

Department of Mechanical Engineering

Comparison between PHPP and SAP

& Elaboration of monitored data for two dwellings with

different insulation levels

Author: Eirini Moutzouri

Supervisor: Paul Tuohy

A thesis submitted in partial fulfilment for the requirement of the degree

Master of Science

Sustainable Energy: Renewable Energy Systems and the Environment

2011

Copyright Declaration

This thesis is the result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.

Signed:

Hardenpy

Date: 08/09/2011

ABSTRACT

Within this thesis framework of investigating the gap between PHPP and SAP results in terms of energy use and the appropriateness of using SAP for an ultra low-energy dwelling, a set of objectives has been set. Factors which are considered to make this gap wider, such as internal heat gains, effective air change rate, internal temperature, detailed input and climate, have been investigated with regard to their impact on energy requirement especially for space heating. The main question that is attempted to be answered is not only if SAP predicted performance is closer to reality, but also why actual performance fails to meet expected consumption as resulted from SAP and PHPP.

In order to answer these questions, we consider two houses –a Passive House and a Code level 4 dwelling– as our case study and we attempt to investigate calculations or assumptions that differentiate PHPP and SAP through their own results. More specifically, having focused our attention on space heating, hot water and CO_2 emissions, we explore the impact of internal heat gains, internal temperature, effective air change rate, detailed orientation and climate in PHPP. Subsequently, we compare the predicted results from the two methodologies to energy bills. Additionally, a second comparison has been realised; this time between energy bill and monitored data.

Finally, having demonstrated the influence of the for-mentioned factors which differentiate one methodology to the other, we conclude that two main reasons for the mismatch between real and predicted performance are technical faults, which make input data in these methodologies diverge, and human factors that affect assumptions made in PHPP and SAP; from non-standard occupancy to occupants personal preference for indoor conditions. Ultimately, we find out that although both methodologies underestimate energy use compared to actual energy consumption, PHPP is closer to reality. As far as the appropriateness of SAP for Passive Houses is concerned, this thesis concludes that a more detailed methodology than SAP is required for such houses assessment, especially if Passive House standard is to be introduced as a new standard for EU countries.

ACKNOWLEDGEMENT

I would like to express my sincere thanks to my supervisor Paul Tuohy for giving me the opportunity to be involved in this study and for guiding me.

CONTENTS

INTRODUCTION
LITERATURE SURVEY9
OBJECTIVES
METHODOLOGY11
BASIC PRINCIPLES OF THE TWO ASSESMENT METHODS12
PASSIVE HOUSE PLANNING PACKAGE 200712
STANDARD ASSESSMENT PROCEDURE FOR ENERGY RATING OF DWELLINGS
DIFFERENCES BETWEEN THE TWO METHODS14
PHPP & SAP APPLIED FOR THE TWO DWELLINGS
THE PASSIVE HOUSE
PHPP for the Passive House
SAP for the Passive House
THE CODE LEVEL 4 DWELLING
SAP for the Code Level 4 Dwelling21
PHPP for the Code Level 4 Dwelling
PHPP vs SAP
Space Heating
Domestic Hot Water
CO ₂ Emissions
COMPARISON WITH ENERGY BILLS (PART 1)
MONITORING DATA
DATA ELABORATION41
Passive House41
Code Level 4 Dwelling
COMPARISON WITH ELECTRIC BILLS (PART 2)
DISCUSSION OF RESULTS

CONCLUSION	55
REFERENCES	57
APPENDICES	59
APPENDIX A – PHPP FOR PASSIVE HOUSE	59
APPENDIX B – PHPP FOR CODE LEVEL 4 HOUSE	66
APPENDIX C – SAP (RdSAP) FOR CODE LEVEL 4 HOUSE	71
APPENDIX D – SAP FOR PASSIVE HOUSE	75

Figure index

Figure 1: Image taken from Google maps (©2011 GeoEye)	17
Figure 2: Photograph of the neighbourhood (Image by Gavin Murphy)	17
Figure 3: Passive House – SouthWest facades (Image by Gavin Murphy)	18
Figure 4: Code Level 4 House – East facade (Image by Gavin Murphy)	21
Figure 5: Space and Water heating comparison between SAP and PHPP for the Passive	
House	23
Figure 6: Space and Water heating comparison between SAP and PHPP for the Code Lev	el 4
House	24
Figure 7: Difference (in %) in space heating demand between the two methodologies by	
applying SAP values in PHPP	28
Figure 8: Different space heating demand for Passive house due to climate	29
Figure 9: Different space heating demand for Code Level 4 house due to climate	30
Figure 10: Difference in % between SAP and PHPP value for space heating demand on the	ıe
same climate basis	31
Figure 11: Effect of a change in degrees on Space Heating, while (general) orientation	
remained unchanged	32
Figure 12: Energy bill for the Passive House	35
Figure 13: Average daily (total) electric consumption of Passive House on a weekly basis	43
Figure 14: Solar gains (kWh/m ²) per month for the Passive House according to PHPP200	17
	43
Figure 15: Sample of monitored data for Passive House	45
Figure 16: Sample of monitored data for tank in Passive house	46
Figure 17: Relation between electric meter and tank	47
Figure 18: Average daily (total) electric consumption of Code Level 4 house on a weekly	
basis	49

Table index

Table 1: Passive house criteria and standards	13
Table 2: U-values for Passive House examined	18
Table 3: Summary PHPP results for the Passive House	19
Table 4: Summary SAP results for the Passive House	20
Table 5: Summary SAP results for the Code Level 4 Dwelling	22
Table 6: Summary PHPP results for the Code 4 Dwelling	22
Table 7: Results overview for both methodologies	25
Table 8: Results for CO2 emissions	25
Table 9: Difference in space heating demand between the two methodologies by applying	
SAP values in PHPP	26
Table 10: Space heating demand for Passive House using same climate as SAP	29
Table 11: Space heating demand for Code Level 4 dwelling using same climate as SAP	30
Table 12: Modifications to match reality and results	38
Table 13: Justification of missing kWh	40
Table 14: Correlation between temperatures and electric meter	42
Table 15: Energy consumption for Code Level 4 house between 19/03 and 26/06	48
Table 16: CO_2 concentration	50

INTRODUCTION

Nowadays, there is a remarkably growing concern on sustainable building as well as on energy efficiency of buildings. Apart from integrated renewable technologies, the focus has been extended to energy efficiency and carbon dioxide (CO_2) emissions not only in a national level but also internationally. In fact, in developed countries such as European Union and in USA buildings energy consumption accounts for 20–40% of total energy use (Perez-Lombard, Ortiz, & Pout, 2008). Building sector could contribute significantly in the attempt to cut down carbon dioxide emissions globally or to meet CO_2 reduction targets in national level.

UK government approach for assessing energy efficiency in terms of both CO_2 emissions and fuel costs is Standard Assessment Procedure (SAP). More recently, Code for Sustainable Homes ('CSH') has been introduced as the national standard for assessing new homes from a more general environmental aspect in order to better promote and achieve "Zero Carbon Home" and sustainable building in general. It has a six-star rating scheme and nine categories of interest, one of which is Energy and CO_2 emissions. It is in this area where CSH makes use of SAP outputs (Department for Communities and Local Government, 2010). Within the scope of this thesis, we will focus only on energy use and CO_2 emissions and therefore only on SAP calculations and not on CSH as a whole.

Additionally, a standard originated from Germany and recently promoted in UK as well, the 'Passive House' standard, promotes buildings with extremely low energy demand. One could argue that its standards could be considered as criteria for energy efficiency. However, they follow considerably different paths in calculating energy consumption. Although it has its roots in Germany, this standard has been supported by EU through CEPHEUS (abbreviation for Cost Efficient Passive Houses as EUropean Standards) project which tested 14 building units (more than 200 houses) in Germany, Sweden, Austria, Switzerland and France (Feist, Peper, & Görg, CEPHEUS - Final technical Report, 2001). However, the fact that there was not any UK dwelling tested makes the investigation of a Passive House in UK interesting.

Moreover, taking into consideration EU intention for promoting Passive House as a standard for all EU countries from 2015 (Reason & Clarke, 2008) it becomes apparent that there may be a need to incorporate PHPP into SAP or vice-versa.

Therefore, in that sense it is critical not only to have a deep understanding of their differences and principles but also which one tends to calculate energy use closer to reality especially for ultra low-energy dwelling, such as Passive Houses.

LITERATURE SURVEY

A literature survey has always been essential in order to comprehend what has been done, investigated in this field and is the first step on which one stands to go one step further. With regard to the two methodologies investigated in this thesis (PHPP and SAP), there have been made several comparisons in different levels.

The main point highlighted in comparisons reviewed has been the different internal gains PHPP and SAP consider which result in higher space heating demand (Tuohy & Langdon, Benchmarking Scottish standards: Passive House and CarbonLite Standards: A comparison of space heating energy demand using SAP, SBEM, and PHPP methodologies, 2009). Others have attempted an investigation of certain assumptions these methodologies make, such as internal gains, ventilation, frame factor having as start-point the roots of each methodology. The conclusion has been that SAP may not always be appropriate for ultra-low energy dwellings such as Passive Houses (Reason & Clarke, 2008). In addition, studies have also been carried out concerning MVHR and natural ventilation in a Passive House, which concluded that MVHR helps minimising CO₂ emissions for space heating (AECB, 2009) as long as it is properly installed, has a good electrical efficiency and infiltration levels are low. Moreover, older studies have reached the conclusion that half of the BREDEM –the ancestor of SAP– prediction uncertainty could be due to physical factors and the rest to occupant behaviour (Dickson, Dunster, Lafferty, & Shorrock, 1996).

Considering these as a start point and having as guideline the manual for PHPP and SAP2005 documentation, this thesis will try to cover a few more points missing in this large-scale comparison which are considered to be of great importance and make the two methodologies so different in some cases.

Moreover, it is of great importance to mention certain outputs from CEPHEUS project which was mentioned earlier. Comparing PHPP calculation results for space heating to measured normalised- space heat consumption, it has been shown that in some cases they are approximately the same, while for other cases they diverge. Some reasons for the latter are the fact that people may not be familiar with building service sytems or the "habituation phase of occupants" (Feist, Peper, & Görg, CEPHEUS - Final technical Report, 2001) (Schnieders, 2003). Despite the fact that these reasons occur basically during the first heating season, they could be influencing factors in general.

Furthermore, as far as CO_2 emissions are concerned, Zero Carbon Hub scheme for new dwellings after 2016 proposes 10 and 11 kg CO_2/m^2 per year for detached and semi-detached or terraced houses respectively (Zero Carbon Hub, 2010). Taking into account this suggestion, it would be interesting to compare SAP and PHPP results. At this point, it should be underlined, as well, that Carbon Compliance suggests target levels for carbon emissions based on fabric performance and on "performance of low/zero carbon heat and power technologies on or in the dwelling" (Zero Carbon Hub, 2010).

OBJECTIVES

The main scope of this thesis is to investigate the appropriateness of SAP for ultra-low energy dwellings such as Passive Houses. In addition to the Passive House, a Code Level 4 dwelling is investigated as well.

Within this framework, the first objective is to explore factors that have a major impact in the PHPP and SAP results which in some cases are significantly different in terms of energy use and CO_2 emissions. Prior to this, a study of the main dissimilarities in their calculations is essential.

However, a comparison only between the two methodologies would be of no use if there is no connection to the real world. Hence, with regard to energy consumption, a question that needs to be answered is whether PHPP or SAP predicts energy use closer to reality.

Additionally, it would be attempted to answer why actual energy use fails to meet the expected consumption from different standards such as Passive House standards and SAP. In fact, making use of monitored data for these dwellings gives us a better insight of issues than may affect electricity consumption in the end.

METHODOLOGY

First of all, it is essential to present the methodology followed in this thesis in order to achieve the objectives mentioned.

Firstly, after applying the methodologies of Passive House Planning Package and Standard Assessment Method to two different dwellings -to a Passive House and to a Code Level 4 dwelling- a direct comparison between the results of the methodologies for each house is performed. It should be underlined that the intention is not compare the two dwellings themselves but to compare the two methodologies.

Subsequently, we compare that predicted performance to actual energy consumption data as given in energy bill to find out how well these methodologies respond to reality.

In addition, having completed an elaboration of monitored data of these houses, a comparison between monitored data and bill is attempted as well. However, as it will be shown later, this comparison has to be indirect due to the fact that monitoring period is not the same as the billing period.

Additionally, it should be underlined that the elaboration of monitored data contributes and plays a significant role in a comparison between the predicted results and monitored consumption. In fact, it helps us investigate why reality fails to meet predicted performance.

BASIC PRINCIPLES OF THE TWO ASSESMENT METHODS

As mentioned in the introduction, two assessment methods have been used: Government's Standard Assessment Procedure for Energy Rating of Dwellings ('SAP 2005') and Passive House Planning Package 2007 ('PHPP2007'). The following sections of these chapter attempt to highlight the basic only principles of the two methods through their standards and a first approach of direct comparison between their calculation procedures.

PASSIVE HOUSE PLANNING PACKAGE 2007

The Passive House Planning Package is the official design tool for 'Passivhaus' standards of the independent organization 'Passive House Institute' founded by Dr Wolfgang Feist in Germany and the ideology has been expanding around the world and especially in EU as mentioned in the Introduction.

Generally, it should be mentioned that the Passive House approach is to have a building with little heating requirement so that space heating demand can be met by ventilation system, avoiding the use of a common heating system. In fact, the absence of the latter and its fuel is supposed to make a Passive House more economic (Tuohy & Langdon, Benchmarking Scottish standards: Passive House and CarbonLite Standards: A comparison of space heating energy demand using SAP, SBEM, and PHPP methodologies, 2009). The concept is to lower down energy demand before trying to implement integrated renewable technologies, like prevention before cure.

The basic principles of the 'passivhaus' standards is the high significance of the construction and the air-tightness with ultimate goal the minimisation of energy requirement, comfortable indoor conditions and the excellent energy performance. It should be underlined that the pre mentioned principles are only a part of the set of objectives that consists the ideology of the standards. Below, Table 1 shows the construction standards –targets– that a dwelling must satisfy in order to be certified as 'Passive House'.

	Criterion
U-value (heat transfer coefficient) of opaque constrictions	U _{opaque} ≤0.15 W/m ² K
U-value (heat transfer coefficient) of windows only	$U_{windows} \leq 0.8 \ W/m^2 K$
U-value (heat transfer coefficient) of windows after installation	$U_{windows,install} \leq 0.85 \text{ W/m}^2 \text{K}$
Air permeability	<i>n</i> 50≤0.6 ac/h
Specific Heating Demand and Specific Heating	$Q_{heat} \leq 15 \ kWh/m^2$ per year
Load	or P _{heat} ≤10 W/m ² per year
Specific Cooling Demand	$Q_{cooling} \leq 15 \ kWh/m^2$ per year
Specific Primary Energy Demand	$Q_{primary} \leq 120 \ kWh/m^2 \ per \ year$
MVHR	Ventilation efficiency≥75% and
	acoustics of plants ≤ 25 dB
Frequency of overheating (temperature>25°C)	≤10%

Table 1: Passive house criteria and standards

The Passive House Planning Package 2007 (we will refer to it as 'PHPP') consists of 30 spreadsheets where one should put all the necessary data so that the calculations could be performed. Among the inputs are the treated floor area, the orientation and type of windows (both glazing and frames), detailed construction of the walls, the floor and the roof with the thermal conductivity and the thickness of each material, rather detailed data for the ventilation system including length and insulation of the ductwork, the heat distribution and Domestic Hot Water system, as well as data for boilers and electricity. It needs to be underlined that PHPP requires detailed inputs for every aspect.

STANDARD ASSESSMENT PROCEDURE FOR ENERGY RATING OF DWELLINGS

This method which is more well-known since it has been adopted by UK government to assess dwellings energy performance (BRE, 2009) and complies with the European Directive on the Energy Performance of Buildings (Reason & Clarke, 2008) (Ogle). Standard Assessment Procedure (the term 'SAP' will be used henceforth), now part of Part L of the Building Regulations and Code for Sustainable Homes, relies on energy costs and savings of a house and CO_2 emissions in order to determine its efficiency. It takes into account aspects such as space heating and domestic hot water (DHW) demand and lighting.

As mentioned in the Introduction, this thesis scope, which concerns only energy use and carbon dioxide emissions, indicates that only SAP calculations are required; not a complete assessment according to CSH. In our case, we have used SAP 2005 edition, revision 3, and especially for the dwelling for which we have only rough plans and data for the construction Reduced SAP ('RdSAP'); on the other hand, for the house for which we have considerable amount of details SAP 2005 has been used.

DIFFERENCES BETWEEN THE TWO METHODS

As it will be illustrated in following chapters, there are considerable differences between the two methods (SAP/RdSAP and PHPP) resulting in different results. At this point, these differences need to be introduced and explained to a certain extent, whereas in following chapters the results of these methods will be presented in terms of figures and will be further investigated.

A first difference one would easily observe is the lack of local climate data input in SAP, while in PHPP not only there are four different regions for Great Britain but also one could input more localized data for a region, as long as the required elements in 'Climate Data' spreadsheet are filled. In fact, SAP uses Sheffield (East Pennines) climate for its assessment. More specifically, space heating demand in PHPP is based on heating degree hours per year or per month –annual and monthly method respectively– for each region, while SAP2005 uses annual method (Reason & Clarke, 2008).

Secondly, although both of them include internal gains from lighting and appliances, SAP considers remarkably higher gains. The default internal heat gains for PHPP are 2.1W/m²,

whereas according to the results for the for-mentioned dwellings using SAP, internal gains were 5.9 W/m^2 . This dissimilarity derives from the assumption of less energy frugal, less energy efficient appliances in SAP (AECB, 2009) and loss of gains for evaporation (Reason & Clarke, 2008).

Furthermore, it should be underlined that in PHPP the required data for windows (including for glazing and framing) and shading are considerably more detailed. As far as the orientation of the windows is concerned, it needs to be mentioned, that in PHPP it is determined in degrees. Additionally, in PHPP it is required to fill details for the ground, the pipes and the distribution system.

Moreover, in SAP cooling does not include anything for space cooling. However, taking into account that it is only addressed for UK dwellings it is reasonable.

Another difference is that PHPP uses external dimensions whereas SAP assumes internal ones. However, for the Reduced SAP ('RdSAP') for existing dwellings, we can use external dimensions as well (Appendix S: Reduced Data SAP for existing dwellings, 2009).

It should be added, as well, that another element that differentiate SAP from PHPP method is the interior temperature. In PHPP, the default internal temperature to be maintained is 20°C. In SAP the internal temperature is calculated and based on heating requirements, the heating system and living area of the dwelling. In fact, PHPP assumes that whole dwelling will have the same temperature while SAP assumes living area temperature will be higher from rest of the house (Reason & Clarke, 2008).

Additionally, as it will be presented later, treated floor area ('TFA') is not calculated in the exact same way. PHPP, based on German Floor Area Ordinance, does not account stairs with more than three steps or the 40% of basements and secondary rooms which are not determined as living space (Feist, Pfluger, Kaufmann, Schnieders, & Kah, 2007). SAP on the contrary does include stairs.

