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Abstract 

Solar Domestic Hot Water (SDHW) systems can offer a great opportunity to meet the hot 

water demand while using a widely available renewable source. It can be seen that the control 

of SDHW distribution networks can have an important role to play in the efficiency of such 

systems. A well installed and controlled solar water system can work efficiently and provide 

up to 60 % of an annual household hot water demand. However this number can fall as low as 

9% if the system is poorly controlled. It is envisaged that the forecast of the suns’ energy 

input, coupled with the predicted hot water demand, could be beneficial for the enhancement 

of SDHW system controls. The project investigates the possible implementation of these two 

parameters in a smart control scheme for solar domestic hot water systems.  

A prediction and control algorithm was created in Excel, integrating a model of a standard 

UK SDHW system. This program uses inputs associated with weather forecast, user demand 

patterns, system heat losses and system solar input to predict the energy state of the system on 

an hourly basis for the following twenty four hours. 

The algorithm was tested for different weather conditions and for diverse periods of the year. 

And it was found that the solar fraction could be increased by modifying the settings of the 

back-up system. It was observed that different situations will require different control 

settings. Therefore, the information regarding weather forecast and demand prediction could 

be beneficial in order to make a good control decision. 

Due to the potential advantages of such improved controls, a last step of the project was 

undertaken to show the system integration and to propose solutions on how the prediction 

algorithm created could be implemented into a practical control system.  
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1. Introduction 
 

In the UK, Domestic Hot Water (DHW) is typically prepared by means of gas, mainly, but 

also electricity, oil and coal. These fuels present two main limitations in their usage: they are 

only available in restricted quantities and they can involve a high source of pollution, having 

great CO2 emissions (except for electricity, if generated from renewable sources or nuclear). 

In a context where governments and policy organisations are pushing, not only industries, but 

also householders, to reduce their emissions and energy consumptions, sustainable solutions 

for small-scale installations are becoming a leading trend. 

As it can be seen in Figure 1, Domestic Hot Water (DHW) account for about 25% of a UK 

household’s energy consumptions, and is the second largest energy consumer after space 

heating for the residential sector: 

 

 

 

 

 

 

 

 

 

Figure 1- Typical household’s energy consumption in the UK 

Source: (Act on Energy, 2008) 

 

Solar Domestic Hot Water (SDHW) systems can offer a great opportunity to meet with the 

hot water demand while using a widely available renewable source, i.e. the sun. In the UK, 

well installed and controlled solar water system can work efficiently and provide up to 60 % 
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of an annual household hot water demand. However this number can be drop down to 9% for 

not properly used or configured systems (Energy Saving Trust, 2011). It can be observed that 

SDHW systems cannot rely just on the solar energy and need to integrate back-up systems, 

known as auxiliary heaters, that are usually gas or electricity powered. It was perceived that 

the control of the solar systems can have a great role to play to maximise the amount of 

energy provided by the sun and try to minimise the use of the back-up system. This project 

fixed its interest on the control of these auxiliary systems in order to try to diminish it 

contribution to water heating, so that the SDHW system consume less non-renewable fuel and 

reduce both carbon emissions and costs. 

 

1.1. Motive and objectives 
 

As it was observed above, SDHW systems can greatly exploit the solar energy and the 

portion of hot water supply by the solar system (solar fraction) can be increased if the system 

is control properly. The peak demand for domestic hot water typically occurs in the morning, 

when the solar energy is generally not very high, and in an usual control pattern, the water 

heater systems would use the back-up system to charge the tank in prevision of this high 

demand. However, sometimes, the solar energy is available in the morning (especially in 

summer) and it becomes unusable if the back-up system has operated and if the temperatures 

in the hot water storage tank have reached high values. Actually the solar system can only run 

if the temperature that it would supply to the storage tank is higher than the temperature at the 

point it is provided to the tank.  It is then a great challenge to succeed supplying satisfactory 

water temperatures to meet the demand at all times while taking full advantage of available 

solar energy. 

It was thought that the knowledge of the predicted sun radiation and hot water demand could 

be beneficial in order to enhance the solar fraction. Actually if it is known when the solar 

energy is available it is possible to try to modify the back-up system settings in such a fashion 

that the temperatures inside the storage tank would allow for the solar supply to take place. 

The information about the predicted demand would help with settled the back-up system as it 

would be possible to see if there would be enough energy in the storage tank to match the 

demand (back-up set to OFF) or if it would require more (back-up set to ON). 
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Ways of acquiring good predictions for these two parameters were investigated along with 

their practical implementation into smart control scheme for solar domestic hot water 

systems. 

The objectives of this project are the followings: 

 To investigate solar hot water systems and control options. 

 To examine weather data availability for forecasting renewable contribution to solar 

systems. 

 To predict hot water demand, based on user specifications and interface. 

 To create a prediction algorithm that forecasts the state of the hot water system for the 

next 24 hours and can support control decisions. 

 To examine a practical implementation with a user interface for the control algorithm 

proposed. 

In order to achieve those objectives, a methodology was undertaken. The next section will 

discuss how the project was approached and how this thesis will be ordered. 

 

1.2. Aim, approach and structure of the project 
 

The overall aim of this project is to investigate the possible implementation of weather 

forecast and demand prediction in a smart control scheme for solar domestic hot water 

systems.  

In order to complete this target, distinct steps were undertaken. This section will underline 

them so that the project lines are clear and well understood. 

A first step that implicated scoping, investigation and knowledge gathering was followed by 

further analyses involving the proposal and testing of a potential solution. Finally discussion 

were hold regarding the outcomes, potential future work and conclusions of the project.  

The scoping steps, presented in the literature review, were: 

 Solar systems: The first scoping step consisted on an examination of the solar hot 

water systems with the purpose of having a good knowledge of the technology. This 

work also helped with the selection of the system(s) to consider during this project.  
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 Control: With this later part well defined, the control of such equipment was analysed. 

The existing control algorithms and their eventual short-coming needed to be 

comprehended to allow a smart(er) control scheme to be proposed.  

 Weather and demand forecast: The availability of weather data for smart control and 

how this could be accessed was explored with a view to critical solar and temperature 

parameters.  

 Case study: Smart control proposals from literature, including the EU ORIGIN 

(Orchestration of Renewable Integrated Generation in Neighbourhoods) project, and 

the Dunoon Passive House project(s), were reviewed to see what potential smart 

controls had been proposed elsewhere.  

Following these scoping works, a technical approach was set in order to attain the aim of the 

project. The underpinning prediction and control algorithm and modelling approach was 

adapted from the proposed community scale ORIGIN approach and from what was used in 

some Dunoon previous work. It was decided to develop and demonstrate the control 

algorithm in Excel, using the basic functionalities of this program and also Visual Basic for 

Applications (VBA). The algorithm approach, logic and how it is implemented in Excel is 

explained. 

The algorithm has a model of the system and needs inputs from weather, user demand pattern, 

user default control settings, system heat losses and system solar input. The ORIGIN cloud 

based, community level project is developing solutions for learning the system heat loss and 

solar input characteristics based on weather conditions and these will be used in this case 

also. Key challenges are then to develop a system level solution which can access and use 

weather data to support smart control algorithms which will adapt to different user patterns 

and can be implemented on a practical platform.  To address this, four different profiles were 

created in Excel: 

- A profile showing storage losses in the tank, based on an Audit. 

- A demand profile for a typical week based on an Audit and user specifications. 

- A sun forecast profile with is based on a methodology that was developed for 

importing and processing the required weather parameters for use in the Excel 

algorithms.  

https://www.linkedin.com/groups?home=&gid=4748466&trk=anet_ug_hm&goback=%2Enpv_330776118_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_nav*4responsive*4tab*4profile_*1
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- A hot water production profile, based on the sun forecast profile and on an Audit. This 

will allow for the translation of weather data into solar input data (using an adaption 

of the UK Standard Assessment Procedure (SAP) method). 

The creation of the algorithm profiles and the final outputs from it are presented in chapter 3. 

In a next section, the operation of the algorithm is demonstrated using the Excel model for 

different weather conditions and different period of the year. Results are then analysed and 

ways to obtain optimal timing for the back-up system are proposed. 

The last step of the project shows the system integration and proposes solutions on how this 

system could be translated into a product. Discussions about the profile modifications thanks 

to potential monitoring work inputs will be held. In a real-life project, monitored data could 

be used in order to generate more accurate profiles, based on real system performance data, 

for each of the area stated above. These more precise models will be developed using 

multiple regression analysis. It will be shown how this monitoring work could be 

accomplished and example of regression analysis completed within the ORIGN project will 

be exposed. Then, it was though that if smart algorithms incorporating weather data are to be 

useful, they need to be implemented on a practical way with a controller that can run it and 

deliver its outputs to the system. The current solutions were evaluated and discussed to 

comprehend what would be best suited for the proposed smart control functions. Then, some 

consideration was given of user interfaces. 

Finally, discussion, future work and conclusions are summarizing the overall study and 

bringing to a close this thesis. 
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2. Literature review 

2.1. Configuration of Solar Hot Water Systems 
 

The energy from the sun is and has been widely used to heat water.  The technology is not 

new and is well understood. This first section will give a basic understanding of the solar 

water heating system. 

Solar hot water systems have to accomplish the following basics function: 

- Collection of the sun thermal energy: solar collectors are used to convert the incident 

solar radiation into usable thermal energy. 

- Transfer and storage of the thermal energy: The thermal energy from the collector is 

needed to be moved from the point of production to the point of use. This thermal 

energy is then stored, as the energy from the sun is not necessarily available when 

there is a demand. 

- Distribution and demand match: The thermal energy has to be circulated along the 

diverse loads and the demand needs to be satisfied at any moment of occurrence. 

A detailed explanation of the above functions of solar water heating systems and the 

description of the different components used to provide those services are developed below.  

 

Collection of the solar radiation 

In applications such as solar water heating, the radiation from the Sun is capted and 

transformed into heat by solar collectors, which can be seen as a special type of heat 

exchanger. 

There are 3 main types of collector:  

- Unglazed,  which performances are limited by the high amount of thermal losses that 

this configuration presents. 

- Evacuated tube, which is a more recent technology that can provide high heat 

retention. 

- Glazed flat plate that is the most comon design and which will be the one considered 

in this project. 

