  identified	  as	  a	  near	  zero	  value	  
%	  
%	  This	  script	  assumes	  these	  variables	  are	  defined:	  
%	  
%	  ti	  =	  inputs	  
%	  to	  =	  outputs	  
	  
tic	  %	  Algorithm	  chronometer	  start	  
	  
%	  Initialize	  Variables	  
trainFcn	  =	  'trainlm';	  %	  Training	  Function	  Levenberg-‐Marquardt	  
backpropagation.	  
hl1low	  =	  5;	  	  	  	  hl1high	  =	  10;	  %	  Hidden	  layer	  1	  range	  
hl2low	  =	  0;	  	  	  	  hl2high	  =	  10;	  %	  Hidden	  layer	  2	  range	  
iend	  =	  50;	  %	  Number	  of	  tests	  per	  topology	  
train_days	  =	  7;	  	  
test_days	  =	  7;	  
trainsize	  =	  train_days*48;	  %	  Size	  of	  training	  pool	  
testsize	  =	  test_days*48;	  %	  Size	  of	  test	  pool	  
MMSE	  =	  zeros(hl2high	  -‐	  hl2low	  +	  1,	  hl1high	  -‐	  hl1low	  +	  1);	  %	  MSE	  result	  per	  
topology	  
MR	  =	  zeros(hl2high	  -‐	  hl2low	  +	  1,	  hl1high	  -‐	  hl1low	  +	  1);	  %	  R	  result	  per	  
topology	  
MMAE	  =	  zeros(hl2high	  -‐	  hl2low	  +	  1,	  hl1high	  -‐	  hl1low	  +	  1);	  %	  MAE	  result	  per	  
topology	  
MMAPE	  =	  zeros(hl2high	  -‐	  hl2low	  +	  1,	  hl1high	  -‐	  hl1low	  +	  1);	  %	  MAPE	  result	  
per	  topology	  
Mtime	  =	  zeros(hl2high	  -‐	  hl2low	  +	  1,	  hl1high	  -‐	  hl1low	  +	  1);	  %	  time	  result	  
per	  topology	  
net1	  =	  fitnet([1],trainFcn);	  %	  Number	  1	  best	  result	  network	  
net2	  =	  fitnet([1],trainFcn);	  %	  Number	  2	  best	  result	  network	  
net3	  =	  fitnet([1],trainFcn);	  %	  Number	  3	  best	  result	  network	  
BRM	  =	  zeros(3,8);	  BRM(:,1)	  =	  Inf;	  %	  Best	  Results	  Matrix	  
st	  =	  1;	  %	  Start	  position	  
szi	  =	  size(ti);	  szo	  =	  size(to);	  
mov	  =	  (szo(1,1)	  -‐	  trainsize	  -‐	  testsize)	  /	  (iend	  -‐	  1);	  %	  Movement	  
tix	  =	  zeros(trainsize,szi(1,2));	  %	  Moving	  training	  input	  pool	  
tox	  =	  zeros(trainsize,szo(1,2));	  %	  Moving	  training	  output	  pool	  
eix	  =	  zeros(testsize,szi(1,2));	  %	  Moving	  test	  input	  pool	  
eox	  =	  zeros(testsize,szo(1,2));	  %	  Moving	  test	  output	  pool	  
list	  =	  zeros(iend*(hl2high	  -‐	  hl2low	  +	  1)*(hl1high	  -‐	  hl1low	  +	  1),10);	  
ind	  =	  1;	  
	  
%	  Test	  loops	  
for	  hl2	  =	  hl2low:hl2high	  
	  	  	  	  for	  hl1	  =	  hl1low:hl1high	  
	  	  	  	  	  	  	  	  for	  i	  =	  1:iend	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Moving	  test	  routine	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (floor(st)+trainsize+testsize	  >	  szo(1,1))	  %	  Ensure	  dataset	  
is	  big	  enough	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  st	  =	  1;	  
	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  eox	  =	  to(floor(st)+trainsize:floor(st)+trainsize+testsize-‐1,:);	  
%	  Test	  Outputs	  



