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Abstract 
The aim of this project was to analyze data provided by British Energy in order to 

design and implement a system, which would signal abnormal states of operation. The 

received data was for a boiler feed pump turbine and consisted of peak-to-peak 

vibration and governor valve position values. 

 

Boiler feed pumps are significant and expensive power plant components and their 

failures may lead to serious financial and safety consequences, therefore an alarm 

system signalling potential abnormalities would reduce those risks.  

 

The project involved applying KDD process to the data in order to attempt to 

distinguish abnormal operational states without having any additional knowledge 

about the data in order to remove possible bias. Initial analysis, which involved using 

Weka machine learning software and applying clustering to the pre-processed data 

sets, showed that two vibration sets are highly correlated over the whole range. 

Unfortunately, this analysis did not provide any results which could be used to create 

an alarm system. 

 

After receiving additional data, the second analysis was performed. This time, it was 

focusing also on the time aspect, not only the data spread. The new algorithm was 

designed to investigate data on a point-by-point basis and compare difference between 

trends of two vibration data sets. A fragment of the data set was used to establish 

acceptable limits, which were imposed in the remaining data and would trigger an 

alarm if difference between two trends of vibration data sets was outside that limit.  

 

Further testing of the algorithm on other data sets showed that it can correctly flag any 

potentially suspicious states as warnings, which should be investigated by the 

machine operator.  

 

Recommendations for future work include further testing with different data sets and 

machines. Should the algorithm is verified by the engineers that signalled warnings 

indeed correspond to abnormal state of operation, then it is recommended to develop a 

full software application, which could monitor the condition of the machine online. 
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1.  Project definition 
 

1.1 Brief 
 

In the power generation industry, any failures may lead to blackouts which can have 

very severe impact on many (or actually most) aspects of our life and can cripple 

many services, which are crucial to our well-being. Therefore, minimizing outages 

and preventing plant equipment failures is becoming a critical issue for power plant 

operators. While condition monitoring of steam or gas turbines is quite popular, boiler 

feed pumps do not seem to be receiving the same level of attention from engineers. 

  

Boiler feed pump failures may have catastrophic impact on the power plant operation, 

therefore it was decided to investigate a possibility of developing a system, which 

would trigger a warning in case of suspicious machine behaviour. 

 

1.2 Aim 
 

The aim of the project was to analyze provided boiler feed pump data in order to 

develop an alarm system which signals a warning in case of abnormal state of 

operation and, consequently, can be used to improve the maintenance regime. 

 

1.3 Objectives and deliverables 
 

The initial main objectives of the project were divided into following areas: 

 

1) Background research – investigate condition monitoring and data mining 

techniques 

2) Data analysis – find patterns in data 

3) System design – create an alarm system based on data analysis 
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Due to the fact that the project was evolving mainly due to data availability and initial 

analysis results the objectives were rather flexible. However, the final deliverables are 

reasonably close to the initial objectives: 

 

1) Background research   

a. State-of-the-art rotating machinery condition monitoring techniques 

and technologies 

b. Data analysis techniques and processes applicable to obtained data 

2) Data analysis 

a. Initial analysis showed that looking at whole data does not provide any 

patterns 

b. Final analysis resulted in finding a pattern based on differences in 

changing of two data sets 

c. The identified pattern has been verified to work on other data sets 

3) System design 

a. A system which calculates static limits basing on current and historical 

data 

b. Validation of the system on another data set 

 

1.4 Conclusions summary 
 

The case study showed that looking at data set as a whole and taking into account its 

spread does not provide satisfactory results.  

 

Final analysis showed that it was necessary to analyze the data taking into account the 

time factor. The algorithm used to calculate limits basing on comparison of trends 

between two signals proved to be successful and it was tested (and verified) on the 

available data.  
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2. Diagnostics 
 

In this section the reader is introduced to condition monitoring and how it can impact 

the operation of the plant item. 

 

2.1 Importance of diagnostics 
 

Diagnostics is a term very familiar to everyone. It is used referring to different 

everyday aspects of normal life – expressions like medical or car diagnostics are self-

explanatory and there is no need to present elaborate definitions, because it is 

common knowledge. This work will be focused on technical diagnostics, therefore it 

is required to provide a detailed definition and explanation of this term. 

 

Branch of science called diagnostics deals with identifying the examined state of 

things through classification into known types, through complete and causal 

explanation and determining the present state and predicting future development. 

From this very general definition it can be concluded that diagnostics presents the 

current state of the examined object and gives us some guidelines regarding its future 

behaviour.  According to Koscielny (2001) definition of technical diagnostics is rather 

similar, just narrower: it is a field of knowledge including the whole of theoretical and 

practical issues concerning identification and evaluation of present, past and future 

states of a technical object taking into consideration its environment.  