(BRE, 2011) 



7 

 

For this project it was decided to concentrate on flat plate collectors are they are the most 

used. Moreover a field trial realised by the Energy Saving Trust states that “there was little 

difference between the total solar energy yield of [those] installations that used flat-plate solar 

collectors and those that used evacuated-tube solar collectors.” (Energy Saving Trust, 2011). 

Glazed flat plate collectors have a simple design, which can be seen in Figure 2, are relatively 

cheap and easy to manufacture, and require little maintenance (Duffie & Beckman, 2013). 

 

 

 

 

Figure 2 – Cross section of a basic flat-plate solar collector  

Source: (Duffie & Beckman, 2013) 

In solar water heating applications, flat plate collectors are elaborated to deliver moderate 

temperatures, up to a maximum of 100°C above the ambient temperature. They use a working 

fluid to collect the energy and  transfer it to the rest of the SDHW system: it can be water, 

antifreeze (usually non-toxic propylene glycol), or other type of liquid that are able to absorb 

the solar heat. In climates such as in UK, where freezing temperatures can take place, the flat 

plate collector will most likely use antifreeze fluids. 

The performance of solar collectors are affected by two main factors: the absorption 

efficiency, also known as zero-loss coefficient ηo, and the heat loss coefficient a1.  The first 

coefficient, express in percent, indicates the percentage of energy that can be absorbed into 

the system when the solar fluid temperature is the same as the outside temperature. Higher 

value for ηo will lead to better performances. In the contrary, a1, expressed in W/m
2
K, which 

represent the energy lost by the pannel and is related to the insulation properties of the 

collectoer, should be minimised (Worcester Bosh Group, 2014). The relationship between 

these two values is used by SAP and will be used in this project to find the solar input to the 

water heating system. 

When designing a SDHW system, the tilt and orientation of the collector must be analysed so 

that the energy capted is maximise with regards to the available solar energy available. 

Collectors are usually mounted at a fixed tilt angle that is chosen to take advantages of the 

most useful altitude angles of the sun in order to maximise the solar heat available to heating 
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load throughout the year. In addition, the orientation of the collector must ensure a good 

exposure to the solar azimuth angles (Stickney, 2010). For the UK, it was found that the ideal 

tilt will have a 30° inclination and the ideal roof will have an orientation of 90° South but it 

should be outlined that the inclination of the roof does not play such a decisive role as 

orientation ( Solar Trade Association, 2014).  

 

Transfer and Storage 

As solar energy is an intermittent resource, its availability does not necessarly coincide with 

the time at which the demand occurs. Therefore, the thermal energy collected by the collector 

need to be transfer and stored until it can be used to meet a specific load. 

Regarding the transfer of the thermal energy, solar water heating systems can present two 

main design: 

- The passive systems, is based on natural circulation of the water by convection, from 

the collector to a tank situated above it. They do not need any extra source of energy 

to heat the water (no pumps, no controller). Those systems are mainly used in climates 

where freezing temperatures are not reached (Duffie & Beckman, 2013). Therefore in 

the circumstances of this project, they will not be further investigated. 

- The active systems use a pump to bring the fluid from the collector to the tank. The 

pump is controlled to be turned on when the heating gain from the solar collector will 

be beneficial to the tank. Active systems can be design regarding different 

configurations, with one or two storage tanks, having different arrangement of the 

auxiliary heater within the tank. However the most common situation in the UK is a 

combined-storage system that is presented in Figure 3 and that will be the one this 

project will focus on.  

 

 

 

 

Figure 3- Selected solar system configuration 

Source: (Duffie & Beckman, 2013) 
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In the above system, the working fluid from the collector exchanges its energy with the water 

present in the storage tank. The pump is controlled to circulate the fluid through the system if 

its temperature is high enough to supply thermal energy to the storage tank. The pump 

controls will however not be further discussed as it is not a main motivation of this project. 

The storage of the hot water has one main problem to focus on: the legionella bacteria. This 

bacteria lead to a potentially fatal disease, the Legionnaires’ disease, that anyone is 

susceptible to contract (Health and Safety Executive, 2014). The human infection by this 

organism is often associated with artificial water system and there is a need to inhibit and 

limit the growth of these bacteria in such system (BSI British Standards, 2008). The risk of 

legionella is increased if the water temperature in all or some part of the system is between 

20-40 °C, which is a temperature range suitable for growth (Health and Safety Executive, 

2014). In a publication from the Scottish government in march2010, it is recommended that: 

“To control the risk of Legionella and similar pathogens, a secondary heat source, typically 

an immersion heater coil is needed to raise the temperature of the stored water, once a week 

for a short time, to at least 60°C, in accordance with guidance to the Water Byelaws.” 

(The Scottish Government, 2010) 

For this project, this should be taken into consideration and the temperature of the storage 

should be controlled as stated above. The need of an auxiliary heater to complete this task 

will be further discussed in the section “Distribution and demand match” below. 

In order to take the most of the solar energy brought in the tank, it is interesting to look at the 

level of thermal stratification in the storage tank. Hollands and Lightstone (1989) 

demonstrated that solar hot water systems operating with a thermally stratified storage tank 

have substantially improved performance, particularly at low flow rates. Stratification is due 

to the existence of a temperature gradient in the storage that allows the separation of fluid at 

different temperatures level, the top being hotter than the bottom (Cruickshank, 2009). The 

degree of stratification in a given tank depends on its own design, on the design of its outlet 

and inlets and on the flows rates of the entering and leaving water (Duffie & Beckman, 2013). 
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Distribution and demand match 

Because the hot water is not produced at the point of use, when there is a demand, the thermal 

energy stored has to be distributed through the loads. Depending on the level of insulation of 

the pipes distributing the hot water, more or less distribution losses will occurs. In this project 

the algorithm created first relies on profiles that does not account for distribution losses, 

however it should be upgrade using monitored data that will integrate those losses. 

The hot water is leaving the storage tank at the temperature of the top of the tank. It is then 

mixed with cold water to reach the required temperature. Hot water systems need to be 

reliable and have to be able to meet the demand at any point. The hot water demand varies 

with the time of the days, the day of the week, and the month of the year (Vine, et al., 1986). 

However redundancies in the demand profiles can be found: a typical daily profile shows 

peaks in the morning and night, generally due to showers and/or baths practises, and smaller 

peaks around meal times for cooking activities (Vine, et al., 1986). A report from the Energy 

Saving Trust describes the analysis of data on hot water consumption collected in 

approximately 120 houses. The Figure4 below shows a typical profile for a representative 

dwelling from this study: 

 

 

. 

 

 

 

 

 

Figure 4- Daily profile of one dwelling  

Source: (Energy Saving Trust, 2008) 

 

In order to have a precise demand profile, the algorithm produced during this project will 

integrate a user specification section where the user can complete his hot water consumptions 
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habits. These consumptions will be calculated assuming certain flow rates for the usually 

used devices (shower, tap). The systems should also be monitored to base the profile on real 

data and be able to be as near to the realty as possible. 

Another important point to understand here is the need for an auxiliary heater. Actually, in 

order to prevent legionella and to be able to match the demand at any time, in climate such as 

the one in the UK, there is a need for an auxiliary system that operates as a back-up and 

ensures reliability for the DHW system. Thermal energy from the auxiliary heater can be 

added to the water in three different locations: when the water leaves the tank, before it enters 

the tank or inside the tank. The latter situation will be the one studied through this project 

because it is the most common one in the UK. This method is the simplest and has cost 

advantages, however the main drawback is that the auxiliary heater can sometimes supply too 

much energy and the increment of temperature in the storage tank can be such that any gains 

from the solar collector are unusable. Auxiliary heaters can also use different fuel sources, 

commonly gas (boilers) and electricity (immersion heater or heat pumps). It was seen that a 

standard solar system would use electric immersion heater and that will be the back-up 

chosen for this project. 

The different configurations of SDHW system have been explained and the options selected 

for this specific project have been outlined. The next section will described how such systems 

could be control. 

 

2.2. Control of Solar Hot Water systems and shortcomings 
 

In SDHW systems, there are two devices to control: the solar pump and the auxiliary heater. 

As it was seen in the above section, the control of the solar pump will not be looked at in this 

project and it will be assumed that they are set. Further information about their assumed 

setting will be explained in section 3.4. 

The project fixed it interest on the control of the immersion heater in order to consume less 

electricity from the grid and have lower cost. In an ordinary fashion, a cylinder thermostat is 

used to sense the temperature of the water inside the hot water storage tank. It will turn the 

water heating on if the temperature sensed falls below the thermostat setting and turn it back 

off when the desired temperature is reached. The cylinder thermostat should usually be set for 

a desired temperature between 60°C and 65°C ( Invensys, 2014 ). 
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However, for solar water system, this kind of control lead to a conflict if the tank temperature 

falls below the set temperature just before a solar radiation occurs. Actually, in this case, the 

back-up system will turn on and heat the stored water so that the previously available solar 

energy could not be harvested. The Figure 5 below shows how a bad control of the back-up 

system can lead to the loss of the supply from the solar energy: 

 

Figure 5- Example of well-timed (left) and poorly timed (right) back-up heating use 

Source: (Energy Saving Trust, 2011) 

On the left end side, it is seen that the back-up system (a boiler in this example) turn on just 

after the solar supply occur and just before the hot water use.  The solar radiation is well 

harvested as it can be seen that it provided a reasonable amount of solar energy (in orange in 

the figure) to the system. In the right end side however, the boiler fires in the morning, even 

though it is a sunny day, with high quantity of solar radiation available. The result is that only 

a minor portion of the available radiation is actually provided to the system.  

In this project, as the storage tank offer a large storage capacity, it was thought that it would 

be economically beneficial to charge the tank during the off peak period, e.g. between 12-

midnight and 7am, as it offer advantageous tariffs. These settings were put as default but they 

should be updated if the prediction algorithm developed during this project finds other   

appropriate time that would maximise the solar energy provided to the system. 
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2.3. Case study: Findhorn Community 
 

For this project, a case study was taken in order to be able to demonstrate the algorithm with 

some real data. The Findhorn Eco-community presented a suiTable opportunity as it is part of 

the European Union ORIGIN (Orchestration of Renewable Integrated Generation in 

Neighbourhoods) project. 