Finally, the two methodologies diverge with regard to CO_2 emissions calculation despite the fact that they both rely on the fuel used for the production of the energy. In PHPP, the data for the CO_2 emissions come from the DIN V 4701-10 and the software GEMIS 4.14 (Feist, Pfluger, Kaufmann, Schnieders, & Kah, 2007). More specifically the delivered energy is multiplied with a Primary Energy factor according to the energy carrier –for example electricity– and then, the product, which is the primary energy, is multiplied with a CO_2 emissions equivalent; in case of electricity, primary energy factor is 2.6 and CO_2 emissions equivalent are 0.68 kg/kWh. The difference is that in SAP these primary energy factors and

CO₂ emissions equivalent are different. In SAP 2005 it is 2.8 and 0.422kg/kWh for electricity respectively.

Summarising, essential points on which SAP and PHPP have different approaches as described above are the following:

- Climate data
- ✤ Internal heat gains
- Window details
- ✤ Shading
- Ground details
- Distribution system
- External/internal dimensions
- ✤ Internal temperature
- Treated floor area
- ✤ CO₂ emissions calculation

PHPP & SAP APPLIED FOR THE TWO DWELLINGS

For the purpose of this part of the thesis, both SAP and PHPP method has been applied for the two houses. It is worth noting that details for their construction, such as plans or geometry, need to be kept confidential; hence, only the results and the summary will be displayed here. PHPP and SAP excel sheets with some of the information that can be presented can be found in appendices at the end.

First of all, we will present each dwelling and, subsequently, the results of each methodology. The first house is a certified Passive House while the second is a Code level 4 dwelling. It should be mentioned that for the Passive House we have been provided with all the details, while for the Code 4 House we only have rough information about the construction.

Figure 1: Image taken from Google maps (©2011 GeoEye)

Figure 2: Photograph of the neighbourhood (Image by Gavin Murphy)

THE PASSIVE HOUSE

Before attempting to present the results of the methods, it is essential to introduce the dwellings and their specifications. As far as the Passive House is concerned, it is a semidetached dwelling in Dunoon, Scotland, timber construction with two storeys; the U-values are shown in Table 2. It is has a MVHR unit, solar thermal panels of 4.6m², a 2001 TFF 200 Tank for hot water and an air source heat pump for space heating. The windows are tripled glazed filled with argon and it has three skylights as well; two facing south and one facing north. Additionally, regarding the electricity tariff, it is on Domestic Standard.

Figure 3: Passive House – SouthWest facades (Image by Gavin Murphy)

U-value of walls	0.094 W/m ² K
U-value of roof	0.094 W/m ² K
U-value of floor	0.154 W/m ² K
U-value of glazing	$0.80 \text{ W/m}^2\text{K}$

Table 2: U-values for Passive House examined

PHPP FOR THE PASSIVE HOUSE

The PHPP method for the Passive House has been based on specifications provided by the architect and it is in accordance with the figures in the summary presented in the database for the built Passive House of the Passive House Institute (Built Passive Houses; Scottish Passive House Centre (SPHC)).

Having input all the necessary data in PHPP, we verified that the house can be certified as it fulfils the heating load, the air permeability and the specific primary energy demand criteria. A summary for the PHPP results is given in the following table (Table 3). It has to be mentioned that it has been used the Design mode and monthly method as well as that the effective air change rate ambient is 0.078 ac/h.

PASSIVE HOUSE - PHPP				
Internal Temperature	20	°C		
Treated Floor Area	88.5 m ²			
Internal gains	2.1 W/m ²			
Space Heating Demand	20.9 kWh/m ² per year	1849.7 kWh per year		
Space Heating delivered energy	9.6 kWh/m ² per year	849.6 kWh per year		
Domestic Hot Water (delivered)	11.10 kWh/m ² per year	982.35 kWh per year		
Auxiliary	2.5 kWh/m ² per year	221.5 kWh per year		
Household Appliances (incl. lights)	13.50 kWh/m ² per year	1194.75 kWh per year		

Table 3: Summary PHPP results for the Passive House

As already mentioned, PHPP for this particular house showed that it fulfils the criteria in order to be a certified Passive House. It should be underlined that although it does not meet the target for 15kWh/m² per year for space heating demand, it does meet the criterion for the heating load of 10W/m² (see Table 1).

SAP FOR THE PASSIVE HOUSE

In addition to PHPP, SAP calculations –in an excel format– have been carried out for this dwelling, as well, using the detailed specifications we already had. It should be noted that in this case thermal bridges were considered to be zero and the effective air change rate was calculated 0.065ac/h according to SAP, as shown in Appendix D of this thesis.

Apart from the results shown in Table 4, we should mention that SAP calculations resulted in Energy Efficiency and Environmental Impact Rating of band 'B' with 85 and 89 points respectively. It may seem strange that such a house, which is considered to follow strict standards and be ultra low energy house, is in any band lower than band 'A'. However, part of the explanation lies in the fact that SAP relies on energy tariff for the energy efficiency assessment; in other words, if the house was in a different tariff, the result would have been better.

PASSIVE HOUSE - SAP				
Internal Temperature	19.2 °C			
Treated Floor Area	105.2	105.28 m^2		
Internal gains	5.9 W/m ²			
Space Heating Demand	8.16 kWh/m ² per year	859.6 kWh per year		
Space Heating delivered energy	3.76 kWh/m ² per year	395.4 kWh per year		
Domestic Hot Water Demand	15.20 kWh/m ² per year	1600.4 kWh per year		
Auxiliary	3.68 kWh/m ² per year	387.11 kWh per year		
Lights	4.80 kWh/m ² per year	505.1 kWh per year		

Table 4: Summary SAP results for the Passive House

THE CODE LEVEL 4 DWELLING

The second house is located in the same location and is similar to the first one with the difference that it has an additional room -a kitchen- facing East underneath a terrace and therefore it is a little larger. For space heating it uses storage heaters and direct acting electric heating, for heating water it has an immersion boiler and it is naturally ventilated. Unfortunately, we do not have detailed specifications for this case. However, it has been assumed to have walls and glazing with U-values of 0.15 and 1.5W/m²K respectively. Moreover, it should be mentioned this dwelling is on 24-hour low cost heating tariff.

Figure 4: Code Level 4 House – East facade (Image by Gavin Murphy)

SAP FOR THE CODE LEVEL 4 DWELLING

As far as SAP the Code 4 dwelling is concerned, the same version of SAP in excel format has been used with the difference that due to the lack of detailed specifications Appendix S (Reduced SAP for Existing Dwellings) has been followed where appropriate.

In this case, the effective air change rate has been found to be 0.67ac/h according to SAP calculations considering natural ventilation with two intermittent fans. The SAP -RdSAP in fact- results showed rating band 'C' for both Energy Efficiency and Environmental Impact Rating (see Appendix C) which is in accordance with the certificate issued by the certifier. The only difference is that the score is slightly lower, by two units; however, this is reasonable and could have been expected since the specifications available were quite limited to achieve the exact result with the certifier.

CODE 4 DWELLING - SAP				
Internal Temperature	18.2 °C			
Treated Floor Area	139.01 m ²			
Internal gains	5.9 W/m^2			
Space Heating Demand	35.55 kWh/m ² per year	4941.94 kWh per year		
Domestic Hot Water Demand	25.44 kWh/m ² per year	3536.85 kWh per year		
Lights	4.80 kWh/m ² per year	667.0 kWh per year		

Table 5: Summary SAP results for the Code Level 4 Dwelling

PHPP FOR THE CODE LEVEL 4 DWELLING

Additionally, PHPP has been applied for this house despite the significantly limited specifications of the construction and the fact that PHPP is not designed for natural ventilated dwellings.

The effective air change rate ambient in this occasion has been set to 0.505ac/h on the grounds that 0.5ac/h is the recommended ventilation by CIBSE Guide B2 (2001) and that PHPP could not accept exactly 0.5. A summary of the results is available in the following table (Table 6).

CODE 4 DWELLING - PHPP			
Internal Temperature	20 °C		
Treated Floor Area	101.4 m ²		
Internal gains	2.1 W/m ²		
Space Heating Demand	67.2 kWh/m ² per year	6814.08 kWh per year	
Domestic Hot Water Demand	31.30 kWh/m ² per year	3173.82 kWh per year	
Household Appliances (incl. lights)	16.70 kWh/m ² per year	1693.38 kWh per year	

Table 6: Summary PHPP results for the Code 4 Dwelling

PHPP vs SAP

At this point, a comparison between outputs of the two methodologies for each dwelling needs to be carried out. As a first illustration, Figures 5 and 6 show differences between the two examined methodologies with regard to space and water heating. More analytically, Tables 7 and 8 which follow summarise the main points of the results shown previously. The results are discussed and examined closer in the sections following the mentioned figures and tables.

It should be reminded that in all cases in PHPP, the monthly method has been selected.In addition, before continuing to the tables, it is important to bear in minds that the Passive House has 4.6m² solar panels installed and a heat pump. That is why the delivered energy is different from the energy demand.

Passive House - Space and Water heating

Figure 5: Space and Water heating comparison between SAP and PHPP for the Passive

House

Code Level 4 Dwelling - Space and Water Heating

Figure 6: Space and Water heating comparison between SAP and PHPP for the Code Level 4

House

COMPARISON BETWEEN PHPP AND SAP & ELABORATION OF MONITORED DATA FOR TWO DWELLINGS WITH DIFFERENT INSULATION LEVELS

	Passive House - PHPP	Passive House - SAP	CODE 4 - SAP	CODE 4 - PHPP	
Internal Temperature	20 °C	19.2 °C	19.2 °C 18.2 °C		
Treated Floor Area	88.5 m ²	105.28 m^2	139.01 m ²	101.4 m ²	
Internal gains	2.1 W/m ²	5.9 W/m ²	5.9 W/m ²	2.1 W/m ²	
Effective air change rate	0.078 ac/h	0.065ac/h	0.67 ac/h	0.505 ac/h	
Space Heating Demand	1849.7 kWh/year	859.6 kWh/year	4941.9 kWh/year	6814.1 kWh/year	
DHW Demand	2148.8 kWh/year			3184.0 kWh/year	
DHW energy delivered	982.4 kWh/year	1600.4 kWh/year	3536.9 kWh/year	3173.8 kWh/year	
Lighting		505.1 kWh/year	667.0 kWh/year		
Household Appliances	1194.8 kWh/year			1693.4 kWh/year	
Energy delivered for	940 6 hWh /voor	205 4 hWh/woor	como os domond	como os domond	
space nearing	849.0 KWh/year	393.4 KWh/year	same as demand	same as demand	

Table 7: Results overview for both methodologies

Table 8: Results for CO₂ emissions

	Passive House – PHPP		Passive House – SAP		CODE 4 – SAP		CODE 4 – PHPP	
	kg CO_2/m^2	kg CO ₂ /year	kg CO ₂ /m ²	kg CO ₂ /year	kg CO_2/m^2	kg	kg CO_2/m^2	kg
	per year	kg CO ₂ / year	per year	Kg CO ₂ / year	per year	CO ₂ /year	per year	CO ₂ /year
Space Heating	6.5	575.2	1.58	166.3	15.0	2085.1	45.7	4634.0
DHW	7.6	672.6	6.41	674.8	10.74	1493.0	21.3	2159.8

SPACE HEATING

First of all, as far as space heating is concerned, Table 7 shows that, for the Passive House, PHPP concludes in higher demand by 115%, comparing to the SAP value for space heating. For the second dwelling the percentage drops to 38%. One would expect the main difference that affects this deviation to be the significantly higher internal heat gains of SAP; by considering $5.9W/m^2$, whereas PHPP assumes only $2.1W/m^2$, space heating will be clearly decreased. Other factors could be the different internal temperature or the air change rate. In an attempt to discover what may affect more the results, three factors have been altered in PHPP; the temperature, the internal heat gains (IHG) and the effective air change rate. The results are shown in Table 9. At this point, it is essential to mention that we have taken IHG as calculated from SAP in W/m², without converting them to W and then back to W/m² using PHPP TFA (in that case IHG would have been 7W/m²), on the grounds that the intention was to highlight the difference in calculation procedures.

 Table 9: Difference in space heating demand between the two methodologies by applying

 SAP values in PHPP

Changes to:	No changes	IHG	Temperature	Effective air change rate	IHG + effective air change rate	IHG + temp + Effective air change rate
Passive House						
SAP (kWh/year)	859.6					
PHPP(kWh/ year)	1849.7	513.3	1593.0	1770.0	442.5	318.6
Difference (kWh/year)	990.1	-346.3	733.4	910.4	-417.1	-541.0
Difference (%)	115%	-40%	85%	106%	-49%	-63%
Code Level 4 House SAP (kWh/year)	4941.9					
PHPP(kWh/ year)	6814.1	4400. 8	5130.8	7990.3	5577.0	4056.0
Difference (kWh/year)	1872.2	-541.1	188.9	3048.4	635.1	-885.9
Difference (%)	38%	-11%	4%	62%	13%	-18%

It is important to clarify that the percentages shown in Table 9 and in Figure 7 refer to how much PHPP value for space heating demand differs from the corresponding value in SAP by using the same number for internal heat gains, temperature or effective air change rate; they indicate, in other words, the comparison gap. If, after applying a change, space heating demand was, for example, exactly the same then the percentage would be 0.

As expected, for the Code Level 4 House the change in internal gains resulted in a value significantly closer to SAP. The greater effect of the temperature, compared to Passive House case, is because it was changed by 1.8°C while for the Passive House was altered only by 0.8°C. We have to underline once again, that in Code Level 4 case there is a non-negligible uncertainty in the results on the grounds that the specifications were limited. In the case of Passive House, the results (Table 9) showed that although replacing internal heat gains gives a closer value of specific heat demand to the value calculated in SAP, it is still significantly different. In addition, it should be mentioned that increasing IHG leads to a significant rise in overheating frequency; it reached 26% for Passive House. In such cases further modifications have to be made from the designer.

Generally, whenever IHG have been altered to SAP value of 5.9W/m², space heating dropped dramatically. This is due to the fact that in PHPP internal gains come from all the appliances, occupants and evaporation (Reason & Clarke, 2008) and basically -along with the solar gains- are subtracted from the losses, while in SAP, losses from water heating system are actually translated into internal gains; in other words, an un-insulated water heating system would be beneficial for the space heating requirement. In fact, applying heat gains value from SAP meant almost a four-time decrease in space heating demand for Passive house, whereas for Code Level 4 dwelling only 1.5 time reduction. We should bear in mind that Passive House is not only a significantly more insulated construction but also remarkably more air-tight; it is more difficult for internal heat gains to escape comparing to Code level 4 house, where the effective air change is approximately 10 times higher, according to SAP.

Difference between SAP and PHPP value for Space Heating

Figure 7: Difference (in %) in space heating demand between the two methodologies by applying SAP values in PHPP

However, it needs to be highlighted that SAP assumes the same climate data, that of Sheffield (Laughton, 2011) (Murphy, Kummert, Anderson, & Counsell, 2011), whereas in PHPP, which is location-specific, we have used Glasgow so far. In order to have a more accurate comparison, we applied new climate data so that the two methodologies would start from the same climate basis and made the previous modifications as well. The applied climate is East Pennines climate data which can be found in BRE's website (Building Research Establishment Ltd, 2011).

The following figures (Figure 9, 10, 11) and tables (Table 10, 11) illustrate the effect climate data had on space heating demand for the two dwellings.

Space Heating Demand for Passive House - Comparison between climates

Figure 8: Different space heating demand for Passive house due to climate

Table 10: Space	heating demand j	or Passive House	using same	climate as SAP
-----------------	------------------	------------------	------------	----------------

	Passive House	PF	SAP	
TFA (m ²):		88	105.28	
	climate:	Glasgow	East Pennines	
Space Heating demand (kwh/m ² per year)	no changes	20.9	25.6	8.16
	IHG	5.8	9.6	
	temp	18.0	22.6	
	effective air change rate	20.0	22.7	
	IHG+effective air change rate	5.0	6.9	
	IHG+temp+effective air change rate	3.6	5.4	

		РНРР		SAP	
	climate:	Glasgow	East Pennines		difference
	no changes	1849.7	2265.6	859.6	-163.6%
Space	IHG	513.3	849.6		1.2%
Heating	temp	1593.0	2000.1		-132.7%
demand	effective air change rate	1770.0	2009.0		-133.7%
(kWh/year)	IHG+effective air change rate	442.5	610.7		29.0%
	IHG+temp+effective air change rate	318.6	477.9		44.4%

Space Heating Demand for Code Level 4 house - Comparison between climates

Figure 9: Different space heating demand for Code Level 4 house due to climate

Table 11: Space heating demand for Code Level 4 dwelling using same climate as SAP

	Code Level 4	F	РНРР	SAP
	<i>TFA</i> (<i>m</i> ²):	1	101.4	139.01
	climate:	Glasgow	East Pennines	
Snace	no changes	67.2	71.1	35.54
Heatina	IHG	43.4	48.9	
demand	temp	50.6	56.1	
(1)	effective air change rate	78.8	83	
(KWN/M	IHG+effective air change rate	55.0	60.8	
per year)	IHG+temp+effective air change rate	40.0	46.2	

	[РНРР		SAP	
	climate:	Glasgow	East Pennines		difference
	no changes	6814.1	7209.5	4941.4	-45.9%
Space	IHG	4400.8	4958.5		-0.3%
Heating	temp	5130.8	5688.5		-15.1%
demand	effective air change rate	7990.3	8416.2		-70.3%
(kwh/year)	IHG+effective air change rate	5577.0	6165.1		-24.8%
	IHG+temp+effective air change rate	4056.0	4684.7		5.2%

Difference between SAP and PHPP value for Space Heating having applied the same climate

Figure 10: Difference in % between SAP and PHPP value for space heating demand on the same climate basis

The above results have shown certain interesting points. Firstly, it is clear that that localised climate plays an essential role in space heating, and therefore it needs to be taken into account by SAP as well. Additionally, it has been proved that climate and internal heat gains are the major factors that made SAP and PHPP results so different. By applying the same climate and internal gains to PHPP, the difference in space heating demand was only 1.2% and -0.3% for the Passive House and the Code level 4 dwelling, respectively (Table 10 and 11).

Furthermore, based on another difference between the two methodologies mentioned in the beginning, that of the detail input data for windows in PHPP, we investigated the impact of changing the windows orientation for the two dwellings (Figure 11). In fact, although we have changed the deviation from North by 5°, the general orientation remained the same; in other words, South orientation remained South, North orientation remained North. This is because in SAP, there is only the possibility to determine orientation in such way, whereas in PHPP one has to input the exact deviation from North in degrees. It is obvious that detailed orientation is of great importance in PHPP. Additionally, comparing the two dwellings we can see that the effect is greater on Passive House; that is because of the higher quality of glazing and the air-tightness which affect solar gains.

Effect of orientation on Space Heating in PHPP

Figure 11: Effect of a change in degrees on Space Heating, while (general) orientation remained unchanged

Hence, it is crystal clear that for highly insulated dwelling, such as the Passive house we examine, the impact of internal gains on space heating demand, as well as the heating load itself, is greater based on the comparison between PHPP and SAP. Passive House seems to be more sensitive to changes and requires detailed data as PHPP is designed for; SAP more 'gross' methodology could be considered to bear a non-negligible uncertainty in its results especially because of standard values it uses including standard climate.

DOMESTIC HOT WATER

As shown in Table 7, PHPP predicts lower actual energy requirement (delivered) for the Passive House than SAP does. Although there are considerable differences in their approaches, the main reason for this seems to be the different solar contribution calculated by the two methodologies.

Taking a look at the spreadsheets would show us that the gains from solar thermal are 1167 kWh/year according to PHPP, while for SAP they only are 949 kWh/year; 18.7% less gains for SAP. More specifically, Table 7 revealed that for the Passive House according to PHPP solar panels contribution to DHW energy is 1166.4kWh/year, 13kWh/m² per year, or 54.3% of the DHW demand. Comparing to SAP, the actual energy needed (after having taken into consideration solar contribution) is 38.6% lower or, in other words, solar fraction was 44.8%.