 

Definitions given above are very general and do not provide exact clarification how to 

approach diagnostic problems. This is because it is a very broad field of study and 

involves various engineering methods which help engineers reaching certain goals. In 

different branches of industry numerous tools are used when dealing with diagnostics 

and it would not be possible to include all of them in a short and comprehensible 

definition.  

 

After familiarization with basic explanation of diagnostics, some more detailed 

information can be provided. As it was mentioned above, diagnostics deals with past, 
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present and future state of a technical object, therefore according to Koscielny (2001) 

three following forms can be distinguished: 

 

• Diagnostics: process, whose aim is to determine the current technical state of the 

examined object. Result of this process is establishing a diagnosis. Exact 

identification of state of a machine and its elements is necessary in order to 

perform repairs which will remove all the defects causing the inefficiency 

• Genesis: process, whose aim is to establish in what way the states of machine 

elements were changing from a given time to present moment. It allows to 

determine the reason of a failure or inefficiency and helps with preventing similar 

problems in the future 

• Prediction: process, whose aim is to determine the state of a machine in future 

from present time. It is possible only if certain factors are known: state of the 

machine when diagnosis is set, intensity of certain phenomena causing changes of 

machine's technical state and also probability of occurrence of unpredictable 

failures. If those factors are well known and prediction time is short, then there is 

a chance that the forecast will be correct. However, when above factors are less 

known and prediction time is longer, then the forecast becomes less accurate.  

 

The above forms are common things which are encountered in everyday life and 

which seem obvious, but an average person would not be able to define them 

precisely. They are inevitably connected and dependant on each other.  

 

When dealing with complicated problems where many symptoms must be analysed, 

very often it is hard to determine the primary cause of defect and analysts realize how 

diagnostic process can be difficult. Technological progress on one hand allows to 

perform more accurate measurements, but on the other hand introduces even more 

complex machinery.  

 

As it was mentioned above, diagnostics is a branch of science which is not easily 

defined and due to complexity of encountered problems there are not any strict rules 

of applying a solution, but there are some guidelines, which prove to be very useful in 

practical situations. According to Koscielny (2001) when dealing with faults, there are 

three phases, which should be distinguished: 
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• fault detection – noticing the existence of fault and a moment in time, when it 

occurred 

• fault isolation – determining type and position of fault 

• fault identification – defining scale and character of fault variability in time 

 

Among terminological suggestions it is worth mentioning those developed by 

Safeprocess Committee (according to Koscielny, 2001): 

 

• monitoring – task performed in real time aimed at collecting and processing 

variables and recognizing abnormal behaviours (indicating alarms) 

• supervision – monitoring the object and undertaking actions to maintain its regular 

operation when faults occur 

•  protection – actions and technical means eliminating potentially dangerous course 

of process or preventing effects of such a course 

  

As mentioned by Koscielny (2001), in the recent decades the development of 

technological installations was enormous, which had to be followed by increased 

numbers of various sensors. Even though modern systems are characterized by very 

high reliability, the complexity still leads to inevitable failure of machine elements 

sometimes caused by the so-called human factor. It causes long-term disturbances or 

even stops the technological process. As a consequence, industry suffers great 

economic losses due to reduced production. In extreme cases, process failures may 

cause environmental pollution or danger to human life.  

 

That is why role of diagnostics is so important in modern industry. Another very 

difficult problem is possible confusion of operator, when sensor system detects 

failures and starts sending alarm signals. Quick reaction of the operator might be 

difficult due to information overflow. Consequently, this may result in errors causing 

more failures. 

 

Possibility of occurrence of such situations forces the development of diagnostic 

systems and introduction of process protection. Computerized systems make work of 

operators easier and provide additional safety measures, but cannot absolutely replace 
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human links. Thanks to rapid information flow, failure detection and isolation takes 

less time. It protects from dangerous process variations and prevents economic losses.  

 

According to Koscielny (2001) another very important role of diagnostics is 

decreasing repair costs. In most industry plants, reviews of process and sensor devices 

are periodic. This means that regardless of technical state, process must be stopped 

and all the devices reviewed. In most cases repairs are not necessary, because state of 

machines is good. Introducing automatic diagnostics and repairs based on current 

technical state results in great decrease of costs in comparison with periodic reviews.  

 

2.2 Types of maintenance 
 

Maintenance is a very important element of machine operation. Generally, it is 

performed when there is a problem with equipment – steps must be taken to fix it. 

However, maintenance means to keep something in good condition, what implies that 

it should be performed as a preventive action in order to prevent a piece of machinery 

from breaking, on equipment which does not need repair yet.  