The ORIGIN project is an EU founded project that aim to develop an intelligent system for 

the management of energy in community, focussed on the concepts of aligning energy 

demand with the availability of renewables-based supply (ORIGIN, 2012). 

The system to be created will comprise algorithms for prediction of demand and supply, 

optimization of energy management actions, and continual control of all software and 

hardware elements across the energy network. The hardware basis includes smart meters in 

buildings, actuators for selected devices, one or more central servers, and an associated 

communications infrastructure (ORIGIN, 2012). In this thesis some methods used are based 

on what the ORIGIN project are carrying out, as it has a similar approach, with the exception 

that this thesis is focussing on individual buildings, and not communities, and that it just 

looks at domestic hot water and no other energy demand. Data from the monitoring work 

realised within Findhorn Community by ORIGIN will be used to demonstrate the algorithm 

for a real-life case. 

 The Findhorn Community counts approximately 450 residents with approximately 120 

residential and 30 commercial buildings. The community integrates 90 ecological buildings 

and a 750kW wind farm comprising 3 off Vestas V29 225kW turbines and 1 off Vestas V17 

75kW. In addition, 25kW of solar-PV is installed and 15 solar water installations are 

connected directly to dwellings (Girona, et al., 2014) (The Findhorn Foundation, 2014). 

The project mostly concentrates on system similar to the Centini houses because they 

integrate a 500 litres storage tank. This provides a great opportunity for load shifting and 

storage. The storage tank used by those houses is a ROTEX Sanicude Solaris (see Appendix 1 

for full specifications). In this storage tank, the water delivered to the users is not really stored 

in the tank but is taking the energy from the tank through a heat exchanger. For this project 

the specifications regarding the storage losses and the dimension of the tank were used but the 

DHW were supposed to be actually store in the tank as this represent a more standard system 

https://www.linkedin.com/groups?home=&gid=4748466&trk=anet_ug_hm&goback=%2Enpv_330776118_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_nav*4responsive*4tab*4profile_*1
https://www.linkedin.com/groups?home=&gid=4748466&trk=anet_ug_hm&goback=%2Enpv_330776118_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_nav*4responsive*4tab*4profile_*1
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that can be found in the UK. Moreover stratification was assumed in the store. The following 

specifications were used for the project: 

- The tank has a capacity of 500 litres with a height of 1.59m. 

- The heat loss given by the technical data was used to calculate the storage losses in 

section 3.1. of this thesis. 

The specifications from the solar collector were as well used. It was known that the Centini 

house used a collector from AES solar system which specifications can be seen in Appendix 

2. This data were used to calculate the hot water production as it can be seen in the section 

3.4. of this thesis. 

Finally, it was seen that the Centini houses use an electric immersion heater as a back-up to 

the solar system with is a common configuration for SDHW system in the UK and the one 

chosen for this project. As no specific values were found for the power of immersion heater 

used in the Centini houses, it was assumed from the tank specification, which stated that this 

kind of store come with an electrical back-up of 2.4kW. 

 

2.4. Conclusions  
 

The configuration of the solar systems was understood and the importance of the control in 

those structures was outlined. The case study used in this project was described and the 

modifications made to the system found in the Findhorn community were defined. It was 

decided to focus on one precise arrangement presented in Figure 6 below, which was seen as 

being a common UK system.  
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Figure 6- SDHW System studied 

In the above Figure, it can be seen that the solar energy input Qs transported by a working 

fluid is delivered to the hot water storage tank through a heat exchanger, at a temperature Tsol-

in. The working fluid then returns to the collector at a temperature Tsol-out. In the storage tank, 

diverse nodes can be identified, each of them having different temperatures: T1, T2, T3, T4, T5 

and T6. When a demand occurs, there is a draw from the storage tank at a temperature Tdraw, 

and at the same time water is refilling the tank at the bottom, at a temperature Tcold.  The 

necessary energy for the demand is Qdemand. The temperature of the draw is actually equal to 

T1, the top temperature of the tank, and will be adjusted to the adequate temperature of use 

later in the distribution system, by the means of a mixing valve. In case of low input from the 

sun, additional energy Qimm is provided by the electric immersion heater, having a 2.4 kW 

power rating. 

With the system seen in Figure 6,  an investigation regarding ways of providing improved 

controls will now be undertake. The next part of this thesis will present the prediction 

algorithm that was developed in Excel in order to support control decision.  
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3. Prediction and Control Algorithm 

The algorithm aims to predict the state of the solar hot water system for the next 24 hours 

based on weather forecast and demand forecast and an underpinning model of the system, 

including storage losses with a one hour time step. These predictions will then be used to 

make control decisions that will optimise the performance of the solar system and its back up 

heater use. 

  In order to complete this task, it needs to know what will be: 

 The storage losses 

 The user demand profile 

 The weather forecast, here focused on sun radiation forecast 

 The solar hot water production  

 The backup heater settings 

 The underlying system performance model and  state of the system 

The algorithm relies on profiles, based on an Audit, on user specifications and/or on weather 

forecast from the Internet. 

The profiles presented in this section were produced to be able to run the control system 

during the 5 week monitoring work and/or in case this work could not be realised. A real data 

based equation model using multiple regression analyses, supported by this monitoring work, 

should then provide more accurate profiles regarding the characteristics of the solar system. 

This point will be discussed in the practical implementation in section 5. 

In this part of the thesis, the four models created will be present, outputs from the algorithm 

will be exposed and conclusions will be drawn. To have a good appreciation of how this can 

all work together, the system presented in the conclusions of the literature review will be used 

to demonstrate the profiles. 

 

3.1. Storage losses profiles  
 

When hot water is stored for a certain amount of time, modification in its temperature occurs, 

even if there are no water draws or heat inputs from the water heater system. The profile 

produced is based on previous work from former student, Lewis Bowick, and was also 

utilised in the first steps of the ORIGIN project.  In the case of a stratified tank with six 
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different nodes, as the one chosen for this project, each node temperature will experience 

natural losses due to its interaction with the environment and with the other node. In the 

profile created, only the interface with the environment was considered, as it was seen in the 

previous work that it gives good approximations of the state of the system. Moreover, the 

relations between nodes imply challenging fluid dynamics that would significantly have 

complicated the project. 

The following Figure illustrates how the temperature of the water in the storage tank can 

evolve from one state to another. This is a fictional example, as details of the temperature 

evolution will be discussed just below. 

 

 

 

 

 

 

      Figure 7 (a) - Initial state               Figure 7 (b)- Future state 

Figure 7- Fictional temperature evolution of the hot water in the storage tank 

 

For the construction of the storage losses profile, the initial state of the tank was taken as the 

one shown in the left in Figure6: T1=60°C, T2=55°C, T3=45°C, T4=30°C, T5=25°C, T6=15°C 

and a surroundings temperature of 18°C. These temperatures were chosen to have something 

to start with but they should be actualised with the value received from sensors temperatures 

each time that the algorithm is run. 

The storage losses are calculated using two common equations employed in energy 

calculations:            (1) and      
        

    
 (2).  

Those two equalities need to be solved for each node, using data of the case considered, e.g. 

Findhorn Community. 

 

T1= 60 °C 

T2= 55 °C 

T3= 45 °C 

T4= 30 °C 

T5= 25 °C 

T6= 15 °C 

T1= 49 °C 

T2= 46 °C 

T3= 38 °C 

T4= 27 °C 

T5= 23 °C 

T6= 16 °C 

24 hours later 

Tambient = 18 °C 
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 Resolution of equation (1):  

              , where Q(1) is the energy loss in Wh 

U is the heat loss in W/m
2
K 

A is the area in m
2 

∆T is the temperature gradient in K 

t is the time in second 

This first equation was used to calculate the energy loss for each of the 6 nodes of the storage 

tank, during the next 24 hours, with a one hour time step. Therefore t= 1h=3600s. 

The temperature gradient used is initially based on the initial conditions of the storage tank 

and the surroundings as seen in Figure2a above. For example, if the node 1 is considered, it 

temperature T1 is 60°C and the ambient temperature Tambient is 18°C, hence the ∆T(node 1) is 

42K. 

The area, in this case, is considered to be the side area of the node considered. For a cylinder, 

the side area is calculated using the formula         , where r is the radius and h the 

height of the cylinder. As all the nodes are assumed to have the same dimensions, the result 

from this equation is then divided by 6, to have the area of the node studied. In the case study  

analysed, the cylinder has a radius of 0.32m and a height of 1.59m (see Tank specification in 

Appendix 1) so the area of the side of this tank is 3.16m
2
 and therefore the area to take into 

account in equation (1) is 0.53m
2
. 

The U-value calculation is slightly more complex as this rate is not clearly stated in the 

technical data available for the storage tank considered. The tank technical specifications 

however stipulate that the 500 litres ROTEX Sanicube has the following characteristic 

regarding the heat loss: 

“With a middle storage tank temperature of 58 °C and an ambient air temperature of 20 °C, 

the heat loss is only of 82 W ...etc.” 

(Rotex, 2006) 

Moreover, the tank is 1.59m high and 0.79m wide (see Appendix 1), which give an area of 

1.26m
2
.  
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If the following equation is used:  

         , with Q is the heat loss, here Q= 82W 

A= is the total area of the cylindrical storage tank, that has a radius of 

0.32m and a high of 1.59m, so                              

A=                  = 3.79m
2
  

∆T is the temperature difference, ∆T = Ttank-Tambient =58-20=28°C. 

It is found that the U-Value for this storage tank is 0.78 W/m
2
K. 

The values required to solve the equation (1) are now available and the energy loss can be 

calculated for each node, for the next 24 hours. 

 Resolution of equation (2):  

       
        

    
 , where Q(2) is the energy loss in Wh which is equal to Q(1) 

m is the mass of water present in one node considered, here, for a 

500 litres tank, if the density of the water is assumed to be equal to 

1000 kg/m
3
,the mass in one node is 500/6=83.3 kg. 

cp is the heat capacity of the water, here assumed constant, with a 

value of 4180 J/kgK.
 

∆T is the temperature gradient in K 

This equation was used to calculate the temperature of the node at the end of the one hour 

step, T(node+1). The temperature gradient is therefore the difference between the node 

temperature at the end and the one at the beginning of the hour. For example, if node 1 is 

considered, ∆T will be equal to T1- T(node1+1) =60 - T(node1+1) 

As Q(1)= Q(2), and Q(1) was solved previously, it is possible to extract the temperature of the 

node, after the energy loss occurs, e.g. after the hot water was stored for one hour. 