It is worth mentioning at this point that although it seems more sensible PHPP to be closer to reality since it takes into account local climate data, a monitor data based study in Dublin – a UK similar climate– indicates that solar fraction should be around 40% (Ayompe, Duffy, Mc Keever, Conlon, & McCormack, 2011). One could argue therefore that PHPP could be considered optimistic as far as solar contribution is concerned.

Additionally, as described in SAP 2005, hot water usage is the addition of the product of 25litres/day per person with the number of occupants plus and additional 38litres/day. On the contrary, PHPP2007 does not consider any additional litres apart from the 25litres/day. Therefore, SAP would require more energy during a year for heating the necessary water. Moreover, another essential difference is that PHPP requires detailed input of plumbing apart from the separate 'SolarDHW' spreadsheet, while SAP pays attention on its standard loss factors related to cylinder size and insulation thickness.

It should be mentioned that we have focused on the Passive House, since there have been made certain assumptions for Code Level 4 DHW distribution system in PHPP which would lead to uncertain conclusions at this point. Such assumptions are the length of pipes, the width and insulation of the plumbing, which was taken identical to Passive House plumbing because of the lack of details.

CO₂ Emissions

Furthermore, taking into consideration the ratio of the delivered energy between the two methodologies, it is expected that CO_2 emission would follow the same trend. Hence, since SAP predicted less delivered energy for space heating, the emissions for that section are lower in SAP, as well. Similarly, according to PHPP, Passive House is responsible for lower emissions due to DHW.

As it has mentioned in the beginning, the two methodologies differ in CO_2 emissions calculation, although they both rely in the fuel used for the production of the energy. In PHPP, the data for the CO_2 emissions are based on DIN V 4701-10 and the software GEMIS 4.14. More specifically, the delivered energy is multiplied with a Primary Energy factor according to the energy carrier –for example the electricity– and then, the product, which is the primary energy, is multiplied with a CO_2 emissions equivalent; for electricity primary energy factor is 2.6 and CO_2 emissions equivalent are 0.68 kg/kWh. The difference is that in SAP these figures are different. In SAP 2005 it is 2.8 and 0.422 kg/kWh for electricity respectively. It should be noted that in SAP 2009, which is not used here, they have been revised.

This differentiation leads to significantly different results as shown in Table 8. It is only in the case of emissions for hot water for the Passive House where the two methodologies are approximately the same considering annual emissions per dwelling despite the fact the considerable difference in heating water energy. It is due to different CO_2 emissions equivalent as mentioned. Generally, one can observe that PHPP predicts higher CO_2 emissions than SAP for both dwelling; not only because of that factor but also because of the higher predicted energy.

We have not included intentionally the total emissions as calculated, on the grounds that SAP neglects the household appliances in this part; they only count for internal gains.

Furthermore, regarding Zero Carbon Hub carbon compliance suggestions for new dwellings after 2016, one may observe that using SAP for Passive House leads in a value of 8 kg CO_2/m^2 per year for DHW and space heating which is within the Zero Carbon Hub limits whereas PHPP concludes in 14.1 kg CO_2/m^2 per year; not too far from the suggestion (Zero Carbon Hub, 2010). However, this does not mean that PHPP results are not correct since they use different standard values, as mentioned previously.

COMPARISON WITH ENERGY BILLS (PART 1)

Having completed the comparison between the two methodologies itself, it would be useful to compare the results with energy bills, as well, in order to determine which one, SAP or PHPP, could predict better the annual running costs. Is SAP which aim is actually to conclude in these costs in order to assess energy efficiency of a dwelling? Or is it PHPP that predicts running costs closer to reality?

First of all, it is important to present the available data for this section. It is only for the Passive House that an energy bill was available to us. This bill, as shown below, regards the energy consumption from 18th of December 2010 to 8th of March 2011.

from: Electric usage	18-Dec to: 08-Mar 2315 units (kWh)
Tariff: Domestic Standard	
	11.66 p/unit
or	0.1166 £/unit
	13.1544 £ is the Standing charge for 81 days at 0.162 p
-	283.08 £ (excl. VAT)
	13.80 £ VAT 5%
	296.88 £ (incl.VAT)

Figure 12: Energy bill for the Passive House

At this point, let us note the total annual consumption as it has been found in PHPP and SAP. Based on PHPP results, by adding energy delivered for space and water heating, auxiliary electricity and household appliances consumption, the annual consumption is 3248.2kWh/year or, in other words, 378.7£/year. SAP concludes in 2888.0kWh/year. However, it has to be highlighted that since we are using SAP2005 it considers 7.12p/kWh as fuel price for electricity on standard tariff; this means, that although SAP spreadsheet gives only 205.6£/year and despite its difference for space heating compared to PHPP, in fact, with current tariff it would be 336.7£/year. The truth is that SAP resulted in a lower amount (by 11%) because of the lower final space heating energy, as described previously, as well as because it does not include household appliances energy consumption in its running costs.
However, in order to compare these figures with the available bill, we follow the following rationale taking into account the fact that the requirement for space heating is not the same throughout the year. It should be noted that the procedure will be presented in table format later along with some modifications made that will be explained (Table 12).

First of all, we make use of monthly heat demand calculated in PHPP in 'Monthly Method' sheet (see orange columns and line in Table 12). For the 81 days of the billing period, the total kWh corresponding to space heating are 952.2; we take only the 13 days for December and 8 for March, 31 for January and 28 for February.

Subsequently, based on PHPP results for DHW delivered energy, auxiliary electricity and energy for appliances in kWh/m^2 per year, we convert them to kWh for this 81-day period and add them to space heating in order to get the total electricity consumption for this period.

The last step remaining is to multiply the result with 11.66p/kWh which is the tariff shown in the bill.

This procedure gives us a value of 1484.5kWh (as shown in Table 12) that should have been consumed during this period according to PHPP. One can observe that there is a great deviation from the actual consumption as shown in the bill.

As presented in Figure 12, the total units consumed were 2315, which means that 890kWh or 11.0kWh/day are missing. That is a significantly high number of missing electricity. At this point, it is essential to mention that during that period there were certain problems and issues identified and which could justify this additional electricity consumed. These issues are the following ones:

 Heat pump was not working during winter time (Tuohy & Murphy, Presentation for Fyne Homes, 2011)

This information is responsible for two major issues. The first one is why in monitoring data we got regarding this dwelling the temperature is nothing but close to 20°C, especially at the beginning of the monitoring, as it was supposed to be according to both PHPP and SAP. In addition, it can justify a large amount of the missing kWh of electricity since the occupants had electric heaters for space heating.

More specifically, monitoring data showed that in March the temperature inside different rooms was quite low. Especially in living room, at the beginning of monitoring was 16.5° C, and for the period from 19 March to 26 June the average was 18.5° C, the maximum 22.2° C and the minimum was 13° C. As it will be shown in the

Monitoring Data chapter, outside temperature does not have a significant effect in such highly insulated houses. It is the not-working heat pump and consequently the ineffectiveness of the electric heaters used that the dwelling failed to reach the 20°C.

Back to the missing energy, since we do not know exactly either the power of heaters used or the hours per day they were used, assumptions have to be made. Assuming that electric heaters running at low power -0.5kW for example- all day during that period we have:

 $500W \times \left(81 days \times \frac{0.024kh}{day}\right) = 972kWh \text{ (in other words 12kWh/day),}$ or running at 1.0kW: $1000W \times \left(81 days \times \frac{0.024kh}{day}\right) = 1944kWh (24kWh/day)$ or let us say heaters of 1.0kW running for 18 hours per day: $1000W \times \left(81 days \times \frac{0.016kh}{day}\right) = 1296kWh \text{ (or 16kWh/day).}$ Although the for-mentioned cases are only assumptions, the answer lies somewhere

Although the for-mentioned cases are only assumptions, the answer lies somewher between them; yet we are not in a position to find it out.

Additionally, according to the owners, MVHR has been used to maximum mode (100m³/h) instead of standard mode (77m³/h) as there was a misunderstanding of its appropriate use (Tuohy & Murphy, Presentation for Fyne Homes, 2011); it was thought that by operating at maximum the dwelling would be heated more easily, which in reality is not the case.

Simulating this to PHPP resulted in an increase of effective air change rate to 0.141ac/h. Consequently, this leads to more energy required for space heating as the building becomes less air-tight.

- Moreover, it has been found that the installation of MVHR was not the one expected as the ductwork on the MVHR unit was missing a part of insulation and, as for the whole length of ducts insulation, that was only 19mm instead of the designed 140mm (Tuohy & Murphy, Presentation for Fyne Homes, 2011).
- Finally, another issue raised by the monitored data, which will be further discussed later in Monitoring Data section, is the wrong installation of solar thermal system to the tank. It seems that cold water has been brought in the tank instead of hot causing the tank temperature to decrease. Hence, more power is needed to maintain hot water in the tank.

As it will be explained later in Monitored Data chapter, the power needed for this reason is approximately 2.5kW. Based on data from 19/03 to 26/03, we conclude that

a mean value of 5.8kWh/day was used for heating water because of the erroneous installation. However, if we take into account that solar gains –as given in PHPP during the period of 81 days the bill refers to–are 22.7% of the gains for the 19/03-26/06 period, that additional energy for heating water could have been 7.1kWh/day (or 575kWh for the 81-day period) instead of 5.8kWh/day.

Hence, it is obvious that there is a mismatch between reality and the design in PHPP or SAP. Therefore, it was thought that some modifications should be made in PHPP to 'simulate' the reality. These changes are the modifications of inside temperature and of the insulation of ductwork (now input as 19mm), MVHR mode, as well as the elimination of heat pump. The results are shown in the following table (Table 12).

heat pump	no	no	no	no	Yes
insulation thickness	19mm	19mm	19mm	19mm	140m
MVHR mode	Max	Max	Max	Max	standard
temperature	17.2°C	18.0°C	20.0°C	16.5°C	20.0°C
Space Heating Energy Demand (kWh/m ² per year)	14.0	16.8	24.4	11.8	20.9
Space Heating Energy Delivered (kWh/m ² per year)	14.0	16.8	24.4	11.8	9.6

Table 12: Modifications to match reality and results

Monthly space heat demand according to PHPP

													total kWh
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	for 81 days
	280.1	230.1	165.9	55.4	5.1	0.3	0.0	0.0	0.2	42.8	177.8	283.6	717.6
	317.7	263.9	202.0	80.3	11.3	1.0	0.1	0.0	1.2	70.9	214.0	321.2	820.3
	411.9	348.9	294.6	156.0	45.7	9.7	2.2	1.2	17.4	156.2	304.9	415.4	1078.0
	247.2	200.5	135.1	37.3	2.3	0.1	0.0	0.0	0.0	23.6	146.4	250.6	628.1
	366.7	306.2	249.6	119.0	28.0	4.8	0.9	0.5	9.8	125.9	266.9	370.2	952.2
		_											
DHW delivered*	2.79	2.72	2.64	2.84	2.69	kWh/day							
Household Appliances													
	3.27	3.27	3.27	3.27	3.27	kWh/day							
auxiliary	0.61	0.61	0.61	0.61	0.61	kWh/day							
for 81 days	540.09	534.20	528.31	544.02	532.24	kWh							
total	1257.67	1354.51	1606.31	1172.1	1484.5	kWh							

The temperatures selected in Table 12 (apart from the 20°C) are indicative and are based on monitoring data; 16.5°C was the average temperature in living room at the beginning of the monitoring, 17.2°C was the average during the first month of monitoring and 18°C was the average until the end of June.

Ultimately, out of the 890kWh missing (for the 81-day period), 575kWh could be due to the erroneous solar installation and 293kWh at least (derived from Table 12) because of the lack of 121mm insulation at MVHR, the non-operating heat pump, operating MCHR at maximum mode and assuming inside temperature would only reach 16.5°C (see Table 13). However, it is important to underline that the latter –the inside temperature– has a major impact as it has been shown in Table 12 and unfortunately we do not have evidence of the temperature during the particular period the bill refers to. Although there is a considerable uncertainty in the formentioned justification, it is clear that PHPP is more close to reality than SAP, at least for the passive house.

In addition, the table in the following page (Table 13) summarises the above mentioned cases. It becomes apparent that the deviation of these cases from the real consumption shown in the bill varied from -26 to -9% (Table 13). This is due to the different internal temperature selected for which we do not have any evidence during the billing period. It is worth mentioning that although the last case of 20°C is the one closest to energy bill, one should bear in mind that there are other factors that affect it such as an alteration in occupancy, unpredicted opening of windows for example.

	kWh	kWh/day		kWh	kWh/day
BILL	2315		BILL	2315	
РНРР	1425		РНРР	1425	
missing	890	11.0	missing	890	- 11.0
no heat pump			no heat pump		
19mm insulation	1131.7	14.0	19mm insulation	1211.9	15.0
16.5°C	-		17.2°C	<u> </u>	
MVHR-max mode			MVHR-max mode		
erroneous solar			erroneous solar		
installation*	575.1	7.1	installation*	575.1	7.1
-	1706.8	21.1		1787.0	22.1
variance from			variance from		
originally	20%		originally	25%	
designed PHPP			designed PHPP		
variance from bill	-26%		variance from bill	-23%	
	kWh	kWh/day		kWh	kWh/day
BILL	kWh 2315	kWh/day	BILL	kWh 2315	kWh/day
BILL PHPP	kWh 2315 1425	kWh/day	BILL PHPP	kWh 2315 1425	kWh/day
BILL PHPP missing	kWh 2315 1425 890	kWh/day 11.0	BILL PHPP <i>missing</i>	kWh 2315 1425 890	kWh/day
BILL PHPP <i>missing</i>	kWh 2315 1425 890	kWh/day - 11.0	BILL PHPP <i>missing</i>	kWh 2315 1425 890	kWh/day - 11.0
BILL PHPP <i>missing</i>	kWh 2315 1425 890	kWh/day 11.0	BILL PHPP <i>missing</i>	kWh 2315 1425 890	kWh/day 11.0
BILL PHPP <i>missing</i> no heat pump	kWh 2315 1425 890	kWh/day 11.0	BILL PHPP <i>missing</i> no heat pump	kWh 2315 1425 890	kWh/day
BILL PHPP <i>missing</i> no heat pump 19mm insulation	kWh 2315 1425 890 1302.7	kWh/day 11.0 16.1	BILL PHPP <i>missing</i> no heat pump 19mm insulation	kWh 2315 1425 890 1539.3	kWh/day - 11.0 19.0
BILL PHPP <i>missing</i> no heat pump 19mm insulation 18.0°C	kWh 2315 1425 890 1302.7	kWh/day 11.0 16.1	BILL PHPP <i>missing</i> no heat pump 19mm insulation 20.0°C	kWh 2315 1425 890 1539.3	kWh/day 11.0 19.0
BILL PHPP <i>missing</i> no heat pump 19mm insulation 18.0°C MVHR-max mode	kWh 2315 <u>1425</u> 890 1302.7	kWh/day 	BILL PHPP <i>missing</i> no heat pump 19mm insulation 20.0°C MVHR-max mode	kWh 2315 1425 890 1539.3	kWh/day 11.0 19.0
BILL PHPP <i>missing</i> no heat pump 19mm insulation 18.0°C MVHR-max mode erroneous solar	kWh 2315 1425 890 1302.7	kWh/day 11.0 16.1	BILL PHPP <i>missing</i> no heat pump 19mm insulation 20.0°C MVHR-max mode erroneous solar	kWh 2315 1425 890 1539.3	kWh/day 11.0 19.0
BILL PHPP missing no heat pump 19mm insulation 18.0°C MVHR-max mode erroneous solar installation*	kWh 2315 1425 890 1302.7 575.1	kWh/day 11.0 16.1 7.1	BILL PHPP <i>missing</i> no heat pump 19mm insulation 20.0°C MVHR-max mode erroneous solar installation*	kWh 2315 1425 890 1539.3	kWh/day 11.0 19.0 7.1
BILL PHPP <i>missing</i> no heat pump 19mm insulation 18.0°C MVHR-max mode erroneous solar installation*	kWh 2315 1425 890 1302.7 575.1 1877.8	kWh/day 11.0 16.1 7.1 23.2	BILL PHPP <i>missing</i> no heat pump 19mm insulation 20.0°C MVHR-max mode erroneous solar installation*	kWh 2315 1425 890 1539.3 575.1 2114.4	kWh/day
BILL PHPP <i>missing</i> no heat pump 19mm insulation 18.0°C MVHR-max mode erroneous solar installation* <i>variance from</i>	kWh 2315 1425 890 1302.7 575.1 1877.8	kWh/day 11.0 16.1 7.1 23.2	BILL PHPP <i>missing</i> no heat pump 19mm insulation 20.0°C MVHR-max mode erroneous solar installation* <i>variance from</i>	kWh 2315 1425 890 1539.3 575.1 2114.4	kWh/day 11.0 19.0 7.1 26.1
BILL PHPP <i>missing</i> no heat pump 19mm insulation 18.0°C MVHR-max mode erroneous solar installation* <i>variance from</i> <i>originally</i>	kWh 2315 1425 890 1302.7 575.1 1877.8 32%	kWh/day 11.0 16.1 7.1 23.2	BILL PHPP <i>missing</i> no heat pump 19mm insulation 20.0°C MVHR-max mode erroneous solar installation* <i>variance from</i> <i>originally</i>	kWh 2315 1425 890 1539.3 575.1 2114.4 48%	kWh/day
BILL PHPP <i>missing</i> no heat pump 19mm insulation 18.0°C MVHR-max mode erroneous solar installation* <i>variance from</i> <i>originally</i> <i>designed PHPP</i>	kWh 2315 1425 890 1302.7 575.1 1877.8 32%	kWh/day 11.0 16.1 7.1 23.2	BILL PHPP <i>missing</i> no heat pump 19mm insulation 20.0°C MVHR-max mode erroneous solar installation* <i>variance from</i> originally designed PHPP	kWh 2315 1425 890 1539.3 575.1 2114.4 48%	kWh/day 11.0 19.0 7.1 26.1

Table 13: Justification of missing kWh

MONITORING DATA

As mentioned in the Introduction, apart from the comparison of the two methodologies themselves, monitored data have also been used to contribute to a better understanding of the dwellings' performance. The intention was to make use of these data in order to provide evidence for the performance expected from the methodologies.

First of all, It would be useful to present what have been measuring so far in the under examination dwellings. In both houses, temperature is measured in kitchen, bathroom, lounge and in the coldest room; relative humidity and CO₂ levels in the lounge; the current in Amps as total consumption of each dwelling; store temperature in the hot water tank, the temperature of cold water feed, and the hot water temperature leaving tank. In addition, for the Passive House, solar heated water temperature has been measuring. In the same dwelling, although sensors for the duct consumption and MVHR electric consumption were supposed to be installed as well, at the end this was not realised due to technical issues; interventions to cables insulation was needed and it there was not any permission for that. All monitoring equipment has been purchased from Eltek (Tuohy & Murphy, Presentation for Fyne Homes, 2011); the data have been downloaded and elaborated by Darca software and further analysed in Microsoft Excel.