 

Unfortunately, according to Piotrowski (2001) it is still common for many private and 

public companies not to maintain the equipment properly and just fix or replace it 

after it is broken. This can have a negative effect on the operation of whole plant.  

 

Most pieces of machinery have a certain life expectancy and maintenance suggestions 

(adjustments, lubrication, parts replacement, etc.) – this information is supplied by the 

manufacturer. Neglecting the suggested maintenance regime may have a negative 

impact on life expectancy of the equipment and may cause safety and financial risk.  

 

Various maintenance approaches have been developed by the industry in order to 

make sure that equipment will reach or even exceed its life expectancy without 

problems.  

 

Further in this section following types of maintenance will be discussed: reactive, 

preventive and predictive.  
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According to Table 1, in the United States of America reactive maintenance is still the 

most popular: 

 

Type of maintenance Popularity [%] 

Reactive >55% 

Preventive 31% 

Predictive 12% 

Reliability centred/other 2% 

Table 1. Types of maintenance and their popularity according to Piotrowski (2001) 

 

2.2.1 Reactive maintenance 
 

This is the simplest approach, which basically focuses on using a piece of machinery 

until it is broken. No actual maintenance actions take place in order to improve the 

condition of equipment.  

 

Reactive maintenance has strong pros, which can also be perceived as cons in certain 

situations. In case of brand new machinery, it is expected to run practically flawlessly 

without any problems. Applying reactive maintenance means the company is not 

going to spend any resources on looking after the installed equipment.  

 

This approach can save a significant amount of time and money according to 

Piotrowski (2001), assuming there are no failures. Ignoring manufacturer’s 

maintenance suggestions causes the design life expectancy to be lower and it should 

be expected that quicker replacement of this piece of machinery might be required.  

 

The biggest problem with reactive maintenance is that failure of one piece of 

machinery may impact the operation or even lead to damage of other plant equipment. 

In this situation, the cost increase due to unexpected downtime and capital investment 

into new equipment may be very significant. Man-hour related expenses are expected 

to increase dramatically due to overtime work (the failure may occur during unsocial 

hours) required to fix the problem as soon as possible.  
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Additionally, such situations cause significant safety risks for operators, who due to 

reactive maintenance regime are not aware of current condition of equipment they are 

working with. 

  

Reactive maintenance can be applied to machinery which is easy and quick to replace, 

its failure will not impact other equipment or process and replacement parts can be 

stored on site. Otherwise inventory cost may prove this solution to be unfeasible.  

 

2.2.2 Preventive maintenance 
 

According to Piotrowski (2001) the second type of maintenance is called preventive 

maintenance. This approach focuses on performing maintenance actions in regular 

calendar time or machine operation time intervals in order to detect and prevent 

degradation of equipment condition. In practice, preventive maintenance controls and 

can even extend design life of a product by maintaining the degradation at an 

acceptable rate. Additionally, regular maintenance actions usually increase (or 

maintain at high level) the efficiency of maintained machinery. 

 

Preventive maintenance approach follows the maintenance guidelines supplied by 

product manufacturer and helps maintain high reliability and design life expectancy. 

According to Piotrowski (2001), applying this type of maintenance may result in a 

significant cost decrease in comparison with reactive maintenance – usually by 12% 

to 18%. The amount of money saved can be much higher and depends on several 

factors – previous maintenance regime, equipment reliability and plant downtime.  

 

Preventive maintenance is generally much better than reactive maintenance and 

allows better control over assets. Plant downtime can be adjusted flexibly in order to 

minimize costs and maximize maintenance work done. Additionally, this saves energy 

and is a more environmentally friendly approach since the number of catastrophic 

failures is reduced.  

 

The main disadvantage of preventive maintenance is that unnecessary actions may be 

performed and, consequently, human effort and money can be wasted.  
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Preventive maintenance does not absolutely eliminate catastrophic failures, but it 

dramatically decreases their frequency in comparison with reactive maintenance. 

 

2.2.3 Predictive maintenance 
 

The next type of maintenance is predictive maintenance which takes into account the 

actual condition of the equipment based on measured degradation of the parts and 

indicates present and predicted future state of monitored machinery.  

 

As opposed to preventive maintenance, action is only taken when the measurement 

indicates that it is required rather than on a regular basis (as in case of preventive 

maintenance). According to Piotrowski (2001) applying preventive maintenance 

approach, sometimes machine elements in perfect condition (which could be used for 

much longer without any danger of failing) will be replaced just because of the 

maintenance schedule.  Therefore, the main advantage over preventive maintenance is 

that wasted human effort and wasted expenses are reduced to minimum. 