20 

 

0 

10 

20 

30 

40 

50 

60 

70 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Te
m

p
e

ra
tu

re
 (

°C
) 

Hours 

T1 

T2 

T3 

T4 

T5 

T6 

With these two equations, it was possible to model the temperature modification in the 

storage tank by loss to the environment and the results are shown in the Graph 1 below.  

Graph 1- Temperature drop due to losses to the ambient 

From the above Graph, it can be seen that the three top tank temperatures experience a high 

lost as there are much warmer than the ambient temperature. The three bottom curves 

however have a small slope and are not facing high losses, the temperature in node 6 having 

even some gains from the environment. The storage losses have been defined and compute in 

Excel, the construction of the demand profile will now be explained. 

 

3.2. Demand profile 
 

The demand profile was created based on user specifications and on auditing measurement. 

The audit will give information about flow rates for the shower head and for the kitchen tap. 

For this model it was assumed that those 2 devices were the main source of hot water demand 

and therefore they were the only two considered. In the model, as no specification were found 

for the specific case of the Findhorn community, the flow rates were calculated with regards 

to the Plumbing Engineering Services Guide. This later state that typical tap and showers 

would have a 0.2l/sec and 0.08l/sec flow rates, respectively (The Instute of Plumbing, 2002). 

The later values were used in l/min for this project, so the followings were utilised: 

- Shower Head Flow Rate =         = 4.8 l/min. 

- Tap Head Flow Rate =       = 12 l/min. 
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To enable a better understanding, a first fictional example of two adults with two children 

living in the house, working/studying weekdays, was taken.  

The user has to complete two different kinds of timetable:  

- The activity timetable: it provides hourly descriptions of how many people are present 

in the house and what are their activities. 

- The shower and bath timetable: it has to be complete individually, for each occupant 

of the house, and state the times at which the showers and/or baths are taken. 

An example of the activity timetable is shown in Figure 8 below: 

 

 

 

 

 

 

 

 

 

 

Figure 8-Activity timetable 

In this model, the user can choose between basics activities that could potentially consume 

hot water. For each, a time of two minutes during which the water will be running was 

assumed. This time can easily be changed. Then, this given time was multiply by the flow 

rate of the tap to give the litres consumed for specified activity. From a study realised by the 

Energy Saving Trust, it was found that the cold inlet water temperature has a mean value of 

15°C and that the tap delivered a mean temperature of 38°C (Energy Saving Trust, 2008). By 

using the same equation that the one used for calculating the storage losses,     
        

    
, 

and assuming that the density of the water is 1000 kg/m
3
 (1litre of water is equal to 1 kg), the 

energy demand for the activities practised in the house can be calculated. 
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For the shower timetable, every occupant has to provide information about the average time 

spent in the shower and usual time he is taking showers or baths at. The Figureb9 below 

shows an example of the shower timetable, filled for one of the occupant of the house. If the 

user specifies the value “1 shower”, the cell will automatically turn blue for clarification 

purposes. 

Figureb9-Showers and Bath timetable 

 

Assuming the same cold inlet water temperature of 15 °C and a delivered temperature of 

40°C (Energy Saving Trust, 2008)), the energy demand for showers and baths was calculated.  
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For the example of a family of four considered, the following hot water demand profile was 

drawn: 

Graph 2-Hot water demand profile for a family of 4 

In Graph 2, it can be seen that peaks occurs in the morning and at night, around 5pm, 6pm 

and 8pm respectively. The profile is a bit modified for the weekend as the 4 occupants are 

present and have more time to do activities in the house, like taking a bath or having a family 

lunch for example. 

It was found that for this hypothetical family of 4, there was an energy consumption of 4.5 

kWh/day during the weekdays, 7 kWh/day on the Saturday and 6 kWh/day on the Sunday due 

to extra cleaning activities and baths. These values make sense when comparing them with 

the one obtained during a field trial run by The Energy Saving Trust. Actually this study 

found that the mean energy content for DHW is 16.8 ± 2.2 MJ/day which correspond to 4.7 ± 

0.7 kWh/day (Energy Saving Trust, 2008). 

A way of acquiring a personalised demand profile, based on user specifications was 

explained. The weather forecast acquisition and calculation will now be described. 
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3.3. Weather forecast  
 

It was willing to use weather forecast in order to be able to predict the energy contribution 

from the renewable sources to the water tank. A lot of different weather predictions are 

available on the Internet and it was agreed to use this mean to acquire them. However free 

solar radiation forecasts are not to be found freely on the Web, so a methodology to predict it 

was undertaken. It was decided to: 

 Find historical data for solar radiation. 

 

  Obtain a maximum hourly value of solar radiation, for each month of the year. 

 

 Predict the solar radiation by using cloud forecast, available on the Internet, and 

considering that a 0% cloud forecast would correspond to the maximum solar 

radiation value found before. 

First, data from previous year were collected. The British Atmospheric Data Centre (BADC) 

makes available historical data from MetOffice, from different weather station around the 

UK. For this precise project, the location was set to Kinloss, which is the nearest MetOffice 

station from the Findhorn community. The only available and usable data from the BADC 

was the global solar irradiation amount, in kJ/m
2
. This correspond to « the total solar radiation 

flux from the whole sky (from UV to near infra-red) - measured using a pyranometer 

mounted horizontally, facing upwards » (British Atmospheric Data Centre, 2014). This 

horizontal radiation data was given hourly and, because there was some missing, replicated or 

senseless values, a big work of cleaning and management has to be undertaken. Finally, the 

horizontal solar radiations for each hour of the years over the 5 past years were found. It was 

decided to classify them by month and the following graph could be drawn, showing the solar 

radiation measurement for the example of the month of June: 
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Graph 3-Hourly global solar irradiation amount for the month of June 

 

This data were then arranged hourly in order to find the maximum solar radiation for each 

hour of each month. However this value was not just taken as the maximum hourly quantity 

but as an average of the ten maximum one in order to give more precision. For example for 

11 am in June it was found that the maximum calculated radiation was 2919 kJ/m
2
. The 

following graph is showing the maximum solar radiation values, Smax, for June and 

December, for the different hours of the day: 

 

 

Graph 4- Maximum Solar radiation values for June and December. 
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The next step was to extract weather data from the Internet and put them in Excel so they can 

be used in the algorithm. The functionalities of the macro with the VBA language were used 

in Excel in order to automatically extract the web data and put them in the model to run the 

algorithm when the user clicks on a button. This data is taken from AccuWeather.com and 

gives the percentage of cloud forecast for the next 24 hours.  

By considering that 0% of cloud corresponds to the previously calculated maximum radiation 

Smax, it is possible to calculate the predicted radiation for the next 24 hours by using the 

simple formula below: 

                 , where Shor is the resulted available horizontal radiation in kJ/m
2 

Smax is the maximum horizontal radiation in kJ/m
2
 

cf is the forecasted percentage of cloud 

The Figure 10 below illustrates what the programme can achieve with an example of a 

particular weather prediction. An arbitrary prediction for the next 6 hours of one randomly 

chosen day was put into the Excel model and the result are presented below: 

Figure 10- Solar radiation prediction example 
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In Figure 10, hypothetical cloud forecasts are given for the 21
st
 of July. In the Excel program, 

the user can specify any date or time, but the default one will be the day and time given by the 

computer (present’s conditions). The program will then identified the month and the hour and 

look for the maximum hourly solar radiation for this particular situation. The predicted 

radiation will then be found from the cloud forecast. In the example shown in Figure10, it can 

be seen that is quite sunny at 7am then it turns cloudy before going sunny again.   In the 

Graph, this variation can be observed for the predicted radiation which first has a negative 

slope before going up and becoming closer to the maximum radiation. 

Other weather data from MetOffice showing the predicted wind speeds and directions can 

also be extracted from the web with the Excel programme. This was done in case it was 

willing to try to charge the hot water storage tank when the wind was blowing and when there 

consequently was some electricity available from the wind turbine. However these data were 

not used in this project but could be utilised in a future work.  Data for the predicted external 

temperature are also available and could be used for constructing regression analysis models 

(see section 5.1. Multiple regressions analysis models). 

The sun radiation forecast was imported from the Internet to Excel and was now usable to 

predict the hot water production over the next 24 hours. 

 

3.4.  Hot water production 
 

The hot water production from the solar system depends on the quantity of solar radiation that 

reach the collector and on the performances of the system. In order to give a valuable profile 

for the hot water production, equations that give the energy supply to the water tank from the 

solar radiation were used. 

First, the predicted available solar radiation calculated in the above section is a horizontal 

radiation and it needs to be transformed into the radiation on a tilted surface. This is a 

geometry problem that takes account for different angles, including some characteristics 

angle specific to solar calculations. PVEducation.org proposes a method to translate the 

global horizontal solar radiation (Shor) into the incident radiation on a tilted surface, here the 

thermal panel (Spanel). This technique is purely geometrical and does not consider any 

principles that are specific to PV applications. It can be applied for any tilted surface and is 

therefore valid for a thermal panel. 
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The method from PVEducation.org uses the equations below, here adapted for the case 

studied. The Figure11 is showing the configuration analysed with the different values and 

terms utilised through the calculations. 

 

 

  

 

 

 

 

Figure 11 – Solar radiation calculations 

Source (PVEducation.org, 2014) 

       
              

    
  , where Spanel is the incident radiation on the panel in kJ/m

2 

Shor is the previously calculated horizontal radiation in kJ/m
2 

β is the tilt angle (°) of the panel measured from the horizontal  

α is the solar altitude in ° 

The solar altitude is the angular height of the sun in the sky measured from the horizontal.  It 

is a complex variable that depends on the site latitude ϕ, the solar declination angle δ and the 

hour angle θh. It can be expressed with the following equation: 

                                

(ESRU, 2013) (PVEducation.org, 2014) 

The solar declination angle δ is equal to: 

            
   

   
        , d is the day of the year. 

(ESRU, 2013) (PVEducation.org, 2014) 
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The hour angle θh converts the local solar time into the number of degrees which correspond 

to the movement of the sun across the sky. The hour angle is equal to 0° at solar noon is 

negative in the morning and is positive in the afternoon. It is equal to: 

               where ts is the local solar time which is a time scale that  relates to the 

apparent angular motion of the sun across the sky vault.  