DATA ELABORATION

PASSIVE HOUSE

STATISTICAL ANALYSIS

Firstly, correlations have been taken place in order to verify some relations and nondependent factors. Correlations between electric meter, outside temperature, tank temperature, cold water feed, solar heated water temperature and hot water leaving tank have shown some interesting points (Table 14). The strong relationship between tank and hot water leaving tank temperature (correlation coefficient 91.3%) has been expected. However, the 62.8% correlation between cold water feed and solar heated water intake was considered unusual and needed further investigation. Based on graphical analysis of data later, we find that there must be something wrong with solar installation as it does not seem to contribute to hot water as supposed. In reality, what happens is that cold feed triggers the solar water flow since the sensor is at the bottom of the tank and as soon as the temperature difference is more than 6°C than solar intake temperature (Tuohy & Murphy, Presentation for Fyne Homes, 2011), water from solar panels is brought in even if it is cold.

19/03-26/06	electric meter	outside temperature	Tank temperature	Cold water feed	solar heated water intake	hot water pipe leaving tank
electric meter	1					
outside temperature	0.019	1				
Tank temperature	-0.129	0.084	1			
Cold water feed	-0.206	0.303	0.186	1		
solar heated water intake	-0.086	0.448	0.286	0.628	1	
hot water pipe leaving tank	-0.039	0.137	0.913	0.008	0.268	1

Table 14: Correlation between temperatures and electric meter

Moreover, in such a highly insulated dwelling inside temperature and especially electric consumption is not expected to be strongly influenced by external conditions. This is verified by both Table 14, where the corresponding coefficient is 1.9%, and a correlation between lounge temperature and external temperature which gave a 0.48 coefficient for the same period.

Additionally, it has been performed a multiple regression among tank temperature and the mentioned parameters as well; however, the Coefficient of determination (R-square) was not satisfying (less than 0.9) and therefore it will not be presented.

Furthermore, the main concern, at least at the beginning, has been the quantification of space and water heating. Unfortunately, since sensors for the duct consumption and MVHR electric consumption have not finally been installed, the goal was not fulfilled. As for the energy consumed for hot water, although there have been attempts to quantify it, the result would not be representative on the grounds that solar contribution cannot be taken into consideration due to possible errors as mentioned previously and as shown below.

As far as the total electric consumption of the Passive House is concerned, it has been analysed in a weekly basis and is presented in the following graph (Figure 13) in terms of daily energy consumed. It is clearly shown that the consumption does not follow an expected trend which would show a gradual decrease as we move to summer. On the contrary, from the third week of May and later, it is considerable higher than it was in April. Taking into account that in June space heating demand is approximately zero as well as that solar gains are supposed to be higher (Figure 14), one could argue that this increase seems unusual.

The answer for this could be a combination of the followings: the amazingly low consumption during some weeks of April could be due to an absence of occupants (however note that the numbers shown in Figure 13 are only average values). In fact, until mid May,

the owner of the house had been working. Then, occupants went on a one-week holiday after 14th of May and afterwards she was significantly more often at home (Tuohy & Murphy, Presentation for Fyne Homes, 2011). These issues, along with the solar installation issue, are reflected on energy consumption and in the irregular trend shown in Figure 13.

Average Daily Electric Consumption (Passive House)

Figure 13: Average daily (total) electric consumption of Passive House on a weekly basis

Figure 14: Solar gains (kWh/m²) per month for the Passive House according to PHPP2007

GRAPHICAL METHOD

Generally, although the intention has been to come up with a 'non-manual/non-graphical' way to analyse the results, by using statistical methods to identify problems in the performance, at the end this has not been feasible due to the nature of monitoring data. By 'Graphical method' we mean visual observation to identify issues and relations by using Darca software. A sample of monitored data for Passive is shown in Figure 15.

Bearing in mind the findings from the statistical method, the relation between hot water leaving tank and tank temperature as well as between cold water feed and solar water intake is apparent in Figure 16, where the first two quantities follow approximately the same pattern. Observing cold water feed and hot water pipe leaving tank peaks and general pattern in the same sample (Figure 16), one could argue that it seems a relation between them as well.

This relation between cold water feed and hot water pipe leaving tank consists another evidence for a possible erroneous installation of solar system.

Moreover, as far as the additional energy because of that installation, which we have been referring to in previous chapters, is concerned, it could become more easily understood by observing Figure 17. It is obvious from the spikes of electric meter, store temperature of tank and hot water temperature leaving tank, which are circled, that approximately 10 Amps (that is 2500W, by multiplication of amps with 250V) are used for heating the water in tank. The same phenomenon is observed during the rest of the period. Therefore, one could say that a spike more than 10Amps could be for heating water. For this period the average energy for that purpose seems to have been 5.8kWh/day based on the data. That is how the additional energy of 5.8kWh/day for heating water mentioned in previous sections has been found.

Figure 15: Sample of monitored data for Passive House

Figure 16: Sample of monitored data for tank in Passive house

EIRINI MOUTZOURI

Figure 17: Relation between electric meter and tank

CODE LEVEL 4 DWELLING

As far as the Code Level 4 dwelling monitored data which have been analysed, the results are as follow. First of all, due to the fact that the channel for the hot water living tank had almost no signal during the period 19/03-26/06, a correlation among the electric meter and the tank temperatures has not been performed.

Moreover, an interesting point is that the average lounge temperature was 21.2° C for the formentioned period, while PHPP and SAP assumed it would be 20 and 18.2° C respectively. It should be mentioned that for 83.7% of the time the temperature in living room was more than 20° C, and only 1.6% of the time it dropped lower than 19° C.

Furthermore, it is worth mentioned, that considering that the cold water intake needs to be heated at tank temperature every minute, the data show us that 872.3kWh would have been used for heating DHW; in other words, 8.81kWh/day which is a value close to the one predicted by PHPP as shown below (Table 15). The error is only -1.8% if we consider the designed conditions or -1.2% if account 21.2°C. As for SAP, it has predicted 25.44kWh/m2 per year or 9.69kWh/day (using TFA according to SAP).

Furthermore, according to electric meter, the total consumption for these period was 2134.9kWh, whereas PHPP using similar method as described earlier for the Passive House predicted 2803.1kWh; a difference of 31% (Table 15).

temperature	average in lounge	as designed	
	21.2	20.0	°C
Space Heating Demand	79.3	67.2	kWh/m ² per year

Monthly space heat demand according to PHPP

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	19/03-26/06
	1149.5	1040.7	1010.4	761.1	465.4	263.4	152.6	135.1	304.7	673.5	930.9	1152.0	1838.
	1034.7	936.9	895.7	651.1	358.4	174.0	78.3	62.4	202.7	559.0	819.7	1037.1	1502.2
DHW delivered	8.67	8.70	kWh/day										
Household													
Appliances	3.75	3.75	kWh/day										
auxiliary	0.69	0.69	kWh/day										
19/03-26/06	1298.14	1300.89	kWh										
total	3136.7	2803.1	kWh										
According to													
monitoring													
data:		2135	kWh										
error:	47%	31%											

total kWh

The above numbers could indicate the impact of human behaviour can have on electric consumption. The assumptions due to lack of detailed specifications, a possible absence or the radical drop in electric consumption at the beginning of April (Figure 18) are not enough to justify the deviation in energy consumption shown previously. However, we should mention that a gradual decrease in energy use is expected as we move to summer since requirement for heating reduces. In contrast with Passive House (Figure 13), the mean daily electricity consumption in Code level 4 house (Figure 18) decreases gradually from mid-March to late June.

Average Daily Electric Consumption (Code level 4 dwelling)

Figure 18: Average daily (total) electric consumption of Code Level 4 house on a weekly basis

Back, to the missing kWh and human factor, one thing that we should highlight for this Code Level 4 dwelling is that we have considered natural ventilation and an effective change of 0.50ac/h. However, it is hard to maintain 0.505ac/h by naturally ventilate a dwelling. Consequently, this must have an impact on space heating requirement, apart from occupants' health.

In an attempt to investigate the above, we focused on CO_2 concentration inside the house. It has been found that CO_2 concentration is remarkably high (Table 16). In fact, 54.7% of the monitoring period the concentration was more than 1000ppm –this upper limit has been based on CIBSE recommendation for a medium quality of indoor air (Dwyer, 2011). This means occupants do not open windows regularly or enough time. Therefore, it can be considered that air change rate is less than 0.505ac/h and consequently, there is need for less

energy to heat the building. Hence, that lower figure for energy consumption of monitored data comparing to PHPP can be justified.

	Code Level 4	Passive House
Average concentration	1060.1 ppm	594.3 ppm
Maximum concentration	2231 ppm	1384 ppm
Minimum concentration	422 ppm	401 ppm
More than 900ppm	65.6%	3.4%
More than 1000ppm	54.7%	1.7%

Table 16: CO₂ concentration

COMPARISON WITH ELECTRIC BILLS (PART 2)

Finally, with regard to energy bills and the monitored data of Passive House, the situation is as follows. From the monitored period 19/03-26/06 that has been examined, according to the electric meter, the total consumption was 1020.7kWh.

Similarly to the methodology used in the previous comparison to energy bills (COMPARISON WITH ELECTRIC BILLS – Table 12), one could say that the expected energy consumption should have been 704.8kWh for this period assuming internal temperature 18°C, 19mm of insulation and MVHR running at max mode. However, taking into consideration the 5.8kWh/day due to erroneous solar installation corrected for the winter period as described in Comparison with electric bills (Part 1) section, the total electric consumption should have been 1279.0kWh; in other words, a deviation of -25.3% which can be due to the last assumption, due the temperature assumption or because of human impact on energy.

DISCUSSION OF RESULTS

Summarising the for-mentioned results, it is clear that there are significant differences between the two methodologies examined. Some due to different principles, some due to the different scale of details required, and some due to different standard values they take into account.

The results has been divided into two categories; based on direct comparison between the two methodologies in terms of space heating, DHW and CO_2 emissions, and based on comparison with actual data, reality.

PHPP vs SAP

SPACE HEATING

Based on the presented investigation, SAP expects a dwelling to require less energy for space heating mainly because it takes into account significantly higher *internal heat gains*. In fact, whenever IHG were modified there was a radical drop in heating demand. The reasons these gains are higher have been outlined earlier.

Moreover, a second factor that has a major impact on space heating has been proved to be climate. By applying the same *climate and internal gains* as in SAP at the same time, PHPP gave the same value for space heating demand as SAP.

Additionally, it has been shown that *internal heat gains and effective air change rate* not only they influence space heating energy but also in case of a very air-tight building, such as the Passive House examined, it reduces space heating demand dramatically; on the contrary, with regard to a less air-tight house, such as the Code Level 4 dwelling, although those two factors decrease space heating demand, as well, they bring it significantly closer to SAP value.

Furthermore, as far as the detailed inputs are concerned, it has been showed that it is not only local climate data that PHPP allows one to select which differentiate the two methodologies. Shading, plumbing or duct details influence the result as well. However, a factor that both SAP and PHPP consider in a different scale is the *orientation of windows*. As it has been illustrated, the effect of the detailed input of windows orientation in PHPP is greater in case of Passive House.

DOMESTIC HOT WATER

As far as the hot water is concerned, apart from the different daily volume of water that they consider, the two methodologies consider *different solar contribution* as well. The latter has been proved by a direct comparison of the results of SAP and PHPP. From this comparison, it derived that PHPP considers higher solar contribution than SAP and based on third part's monitored data for Dublin we could characterise PHPP as optimistic in this particular section. However, despite Dublin has only a slightly different climate and since our data did not allow us to verify this, we have to be sceptical with this. Further investigation of more monitored houses with solar panels should take place.

On the other hand, in case of the second dwelling which did not have any solar panels, the comparison with monitored data indicated that *PHPP predicted approximately the same energy use for heating water as actual data* for Code Level 4 dwelling.

CO₂ Emissions

Regarding to CO_2 emissions, the real concern is not that they use *different primary energy factors*; it has to do with the *omission of household appliances* use –in terms of CO_2 emissions– by SAP, apart from the dissimilar energy demand.

The gap between the two methodologies is not so wide for the ultra low-energy house as it is for the Code 4 House. Therefore, this can be considered as a optimistic evidence that the two methodologies could find a golden mean, at least for new-built low-energy dwellings. However, there are two points of interest that need to be considered. Firstly, should appliances carbon emissions be included or space and water heating carbon emissions are sufficient? The second issue is that, no matter the answer to the previously posed question, same emissions should be applied in the two methodologies.

Hence, one could argue that Passive House is more sensitive to certain negligible for SAP, but significant to PHPP, changes. Moreover, although SAP relies on annual running costs to rate a dwelling, it seems that it is not so close to reality as PHPP is, at least for space heating demand of an ultra low-energy house.

PHPP vs Actual Data

An additional interesting point risen from the investigation is that there are several reasons that predicted energy use diverges from reality; from *technical issues* to *human behaviour*. These can be a non-working appliance, imprecise application of designed details, misuse or misunderstanding of systems and appliances, or even a non-standard human occupancy with remarkable fluctuations. Especially for Passive Houses, designing construction details is not enough; their application is of outmost importance having an impact on moisture or air-tightness and consequently on energy consumption.

As far as comparison between predicted energy use and electricity bill is concerned, it has shown a significant deviation. That is due to the mentioned problems and issues in the Passive House we examine. In order to 'simulate' reality in PHPP we made certain modifications. We concluded in figures that deviation from reality –from the energy consumption according to bill– between was from -26 to -9%. Such diversions are because of the lack of evidence of interior temperature during the billing period (note that monitoring data began after the bill had been issued) or of human factors such as frequency of windows opening or occupants personal preference for indoor temperature, as in case of Code level 4 House.

Generally, it should be mentioned that in annual basis, SAP concluded in less energy consumption than PHPP and consequently lower running costs and considerably less close to reality.

Furthermore, the elaboration of monitored data has illustrated and provided evidence for several issues as well. Concerning the Passive House data, it has been shown that there was something wrong with the installation of solar water feed; cold water feed triggers solar water flow and brings water from solar panels even if it is cold. In fact, this issue has been identified by three different methods: by correlation, by 'graphic-visual' method of data and by comparing weekly average consumption. In addition, the latter has revealed an alteration in occupancy, which has been confirmed by the occupants.

Human factor has played a significant role in Code Level 4 dwelling as well. Data elaboration showed that the average interior temperature was 1.2 and 2°C higher than PHPP and SAP considered temperature, respectively. It should be underlined one more time that in case of this dwelling, significant details for PHPP were missing and assumptions needed to be made such as the length or the insulation. The most interesting issue for this dwelling has been that

based on carbon dioxide concentration data monitored in living room it seems that occupants do not open as much the windows so that the 0.505ac/h could be achieved. Consequently, this has lead to lower energy for space heating.

CONCLUSION

Arriving at the end of this study and having summarised the results, we should highlight the main findings as well as the answers to the critical questions posed at the beginning of the thesis.

First of all, it has been proved that major factors that influence PHPP and make the gap between PHPP and SAP wider are the following:

- Internal gains
- Climate data and internal gains
- Effective air change rate and internal gains
- Detailed input particularly orientation of windows
- Solar contribution

Secondly, as far as the reasons for which actual energy use fails to meet the predicted consumption from SAP and PHPP methodology are concerned, one could conclude that they have different roots as outlined below:

Technical errors

- Construction not as designed
- Non working appliances
- Erroneous installation of systems
- Human factors
 - Misuse or misunderstanding of systems/appliances principles
 - o Non-standard occupancy, absence
 - Personal preference for interior temperature
 - Frequency and duration of windows opening

Moreover, according to results illustrated earlier, although PHPP seems to underestimate actual energy consumption, it predicts running costs closer to reality comparing to SAP which relies on these costs to assess buildings energy efficiency. As for the carbon dioxide emissions, the main factor that makes the two methodologies diverge is the predicted energy

consumption; same CO_2 equivalent factors could be easily be adopted by the two methodologies.

Ultimately and more significantly, is Passive House standard to be a new standard for EU countries, government's approach for energy assessment of buildings needs to be reconsidered; details that SAP overlooks and disregards are essential when it comes to a Passive House.

FURTHER WORK

The theme of this thesis is generally broad and further analysis is required in different levels. Firstly, in order to conclude to more safe results there is need to analyse monitored data from more Passive Houses in UK –as wells as from dwellings with different level of insulation– and apply the methodology to them. Monitored data from dwellings with solar thermal installation would be beneficial as well in order to conclude whether SAP or PHPP is more accurate.

A next significant step could be a calculation for uncertainty taking into account all the mentioned factors which make predicted energy differ from actual.

Furthermore, as far as Passive House standard is concerned, a topic for study could be a method to set levels-targets for CO_2 emissions of Passive House either based on annual energy use only or on lifetime emissions.

Finally, as mentioned in the beginning, it would be useful to modify PHPP so that it could accommodate or integrate SAP rating.

REFERENCES

AECB. (2009). Comparing energy use and CO2 emissions from natural ventilation and MVHR in a Passivhaus house A CarbonLite Information Paper. CarbonLite.

(2009). Appendix S: Reduced Data SAP for existing dwellings. In *The Government's Standard Assessment Procedure for Energy Rating of Dwellings*. BRE on behalf of DECC.

Ayompe, L. M., Duffy, A., Mc Keever, M., Conlon, M., & McCormack, S. J. (2011, May). Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate. *Elsevier*, *36* (5), pp. 3370-3378.

BRE. (2009). SAP 2005. UK.

Building Research Establishment Ltd. (2011). *Passivhaus downloads*. Retrieved August 17, 2011, from http://www.passivhaus.org.uk/regional-climate-data.jsp?id=38

Built Passive Houses. (n.d.). Retrieved May 2011, from http://www.passivhausprojekte.de

Department for Communities and Local Government. (2010). *Code for Sustainable Homes - Technical Guide*.

Dickson, C. M., Dunster, J. E., Lafferty, S. Z., & Shorrock, L. D. (1996). BREDEM: Testing monthly and seasonal versions against measurements and against detailed simulation models. *Building Services Engineering Research and Technology*, *17* (3).

Dwyer, T. (2011, April). *The CIBSE Journal CPD Programme: Indoor Air quality*. Retrieved August 20, 2011, from CIBSE journal: http://www.cibsejournal.com/cpd/2011-04/

Feist, W., Peper, S., & Görg, M. (2001). *CEPHEUS - Final technical Report*. part of the European research project CEPHEUS - Cost Efficient Passive Houses as European Standards supported by the EU, Hannover.

Feist, W., Pfluger, R., Kaufmann, B., Schnieders, J., & Kah, O. (2007). *Passive House Planning Package 2007 - Requirements for Quality Approved Passive Houses*. The Passivhaus Institut.

Laughton, C. (2011). Index-linked Feed-in Tariffs for Solar Energy Generation. The Solar Design Company.

Murphy, G. B., Kummert, M., Anderson, B. R., & Counsell, J. M. (2011). A comparison of the UK standard assessment procedure (SAP) and detailled simulation of solar energy systems for dwellings. *Journal of Building Performance Simulation*, *4* (1), 75-90.

Ogle, J. (n.d.). Energy Performance of Buildings Directive (EPBD) - The background to Energy Labelling. Retrieved 2011, from NWEF - NorthWest Energy Forum: http://www.nwef.net/newsletters.php

Perez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. *Energy and Buildings*, 40 (3), 394-398.

Reason, L., & Clarke, A. (2008). *Projecting energy use and CO2 emissions from low energy buildings - A comparison of the Passivhaus planning package (PHPP) and SAP.* AECB the sustainable building association.

Schnieders, J. (2003). CEPHEUS – measurement results from more than 100 dwelling units in passive houses. *ECEEE 2003 SUMMER STUDY – TIME TO TURN DOWN ENERGY DEMAND*, *Panel 2. Comfort and energy use in buildings*, pp. 341-351.