123 

	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  while	  sum(find(eox<4))>0	  %	  Check	  for	  near-‐zero	  values	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  st	  =	  st	  +	  mov;	  %	  Move	  test	  pool	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (floor(st)+trainsize+testsize	  >	  szo(1,1))	  %	  Ensure	  
dataset	  limit	  is	  not	  exceeded	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  st	  =	  1;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  eox	  =	  to(floor(st)+trainsize:floor(st)+trainsize+testsize-‐
1,:);	  %	  Test	  Outputs	  
	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  tix	  =	  ti(floor(st):floor(st)+trainsize-‐1,:);	  %	  Training	  inputs	  
	  	  	  	  	  	  	  	  	  	  	  	  tox	  =	  to(floor(st):floor(st)+trainsize-‐1,:);	  %	  Training	  outputs	  
	  	  	  	  	  	  	  	  	  	  	  	  eix	  =	  ti(floor(st)+trainsize:floor(st)+trainsize+testsize-‐1,:);	  
%	  Test	  Inputs	  
	  	  	  	  	  	  	  	  	  	  	  	  eox	  =	  to(floor(st)+trainsize:floor(st)+trainsize+testsize-‐1,:);	  
%	  Test	  Outputs	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Define	  network	  topology	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (hl2	  ==	  0)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  topology	  =	  hl1;	  
	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  topology	  =	  [hl1	  hl2];	  
	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Innitialize	  a	  Fitting	  network	  
	  	  	  	  	  	  	  	  	  	  	  	  net	  =	  fitnet(topology,trainFcn);	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Setup	  Division	  of	  Data	  for	  Training,	  Validation,	  Testing	  
	  	  	  	  	  	  	  	  	  	  	  	  net.divideParam.trainRatio	  =	  75/100;	  
	  	  	  	  	  	  	  	  	  	  	  	  net.divideParam.valRatio	  =	  25/100;	  
	  	  	  	  	  	  	  	  	  	  	  	  net.divideParam.testRatio	  =	  0/100;	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Train	  the	  network	  
	  	  	  	  	  	  	  	  	  	  	  	  [net,tr]	  =	  train(net,tix',tox','useParallel','yes');	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Test	  the	  network	  
	  	  	  	  	  	  	  	  	  	  	  	  res	  =	  net(eix')'	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Auxiliary	  function	  for	  performance	  results	  
	  	  	  	  	  	  	  	  	  	  	  	  error	  =	  gsubtract(res,eox);	  
	  	  	  	  	  	  	  	  	  	  	  	  aux	  =	  rdivide(abs(eox-‐res),eox);	  
	  	  	  	  	  	  	  	  	  	  	  	  aux(isinf(aux))	  =	  1;	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Performance	  results	  
	  	  	  	  	  	  	  	  	  	  	  	  MSE	  =	  mse(res,eox);	  
	  	  	  	  	  	  	  	  	  	  	  	  R	  =	  regression(eox,res,'one');	  
	  	  	  	  	  	  	  	  	  	  	  	  MAE	  =	  mae(error);	  
	  	  	  	  	  	  	  	  	  	  	  	  MAPE	  =	  mae(aux);	  
	  	  	  	  	  	  	  	  	  	  	  	  time	  =	  max(tr.time);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  list(ind,:)	  =	  [MSE	  R	  MAE	  MAPE	  time	  hl1	  hl2	  st	  tr.best_perf	  
tr.best_vperf];	  
	  	  	  	  	  	  	  	  	  	  	  	  ind	  =	  ind	  +	  1;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Add	  result	  to	  Result	  Matrixes	  
	  	  	  	  	  	  	  	  	  	  	  	  MMSE(hl2high-‐hl2+1,	  hl1-‐hl1low+1)	  =	  MMSE(hl2high-‐hl2+1,	  hl1-‐
hl1low+1)	  +	  MSE;	  
	  	  	  	  	  	  	  	  	  	  	  	  MR(hl2high-‐hl2+1,	  hl1-‐hl1low+1)	  =	  MR(hl2high-‐hl2+1,	  hl1-‐
hl1low+1)	  +	  R;	  
	  	  	  	  	  	  	  	  	  	  	  	  MMAE(hl2high-‐hl2+1,	  hl1-‐hl1low+1)	  =	  MMAE(hl2high-‐hl2+1,	  hl1-‐
hl1low+1)	  +	  MAE;	  
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	  	  	  	  	  	  	  	  	  	  	  	  MMAPE(hl2high-‐hl2+1,	  hl1-‐hl1low+1)	  =	  MMAPE(hl2high-‐hl2+1,	  hl1-‐
hl1low+1)	  +	  MAPE;	  
	  	  	  	  	  	  	  	  	  	  	  	  Mtime(hl2high-‐hl2+1,	  hl1-‐hl1low+1)	  =	  Mtime(hl2high-‐hl2+1,	  hl1-‐
hl1low+1)	  +	  time;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  %	  Check	  and	  update	  if	  new	  best	  result	  was	  found	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (MSE	  <	  BRM(3,1))	  %	  If	  new	  is	  in	  the	  	  top	  3	  (included	  for	  
speed)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (MSE	  <	  BRM(1,1))	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(3,:)	  =	  BRM(2,:);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net3	  =	  net2;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(2,:)	  =	  BRM(1,:);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net2	  =	  net1;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(1,:)	  =	  [MSE	  R	  MAE	  MAPE	  time	  hl1	  hl2	  st];	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net1	  =	  net;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (MSE	  <	  BRM(2,1))	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(3,:)	  =	  BRM(2,:);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net3	  =	  net2;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(2,:)	  =	  [MSE	  R	  MAE	  MAPE	  time	  hl1	  hl2	  st];	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net2	  =	  net;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (MSE	  <	  BRM(3,1))	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BRM(3,:)	  =	  [MSE	  R	  MAE	  MAPE	  time	  hl1	  hl2	  st];	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  net3	  =	  net;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  end	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  st	  =	  st	  +	  mov;	  %	  Move	  test	  pool	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  end	  
	  	  	  	  end	  
end	  
	  
%	  Average	  Result	  Matrixes	  
MMSE	  =	  MMSE/iend;	  
MR	  =	  MR/iend;	  
MMAE	  =	  MMAE/iend;	  
MMAPE	  =	  MMAPE/iend;	  
Mtime	  =	  Mtime/iend;	  
	  
%	  Re-‐aquiring	  best	  result	  vectors	  
st	  =	  BRM(1,8);	  
eix	  =	  ti(floor(st)+trainsize:floor(st)+trainsize+testsize-‐1,:);	  
eox	  =	  to(floor(st)+trainsize:floor(st)+trainsize+testsize-‐1,:);	  
%	  Error	  histogram	  for	  Net1	  
res	  =	  net1(eix')'	  
error	  =	  gsubtract(res,eox);	  
histogram(error);	  
%	  Plot	  Measured,	  Predicted	  for	  Net1	  
plot([1:1:testsize],eox,	  [1:1:testsize],res),	  legend('Measured',	  
'Predicted');	  
	  
toc	  %	  Algorithm	  chronometer	  stop	  
	  
%	  END	  OF	  Neural	  Network	  with	  moving	  test	  battery	  script	  