(ESRU, 2013) (PVEducation.org, 2014) 

Solar time is not essentially equal to the clock time (or local mean time) tm and a correction 

need to be applied to the standard time to find the solar one:  

       
     

  
  where tm is the local mean time which in UK is known as Greenwich Mean 

Time (GMT) 

et is the equation of time in minutes 

L is the longitude difference in ° 

(ESRU, 2013) (PVEducation.org, 2014) 

The longitude difference is the difference between an observer's actual longitude and the 

longitude of the mean or reference meridian for the local time zone (ESRU, 2013). For the 

UK, the reference meridian is at 0° so the L to consider in the equation for this case is just the 

longitude of the UK site where the panel is installed. 

The equation of time is an empirical equation that corrects for the eccentricity of the Earth's 

orbit and the Earth's axial tilt and that can be seen below: 

                                                                    

where d is the day of the year. 

(ESRU, 2013) (PVEducation.org, 2014) 

These equation were put in Excel and are solved each time that the algorithm is run. The 

program can find the day of the year and clock time (actual time and 24 next hours) and 

therefore can calculate the predicted radiation on the panel, from the horizontal one 

previously evaluated. Some issues were found regarding these calculations as it was seen that 
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if the solar altitude was reduced to small values the tilted radiation become senselessly big. 

This case was mostly occurring at sunset and it was thought that the sun should be too low to 

provide energy to the system (but it was making sense with the fact that there would be small 

altitude angle for this period of the day). It was decided to set the tilted radiation to 0 

whenever the solar altitude was below 0.15 radians (this value was identified after trying 

different day of the year). It was seen that a simplified equation could be used to estimate the 

solar altitude. However the model was not adapted to this new equation as there was not 

enough time and that the complex model usually works well and should give more precise 

values than the one given with the simplified equation. 

The tilted radiation need to be modified, as the collector is not a perfect exchanger and will 

not be able to absorb all the energy that reaches it. Further calculations were performed in 

order to find out what will be the solar input to the hot water system depending on the solar 

radiation on the collector. The calculations used are from the Standard Assessment Procedure 

(SAP), Appendix H and are the following:  

                                            

where Qs is the solar input in kWh       

Spanel is the total solar radiation on collector in kWh/m², calculated just before. 

Zpanel is the over shading factor for the solar panel. The program created in Excel is 

using SAP assumptions and audit specifications to calculate it. 

Aap is aperture area of collector in m² obtained during the audit. 

h0 is the zero-loss collector efficiency given in technical data of collectors, and being 

collected during the auditing work. 

UF is the utilisation factor calculated in the program using SAP method. 

f1 is the collector performance factor 

f2 is the solar storage volume factor 

The collector performance and the solar storage volume factors, f1 and f2 respectively are 

estimated using the equations below: 
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     ,a1 is the linear heat loss coefficient of  the 

collector in W/m²K, given in technical data 

of collectors, and being collected during the 

auditing work. 

               
    

  
               

    

  
      Veff is the effective solar volume in litres. 

Vd is the daily hot water demand in litres. 

In the case of a combined cylinder, as considered, the effective solar volume Veff is the 

volume of the dedicated solar storage plus 0.3 times the volume of the remainder of the 

cylinder. In this project, as not precise value of were found for the ROTEX Sanicube, it was 

assumed that the volume dedicated for the solar storage was one third of the storage tank. 

Once the solar input was determined, the temperature of the solar input Tsol-in was estimated 

by using the formula below: 

          
       

       
               

, where         is the solar temperature entering the storage tank, in °C. 

Qs is the solar input in kWh 

cp in the heat capacity of the working fluid  used by the collector. In the case studied, 

the collector used the 100% tyfocor antifreeze mixture which as a heat capacity of 

2.6 kJ/(kgK) at 50 °C (Resol, 2009). This value was assumed constant. 

T6 is the tank bottom temperature that is assumed to be equals to the solar return 

temperature Tsol-out. 

   is the mass flow running from the collector to the storage tank, in kg/s. The 

specifications for the collector usually give the flow rate. In the case study, the 

working fluid has a mass flow of 0.5 litres per square metre of collector area per 

minute. The density is used to transform this flow rate in mass flow, and is assumed 

to be a constant value of 1.054 kg/l (Resol, 2009). 
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The graphs below show how the temperature of the solar supply changes with the available 

sun radiation: 

 

 

 

 

 

 

 

Graph 5- Sun Radiation forecast 

 

 

 

 

 

 

 

Graph 6- Temperature of the solar supply 

 

These solar calculations would be an input to express the overall results and outputs of the 

models. These are explained below. 
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3.1. System Model Calculations and Back-up settings 
 

Calculations were made in order to find the temperatures in the tank every hour, for the next 24 hours. It was first based on energy calculations 

like it can be seen in the Figures 12 below: 

 

 

 

 

 

 

 

Figure12-Algorithm calculations:  

Example 1
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From the above figure, it can be seen that the storage losses, the solar supply and the demand 

are given in kWh for every hour. The storage losses occur each hour, however for the solar 

supply and the demand the value will be highlight in yellow and green respectively, whenever 

it is different to zero.  

The solar supply is assumed to occur only if the difference between the temperatures of the 

solar supply with the temperature of the node 3 of the storage tank (node at which the solar 

energy will be supply) is positive. If it is negative it is presumed that the solar pump will not 

let the working fluid circulated as the solar energy is not high enough to offer a gain to the 

system. 

The energy demand comes from the profile explained in an above section. 

The storage tank node temperatures are also shown in the results. Data from the Findhorn 

Centini’s house were taken as an initial system for the tank temperature. As the Centini 

houses do not have a direct stratified tank some small modifications to this data were assumed 

in order to have the system required. The temperature defined gave an initial state of the 

system that would be taken as a reference. The energy content for each node was calculated 

using the formula below: 

          
                  

    
 , where Q(node) is the energy present in the node in kWh . 

m is the mass of water present in one node considered 

in kg. 

cp is the heat capacity of the water, here assumed 

constant, with a value of 4180 J/kgK.
 

Tnode is the node temperature in °C. 

Tcold is the cold temperature. 

This energy content is then translated into a percentage compared to the overall energy 

available in the tank. It is supposed that the tank is stratified and that this percentage is 

constant through time. This assumption features the fact that the relationship between the 

nodes is not considered. It was assumed that the percentage of energy for each node were the 

followings: 
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Table 1: Node energy content in relation to the total energy available in the tank 

 

 

 

 

 

The top node temperature T1 is shown in red in Figure 12 if it becomes inferior to 45°C. 

Actually it was supposed that this temperature is a limit and below it the water is not warm 

enough to supply the demand and needs to be heated. This top temperature will be highlight 

in yellow if it is increased above 80°C as this high temperature could damage the storage 

tank. The Excel program will automatically turn this cells into the appropriate colour when 

one of the above situation occurs. 

The solar fraction, that show the portion of hot water supply by the solar system compared to 

the role played by the back-up heater was also calculated, using the following formula: 

   
      

                 
  , where Esolar is the energy provided by the solar system 

EAuxiliary is the energy provided by the auxiliary system 

 

In Figure 12, the immersion heater settings are fixed to 0 which mean that the device is OFF. 

In the following example presented below, this setting is changed to 1 (immersion ON for the 

entire hour) at a chosen time, in order to be able to provide a suitable hot water temperature to 

meet the demand: 

 

 

 

Nodes % of energy 
content 

Top Node 27.1% 

Node 2 24.5% 

Node 3 21.5% 

Node 4 14.5% 

Node 5 10.1% 

Bottom Node 2.2% 
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Figure 13- Algorithm calculations: Example 2 

In Figure 13, it can be seen that the immersion heater is ON and in consequence, the tank top 

temperature is not falling below 45°C and is not appearing in red. However the solar energy 

that was available and outlined in yellow in Figure 12 is not here anymore. Actually, in this 

case, the backup system has heated the tank at such a temperature that the solar energy 

became unusable. The immersion settings need to be completed by the user for the moment 

and should be automatically decided by the controller in a practical implementation. 

As soon as the calculations are finished and the control settings are defined, a general 

overview is accessible to the user so it can have feedback. This is presented as the model 

outputs below. 

 

3.2.  Model Outputs  
 

The algorithm is finally outputting the result in a fashion that can be seen in Figure14 below. 

Information about demand prediction, solar prediction and node temperatures are given, along 

with the times at which the immersion heating is ON, the predicted solar fraction and the cost 

relative to the control chosen. The cost was calculated using off peak and peak rates. The off 

peak tariff was assign for times between 12-midnight and 7am and had a value of 7.09 

pence/kWh while the peak tariff was set as 13.52 pence/kWh (Energy Saving Trust, 2014). 
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Figure 14-Output Result from the Algorithm 

The construction of the algorithm has been explain and it assumptions has been outlined. The way to run it have been defined, and complementary 

instruction can be found in the Excel spread sheet. The next section will present results found from this model.  
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4. Results and Analysis 

Results for different weather and different level of charge of the hot water storage tank were 

calculated for the SDHW system presented in the above sections. The algorithm was run from 

10 pm, which mean that the storage losses, the hot water demand, the solar supply and the 

tank nodes temperatures were predicted for the entire following day, until 9pm.  Different 

weather scenarios were examined for diverse period of the year: 

- Sunny day, which corresponds to weather forecast of 0% of clouds. 

- Partially sunny day, which corresponds to weather forecast of 50% of clouds. 

- Cloudy day, which corresponds to a weather forecast of 100% of clouds 

 Three levels of charge for the tank were set: 

- Fully discharged: the top temperature of the tank is 45.9°C. 

- Partially charged: the top temperature is 52.4°C. 

- Fully charged: the top temperature of the tank is 78.9°C. 

Results were found for this three weather forecasts and levels of charge and conclusions 

drawn regarding the use of the immersion heater. 

The demand prediction for the next day can be seen below: 

 

Graph 7- Demand prediction 

The simulations were first run for a summer day, the 20
th

 of July and the results below were 

found. 
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4.1. Summer simulation 

Scenario 1: Sunny day, 0% cloud forecast. 