Scottish Passive House Centre (SPHC). (n.d.). *Tigh-Na-Cladach Data*. Retrieved August 21, 2011, from Scottish Passive House Centre: http://www.sphc.co.uk/tigh-na-cladach-data

Tuohy, P., & Langdon, D. (2009). *Benchmarking Scottish standards: Passive House and CarbonLite Standards: A comparison of space heating energy demand using SAP, SBEM, and PHPP methodologies*. Building Standards Division, Directrorate for the Built Environment, The Scottish Government.

Tuohy, P., & Murphy, G. (2011, May). Presentation for Fyne Homes .

Tuohy, P., & Murphy, G. (2011, May).

Zero Carbon Hub. (2010). *Carbon Compliance: What is the appropriate level for 2016?* Interim Report.

APPENDICES APPENDIX A – PHPP FOR PASSIVE HOUSE

Passive House Verification

20.9

20.9

Passive House Planning VENTILATION DATA

Building: IBethani	a, Typ D (Plot 15)			ļ		
Treated Floor Area ATFA		m² 89		(Areas worksheet)		
Room Height h		m 2.5	1	(Annual Heat Demand v	vorksheet)	
Room Ventilation Volume (A _{TFA} *h)	=V _V	m ³ 221	l I	(Annual Heat Demand v	vorksheet)	
Ventilation System Design - Sta	ndard Operation					
Occupancy	m	²/₽ 35	i			
Number of Occupants		PI 2.5				
Supply Air per Person	m³/(P	^{**} h) <u>30</u>				
Supply Air Requirement	m	n∛h 75				
Extract Air Rooms		Kitchen	Bathroom	Shower	WC	
Quantity		1	1	0 1	1	
Extract Air Requirement per	r Room m	¹³ /h 40	40	20	20	
Total Extract Air Requireme	nt m	100 n³/h				
Design Air Flow Rate (Maximum)	m	n∛h <mark>100</mark>				
Average Air Change Rate Calcu	lation					
	Daily Operation Duration	Factors Referenc Maximum	ed to	Air Flow Rate		Air Change Rate
Type of Operation Maximum Standard Basic Minimum	h/d 24.0 0.0	1.00 0.77 0.54 0.40	Avera		∛h) Avera	1/h 0.45 0.25 0.24 0.18 ge Air Change Rate (1/h)
Residential Building	Average val	lue 0.77		77		0.35

Infiltration Air Change Rate according to EN 13790

	Wind Protection Coefficien	ts According	to EN 13790		1	
Coefficient e for Scre	eening Class		Several Sides Exposed	One Side Exposed		
No Screening Moderate Screening High Screening	1		0.10 0.07 0.04	0.03 0.02 0.01		
Coefficient f			15	20	1	
Wind Protection Coefficient	t, e		0.07	0.18	1	
Wind Protection Coefficient	t, f		15	15	Net Air Volume for Press. Test	Air Permeability q50
Air Change Rate at Press.	Test n ₅₀	1/h	0.20	0.20	317 m ³	0.21 m ^{3/(hm²)}
Type of Ventilation Syste	m					
Balanced PH Ventilation	Please Check		for Annual Demand:	for Heat Load:		
Pure Extract Air						
Excess Extract Air		1/h	0.00	0.00	1	
Infiltration Air Change Rate	N _{V,Res}	1/h	0.020	0.050		

ve Heat Recovery Efficiency of the Ventilation System with Heat Recovery

Central unit within the thermal envelope.

Transmittance Ambient Air Duct Ψ W(mK) 0.189 Calculation see Secondary Calculation Length Ambient Air Duct m 6 Transmittance Exhaust Air Duct Ψ W(mK) 0.189 Calculation see Secondary Calculation Calculation see Secondary Calculation Length Exhaust Air Duct m 6.5 Temperature of Mechanical Services Room °C Verture bit Mechanical Services Room °C	Efficiency of Heat Recovery	η _{HR}		0.92	thermos 200 DC - Paul
Length Ambient Air Duct m 6 Transmittance Exhaust Air Duct W((mK) 0.18.9 Calculation see Secondary Calculation Length Exhaust Air Duct m 6.5 Room Temperature (°C) 20 Temperature of Mechanical Services Room °C Av. Ambient Temp, Heating P. (°C) 7, 6	Transmittance Ambient Air Duct	Ψ	W/(mK)	0.189	Calculation see Secondary Calculation
Transmittance Exhaust Air Duct Ψ W(mk) 0.189 Calculation see Secondary Calculation Lenght Exhaust Air Duct m 6.5 Room Temperature (°C) 20 Temperature of Mechanical Services Room °C Av. Ambient Temp. Heating P. (°C) 7_6	Length Ambient Air Duct		m	6	
Length Exhaust Air Duct m 6.5 Room Temperature (°C) 20 Temperature of Mechanical Sources Room °C Av. Ambient Temp. Heating P. (°C) 7.6	Transmittance Exhaust Air Duct	Ψ	W/(mK)	0.189	Calculation see Secondary Calculation
Temperature of Mechanical Services Room °C Av. Ambient Temp. Heating P. (°C) 7.6	Length Exhaust Air Duct		m	6.5	Room Temperature (°C) 20
(Enter and a lithe control with in a statistic of the thermal coupling)	Temperature of Mechanical Servic	es Room	°C		Av. Ambient Temp. Heating P. (°C) 7.6
(Enter only if the central unit is outside of the thermal envelope.) AV. Ground Temp (*C)	(Enter only if the central unit is ou	tside of the thermal envel	ope.)		Av. Ground Temp (°C) 11.2
	e Heat Recovery Efficiency	THR off			83.3%

ባ*sнх 0% ባsнх 0%

TIFIED HEAT RECOVERY UNITS

ve Heat Recovery Efficiency Subsoil Heat Exchanger

SHX Efficiency Heat Recovery Efficiency SHX

Heat Recovery Unit	Heat Recovery	Electric
	Efficiency	Efficiency
	%	Wh/m ³
- User defined -		
RegaVent	70%	0.63
Compact unit as selected in Compact work	kg/a	
Reco-Boxx COMFORT - AEREX	85%	0.35
Comfoair 500 - StorkAir	88%	0.42
aeronom WS 250 - MAICO	85%	0.35
thermos 200 DC - Paul	92%	0.36
atmos 175 DC - Paul	88%	0.30
multi 100 DC - Paul	79%	0.36
multi 150 DC - Paul	79%	0.36
climos 100 DC - Paul	82%	0.41
climos 150 DC - Paul	82%	0.41
campus 500 DC - Paul	83%	0.28
INNOAIR 255 DC - Sachsenland Bauelemente	88%	0.30
Recovery Deluxe 250P - Schrag	83%	0.29
TSL 150 G / DC - Schmeißer	84%	0.31
Comfoair flat 150 - Zehnder	82%	0.41
WRA 400 PHZ - Ned Air	77%	0.39

Secondary Calculation: Ψ-value Supply or Ambient Air Duct

Nominal Width	125 mm
Insul. Thickness:	140 mm
Reflective? Please	e mark with an "x"!
Thermal Conductivity	0.04 W/(mK)
Nominal Air Flow Rate	77 m³/h
Δ9 Interior Duct Diameter Interior Diameter Exterior Diameter α-Interior α-Surface	12 K 0.125 m 0.125 m 0.405 m 9.10 W/(m²K) 2.31 W/(m²K)
u-Sunace	0.180 W/(mK)
±-value	0.189 W/(IIIR)
Surrace remperature Difference	1.447 K

Secondary Calculation: Ψ-value Extract or Exhaust Air Duct

Passive House Planning SPECIFIC ANNUAL HEAT DEMAND MONTHLY METHOD

PASSIVE HOUSE PLANNING SPECIFIC ANNUAL HEAT DEMAND MONTHLY METHOD

EIRINI MOUTZOURI

		Passi	ve Hous	e Planni	ng				
S	PECIF	FIC S	PACE	ΗΕΑΤ	INGL	. O A D	I		
Building: Bethania,	Typ D (Plo	ot 15)		1	Building Type	/Use: End-t	erraced		
Location: Northern H	urope			1	Treated Floor Area	A _{TFA} : 88.5	5 m²	Inter Temperatu	ior 20 re:
L				I	Climate	e (HL): GB-G1	asgow	lompoidid	<u> </u>
Design Temperature Weather Condition 1: 0.4 °C Weather Condition 2: 5.0 °C	Radiation:	North East 15 20 5 5 1	South West 30 20 5 5	Horizontal 25 W/m ² 5 W/m ²		· · · · ·			
Ground Design Temp. 10.2 1 °C	Area	U-Value	Factor Always 1	TempDiff 1	TempDi	iff 2	Ρ _T 1		P _T 2
Building Element Temperature 20 1 Exterior Wall - Ambien A 2 Exterior Wall - Grour B 3 Roof/Ceiling - Ambien A 4 Floor Slab B 5 A 6 7 Wall to porch X 8 Windows A 9 Exterior Door A 10 Exterior TB (length/m) A 11. Perimeter TB (length/m) B 13 House/DU Partition Wall I		W/(m*k) 0.094 0.154 0.094 1.093 1.160 0.094	(except 'X) 1.00	K 9.8 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	K or 15.0 or 9.8 or 15.0 or 9.8 or 15.0 or 9.8 or 9.8 or 9.8 or 9.8 or 9.8 or 0.0		w 222 170 94 4 432 53 53	10 10 10 10 10 10 10 10 10 10 10 10 10	w 170 94 3 31 40 0
Transmission Heat Losses	Ρ _Τ				Tota	ıl =	974	or	768
			A _{TFA}	Clear Room Hei	ght				
Ventilation System:	Effect	ive Air Volume, V _V	m² 88.5	m * 2.50	m ³ = 221				
Efficiency of Heat Recovery $$\eta_{\text{H}}$$ of the Heat Exchanger	ir 83%	H	eat Recovery Efficiency S	нх 0%	Efficiency S	HX	η _{SHX} 1 0%	or	<u>ղзнх 2</u> 0%
		n _v ,Res (Heating Lo 1/h	ad) n _{V,system} 1/h	Φ_{HR}	Φ_{HR}		1/h		1/h
Energetically Effective Air Exchange	n _v	0.050	+ 0.348	*(1- 0.83	or I 0.8	3)=	0.108	or	0.108
Ventilation Heating Load P _v V _L m ³ 221.3 *	n∟ 1/h 0.108	n _L 1/h or 0.108	c _{Air} Wh/(m³K) * 0.33	TempDiff 1 K * 19.6	TempDi K or 15.0	iff 2) =	P _v 1 w 155	or	P _V 2 W 118
							P _L 1		P _L 2
Total Heating Load P_L					D	-	W		w
Orientetier	A	- Makes	Deduction Foot		P _T +I	v =	1129 D. 4	or	886
Unentation the Area	Area m ²	g-value (perp. radiation)	Reduction Fact (see Windows work:	or Radiation 1 sheet) W/m ²	W/m	2 2	Ps 1 W		P _S 2 W
1. North	0.8	* 0.5	* 0.5	* 16	or <u>5</u>	=	2	or	
3. South	4.4	* 0.5	* 0.3	* 32	or 5	=	18	or	3
4. West 5. Horizontal	6.4	* 0.5 * 0.0	* 0.2	* 17	or 5		10	or	3
			0.11		··· I			01	
Solar Heat Gain, P _S					Tota	I =	76	or	16
				Spec Power	- Δ		P. 1		P. 2
Internal Heat Gains P				W/m ²	m²		w		w
				1.6	* 89	=	142	or	142
							P _G 1		P _G 2
Heat Gains P _g					Ps+	P ₁ =	w 218	or	W 158
					P _L - F	'G =	911	or	728
Heating Load P _H						=		911	w
Specific Heating Load P _H	/ A _{TFA}					=	Ι	10.3	W/m²

Passive House Planning HOT WATER PROVIDED BY SOLAR

Building Bethania, Typ D (Plot 15)	Building Type/Use: End	-terraced
Location: Northern Europe	Treated Floor Area A _{TFA} : 8	38.5 m ²

Solar Fraction with DHW Demand including Washing and Dish-Washing

Heat Demand DHW	q _{gDHW}	2149 kWh/a	from DHW+Distribution worksheet	
Latitude:		55.9 •	from Climate Data worksheet	
Selection of collector from list (see below):		5 Selection:	M08	
Solar Collector Area	1	4.55 m²		
Deviation from North	1	163 °		
Angle of Inclination from the Horizontal		<mark>45</mark> °		
Height of the Collector Field		m		
Height of Horizon	h _{Hori}	m		
Horizontal Distance	a _{Hori}	m		
Additional Reduction Factor Shading	r _{other}	<mark>100%</mark> %		
Occupancy		2.5 Persons		
Specific Collector Area		1.8 m²/Pers		
Estimated Solar Fraction of DHW Production	on	54%		
Solar Contribution to Useful He	at	1167 kWh/a	13 kWh/(m²a)	
Secondary Calculation of Storage Loss	es			
Selection of DHW storage from list (see below):		1 Selection:	TFF 200	-
Total Storage Volume		180 litre		
Volume Standby Part (above)		54 litre		
Volume Solar Part (below)		126 litre		
Specific Heat Losses Storage (total)		2.6 W/K		
Typical Temperature DHW		60 °C		
Room Temperature		<mark>20</mark> ℃		
Storage Heat Losses (Standby Part Only)	•	78 W		

104 W

Total Storage Heat Losses

Passive House Planning PRIMARY ENERGY VALUE

Building: Bethania, Typ D (Plot 15)		- Ι Υ	Building Type/Use:	End-terrace	d
Location: Northern Europe		Tre	ated Floor Area A _{TFA} :	89	m² HMb/(m²a)
		Space Hear Den Us	eful Cooling Demand:		kWh/(m²a)
•			Final Energy	Primary Energy	Emissions
			kW/b/(m ² o)	kW/b/(m ² o)	CO ₂ -Equival
			KWII/(III a)	KWIV(III a)	CO ₄ -Emissions Fa
Electricity Demand (without Heat Pump)				PE Value	(CO ₂ -Equivale
Covered Fraction of Space Heat Demand Covered Fraction of DHW Demand		(Project) (Project)	10%	kWh/kWh	g/kWh 680
Direct Electric Heating	Q _{H,de}	(DUNA Distribution SalasDUNA)	2.1	5.4	1.4
Electric Postheating DHW Wash&Dish	CDHW,de	(Electricity, SolarDHW)	1.4	3.6	1.0
Electricity Demand Household Appliances	QEHH	(Electricity worksheet)	13.5	35.1	9.2
Electricity Demand - Auxiliary Electricity Total Electricity Demand (without Heat Pump)			2.5	6.4 75.7	1.7 19.8
Heat Pump				PE Value	CO ₂ -Emission Fa
Covered Fraction of Space Heat Demand		(Project)	90%	kWb/kWb	q/kWh
Covered Fraction of DHW Demand		(Project)	0%	2.6	680
Energy Carrier - Supplementary Heating			Electricity	2.7	680
Annual Coefficient of Performance - Heat Pump	1	Separate Calculation	2.50		
Total System Performance Ratio of Heat Generator		Separate Calculation	0.40	10.5	 5 1
Non-Electric Demand, DHW Wash&Dish	CHP	(Electricity worksheet)	0.0	0.0	0.0
Total Electricity Demand Heat Pump			7.5	19.5	5.1
				(60 Failer -
Compact Heat Pump Unit				PE Value	(CO ₂ -Emission Fa
Covered Fraction of Space Heat Demand	1	(Project)	0%	kWh/kWh	g/kWh
Covered Fraction of DHW Demand		(Project)	0%	2.6	680
Energy Carrier - Supplementary Heating			Electricity	2.7	680
COP Heat Pump Heating COP Heat Pump DHW		(Compact worksheet) (Compact worksheet)	0.0	{	
Performance Ratio of Heat Generator (Verification)	1	(Compact worksheet)	ļ	1	
Performance Ratio of Heat Generator (Planning)	• •	(Compact worksheet)	0.0	0.0	0.0
Non-Electric Demand, DHW Wash&Dish	GRHP	(compact nonanecy	0.0	0.0	0.0
Total Compact Unit	1	(Compact worksheet)	0.0	0.0	0.0
				7	00.500.0005
Boiler				PE Value	(CO ₂ -Emission Fa (CO ₂ -Equivaler
Covered Fraction of Space Heat Demand		(Project)	0%	kWh/kWh	g/kWh
Covered Fraction of DHW Demand		(Project)	0%	<u> </u>	250
Boiler Type		(Boiler worksheet)			1
Utilisation Factor Heat Generator Annual Energy Demand (without DHW Wash&Dish)		(Boiler worksheet) (Boiler worksheet)	0.0	0.0	0.0
Non-Electric Demand, DHW Wash&Dish		(Electricity worksheet)	0.0	0.0	0.0
			0.0	0.0	0.0
District Heat				PE Value	CO ₂ -Emission Fa
		(During)			(CO ₂ -Equivale
Covered Fraction of Space Heat Demand Covered Fraction of DHW Demand		(Project) (Project)	0%	0.7	g/kWh -70
Heat Source		(District Heat worksheet)	L	,	
Heat Demand District Heat (without DHW Wash&Dish)		(District Heat worksheet)	0.0	0.0	0.0
Non-Electric Demand, DHW Wash&Dish		(Electricity worksheet)	0.0	0.0	0.0
Total District Heat			0.0	0.0	0.0
Other				PE Value	CO ₂ -Emission Fa
		(Brainst)			(CO ₂ -Equivale
Covered Fraction of Space Heat Demand Covered Fraction of DHW Demand		(Project) (Project)	0%	кWh/kWh 1.5	g/kWh 55
Used Severa		(Brainst)	1		
Utilisation Factor Heat Generator		(Project)	Gel Fire 100%	F	·
Annual Energy Demand, Space Heating			0.0	0.0	0.0
Non-Electric Demand, DHW Wash&Dish		(Electricity worksheet)	0.0	0.0	0.0
Non-Electric Demand Cooking/Drying (Gas) Total - Other		(Blatt Strom)	0.0	0.0	0.0
Cooling with Electric Heat Pump				PE Value	CO ₂ -Emission Fa
·					a/kWb
Covered Fraction of Cooling Demand		(Project)	100%	2.6	680
Heat Source			Flectricity	3	
Annual Cooling COP			Lioctholty		
Energy Demand Space Cooling			0.0	0.0	0.0
Heating, Cooling, DHW, Auxiliary and Household Electricit	y		36.6	95.2	24.9
Total PE Value	-	95.2	kWh/(m²a)		
		24.0	kg/(m²o)		101
Total Emissions CO. Ecuivalant		24.9	×9/(m*a)	ţ	(Ye
Total Emissions CO ₂ -Equivalent	_	· _ ·		1/1/h/(m2n)	Yes
Total Emissions CO₂-Equivalent Primary	Energ	y Requirement	120	Kwii/(iii-d)	100
Total Emissions CO ₂ -Equivalent Primary	[,] Energ	y Requirement	120	KWIV(III-a)	100
Total Emissions CO ₂ -Equivalent Primary eating, DHW, Auxiliary Electricity (No Household Applicat	tions)	y Requirement	21.7	56.5	14.8
Total Emissions CO ₂ -Equivalent Primary Heating, DHW, Auxiliary Electricity (No Household Applicat Specific PE Demand - Mechanical Syst	tions)	y Requirement	21.7 kWh/(m²a)	56.5	14.8