For a sunny day, the weather and solar input predictions are shown below: 

 

From the above graphs, it can be seen that a large amount of solar radiation is available. The 

solar supply temperature almost reaches 60°C between 12-noon and 5pm and is above 30°C 

from 6am until 7 pm.  

If the tank is fully discharged, the Figure 15 below is found: 

 

From Figure 15, it can be observed that the energy supplied by the solar system is available 

from 7am until 6pm. The total solar energy available through the day is equal to 10.7 kWh, 

Graph 8-Weather and solar forecasts for a 0% cloud prediction in summer 

Figure 15 -Fully discharged tank on a sunny summer day with no immersion heater 
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and this is enough to cope with the evening hot water demand; however as the storage tank is 

discharged in the morning, there is a need for the immersion heater to turn on and supply the 

necessary energy to match the morning hot water demand.  

A suggested setting found for the auxiliary heater is shown below: 

The Figure 16 shows the immersion heater set to run for 1 hours. The auxiliary is starting to 

run at 7am so that the electricity needed is supplied during off-peak tariffs. Moreover, as sun 

energy is available, by putting the immersion heater at the same moment than when a hot 

water demand occurs, there will be a water draw and as a consequence, the bottom of the tank 

will received some cold water. This will allows lower temperatures in the bottom and the 

solar energy will be fully harvested.  

The results for a sunny day with an initial tank fully discharged are sumarized on the table 

below: 

Table 2-Results for a sunny day, tank fully discharged. 

 

The same procedure was undertaken, but starting with the tank partially charged. In this case, 

it was realised that without immersion heater the quantity of hot water demand needed for the 

Initial Top 

Temperature 

Final Top 

Temperature 

Immersion 

heater time 

Demand meet 

at any time? 

Solar 

Fraction 
Solar energy input 

45.9°C 56.8°C 0 No 100% 10.7 kWh 

45.9°C 59.9°C 1h off-peak Yes 82% 10.7 kWh 

Figure 16-Fully discharged tank on a sunny summer day with immersion heater 
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morning could still not be delivered. However, it was observed that the part play by the 

auxiliary heater could be reduced to fifteen minutes without losing any solar inputs. Therefore 

the solar fraction was increased to 95%. The results found when the storage tank is partially 

charged at the initial time are found in Table 3 below: 

Table 3- Results for a sunny day, tank partially charged 

 

If the tank is fully charged at its initial state, there is no need to turn the auxiliary heater on 

and the following results are found: 

In Figure 17, it can be seen that the tank reaches very high temperatures, above 80 °C. That 

could be a problem and should lead the solar pump to stop supplying its energy in order to 

protect the tank. If this happens, some amount of solar energy will be lost. 

In the scenario of a sunny summer day, it was realised that the hot water demand could be 

meet while achieving high solar fraction if the immersion heater is well controlled. Actually, 

even if the tank is completely discharged, the solar fraction can still be up to more than 82%. 

 

Initial Top 

Temperature 

Final Top 

Temperature 

Immersion 

heater time 

Demand meet 

at any time? 
Solar Fraction Solar energy input 

52.4°C 61.7°C 0 No 100% 10.7 kWh 

52.4°C 63.4°C 
15 min off-

peak 
Yes 95% 10.7 kWh 

Figure 17-Fully charged tank on a sunny summer day 



42 

 

Scenario 2: Partially sunny day, 50% cloud forecast. 

For a partially sunny day, the weather and solar input predictions are shown below: 

From the Graph 9, it can be seen that the amount of solar radiation available on the pannel is 

reduced due to the clouds from almost 4000 kJ/m
2
 to less than 2000 kJ/m

2
 . The solar supply 

temperature however still reaches fairly high values, attaining nearly 40°C. 

If the tank is fully discharged, and with no use of the immersion heater, the figure below is 

found: 

 

From Figure 18, it can be observed that the energy supplied by the solar system is available 

from 8am until 7pm with is similar as the time interval seen in the previous scenario. It can be 

observed that however neither the morning nor evening demand are meet. Actually the total 

Graph 9-Weather and solar forecasts for a 50% cloud prediction in summer 

Figure 18 -Fully discharged tank on a partially sunny summer day with no immersion heater 
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solar energy amount provided to the system is only 4.9 kWh, compared to the 10.7kWh from 

the last situation. That means that the solar input is smaller for each hours and that is why the 

tank is not warming up enough to meet the evening demand. 

A first example of immersion settings is presented in the figure below: 

In Figure 19, it can be seen that the demand is meet but as a consequence, a part of the solar 

energy is lost. Actually, the solar energies that were supplied at 8am, 6pm and 7pm in Figure 

18 can no longer be provided as the temperatures are too warm inside the tank. It was thought 

that if the immersion heater was put ealier in the night , or for an adjusted time, some part of 

solar input could maybe be utilise. First, it was seen that putting the immersion heater earlier 

in the nigh was not working as the solar energy lost  was quite low, and because  the storage 

losses through the night  are not that high, the solar supply temperature would still  not be 

high enough to make the solar pump to turn on. For the settings presented in Figure 19, the 

solar fraction was 44%. 

 It was perceived that a better solar fraction could be achieve by running the auxiliary heater 

for one hour and thirty minutes only. In this way, the solar energy occuring at 6pm, that was 

no longer available with the previous setting, was now supplied to the system. Therefore, as 

the part supplied by the immersion heater is reduced and the solar gains are increased, the 

solar fraction can reach a value of 54%. 

The results for a discharged tank on a partially sunny summer are summarised in the table 

below: 

Figure 19- Fully discharged tank on a partially sunny summer day with immersion heater 
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Table 4- Results for a discharged tank on a partially sunny summer  

   

With the immersion heater on for one hour and thirty, the demand can be meet, even though 

the final top temperature of the tank is quite low but as no significant demand should occurs 

after 9pm, it is considered as acceptable. 

If the tank is partially charged, the solar energy is available from 9am to 7pm with a total 

amount for the day of 4.6 kWh, with is slightly smaller then if the tank was charged at all. 

Different settings were tried and a smaal selection of them are reported the table below. 

 Table 5- Results for a partially charged tank on a partially sunny summer  

 

 If the controls are well timed, the solar fraction for this situation can reach 70%. 

If the tank is fully charged at its initial state, there is no need to turn the auxiliary heater on. 

However, the solar energy input through the day is reduced to zero as the temperatures inside 

the tank are too high compared to the  temperature that could be provided by the solar system. 

At the end of the day, the temperature of the tank is still reasonably high, attaining a value of 

51.8°C. 

In the scenario of a partially sunny day, it was recognise that the hot water demand could be 

meet with a solar fraction equals to 70% if the storage tank was partially charged. If the tank 

was discharged, the solar fraction could still be significant (54%) if the appropriate controls 

were used.  

Initial Top 

Temperature 

Final Top 

Temperature 

Immersion 

heater time 

Demand meet 

at any time? 

Solar Fraction Solar energy input 

45.9°C 40.6°C 0 No 100% 4.9 kWh 

45.9°C 51.04°C 2h off peak Yes 44% 3.8 kWh 

45.9°C 48.8°C 1h30 off-peak Yes 54% 4.2kWh 

Initial Top 

Temperature 

Final Top 

Temperature 

Immersion 

heater time 

Demand meet 

at any time? 

Solar Fraction Solar energy input 

52.4°C 44.7°C 0 No 100% 4.6 kWh 

52.4°C 49.2°C 1h off peak Yes 61% 3.8 kWh 

52.4°C 48.8°C 45 min off-

peak 

Yes 70% 4.2kWh 
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Scenario 3: Cloudy day, 100% cloud forecast. 

If there are 100% clouds, there will be a negligible amount of solar radiation available, and 

for this project it was assumed that in this circumstance, the solar contribution to the system 

will be zero. 

It was seen that if there is no solar input, there would be a need for the immersion heater to be 

on for 3 hours if the tank is discharged and 2 hours if it is partially charged. This would be 

done during the night to take advantages of the off peak tariff and of the eventual availability 

of other renewable energy sources. In both case, the temperatures of the top node of the tank 

will be very low, around 45°C, at the end of the day. If the tank is fully charged, the system 

will be in the same situation than in scenario 2, and there will be no need for additional heat. 

4.2. Other simulations 

Simulations were then run for other periods of the year. An interesting example of how the 

solar fraction could be improved is shown below. It presents a winter situation (20
th

 of 

January), with a forecast of 50% clouds. In those circumstances, the weather and solar input 

predictions are the ones shown in the graphs below. 

 

Graph 10- Weather and solar forecasts for a 50% cloud prediction in winter. 
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If the storage tank is discharged, the following figure is found: 

From Figure 20, it can be realised that the demand cannot be meet if there is no additional 

heat and the top temperature of the tank is seen to be decreased to 30°C by the end of the day. 

It can be observed that there is a small amount of solar radiation that could be exploited. 

First the usual off-peak immersion heater settings were implemented in order to supply the 

energy needed for the demand, and the result below were found:  

 

Figure 20- Fully discharged tank on a partially sunny winter day with no immersion heater 

Figure 21- Fully discharged tank on a partially sunny winter day with immersion heater during off peak tariffs 
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If those settings are chosen, it can be seen that the total amount of the solar input is lost. 

However it was observed that improved settings could allow this energy to actually be 

supplied to the system. These new times for the immersion heater are shown below. 

In the settings exposed in Figure 22, the solar energies could be supplied to the system. 

However the immersion heating would need to be turned on at 6pm in order to deliver the 

energy required for the evening demand. That would involve cost consequences as it is not an 

off peak period, but it was seen that with the improved setting, the immersion heater need to 

be on for less time than in the previous situation presented in Figure 21. Actually it was on for 

3h before and is now on for 2h30 so less electricity is consumed. Unfortunately, the cost for 

these improved settings is still higher but by only 7 pence. 

Simulations were then run for each month during a full year, with the tank fully discharged, 

for a sunny day and for a partially cloudy day (50% cloud forecast). It was thought that this 

would give an idea of the worst case scenario for the system. The solar fraction was tried to 

be increased and even if that could be done with putting the immersion heater on in on peak 

period. However, if the solar fraction could not be increased, the off peak period were 

preferred. 

The table below presents the immersion heater settings that would improve the solar fraction: 

 

 

 

Figure 22- Fully discharged tank on a partially sunny winter day with improved immersion heater settings 
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Table 6- Results for an all year simulation, tank fully discharged 

 

 Tank initial 

state 

Final 

Temperature 

Immersion 

heater time 

Solar 

fraction 

Solar energy 

input 

Jan 
Sunny 45.3°C 1h45 off-peak 36% 2.4kWh 

Partially 

sunny 
45.6°C 

1h30 off peak 

1h on peak 
10% 0.67kWh 

Feb 
Sunny 52.4°C 1h30 off-peak 60% 5.4kWh 

Partially 

sunny 
45.1°C 

1h30 off peak 

15min on peak 
35% 2.3kWh 

Mar 
Sunny 57.8°C 1h30 off-peak 67% 7.4kWh 

Partially 

sunny 
46.0°C 1h30 off peak 47% 3.2 kWh 

Apr 
Sunny 61.6°C 1h15 off-peak 76% 9.4kWh 

Partially 

sunny 
48.8°C 1h30 off peak 54% 4.2kWh 

May 
Sunny 63.4°C 1h off-peak 82% 10.6kWh 

Partially 

sunny 
47.8°C 1h30 off peak 52% 3.8 kWh 

Jun 
Sunny 65.8°C 1h off-peak 83% 11.5kWh 

Partially 

sunny 
49.0°C 1h30 off peak 54% 4.3 kWh 

Aug 
Sunny 61.0°C 1h off-peak 80% 9.76kWh 

Partially 

sunny 
48.8°C 1h30 off peak 54% 4.2kWh 

Sept 
Sunny 59.6°C 1h15 off-peak 74% 8.7kWh 

Partially 

sunny 
47.9°C 1h30 off peak 52% 3.9kWh 

Oct 
Sunny 54.8°C 1h30 off-peak 64% 6.3kWh 

Partially 

sunny 
46.7°C 1h45 off peak 41% 2.9kWh 

Nov 
Sunny 48.6°C 1h45 off-peak 46% 3.5kWh 

Partially 

sunny 
46.1°C 

1h45 off peak 

30 min on peak 
21% 1.4kWh 

Dec 
Sunny 46.4°C 2h off-peak 31% 2.2kWh 

Partially 

sunny 
45.4°C 2h45 off peak 0% 0 kWh 
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In Table 6, it can be seen that, the maximum solar fraction is achieve for the month of June 

with 82% for a sunny day and 54% for a partially sunny day, and the minimum one is found 

for the month of December, with 31% for a sunny day and 0% for a partially sunny day. It is 

found that the solar fraction a above 35% from February to October in both weather 

conditions and only December and January have very low solar inputs. 

4.3. Conclusions  

It was seen during a summer simulation that the immersion heater part can be reduced as a 

large amount of solar energy can be available. If the tank is fully charged, there is no need to 

turn the immersion heater on. Actually as the storage tank has a high capacity of 500 litres, 

the energy present in the tank when it is charged is enough to cope with the demand. That 

means that if any solar input is high enough to be supplied, the solar fraction will be 100%. 

However, because the tank is fully charged, the temperatures inside it are quite high and the 

solar temperatures might not be high enough to provide more energy to the tank. In the case it 

can provide this energy, it was seen that care should be made regarding possible high 

temperatures (above 80°C) that could damage the tank. 

If the tank is partially charged, there would be a need to turn the immersion heater for 2 hours 

if there are no solar gains. However, this time is reduced to 45 minutes if the forecast is set to 

50% clouds allowing for a 70% solar fraction for the system. If the following day is fully 

sunny, the auxiliary heater need to be on for only 15 minutes and the system reaches 95 

%. 

In the case of the tank fully discharged, 7.2 kWh need to be add to the system if there is no 

solar input (3 hours with a 2.4kW immersion heater). This time can be adjusted to 1h30 if 

there is a forecast of 50% clouds and to 1 hour if the next day has 0% clouds. The solar 

fraction achieve in both cases are 54% and 82% respectively. 

 The simulation for one day of every month of the year was undertaken and it was observed 

that in winter, especially January and December, the solar energy inputs can be very low. If 

the immersion heater was put in the morning for too long, providing a too high energy input, 

these solar gains could not be exploited at all. It was seen that in some situation it would be 

beneficial to turn the immersion heater on in the evening so the tank has been filled with solar 

energy and needs less heat gains to supply the evening demand. Through the all year, high 

solar fraction could be achieve even if the tank is fully discharged when the simulation start, 

at 9pm. 
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It was understood that the control of SDHW system can be variable depending on the 

situation encountered and on the period of the year. The predictive algorithm can provide 

useful information on which situation will be faced and the control settings can be adapted 

and improved in order to maximise the solar fraction and minimise the use of the back-up 

system. This could help the user to fully exploit his solar system and to reduce his cost and 

carbon consumptions. The next section will discuss how this predictive algorithm could be 

improved and adapted in a practical way. 

 

5. Practical implementation  

Once the algorithm was fully understood and results were found, researches were made on 

ways to improved it and to implement it in a real control scheme for solar systems. First, 

following the ORIGIN project approach, it was understood that real data based models would 

largely increase the accuracy of the algorithm and complement the profiles created.  A 

hardware implementation was then discussed, following by potential user interface 

possibilities. Those three topics are presented below. 

5.1. Multiple regression analysis models  

Regression analysis is a technique used to analysed multifactordata and investigate eventual 

relationships between variables (Montgomery, 2011). It can provide simple equations that 

will summarize or describe a set of data and will allow for future prediction of an unknown 

parameter.  For example, if y is the unknown value also called the dependent variable and x1, 

x2…, xi are independent variables that values are known, then a general multiple linear 

regression model will provide a prediction of y from the xi and generate an equation having 

the following aspect: 

                     , b0 is the intercept 

b1,b2,…,bi are the regregression coeficient that can be 

interpert the same way as slope. 

(Explorable.com, 2009) 

This regression equation is etablished from a dataset where all the variables are known, 

including y. It will then be use to calculate y when x1, x2…, xi are given. An essential aspect 
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of this kind of analysis is then data collection and this method will not work at its best if the 

data it is based on are deficient. Moreover the choice of the indepandent variables is also 

critical as wrong choice will not provide good regression model.  

In this project, it was thought that regression analysis could be used to generate more accurate 

profiles. That also was the strategy used within the ORIGIN project. Few multiple regression 

analysis equations were developed by this EU project, based on a 5-weeks monitoring work. 

The equations were generate using Excel, that has a functionality to develop these kind of 

models.  

Within the ORIGIN project, the following data regarding the hot water system from the 

Centini house in Findhorn were acquired: 

- The 6 nodes temperatures of the tank 

- The DHW flow 

- The DHW return temperature  

- The DHW temperature difference  

- The DHW energy 

- The solar energy  

- The solar flow 

- The solar return temperature  

- The solar temperature difference 

Because the storage tank used for this project is not an indirect tank, the regression equations 

found in the ORIGIN project will not be valid for the case studied. Some other data were 

available for a more similar system than the one chosen in this project but there was no time 

to generate the regression models. However, the ORIGIN team produced a model that was 

calculating with accuracy the solar input, knowing the solar radiation and the tank bottom 

temperature. Although the number cannot be used here, it was interesting to see which values 

are related to each other. It was seen that the flow temperature needed to be calculated using 

the solar radiation and the tank bottom temperature. From the difference between the flow 

temperature and the tank bottom temperature, the solar input could be estimate. This method 

could give more accurate result than the one used here, based on SAP. 

It was also thought that this regression method could also be used for calculating the real 

relations between the tank temperatures for different system situations. Improved storage 

losses and demand profiles could be generated. At this point, other weather forecast would 
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maybe need to be used, like the outside temperature which is already available on the Excel 

program.  

If a careful data collection is undertaken, the regression analysis method can provide accurate 

equation regarding system behaviour. It was seen that it could be a great opportunity to model 

in a more precise way the SDHW system. In a next part, discussion will be hold regarding the 

hardware implementation of the prediction and control algorithm created.  

 

5.2. Hardware implementation 

In order to implement the algorithm created in Excel in a practical way, it was understood that 

there will be a need for a hardware that could integrate the logic, that would be able to receive 

measurement from sensors and that is capable to take data from the Internet. Another point 

that would be interesting to achieve is that the program integrated into the hardware would be 

able to learn the system and user behaviour to adapt itself to any known situation. Deeper 

researches about microcontrollers were undertaken and the Arduino board looked like a 

possible solution for the wished application. Arduino is an open-source physical computing 

platform based on a simple microcontroller board, and a development environment for 

writing software for the board (Arduino, 2014). The Arduino platform integrates its own 

programming language which is comparable to C++ with slight modifications.  

The main advantages of this system are that it is inexpensive and has an open-source platform 

that can provide support and examples. The Arduino platform proposes different type of 

board that have various functionalities. For this project, one of the major focuses was to be 

able to connect to the Internet in order to import the weather data. It was seen that the 

Arduino Ethernet shield can be used to access any non-password protected site. The main 

limitation with this microcontroller was its lack of memory. There are three pools of memory 

in the microcontroller used the Arduino boards. The flash memory is where the Arduino 

program is stored. There is also the SRAM (static random access memory) which is where the 

program creates and manipulates variables when the microprocessor runs and the EEPROM 

which is a memory space that the programmers can use to store long-term information 

(Arduino, 2014). The more powerful board found has a flash memory of 256k bytes, a SRAM 

of 8k bytes and a EEPROM of 4k bytes (Arduino, 2014). The problem is that if the Arduino 

run out of SRAM, the program might fail. As it was not known how much space the Excel 

algorithm would take when converted to the Arduino language, solutions where investigated 
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about possible ways of communication with an external environment to support the hardware. 

A freely available generic proxy program, Gobetwino, was found to be a potential solution as 

it permits Arduino to communicate with a PC. Gobetwino can be downloaded from the 

internet and defines a set of command types that can be used as templates to create actual 

commands. Arduino can ask Gobetwino to execute these commands, and return something to 

Arduino (Arduino, 2014). The particular functionality that was very interesting for this 

project was the fact that with GoBetwino, the Arduino is able to send data to Excel or to 

create a CSV file to store them in a computer.  

The Arduino structure would then be able to monitor the solar system while controlling it. 