APPENDIX B – PHPP FOR CODE LEVEL 4 HOUSE

Passive House Verification

Passive House Planning SPECIFIC ANNUAL HEAT DEMAND MONTHLY METHOD

PASSIVE HOUSE PLANNING SPECIFIC ANNUAL HEAT DEMAND MONTHLY METHOD

		Pase	sive Ho	ouse F	Planni	ng					
SI	PECI	FIC S	SPAC	ЕH	ΕΑΤΙ	N	G LO	A D			
Building: Bethania,	Type E (P	lot 08)		1 I		E	i Building Type/Use:	End-te	erraced		 I
Location: Northern E	lurope] I		Treate	d Floor Area A _{TFA} :	101.4	1 m²	Interio	^{or} 20
L				المحمد			L Climate (HL):	GB-G1a	asgow	remperature	نــــــــــــــــــــــــــــــــــــ
Design Temperature Weather Condition 1: 0,4 °C Weather Condition 2: 5,0 °C Ground Design Temp. 10,2 °C Building Element Temperature Zor 1. Exterior Wall - Ambie A	Radiation:	North East 15 20 5 5 U-Value W/(m²K) * 0.150	South W 30 2 5 Fa Alwa (exce * 1	rest Horizo 20 25 5 5 actor ays 1 apt "X") .00 *	W/m² W/m² W/m² TempDiff 1 K 19.6	or	TempDiff 2 K 15.0	=	Ρ _τ 1 w 319	or	Ρ_T 2 Ψ 244
3. Roof/Ceiling - Ambien A 4. Floor Slab 5. 6. 7. Wall to kitchen 8. Windows 9. Exterior Door A 10. Exterior TB (length/m) 11. Perimeter TB (length/m) 12. Ground TB (length/m) 13. House/DU Partition Wall		0.150 0.154 0.154 1.160 0.150			9.8 9.8 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	or or or or or or or or or or or	9.8 9.8 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0		322 108 	or or or or or or or or or or or	246 108 18 600 40 0
Transmission Heat Losses	PT						Total	=	1610	or	1257
			A	TFA C	lear Room Heig	ght					
Ventilation System:	Effec	tive Air Volume, V	v 10	m² 1.4 *	m 2.50	=	^{m³} 254		η _{SHx} 1		η _{SHX} 2
Efficiency of Heat Recovery η	IR 0%		Heat Recovery Eff	iciency SHX	0%		Efficiency SHX		0%	or	0%
or the Heat Exchanger		n _v ,Res (Heating	Load) n _{V,s}	system	Φ_{HR}		Φ_{HR}				
Energetically Effective Air Exchange Ventilation Heating Load P_{ν}	n _v	1/h 0.500	1 + <u>0.</u>	I/h 005_I *(1∙	0.00	or	0.00) =	1/h 0.505	or	1/h 0.505
V _L m³ 253.5 *	n∟ 1/h 0.505	n∟ 1/h or 0.505	c Wh/ * 0.	C _{Air} /(m³K) .33 *	TempDiff 1 K 19.6	or	TempDiff 2 K 15.0	=	P _v 1 W 828	or	P _V 2 W 634
Total Heating Load P									P _L 1		P _L 2
Total heating Load PL							$P_T + P_V$	=	2438	or	1891
Orientation the Area 1. North 2. East 3. South 4. West 5. Horizontal	Area m ² 2.2 12.9 0.0 10.7 0.0	g-Value (perp. radiati * 0.5 * 0.5 * 0.5 * 0.5 * 0.0	Reduction (see Window * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	on Factor vs worksheet) .2 * .4 * .4 * .3 * .4 *	Radiation 1 W/m ² 15 18 30 22 25	or or or or	Radiation 2 W/m ² 5 5 5 5 5 5 5 5	= = = =	P _s 1 w <u>50</u> <u>39</u> 0	or or or or	P _s 2 W 1 <u>14</u> 9
Solar Heat Gain, P _S							Total	=	94	or	24
Internal Heat Gains P _I					Spec. Power W/m ²	*	A _{TFA} m² 101	=	P ₁ 1 W 162	or	P ₁ 2 W 162
Heat Gains P_{G}									г _б 1 W		₩ W
							P _S +P _I	=	256	or	186
							$P_L - P_G$	=	2181	or	1704
Heating Load P _H								=		2181	w
Specific Heating Load P _H	/ A _{tfa}							=	[21.5	W/m²

Passive House Planning PRIMARY ENERGY VALUE

Building:Bethania, Type E (Plot 08)		3	Building Type/Use:	End-terrace	
Location: Northern Europe		Tre	ated Floor Area A _{TFA} :	101	m²
		Space Heat Den Us	nand incl. Distribution seful Cooling Demand:	L 67 I 0	kWh/(m²a) kWh/(m²a)
•			Final Energy kWh/(m ² a)	Primary Energy kWh/(m ² a)	Emissions CO ₂ -Equivalent kg/(m ² a)
Electricity Demand (without Heat Pump)				PE Value	CO ₂ -Emissions Factor (CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand Covered Fraction of DHW Demand		(Project) (Project)	100% 100%	kWh/kWh 2.6	g/kWh 680
Direct Electric Heating DHW Production, Direct Electric (without Wash&Dish) Electric Postheating DHW Wash&Dish	Q _{H,de} Q _{DHW,de}	(DHW+Distribution, SolarDHW) (Electricity, SolarDHW)	67.2 28.5	174.6 74.2 7.4	45.7 19.4
Electricity Demand Household Applances	Q _{EHH}	(Electricity worksheet)	16.7	43.4	11.3
Electricity Demand - Auxiliary Electricity Total Electricity Demand (without Heat Pump)			0.3	0.8 300.4	0.2 78.6
Heat Pump				PE Value	CO2-Emission Factor
Covered Fraction of Space Heat Demand		(Project)	0%	kWh/kWh	g/kWh
Covered Fraction of DHW Demand		(Project)	0%	2.6	680
Energy Carrier - Supplementary Heating Annual Coefficient of Performance - Heat Pump	2	Separate Calculation	Electricity 2.50	2.7	680
Total System Performance Ratio of Heat Generator Electricity Demand Heat Pump (without DHW Wash&Dish)	Q _{HP}	Separate Calculation	0.40	0.0	0.0
Non-Electric Demand, DHW Wash&Dish Total Electricity Demand Heat Pump		(Electricity worksheet)	0.0	0.0	0.0 0.0
				I	COEmission Factor
Covered Fraction of Snace Heat Demand		(Project)	0%	PE Value	(CO ₂ -Equivalent)
Covered Fraction of DHW Demand	•	(Project)	0%	2.6	680
Energy Carrier - Supplementary Heating	•	(Compact worksheet)	Electricity	2.7	680
COP Heat Pump DHW Borformance Batic of Heat Concreter (Vorification)		(Compact worksheet)	0.0	1	
Performance Ratio of Heat Generator (Venincation) Performance Ratio of Heat Generator (Planning)	1	(Compact worksheet)	•••••••	l L	
Electricity Demand Heat Pump (without DHW Wash&Dish) Non-Electric Demand, DHW Wash&Dish	Q _{HP}	(Compact worksheet)	0.0	0.0	0.0
Total Compact Unit	•	(Compact worksheet)	0.0	0.0	0.0
Boiler				PE Value	CO ₂ -Emission Factor
Covered Fraction of Space Heat Demand		(Project)	0%	kWh/kWh	g/kWh
Covered Fraction of DHW Demand		(Project)	0%	2.6	2600
Boiler Type Utilisation Factor Heat Generator		(Boiler worksheet) (Boiler worksheet)	0%		
Annual Energy Demand (without DHW Wash&Dish)		(Boiler worksheet)	0.0	0.0	0.0
Non-Electric Demand, DHW Wash&Dish Total Heating Oil/Gas/Wood		(Electricity worksheet)	0.0	0.0	0.0
				DE Velue	CO2-Emission Factor
Covered Fraction of Space Heat Demand		(Project)	08	kWb/kWb	(CO ₂ -Equivalent)
Covered Fraction of DHW Demand		(Project)	0%	0.7	-70
Heat Source		(District Heat worksheet)	,		ļ
Utilisation Factor Heat Generator Heat Demand District Heat (without DHW Wash&Dish)		(District Heat worksheet) (District Heat worksheet)	0.0	L0.0	0.0
Non-Electric Demand, DHW Wash&Dish Total District Heat		(Electricity worksheet)	0.0	0.0	0.0
				i	CO ₁ -Emission Factor
Covered Fraction of Space Heat Demand		(Project)	0%	PE Value kWh/kWh	(CO ₂ -Equivalent)
Covered Fraction of DHW Demand		(Project)	0%	1.5	55
Heat Source		(Project) (Project)	Gel Fire		
Annual Energy Demand, Space Heating			0.0	0.0	0.0
Non-Electric Demand, DHW Wash&Dish		(Electricity worksheet)	0.0	0.0	0.0
Non-Electric Demand Cooking/Drying (Gas) Total - Other		(Blatt Strom)	0.0 0.0	0.0 0.0	0.0 0.0
Cooling with Electric Unst Dump				DE Maler	CO2-Emission Factor
Cooning with Electric neat rump				kWh/kWh	(CO ₂ -Equivalent) g/kWh
Covered Fraction of Cooling Demand		(Project)	100%	2.6	680
Heat Source Annual Cooling COP			Electricity	i	
Energy Demand Space Cooling			0.0	0.0	0.0
Heating, Cooling, DHW, Auxiliary and Household Electricity	/	1	115.5	300.4	78.6
Total PE Value		300.4	kWh/(m²a)		
Total Emissions CO ₂ -Equivalent	E m == -	78.6	kg/(m²a)	k\\/h/(m2o)	(Yes/No)
Primary	⊏nerg	iy Requirement	LI	conn(iii,g)	NO
Heating, DHW, Auxiliary Electricity (No Household Applicat	ions)		96.0	249.6	65.3
Specific PE Demand - Mechanical Syst	em	249.6	kWh/(m²a)		
Total Emissions CO ₂ -Equivalent		65.3	kg/(m²a)		

APPENDIX C – SAP (RDSAP) FOR CODE LEVEL 4 HOUSE

	1 Overall dwelling dimensions								
	1. Overall uwening dimensions	area(m2)	h (m)	vol (m3)					
1	Ground floor	76.66	2.60	199 30					
2	First floor	62.36	2.00	159.01					
5	Total floor area	139.01	2.00	100.01					
6	Total volume	100.01		358.31					
Ŭ				000.01					
	2. Ventilation rate:								
				m3/h					
7	Chimneys	0.00	40.00	0.00					
8	Open flues	0.00	20.00	0.00					
9	Intermit fan /pass vents	2.00	10.00	20.00					
9a	flueless gas fires	0.00	40.00	0.00					
10	Inf ab /{/f			20.00		ac/h			
10	Int Cn/1/f			20.00	div(6)	0.06			
	Fabric infiltration: if no permea	bility numbe	er avail (els	se skip to 19)				
11	Storevs	2.00			,				
12	Inf storevs					0.10			
13	Struct inf (0.25 steel/timber. 0.	35 masonn	v)			0.25			
14	Floor inf (susp wooden 0.2 uns	ealed. 0.1	sealed)			0.10			
15	Draught lobby (no 0.05, yes 0)	, .	/			0.05			
16	Percent wiondows /doors ds (1	00 new bui	ild)		22.10				
17	Window inf			-		0.21			
18	Inf rate calc					0.76			
		y/n	Q50	_					
19	Permeability known	n	10.00	I		0.76			
	(pressure test or design)								
20	sheltered sides (2 for unknown	location)		3					
21	shelter factor			0.775					
22	adjusted inf for shelter					0.590253			
00				y/n					
23	whole house MVHR			n		na			
23a	whole house balanced IVIV	m outoido		n		na			
230	whole house extract of +ve ho	n outside		n					
24	The stine of the vent from lost			У		0.674199			
25	Effective air change rate					0.674199			
	3 Heat loss parameters and h	eat losses:							
	element	oat 100303.	area	Uvalue		AU W/K			
26	Doors]	1.85	2		3.7			
27	windows type1		23.63	1.5		33,43868 1/((1/U)+.04)			
27a	windows type 2		0.00			0 1/((1/U)+.04)			
27b	rooflights		0.00			0 1/((1/U)+.04)			
28	ground floor		76.66	0.15		11.499			
29	walls type 1 (ex glz,dr)		89.79	0.15		13.4685			
29a	walls type 2(ex glz,dr)					0			
30	roof type 1 (ex rooflight)		76.66	0.15		11.499			
30a	roof type 2(ex rooflight)					0			
31	other - exposed 1st floor					0			
32	total area (m2)		268.59						
33	fabric heat loss (ex thbr)	-		_		73.60518			
34	thermal bridges	Y=	0.08			21.4872			
35	total fabric losses	-				95.09238			
36	vent heat loss					79.71974			
37	heat los sco-efficient (W/K)					174.8121			
20	haat loop parameter LILD MU	2K				1 257521			
30	near 1055 paraitteret mer W/III	21\				1.201001			
Occupancy (tfa) 4.1 39 Energy content of hot water used (tfa) 49 40 Distribution losses (tfa) inst pou? 41 Distribution losses (tfa) 50 Combi system 9 n 452 0 41 manufacturers data available? 41 manufacturers with/day 41 0 42 Energy lost from storage 16 100 43 Cylinder volume (litres) 44 Storage losses 130 0.0152 43 Cylinder volume (litres) 44 Storage losses 50lar hot water (appendix H) 0 111 dedicated solar storage 45 Storage losses 50lar hot water (appendix H) 0 61 Output form water heater Kwh/year 523.4354 0 62 0 63 Storage losse 50 Storage losse Table 3 60 0 63 Storage losses 50 Storage losse		4. Water heating energy requir	rements:						
--	----------	--	-------------	---------	--------	------------	-------------------	--------------	----------
39 Energy content of hot water used (th) 2561 40 Distribution losses (tfa) inst pou? n 40 Distribution losses (tfa) inst pou? n 41 Distribution losses (tfa) inst pou? n 50 Combi system yn n 41 manufacturers data available? n 0 41 Temp factor Table 2b 0 0 42 Energy lost from storage 0 0 43 Storage losses 0.01522 0.06 44 Storage losses 0.01522 0.06 45 Energy lost from storage 0 0.01522 45 Energy lost from storage 0 0 45 Energy lost from storage 0 0 45 Storage losses 523.4354 0 50 Solar hot water (appendix H) 0 0 111 dedicated solar storage volume (litres) 0 0 51 Output from water heating kWh/year 3537 3537 51 Output from water heating kWh/year 3537 310 51 Output from water heating kWh/year 3537 310 52 Lights applies 11 9.3 100 <td< td=""><td></td><td>Occupancy (tfa)</td><td></td><td></td><td></td><td></td><td>4.13</td><td></td><td></td></td<>		Occupancy (tfa)					4.13		
39 Energy content of hot water used (tta) 40 Distribution losses (tta) inst pou? n 452 Combi system y/n 452 Combi system y/n 452 Combi system y/n 452 Combi system y/n 453 45 Energy lost from storage from anufacturers data 45 Cylinder volume (litres) 44 Storage loss factor Table 25 45 Energy lost from storage 0 46 Storage loss factor Table 26 47 dedicated solar storage 0 48 Storage loss factor Table 26 49 Tomp factor Table 26 49 Tomp factor Table 26 40 Storage loss factor Table 27 40 Storage loss factor Table 28 40 Combi factor Table 28 50 Solar bot water (appendix H) 411 dedicated solar storage 7 40 combi loss Table 3 50 Solar DHW input (appendix H) 51 Output from water heating KWh/year 42 server (assumes cylinder inside dwelling) 5 Internal agains: 52 Lights appliances cooking and metabolic Table 5 10 Jighting consumption /m2 (EB) 11 100 13 Lights appliances cooking and metabolic Table 5 14 Jighting consumption /m2 (EB) 15 Internal agains: 52 Lights appliances cooking and metabolic Table 5 15 light ransmittance (6b) 16 glazing ratio GL 29 correction factor (C1=1-0.5*NLE/N 17 glazing ratio GL 20 correction factor (C2 dep on GL><.095 20 Light access factor (6d) 19 glazing ratio GL 20 correction factor (C2 dep on GL><.095 20 Additional gains Table 53 20 Additional gains Table 54 20 Additional gains Table 55 20 Additional gains Table 54 20 Additional gains Table 54 20 Additional gains Table 55 20 Additional gains Table 56 20							kWh/year		
40 Distribution losses (tta) inst pou? y/n 452 Combi system y/n n 452 Storage losses y/n n 1 At manufacturers kdtala available? n 0 0 41 manufacturers kdtala available? n 0 0 42 Energy lost from storage n 0 0 0 43 Storage loss factor Table 28 0 0 0 0 0 44 Storage loss factor Table 28 0	39	Energy content of hot water us	sed (tfa)				2561		
Combi system y/n Storage losses y/n manufacturers data available? n 41 manufacturers data available? n 42 Energy lost from storage 0 43 Tomp factor Table 2b 0 44 Storage loss factor Table 2b 0 45 Energy lost from storage 0 45 Energy lost from storage 0 46 Storage losses 523.4354 Solar hot water (appendix H) n H11 dedicated solar storage? n 50 Solar bHW input (appendix H) 0 47 dedicated solar storage? n 50 Solar DHW input (appendix H) 0 51 Output from water heating KWhylear 3537 52 Heat gains from water heating KWhylear 3537 53 Lights appliances cooking and metabolic Table 5 1 light tances stor (6c) 0 igazing ratio GL 0 correction factor (6c) 0 igazing ratio GL 15 0.066099	40	Distribution losses (tfa)	inst nou?	y/n			452		
Vin Vin Storage losses Vin manufacturers data available? 0 41a Temp factor Table 2b 0 42 Energy lost from storage 0 11 deficient Table 2b 0 42 Scrigt loss factor Table 2 (kWh/l/day) 0 44a Younne factor Table 2b 0 44b Temp factor Table 2b 0 45 Storage losses 523.4354 50 Solar hot water (appendix H) n 111 dedicated solar storage? n 50 Solar DHW input (appendix H) 0 61 Output from water heater Kwh/year 3537 52 Heat gains from water heating KWh/year 3537 52 Heat gains 1 51 Output from water heater Kwh/year 3537 52 Heat gains from water heating KWh/year 3537 52 Heat gains from water heating KWh/Year 0 53 Ighting energy used EL KWh/yr 1 0 <td< td=""><td>-10</td><td>Distribution 103303 (tia)</td><td>mot pou:</td><td>- 11</td><td></td><td></td><td>-102</td><td></td><td></td></td<>	-10	Distribution 103303 (tia)	mot pou:	- 11			- 1 02		
Combi system n Storage losses y/n annulacturers kWh/day n 41 manufacturers kWh/day 0 42 Energy lost from storage 0 17 Montacturers data 0 43 Storage loss factor Table 20 0 44 Storage loss factor Table 22 0 45 Energy lost from storage 0 46 Storage losses 523.4354 50 Solar hot water (appendix H) n 11 dedicated solar storage volume (litres) n 47 dedicated solar storage 0 48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year 3537 52 Heat gains from water heater Kwh/year 3537 52 Heat gains from water heater Kwh/year 3537 52 Heat gains 100 51 Output from water heater Kwh/year 3537 52 Heat gains 100 53 Internal gains: 11 54 Inghting consumption /m2 (EB) 11 70 Kultor (6c) 0.8 11 Gigtt access factor (6c)				y/n					
Storage losses y/n A1 manufacturers data available? n A2 Energy lost from storage 0 H normanufacturers data 0 43 Cylinder volume (litres) 180 43 Storage loss factor Table 2 (kWh/l/day) 180 44 Storage loss factor Table 2 (kWh/l/day) 180 44 Storage loss factor Table 2 (kWh/l/day) 180 44 Storage loss factor Table 2 (kWh/l/day) 180 45 Storage loss factor Table 2 (kWh/l/day) 180 46 Storage loss factor Table 2 (kWh/l/day) 180 47 dedicated solar storage 0 50 Solar hot water (appendix H) n 111 dedicated solar storage? n 49 combi loss Table 3 0 49 combi loss Table 3 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year 3537 52 Heat gains from water heating kWh/year 3537 52 Heat gains from water heating kWh/year 3537 52 Heat gains from water heating kWh/year 0 63 Lights appliances cooking and metabolic Table 5 1 % LE 0 0 correctin factor (Ga)		Combi system		n					
All manufacturers data available? All manufacturers data available? All Temp factor Table 2b All Energy lost from storage If no manufacturers data All Cylinder volume (litres) All Storage loss factor Table 2 (kWh/l/day) All Storage loss factor Table 2 (kWh/l/day) All Temp factor Table 2 b All Temp factor Classes Table 3 O So Solar DHW input (appendix H) O Solar DHW input (appendix H) Correction factor Classes Cooking and metabolic Table 5 Ighting consumption /m2 (EB) All Temp factor Classes factor (6c) Ight access factor (6c) Ight acces		Storogo Joogoo							
41 manufacturers kWh/day 41a Temp factor Table 2b 42 Energy lost from storage if no manufacturers data 43 Storage loss factor Table 2a 44 Volume factor Table 2b 45 Energy lost from storage 46 Temp factor Table 2b 45 Energy lost from storage 45 Energy lost from storage 46 Storage losses 50lar hot water (appendix H) H11 dedicated solar storage? 7 Modicater storage 47 dedicated solar storage? 7 Storage loss 523.4354 48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year 3537 52 Heat gains from water heating kWh/year 3537 53 Lights appliances cooking and metabolic Table 5 100 1ghting consumption /m2 (EB) L1 % LEL 0 0.7 correction factor C1=1-0.5*NLE/N L2 0.88 iglaring ratio GL 0 <td< td=""><td></td><td>manufacturers data available?</td><td></td><td>y/n</td><td></td><td></td><td></td><td></td><td></td></td<>		manufacturers data available?		y/n					
41a Temp factor Table 2b 0 42 Energy lost from storage fr on manufactures data 0 43 Cylinder volume (litres) 0 44 Storage loss factor Table 2b 0.0152 44 Storage loss factor Table 2b 0.0152 45 Energy lost from storage 0.687386 46 Storage losses 523.4354 Solar hot water (appendix H) n H11 dedicated solar storage volume (litres) n 47 dedicated solar storage volume (litres) n 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater KWh/year 3537 52 Heat gains from water heater KWh/year 3537 52 Lights appliances cooking and metabolic Table 5 755.6704 1ghting consumption /m2 (EB) L1 9.3 % LEL L1 9.3 correction factor C1=1-0.5*NLE/N L2 0.5 1gating ratio GL L5 0.05807 1gating ratio GL L5 <t< td=""><td>41</td><td>manufacturers kWh/day</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	41	manufacturers kWh/day							
42 Energy lost from storage If no manufacturers data 0 43 Cylinder volume (litres) 180 44 Storage loss factor Table 2 (kWh//day) 0.87358 44 Storage loss factor Table 2 (kWh//day) 0.87358 44 Storage losses 523.4354 50 Solar hot water (appendix H) n 411 dedicated solar storage volume (litres) n 47 dedicated solar storage? n 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year 3537 52 Lights appliances cooking and metabolic Table 5 100 53 Lights appliances cooking and metabolic Table 5 0 1/ghting consumption /m2 (EB) 1.1 % LEL 0.88377 1/gating ratio GL 0.5 1/gating ratio GL 0.5 1/gating ratio GL 1.5 1/gating ratio GL 0.7 1/gating ratio GL 1.5 53 Reduction in gains 0.7 53 Reduction in gains 1.03181 353 Reduction in gains 0 533 Reduction in gains 0 54 Water heating 162.1813 </td <td>41a</td> <td>Temp factor Table 2b</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	41a	Temp factor Table 2b							
If no manufacturers data 180 3 Cylinder volume (litres) 180 44 Storage loss factor Table 2 a 0.0152 445 Temp factor Table 2 b 0.6 45 Energy lost from storage 523.4354 46 Storage losses 523.4354 Solar hot water (appendix H) n H11 dedicated solar storage volume (litres) n 47 dedicated solar storage? n 48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heating kWh/year 3537 52 Heat gains from water heating kWh/year 3537 52 Heat gains from water heating kWh/year 3537 52 Lights appliances cooking and metabolic Table 5 1 lighting consumption /m2 (EB) L1 % LEL 0 correction factor C1=1-0.5*NLE/N L2 0.17 0.05807 118 0.05807 correction factor C2 dep on GL><.095	42	Energy lost from storage					0		
43 Storage loss factor Table 2 (kWh/l/day) 100 44 Storage loss factor Table 2a 0.0152 440 Temp factor Table 2b 0.6 45 Energy lost from storage 523.4354 46 Storage losses 523.4354 Solar hot water (appendix H) n H11 dedicated solar storage? n 47 dedicated solar storage? n 49 combi loss Table 3a 0 90 Solar DHW input (appendix H) 0 51 Output from water heating kWh/year 3537 52 Heat gains from water heating kWh/year 3537 52 Lights appliances cooking and metabolic Table 5 100 1ighting consumption //n2 (EB) L1 % LEL 0.05807 correction factor C1=1-0.5*NLE/N L2 0 0.3 1ighting consumption //n2 (EB) L1 % LEL 0.05807 correction factor C1=1-0.5*NLE/N L2 0 0.3 glazing ratio GL 0 correction factor C2 dep on GL><.095	40	If no manufacturers data				100	I		
44 Volume factor Table 2a 0.87388 44b Volume factor Table 2b 0.87388 44b Temp factor Table 2b 0.66 45 Energy lost from storage 523.4354 46 Storage losses 523.4354 Solar hot water (appendix H) n 47 dedicated solar storage volume (litres) n 47 dedicated solar storage? n 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year 3537 52 Heat gains from water heating kWh/year 3537 52 Heat gains from water heating kWh/year 1420.709 (assumes cylinder inside dwelling) 1 53 Lights appliances cooking and metabolic Table 5 755.6704 1ghting consumption /m2 (EB) L1 % LEL 0.5 correction factor C1=1-0.5*NLE/N L2 1ght access factor (6c) 0.7 1ght access factor (6c) 0.0 1ght agenergy used EL kWh/yr L6 60 0.0 53 Additional gains Table 5a 0 53 Reduction in lighting energy used EL kWh/yr L6 6. Solar gains 0 53 Reduction in lighting ene	43 44	Storage loss factor Table 2 (k)	N/h/l/day)			0.0152			
44b Temp factor Table 2b 0.6 45 Energy lost from storage 523.4354 46 Storage losses 523.4354 Solar hot water (appendix H) n H11 dedicated solar storage? n 47 dedicated solar storage? n 47 dedicated solar storage? 0 48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year 3537 52 Heat gains from water heating kWh/year 3537 52 Lights appliances cooking and metabolic Table 5 1 1ighting consumption /m2 (EB) L1 9.3 % LEL 0 0 correction factor C1=1-0.5*NLE/N L2 0.5 light transmittance (6b) 0.8 0.8 frame factor (6c) 0.7 0.8 light access factor (6d) 0.8 0.8 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095	44a	Volume factor Table 2a	wn/i/day)			0.87358			
45 Energy lost from storage 46 Storage losses 523.4354 523.4354 Solar hot water (appendix H) H11 dedicated solar storage volume (litres) n 47 dedicated solar storage? n 47 dedicated solar storage? 0 48 primary circuit losses Table 3 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year (assumes cylinder inside dwelling) 3537 1420.709 52 Heat gains from water heating kWh/year (assumes cylinder inside dwelling) 11 53 Lights appliances cooking and metabolic Table 5 lighting consumption /m2 (EB) 11 % LEL correction factor C1=1-0.5*NLE/N L2 0.5 ight access factor (6c) 0.8 glazing ratio GL correction factor C2 dep on GL><.095	44b	Temp factor Table 2b				0.6			
46 Storage losses 523.4354 Solar hot water (appendix H) n H11 dedicated solar storage volume (litres) n 47 dedicated solar storage? n 50 Storage loss 523.4354 48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year 3537 52 Heat gains from water heating kWh/year 3537 52 Lights appliances cooking and metabolic Table 5 1 1/ghting consumption /m2 (EB) L1 9.3 % LEL 0 0 correction factor C1=1-0.5*NLE/N L2 0.5 light access factor (6d) 0.8 0 glazing ratio GL 0.5 0.05807 correction factor C2 dep on GL><.095	45	Energy lost from storage					523.4354		
Solar hot water (appendix H) H11 dedicated solar storage volume (litres) 47 dedicated solar storage? n Storage loss 523.4354 48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year (assumes cylinder inside dwelling) 3537 52 Leat gains from water heating kWh/year (assumes cylinder inside dwelling) 1420.709 53 Lights appliances cooking and metabolic Table 5 755.6704 lighting consumption /m2 (EB) L1 9.3 % LEL 100 0 correction factor C1=1-0.5*NLE/N L2 0.5 lighting consumption /m2 (EB) L1 9.3 % LEL 0 0.7 correction factor C1=1-0.5*NLE/N L2 0.5 lighting energy used EL kWh/yr L6 666.969 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095	46	Storage losses					523.4354		
H11 dedicated solar storage volume (litres) n 47 dedicated solar storage? n 50 Storage loss 523.4354 48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year 3637 52 Heat gains from water heating kWh/year 3637 53 Lights appliances cooking and metabolic Table 5 100 1 lighting consumption /m2 (EB) L1 9.3 % LEL 0 0.7 correction factor C1=1-0.5*NLE/N L2 0.5 light transmittance (6b) 0.7 0.883 glazing ratio GL 0 0 correction factor C2 dep on GL><.095		Solar bot water (encoding LI)							
47 dedicated solar storage y/n y/n 47 dedicated solar storage? n Storage loss 523.4354 48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year 3537 52 Heat gains from water heating kWh/year 1420.709 (assumes cylinder inside dwelling) 1420.709 53 Lights appliances cooking and metabolic Table 5 1 lighting consumption /m2 (EB) L1 9.3 $\%$ LL 100 0 correction factor C1=1-0.5*NLE/N L2 0.5 light ransmittance (6b) 0.83 0.7 frame factor (6c) 0.83 0.7 light access factor (6d) 0.83 0.7 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095	H11	dedicated solar storage volume	e (litres)			n	[
47 dedicated solar storage? n Storage loss 523.4354 48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year (assumes cylinder inside dwelling) 3537 52 Heat gains from water heating kWh/year (assumes cylinder inside dwelling) 3537 53 Lights appliances cooking and metabolic Table 5 755.6704 lighting consumption /m2 (EB) L1 9.3 % LEL 0 0 correction factor C1=1-0.5*NLE/N L2 0.5 light transmittance (6b) 0.7 0.83 frame factor (6c) 0.83 0.7 light access factor (6d) 0.83 0.666.969 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095		douloulou olar otorago torann	0 (11100)	y/n			l		
48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year (assumes cylinder inside dwelling) 3537 52 Heat gains from water heating kWh/year (assumes cylinder inside dwelling) 3537 53 Lights appliances cooking and metabolic Table 5 1420.709 100 755.6704 101 9.3 % LEL 0 correction factor C1=1-0.5*NLE/N L1 100 0.7 light ransmittance (6b) 0.83 glazing ratio GL 0.83 correction factor C2 dep on GL><.095	47	dedicated solar storage?		n	St	orage loss	523.4354		
48 primary circuit losses Table 3 0 49 combi loss Table 3a 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year (assumes cylinder inside dwelling) 3537 52 Heat gains from water heating kWh/year (assumes cylinder inside dwelling) 3537 53 Lights appliances cooking and metabolic Table 5 755.6704 lights appliances cooking and metabolic Table 5 100 correction factor C1=1-0.5*NLE/N L2 light transmittance (6b) 0.83 frame factor (6c) 0.7 light access factor (6d) 0.83 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095									
49 control risks hable sa 0 50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year (assumes cylinder inside dwelling) 3537 1420.709 52 Heat gains from water heating kWh/year (assumes cylinder inside dwelling) 3537 1420.709 53 Lights appliances cooking and metabolic Table 5 lighting consumption /m2 (EB) L1 9.3 % LEL correction factor C1=1-0.5*NLE/N L2 0.5 0.5 light transmittance (6b) 0.7 ight access factor (6c) 0.8 glazing ratio GL correction factor C2 dep on GL><.095	48	primary circuit losses Table 3					0		
50 Solar DHW input (appendix H) 0 51 Output from water heater Kwh/year 3537 52 Heat gains from water heating kWh/year 1420.709 (assumes cylinder inside dwelling) 1420.709 5. Internal gains: 5 53 Lights appliances cooking and metabolic Table 5 755.6704 lighting consumption /m2 (EB) L1 % LEL 100 correction factor C1=1-0.5*NLE/N L2 light transmittance (6b) 0.8 frame factor (6c) 0.7 light access factor (6d) 0.833 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095	49	compliess table 3a					0		
51 Output from water heater Kwh/year 3537 52 Heat gains from water heating kWh/year 1420.709 (assumes cylinder inside dwelling) 1420.709 5. Internal gains: 755.6704 53 Lights appliances cooking and metabolic Table 5 755.6704 lighting consumption /m2 (EB) L1 9.3 % LEL 100 correction factor C1=1-0.5*NLE/N L2 0.5 light transmittance (6b) 0.8 frame factor (6c) 0.83 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095	50	Solar DHW input (appendix H)					0		
51 Output from water heater Kwh/year 3537 52 Heat gains from water heating kWh/year 1420.709 (assumes cylinder inside dwelling) 1420.709 53 Lights appliances cooking and metabolic Table 5 755.6704 lighting consumption /m2 (EB) L1 % LEL 100 correction factor C1=1-0.5*NLE/N L2 light transmittance (6b) 0.8 frame factor (6c) 0.7 light access factor (6d) 0.83 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095		···· (•••• • • • • • • • • • • • • • • •							
52 Heat gains from water heating kWh/year (assumes cylinder inside dwelling) 1420.709 5. Internal gains: 53 Lights appliances cooking and metabolic Table 5 lighting consumption /m2 (EB) 1 9% LEL correction factor C1=1-0.5*NLE/N L1 9.3 100 correction factor C1=1-0.5*NLE/N L2 0.5 0.83 light transmittance (6b) frame factor (6c) 0.7 0.83 0.83 glazing ratio GL correction factor C2 dep on GL><.095	51	Output from water heater Kwh	/year				3537		
S. Internal gains: 53 Lights appliances cooking and metabolic Table 5 lighting consumption /m2 (EB) L1 % LEL 100 correction factor C1=1-0.5*NLE/N L2 light transmittance (6b) 0.8 frame factor (6c) 0.7 light access factor (6d) 0.83 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095	52	Heat gains from water heating	kWh/year				1420.709		
5. Internal gains: 53 Lights appliances cooking and metabolic Table 5 755.6704 lighting consumption /m2 (EB) L1 9.3 % LEL 100 correction factor C1=1-0.5*NLE/N L2 0.5 light transmittance (6b) 0.8 frame factor (6c) 0.7 light access factor (6d) 0.83 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095		(assumes cylinder inside dwei	ling)						
53 Lights appliances cooking and metabolic Table 5 755.6704 lighting consumption /m2 (EB) L1 9.3 % LEL 100 correction factor C1=1-0.5*NLE/N L2 0.5 light transmittance (6b) 0.8 frame factor (6c) 0.7 light access factor (6d) 0.83 glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095		5. Internal gains:							
lighting consumption /m2 (EB)L19.3% LEL100correction factor C1=1-0.5*NLE/NL20.5light transmittance (6b)0.8frame factor (6c)0.7light access factor (6d)0.83glazing ratio GLL50.05807correction factor C2 dep on GL><.095	53	Lights appliances cooking and	I metabolic	Table 5			755.6704		
% LEL100correction factor C1=1-0.5*NLE/NL2 0.5 light transmittance (6b) 0.8 0.7 light access factor (6c) 0.7 0.83 glazing ratio GLL5 0.05807 correction factor C2 dep on GL><.095		lighting consumption /m2 (EB))			L1	9.3		
correction factor C1=1-0.5*NLE/NL2 0.5 light transmittance (6b) 0.8 frame factor (6c) 0.7 light access factor (6d) 0.83 glazing ratio GLL5correction factor C2 dep on GL><.095		% LEL	- 4 -				100		
frame factor (6c) light access factor (6d) glazing ratio GL correction factor C2 dep on GL><.095 Reduction in lighting energy used EL kWh/yr Reduction in gains due to LEL (Appendix L) 53b Additional gains Table 5a 54 Water heating 55 Total internal gains 6. Solar gains: $\frac{access}{area} = flux$ $\frac{0.3}{0.7}$ $\frac{0.7}{0.83}$ $\frac{0.83}{0.83}$ $\frac{0.83}{0.83}$ $\frac{0.83}{0.83}$ $\frac{0.83}{0.83}$ $\frac{0.83}{0.83}$ $\frac{0.83}{0.83}$ $\frac{0}{0.83}$ $\frac{0}{0.83}$ $\frac{0}{0.83}$ $\frac{0}{0.83}$ $\frac{0}{0.83}$ $\frac{0}{0.83}$ $\frac{162.1813}{817.8064}$		correction factor C1=1-0.5*NLI	E/N			L2	0.5		
light access factor (6d) glazing ratio GL correction factor C2 dep on GL><.095 Reduction in lighting energy used EL kWh/yr Reduction in lighting energy for LEL 53a Reduction in gains due to LEL (Appendix L) 53b Additional gains Table 5a 54 Water heating 55 Total internal gains 6. Solar gains: access area flux C_L FF Gains		frame factor (6c)					0.8		
glazing ratio GL L5 0.05807 correction factor C2 dep on GL><.095		light access factor (6d)					0.83		
correction factor C2 dep on GL><.095		glazing ratio GL				L5	0.05807		I
annual lighting energy used EL kWh/yr Reduction in lighting energy for LEL L7 666.969 53a Reduction in gains due to LEL (Appendix L) L8 100.0453 53b Additional gains Table 5a 54 Water heating 55 Total internal gains 6. Solar gains: access area flux G_L FF Gains		correction factor C2 dep on GI	_><.095			L3,L4	1.03181		
Reduction in lighting energy for LEL L7 666.969 53a Reduction in gains due to LEL (Appendix L) L8 100.0453 53b Additional gains Table 5a 0 54 Water heating 162.1813 55 Total internal gains 817.8064 6. Solar gains: access area flux G_L FF Gains		annual lighting energy used El	∟kWh/yr			L6	666.969		
53b Additional gains Table 5a 0 54 Water heating 162.1813 55 Total internal gains 817.8064	530	Reduction in lighting energy to	(Annendiv			L/ I 8	100 0453		
54 Water heating 162.1813 55 Total internal gains 817.8064 6. Solar gains: access area flux G_L FF Gains	53b	Additional gains Table 5a		L)		20	0		
55 Total internal gains 6. Solar gains: access area flux G_L FF Gains	54	Water heating					162.1813		
6. Solar gains: access area flux G_L FF Gains	55	Total internal gains					817.8064		
6. Solar gains: access area flux G_L FF Gains									
		b. Solar gains:	200000	aroo	flux		GL	FE	Gains
Tab 6d m2 Tab 6a Tab 6b Tab 6c W			Tab 6d	m2	Tab 6a		Tab 6b	rr Tab 6c	W
56 North 0.77 29 0.9 0.76 0.7 0	56	North	0.77		29	0.9	0.76	0.7	0
57 Northeast 0.77 34 0.9 0.76 0.7 0	57	Northeast	0.77		34	0.9	0.76	0.7	0
58 East 1 12.93 48 0.9 0.76 0.7 297.1624	58	East	1	12.93	48	0.9	0.76	0.7	297.1624
59 Southeast 0.77 64 0.9 0.76 0.7 0 60 South 0.77 70 0.0 0.76 0.7 0	59	Southeast	0.77		64	0.9	0.76	0.7	0
	60 61	Southwest	0.77		64	0.9	0.76	0.7	0
	61	Southwest	0.77		64	0.9	0.76	0.7	0