Actually Arduino, with Gobetwino, will be able to receive the data from different sensors and 

send it to an Excel spreadsheet or a CSV file. In order to fulfil this monitoring work, the 

sensors needed would be: 

- Temperatures sensors: Six of them for the hot water storage tank, one for the cold 

water inlet, and two for solar input and output temperatures. 

- A pump monitoring sensor that would observe when the solar pump turn on, and at 

which power. That would allow for the calculation of the solar energy input by using 

the formula Q=mcpΔTsolar where the ΔTsolar can be extracted from the solar system 

temperatures. 

In order to accomplish a practical implementation of prediction and control algorithm created 

in Excel with the Arduino, the following step would need to be undertake. First, the algorithm 

would have to be translated into the Arduino language. This device would need to take 

decision on which control settings are the most adequate to the situation it faced. It will then 

communicated its decision to the immersion heater and will turn it on when required. At the 

same time the Arduino will received data from the different sensors, that will provide 

information about the state of the system, and that will be send to an Excel spreadsheet for 

future analysis.  

The Arduino can offer a cheap way to control SDHW system. However it has its limitations 

which are mainly related to its lack of memory. As it was not known if the all algorithm could 

be put into just one Arduino board another alternative found was to run the program using the 

possible PC communication. However that would require a computer to be on each time the 

algorithm needs to run. Therefore, the improved solution proposed is to run the Arduino using 

Java. In this way the program could be launch into a server or directly into the Internet. The 
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Arduino will collect the data from the different sensor and send it to the server, or to the 

Internet, using the functionality of the Ethernet shield. The Java program will run the 

algorithm with the data sent and decides of the most adequate control settings. This 

information will then be send back to the Arduino that will turn on the immersion heater at 

the agreed times. This would require writing the algorithm in the Java language but this 

possible Java-Arduino communication can offer a great opportunity to improve the algorithm. 

Actually Java is a powerful programming language that can integrate learning processes. A 

more complex control system, similar to the NEST learning thermostat, which can learn the 

system behaviour and adapt the settings, could then be developed. 

This section provided a scoping study of a possible implementation of the prediction and 

control algorithm with the Arduino microprocessor. Different propositions were made and 

solutions were proposed to cope with the eventual hardware limitations. An overview of how 

the control would work and how it would be able to monitor the SDHW system was exposed.  

 

5.3. User interface 

The user interface can play a great role in the energy use by SDHW systems as the 

householders can take uninformed decisions that could be critical for achieving the water 

heating system best usage. A trial conducted by the Energy Saving Trust outlined that “better 

advice to users on how to control their solar water heating systems (in terms of volume of hot 

water use, timing of back-up heating and hot water use, and temperatures required) is 

essential”. Actually if the user is aware of the state of the SDHW system, he has the choice to 

adapt his behaviour to exploit it efficiently. 

The control algorithm would also be largely improved if it is able to “communicate” with the 

user. For example, input from the user stating that he is going on holidays will allow the 

control system to completely turn off the immersion heater for the time the user is not 

utilising his system. 

An example of important outputs that could be useful for the user to know was shown for the 

algorithm presented, in the section 3.2. showing the model outputs. Another model that 

transmits the information to the user using internet is shown below: 
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Source: (Amatis Controls, LLC, 2014) 

 

In Figure 23, it can be seen that homeowners can check on the amount of thermal energy 

produced and use along with how much money they are saving. This example is given present 

conditions of the SDHW system, but it could integrate the predicted state calculated with the 

algorithm created. 

It was seen that a user interface can improved the SDHW system performances. By 

transferring useful information like the solar gains, the cost savings and the system state, the 

user can adapt its behaviour and use his system in a aware way. Moreover an improved user 

interface will allow the user to specify its habit and potential modification of his domestic hot 

water usage, so that the control system can adjust itself. 

 

 

 

 

 

Figure23- Example of user interface 
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6. Conclusions 

6.1. Discussions and future work 

This part of the thesis will review the different step undertaken through this project and 

exposed the results found. Eventual limitations and future improvement will be discussed. 

The first step of the thesis implicated a scoping, investigation and knowledge gathering work 

presented in the form of a literature review. The different configurations of SDHW system 

were exposed. It was found that a standard UK system will have a flat-plate solar collector, 

working with an antifreeze working fluid, bringing the solar energy to a storage tank. For this 

project tank stratification was assumed and more information on whether or not it can be 

achieve should be further investigated. The back-up system was set to be an electric heater 

immersion. Data from the Findhorn Community were used to put number on some unknown 

values. However the system studied is a bit different from the one found in the Centini houses 

of the Findhorn community, and considerations of other technical specification, more relevant 

to the model built would be interesting. In the literature review, it was seen that the control of 

the SDHW system can play a major role on the efficiency of such structure. The figure below 

recalls the importance of control settings for achieving high solar fraction. 

 

 

 

 

 

 

 

Figure 24-Importance of control in SDHW system 

In Figure 24, it can be seen that wrong time setting of the back-up system will lead to a poor 

exploitation of the available solar irradiation. Therefore the settings of the auxiliary heater 

can play a critical role in the operation solar water heating system. It was suggested that a 
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more informed decision could be made by implementing weather and demand forecast into 

the control of such system.  

A model was built in Excel to give weather and demand predict ion that could support the 

control decision. The algorithm created incorporated a model of the standard UK solar system 

set up regarding the scoping process. The profile created in Excel seems to give reasonably 

accurate outputs but it has its limitations. The algorithm can access and use weather forecast 

from the Internet. However the methodology used to predict the solar radiation has not been 

tested and should be compared to real information and to some other prediction tool like the 

one proposed by GeoModel Solar. This later offer a solar radiation forecast to up to 48 hours, 

at reduced prices for academic research. The storage losses profile was based on previous 

work and was assumed to give reasonable output but could be improved by using a multiple 

regression analysis. The demand profile offered the possibility to set the demand and change 

it in case of modifications in the household habits. A more precise model, implementing more 

hot water device, could however be created.  The solar calculations allow the transformation 

of the horizontal forecasted radiation into the solar input the hot water system. A deeper look 

could be taken to try to understand the problem faced with the solar altitude angle, explained 

in section 3.4. Moreover the calculations are based on a modified SAP equation and could be 

much more accurate if it use real data based regression analysis model. From data shown in 

the different profile the algorithm output the state of the system for the next 24 hours. In order 

to complete this calculation it was assumed that each node was carrying a percentage of the 

overall tank energy and that this percentage will remain constant over time. Though, the 

dynamic of the system is quite different from this and further study of the node temperature 

interaction with each other could give more accuracy to the model. 

The prediction algorithm was then tested for different weather condition at different period of 

the year. The results showed that, in case of a sunny day, the solar fraction can reach fairly 

high value the all year round if solar energy can be harvested in an efficient way. There was a 

difference of back-up time and duration between winter and summer and also depending on 

weather predicted conditions. Actually in summer, the back-up heater part can be greatly 

reduced compared to winter month. Moreover in winter month, the solar fraction can be 

increased by supplying just enough energy to meet the morning demand but not too much so 

that the potential available radiation can be harvested. Additional heat from the back up might 

be needed to complement the solar input and be able to supply the evening demand. 

Therefore, if the next 24 hours predictions are known for the SDHW system and for the 
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weather condition, those settings can rely on more up-to-date information and the timing of 

the immersion heater can be changed so that the maximum solar energy is harvested.  

As it was seen that the weather and demand predictions could actually be beneficial to help 

with the control decision within a solar water heating system, the possible practical 

implementation of the algorithm created was investigated. It was seen that regression analysis 

techniques could give accurate equations, based on real data from the system where the 

system was wished to be implement. The Arduino board along with the Ethernet Shield was 

found to be a possible hardware implementation. The importance of an improved user 

interface was outlined and an examples of how it could look like was given. 

 

6.2. Overall conclusions 

This project investigates the possible implementation of weather forecast and demand 

prediction in a smart control scheme for solar domestic hot water systems. Through this 

thesis, the solar hot water systems and their available control options were reviewed in order 

to choose a standard UK structure to be tested. This system incorporates a solar collectors, a 

hot water storage tank and an electrical immersion back-up which specifications were taken 

from the Findhorn community case study.  

A prediction and control algorithm was created in Excel to model the solar water heating 

system chosen. The algorithm uses inputs from weather, user demand pattern, system heat 

losses and system solar input. A methodology was undertaken in order to provide radiation 

forecast from cloud forecast freely available on the Internet. The program produced is capable 

to import these weather predictions and deducted the solar energy input to the SDHW system 

from them. The hot water demand is forecasted by the mean of timetables that need to be 

completed by the user. The advantage of this method is that, in case of changes in the hot 

water consumption, the user can specify it and the algorithm can adapt itself to the new 

demand profile. From this predicted energy inputs and outputs, the Excel program was able to 

calculate the state of the hot water system for the next 24 hours. It will highlight the available 

solar gains and the times at which the demand cannot be meet with the energy present in the 

tank. From this, it is then possible to set the times and durations at which the immersion 

heater will be on and see how they can be improved so that the solar gains are conserved 

while the demand is met. 
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The algorithm was tested for different weather conditions and for diverse periods of the year 

and it was found that the solar fraction could be increased by modifying the settings of the 

back-up system. The results showed that, in case of a sunny day, the solar fraction can reach 

high value the all year round if solar energy can be harvested in an efficient way. It was also 

observed that different weather and demand situations will require different control setting. 

Therefore the knowledge of weather and demand prediction could be beneficial in order to 

make a good control decision. 

Due to the potential advantage of such improved controls, a last step of the project was 

undertaken to show the possible system practical integration and propose solutions on how 

the prediction algorithm created could be implemented into a practical control system. It was 

found that the Excel profile could be complement with a monitoring work. This later could 

give accurate information about the SDHW system and could offer the opportunity to produce 

regression analysis equations that provide a precise model of the system performances. The 

Arduino hardware was observed as an inexpensive potential solution to run the algorithm and 

deliver its outputs to the solar system. Finally, a thought about how the user could interface 

with the control system was presented. This part demonstrates the importance of an improved 

user interface that could integrate the user inputs of eventual changes in his hot water habits 

and allow him to see the actual and predicted performances of the system . 
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Appendix 1: Rotex Sanicube Specifications 
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Appendix 2: Collector Specifications 

 

 