10.69

1

0.77

0.77

48

34

75

- 62 West 63 Northwest
- 64 Rooflights
- 65 Total solar gains

0.7

0.7

0.7

0.76

0.76

0.76

0.9

0.9

0.9

245.6819

0

0

542.8443

66 67 68 69	Total gains W Gain to Loss ratio (GLR) Gains / Heat Loss Co-eff (K) Utilisation factor Table 7. Useful gains W	1360.651 7.783503 0.900995 1225.939
	7. Mean internal temperature:	
	Heating type (table 4a, 4d)	2
	Control (table 4e)	3
	H P = 1.257531	<u> </u>
70	Mean internal temp of living area Table 8	19.31371 Autocalc
71	Temp adjustment from Table 4e	0
72	Adjustment for gains	0.451934
73	Adjusted living temp C	<u>19.76564</u>
74	Temp difference between zones Table 9	1.839018 Autocalc
75 76	Living area fraction (0 to 1)	0.15
70	Mean internal temperature	18 20248
		10.20210
	8. Defree days:	
78	Temp rise from gains	7.012896
79	Base temp (Mean int - Temp rise from gains = heat temp)	11.18958
80	Degree days Table 10.	1177.916
	9. Space heating required:	
81	9. Space heating required: Space heating required (useful) kWh/year	4941.936
81	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems); 	4941.936
81	9. Space heating required:Space heating required (useful) kWh/year9a. Energy requirement (individual heating systems):Space heating	4941.936
81 82	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary 	0.1
81 82 83	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) 	<u>4941.936</u> 0.1 100
81 82 83 84	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary 	<u>4941.936</u> 0.1 <u>100</u> 100
81 82 83 84 85	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year 	0.1 100 100 4447.742
81 82 83 84 85 85a	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr 	0.1 100 100 4447.742 494.1936
81 82 83 84 85 85a	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr Water heating 	0.1 100 100 4447.742 494.1936
81 82 83 84 85 85a 85a	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr Water heating Efficiency of water heater 	0.1 100 100 4447.742 494.1936
81 82 83 84 85 85a 86 86a	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr Water heating Efficiency of water heater Energy required for water heating kWh/year 	0.1 100 100 4447.742 494.1936
81 82 83 84 85 85 85 85 86 86 86 86	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr Water heating Efficiency of water heater Energy required for water heating kWh/year Electricity for pumps and fans 	4941.936 0.1 100 100 4447.742 494.1936 100 3536.85 kWh/yr
81 82 83 84 85 85 85 85 85 86 86 86 87 87 87	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr Water heating Efficiency of water heater Energy required for water heating kWh/year Electricity for pumps and fans central heating pumps Table 4f 	4941.936 0.1 100 100 4447.742 494.1936 100 3536.85 kWh/yr 0
81 82 83 84 85 85a 86a 86a 87a 87a	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr Water heating Efficiency of water heater Energy required for water heating kWh/year Electricity for pumps and fans central heating pumps Table 4f boiler with fan assisted flue Table 4f 	4941.936 0.1 100 100 4447.742 494.1936 100 3536.85 kWh/yr 0 0
81 82 83 84 85 85 85 86 86 86 86 8 87 8 75 87 2 87 2	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr Water heating Efficiency of water heater Energy required for water heating kWh/year Electricity for pumps and fans central heating pumps Table 4f boiler with fan assisted flue Table 4f warm air heating fans Table 4f 	4941.936 0.1 100 100 4447.742 494.1936 100 3536.85 kWh/yr 0 0 0 0
81 82 83 85 85a 86a 86a 86a 87a 87a 87c 87c 87c	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr Water heating Efficiency of water heater Energy required for water heating kWh/year Electricity for pumps and fans central heating pumps Table 4f boiler with fan assisted flue Table 4f warm air heating fans Table 4f mech vent (balanced, extract or +ve from outside Table 4f 	4941.936 0.1 100 100 4447.742 494.1936 100 3536.85 KWh/yr 0 0 0 0
81 82 83 84 85 85a 86a 86a 87a 876 87c 87c 87c	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr Water heating Efficiency of water heater Energy required for water heating kWh/year Electricity for pumps and fans central heating pumps Table 4f boiler with fan assisted flue Table 4f warm air heating fans Table 4f mech vent (balanced, extract or +ve from outside Table 4f keep hot for combi boiler Table 4f 	4941.936 0.1 100 100 4447.742 494.1936 100 3536.85 KWh/yr 0 0 0 0 0 0
81 82 83 84 85 85 85 86 86 86 87 87 87 87 87 87 87 87	 9. Space heating required: Space heating required (useful) kWh/year 9a. Energy requirement (individual heating systems): Space heating Fraction from secondary Efficiency for main system (%) (SEDBUK plus adjustments) Efficiency of secondary Space heat fuel (main) kWh/year Space heat fuel (secondary) kWh/yr Water heating Efficiency of water heater Energy required for water heating kWh/year Electricity for pumps and fans central heating pumps Table 4f boiler with fan assisted flue Table 4f werm air heating fans Table 4f pump for solar water heating Table 4f pump for solar water heating Table 4f Total electricity for above equipment kWh/year 	4941.936 0.1 100 100 4447.742 494.1936 100 3536.85 kWh/yr 0 0 0 0 0 0 0 0 0

	10a Costs (individual heating systems):					
				Fuel	Fuel price	Fuel cos
				(kWh/year)	(Table 12)	(£/year)
88	Space heating - main system			4447.742	4.09	181.912
89	Space heating - secondary			494.1936	4.09	20.2125
	Water heating (electric off-peak)				-	
90	On-peak fraction (Table 13, or Appendix F for elect	ric CPSUs)				
90a	Off-peak fraction					
					Fuel price	
91	On-peak cost			0		0
91a	Off-peak cost			0		0
91b	Water heating cost (other fuel)			3536.85	4.09	144.657
92	Pump and fan energy cost			0		0
93	Energy for lighting (calculated in Appendix L)			666.9688	4.09	27.2790
94	Additional standing charges (Table 12)					51
	Renewable and energy-saving technologies (A	Appendices	M, N and O	(ב	1	
95	Energy produced or saved, kWh/year					-
95a	Cost of energy produced or saved, £/year					0
96	Energy consumed by the technology, kWh/year					0
96a	Cost of energy consumed, £/year					0
91	Total energy cost					423.0014
	11a SAP rating (individual heating systems):					
98	Energy cost deflator (SAP 2005)			0.91		
99	Energy cost factor (ECF)			1.939034		1
100	SAP rating (Table 14)			73	С	
	12a DCER (individual heating systems):	_		_		
		Energy	Emm Fact	Emm		
404	Cross heating from main	kwn/year	CO2/KWN	CO2/year	1	
101	Space neating from main	4447.742	0.422	1876.95		
102	Space neating from secondary	494.1936	0.422	208.55		
103	Energy for water heating	3536.85	0.422	1492.55		
107	Space and water neating	0	0.400	3578.05		
108	Electicity for pumps and lans	020,222	0.422	0.00		
109	Energy for lighting (Appendix L)	000.909	0.422	281.40		
110	Energy produced or saved in dwelling	0		0.00		
112	Total CO2 kg/year	0		3850 51		
112	Dwelling CO2 Emission Pate (DEP) kg/m2 year			27.8		
113	Carbon factor			21.0		
				21.0		

EI

rating

С

APPENDIX D – SAP	FOR PA	SSIV	E HOUS	SE		
1. Overall dwelling dimensio	ns:					
	area(m2)	h (m)	vol (m3)			
1 Ground floor	52.64	2.60	136.86			
2 First floor	52.64	2.80	147.39			
5 Total floor area	105.28					
6 Total volume			284.26			
2. Ventilation rate:						
7.01		10.00	m3/h			
7 Chimneys	0.00	40.00	0.00			
8 Open flues	0.00	20.00	0.00			
9 Intermit fan /pass vents	0.00	10.00	0.00			
9a flueless gas fires	0.00	40.00	0.00		ac/b	
10 Inf ch/f/f			0.00	div(6)	0.00	
Fabric infiltration: if no perm	eability numbe	r avail (el	se skin to 19)			
11 Storevs	2 00					
12 Inf storeys	2.00				0.10	
13 Struct inf (0 25 steel/timber	0.35 masonry)			0.25	
14 Floor inf (susp wooden 0.2)	insealed 0.1 s	, ealed)			0.10	
15 Draught lobby (no 0.05, ves	0)	ealea)			0.05	
16 Percent wiondows /doors ds	s (100 new buil	d)		14.88		
17 Window inf		~)			0.22	
18 Inf rate calc					0.72	
	v/n	Q50				
19 Permeability known	y v	0.40	1		0.02	
(pressure test or design)	y	0.40	-		0.02	
20 sheltered sides (2 for unkno	wn location)		2			
21 shelter factor	in location,		0.85			
22 adjusted inf for shelter			0.00		0.017	
Calculate effective air ch	ange rate for	the annl	icable case:		0.017	
22a If balanced whole bouse	mechanical ve	antilation air	throughput (in a	ach see 2	6 0.483	
22b If balanced with heat recove	rv f	ficiency in	% allow ind for i	n-use facto	90	
	., .		, o allott illig i ol il			
			y/n			
23 whole house MVHR			У		0.0653	
23a whole house balanced MV			n		na	
23b whole house extract or +ve	from outside		n		na	
24 nat vent or +ve vent from loft			n		na	
25 Effective air change rate					0.0653	
 Heat loss parameters and element 	heat losses:	2100				
26 Doors		1.85			2 59	
20 DOUIS 27 windows type1	-	13.20	1.4		13,908046,1/((1/11)+04)	
27 windows type i		13.20	1.1		13.900040 $1/((1/0)+.04)$	
27a windows type 2	-	2.05	1.4			
27D Toollights	-	2.90	0.15		7,906	
		32.04	0.15		7.090	
29 walls type 1 (ex giz,ui)	-	100.00	0.095		9.557	
29a walls type 2(ex giz,di)	-	76.66	0.004		7 20604	
30 roof type 1 (ex rooflight)	_	70.00	0.094		7.20004	
21 other expected tot float	-				0	
22 total area (m2)	-	247.0				
32 total area (III2)	L	247.9	4		45.069074	
33 TADFIC NEAT IOSS (EX THDF)	V F	0	1		45.0680/1	
34 thermal bridges	Y=	0	1			
35 total fabric losses					45.068071	
36 vent neat loss					6.1254325	
3/ neat los sco-efficient (W/K)					51.193503	
20 hoot loss personator LILD W	/m2k				0 4962605	
36 near loss parameter HLP W	/11121				0.4002000	

	4. Water heating energy requirements: Occupancy (tfa)	3.26 kW/b/uppr
39	Energy content of hot water used (tfa)	<u>2167</u>
40	Distribution losses (tfa) inst pou? n	382
	Combi system	
	Storage lossesy/n	
	manufacturers data available? n	
41	manufacturers kWh/day	
41a	Temp factor Table 2b	1.08
42	Energy lost from storage	0
43	Cylinder volume (litres)	180
44	Storage loss factor Table 2 (kWh/I/day)	0.0152
44a	Volume factor Table 2a	0.87358
44b	Temp factor Table 2b	1.08
45	Energy lost from storage	942.18379
46	Storage losses	0
	Solar hot water (appendix H)	
H1 ⊔о	Aperture area of solar collector, m ² Zero-loss collector efficiency, b0, from text extificate or Table 14	4.6
H2 H3	Collector heat loss coefficient, a1, from test certificate or Table H1	6
H4	Collector performance ratio a1/h0	8
H5	Annual solar radiation per m ² from Table H2	1023
H6	Overshading factor from Table H3	1
H7	Solar energy available	3529.35
H8	Solar-to-load ratio	1.384133
H9	Utilisation factor	0.6264
H11	dedicated solar storage volume Vs (litres)	0.0304
H12	If combined cylinder, total volume of cylinder, litres	180
H13	Effective solar volume, Veff	54
H14	Daily hot water demand, Vd, (litres) from Table 1	131.7
H15	Volume ratio Veff/Vd	0.410023
H16	Solar storage volume factor f (Veff/Vd)	0.821691
	y/n	
47	dedicated solar storage? y S	torage loss 0
48 49	primary circuit losses Table 3 combi loss Table 3a	0
50	Solar DHW input (appendix H)	949.4614
51	Output from water heater Kwh/year	1600
52	(assumes cylinder inside dwelling)	647.62979
	5. Internal gains:	
53	Lights appliances cooking and metabolic Table 5	600.44755
	lighting consumption /m2 (EB)	L1 9.3
	% LEL	
	light transmittance (6b)	0.7
	frame factor (6c)	0.7
	light access factor (6d)	0.83
	glazing ratio GL	L5 0.0580697
	correction factor C2 dep on GL><.095	L3,L4 <u>1.0318102</u>
	annual lighting energy USE0 EL KWN/yr	Lo <u>505.124/6</u> L7 <u>505.12476</u>
532	Reduction in gains due to LFL (Appendix L)	
53h	Additional gains Table 5a	
54	Water heating	96.784223
55	Total internal gains	621.46306

T

6. Solar gains:								
	access	area	flux		G_L	FF	Gains	
	Tab 6d	m2	Tab 6a		Tab 6b.	Tab 6c	W	
56 North	0.77		29	0.9	0.51	0.7	0	
57 Northeast	0.77		34	0.9	0.51	0.7	0	
58 Fast	1	6 60	48	0.9	0.51	0.7	101 7878	
59 Southeast	0.77	0.00	64	0.0	0.51	0.7	0	
60 South	0.77		72	0.0	0.51	0.7	0	
61 Southwest	0.77		64	0.9	0.51	0.7	0	
	0.77	0.0	04	0.9	0.51	0.7	0	
62 West	0.3	0.0	48	0.9	0.51	0.7	30.53635	
63 Northwest	0.77		34	0.9	0.51	0.7	0	
64 Rooflights	0.77	2.95	75	0.9	0.45	0.6	41.39809	
65 Total solar gains							173.7223	
						1		
66 Total gains W					795.18534			
67 Gain to Loss ratio (GLR) G	ains / Heat Lo	ss Co-eff (k	()		15.532935			
68 Utilisation factor Table 7.					0.6861462	Autocalc		
69 Useful gains W					545.61341			
· · · · · · · · · · · · · · · · · · ·								
7. Mean internal temperatu	re:							
Heating type (table 4a, 4d)					1			
Control (table 4e)					2			
Responsiveness (table 4a,	4d)				1			
HLP =	0.48626				С			
70 Mean internal temp of living	area Table 8	1			18,907156	Autocalc		
71 Temp adjustment from Tab					0	/ latooalo		
72 Adjustment for gains					1 3315728	ł		
72 Adjusted living town C					20 229720			
73 Adjusted living temp C	anaa Tabla O				20.230729	Autooolo		
74 Temp dilerence between 2	ones rable 9				1.3014957	Autocaic		
75 LIVING area traction (0 to 1)					0.20			
76 Rest of house fraction					0.8			
77 Mean internal temperature					19.197532	l		
0. Defense deser								
8. Defree days:						1		
78 Temp rise from gains					10.657864			
79 Base temp (Mean int - Tem	np rise from ga	ins = heat	temp)		8.5396681			
80 Degree days Table 10.					699.6015			
9. Space heating required:								
81 Space heating required (us	eful) kWh/yea	r			859.56125			
						-		
9a. Energy requirement (in	dividual heating	g systems):						
Space heating								
82 Fraction from secondary					0.1			
83 Efficiency for main system	(%) (SEDBUK	plus adjus	tments)		250	1		
84 Efficiency of secondary	() (1	· · · · /		100			
85 Space heat fuel (main) kW	/h/vear				309 44205			
85a Space heat fuel (secondar	/) kWh/vr				85 956125			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				00.000120	I		
Water beating								
86 Efficiency of water beater					100	I		
862 Energy required for water h	opting kMb/ve	ar			1600 4026			
Soa Energy required for water in	eating KWII/ye				1000.4020	l		
Electricity for sumso and f	ane				k\A/b/sr			
	ano Af					1		
ora central heating pumps Table	15 41 Table 44				/5			
or b boller with tan assisted flue					0			
3/c warm air neating tans Table 4t								
8/d mech vent (balanced, extra	37d mech vent (balanced, extract or +ve from outside Table 4f 312.11							
87e keep hot for combi boiler Ta	able 4f				0			
87f pump for solar water heatin	ig Table 4f				0			
87 Total electricity for above e	quipment kWh	/year			387.11309			

10a Costs (individual heating systems):					
			Fuel	Fuel price	Fuel cost
			(kWh/year)	(Table 12)	(£/year)
88 Space heating - main system			309.44205	7.12	22.03227
89 Space heating - secondary			85.956125	7.12	6.120076
Water heating (electric off-peak)					
90 On-peak fraction (Table 13, or Appendix F for	or electric CPSUs)				
90a Off-peak fraction			1		
				Fuel price	
91 On-peak cost			0	7.12	0
91a Off-peak cost			1600.4026	_	0
91b Water heating cost (other fuel)			1600.4026	7.12	113.9487
92 Pump and fan energy cost			387.11309	7.12	27.56245
93 Energy for lighting (calculated in Appen	dix L)		505.12465	7.12	35.96488
94 Additional standing charges (Table 12)					
Renewable and energy-saving technolo	gies (Appendices N	n, N and C	ربر (ب		
95 Energy produced or saved, kWh/year					-
95a Cost of energy produced or saved, £/year					0
96 Energy consumed by the technology, kWh/	year				
yoa Cost of energy consumed, £/year					0
9/ Iotal energy cost					205.6283
112 SAP rating (individual heating quaterns).				
The SAF failing (inclinicular heating systems					
98 Energy cost deflator (SAP 2005)			0.91		
99 Energy cost factor (FCF)			1.045527		
100 SAP rating (Table 14)			85	В	
			00		Ì
12a DCFR (individual heating systems):					
	Enerov	Emm Fact	Emm		
	kWh/vear	CO2/kWh	CO2/vear		
101 Space heating from main	309,442	0.422	130.58		
102 Space heating from secondary	85.95612	0.422	36.27		
103 Energy for water heating	1600.403	0.422	675.37		
107 Space and water heating			842.23		
108 Electicity for pumps and fans	387.1131	0.422	163.36		
109 Energy for lighting (Appendix L)	505.1248	0.422	213.16		
110 Energy produced or saved in dwelling	0	_	0.00		
111 Energy consumed by above technology	0		0.00		
112 Total CO2 kg/year			1218.75		
113 Dwelling CO2 Emission Rate (DER) kg/m2.	year		11.6		
Carbon factor	-		8.1		

EI

rating

89 **B**