 

Predictive maintenance focuses on analyzing the state of machinery before taking any 

action. If the condition is still satisfactory, then there is no need to replace any 

elements. Predictive maintenance is used to define which maintenance tasks are 

required – this approach dramatically reduces unneeded tasks and downtime. 

 

A properly setup predictive maintenance system can practically eliminate catastrophic 

failures. Additionally, knowing the condition of machinery, maintenance tasks can be 

scheduled in most convenient time and plant downtime can be minimized. 

Consequently, there will be no need to store spare parts, because using the 

maintenance system data, it is possible to order required parts in advance, what will 

reduce inventory costs. According to Piotrowski (2001), upgrading from preventive to 

predictive maintenance system can on average save between 8% and 12%. However, 

depending on many factors, those savings can be as high as even 40%.  

 

Knowing the current condition of plant equipment will increase plant reliability and 

functioning. The components will be replaced when their condition is below 
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satisfactory. Therefore, quite often this time can be much longer than the design life, 

what provides significant savings. Additionally, due to the fact that equipment 

condition is known at all times, safety risks are reduced dramatically and that may 

have a positive impact on staff morale, who know they are working in a reliable 

environment. 

 

The main disadvantage of predictive maintenance is initial capital cost, which may be 

quite significant – depending on the sophistication of the machinery and monitoring 

equipment. In order to take full advantage of the system, staff members must be 

trained to utilize the system’s functionality.  

 

However, with long-term company commitment, preventive maintenance will provide 

significant savings and can have a very positive effect on the whole plant. 

 

This project is focused on predictive maintenance and this concept will be developed 

further in the report. 
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3. Boiler feed pumps  
 

This section is focused on boiler feed pumps – their description and design. Boiler 

feed pumps are extremely important in plant operation. They control how much water 

and in which manner water is fed into the boiler. 

 

3.1 Description 
 

The purpose of boiler feed pumps is to boost the feed water pressure sufficiently to 

overcome boiler pressure to allow entry into the boiler and provide sufficient 

throughput to satisfy the operational requirements of the boiler. The normal procedure 

is to use pumps, which increase the feed water pressure in stages. 

 

3.2 Stages of boiler feed pumps 
 

According to Woodward et al. (1991) there are three stages of boiler feed pumps: 

 

1) Feed Suction Pumps (FSP) – These are at the first stage of pressure raising and 

boost the feed water pressure to provide the suction for the start and standby 

feed pumps and main boiler feed pump. 

 

 

2) Start and Standby Boiler Feed Pumps (SSBFP) – two 50% capacity motor 

driven Start and Standby Boiler Feed Pumps are installed per unit for boiler 

start up, shut down and as back up for the main boiler feed pump. 

 

3) Main Boiler Feed Pump (MBFP). One steam turbine driven pump is designed 

to provide 100% boiler feed water requirements for the unit. 

 

Output from the boiler feed pumps is fed through the HP heaters via the feed 

regulating valves. 
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3.3 Construction 
 

3.3.1 Classic boiler feed pump 
 

Figure 3.1 shows a typical example of an early main boiler feed pump. As it can be 

seen, it contains six stages on a flexible shaft. This design has a few disadvantages – 

sudden loss of water may result in pump damage. According to Woodward et al. 

(1991) in case of such a failure, the bolted casing will require a long outage to remove 

the fault within the internal part of the pump. 

 
Figure 3.1 Old boiler feed pump arrangement from Woodward et al. (1991) 
 

3.3.2 Advanced boiler feed pump arrangement 
 

Therefore, the industry needed to come up with a new design focusing on minimum 

downtime and rather long design life. The result was a unit able to deal with extreme 

situations such as dry-running or any types of shocks without any problems or 
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damage to internal components. Additionally, this new design offered a construction 

allowing quick replacement of essential components and shorter outages.  

 

According to Woodward et al. (1991) in terms of construction, the casing is a forged 

steel barrel with welded branches (suction and discharge). In order to prevent erosion, 

stainless steel cladding can be found on most surfaces. Pump supports are arranged in 

a way which should allow for thermal expansion and give positive restraint to 

movement upwards and downwards. Sliding keys are responsible for thermal 

allowances and proper alignment with the drive. A typical example of an advanced 

boiler feed pump can be seen on figure 3.2. 

 
Figure 3.2 Advanced boiler feed pump arrangement from Woodward et al. (1991) 
 
Pump bearings (both thrust and journal) are in housings connected to the casing or the 

cartridge. According to Woodward et al. (1991) such a solution causes the pump to be 

more resistant to loads exerted by pipework and, additionally, helps to minimise 

problems with shaft misalignment.  
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The pump interior assembly, called the cartridge, together with the integrated bearings 

is build in such a way that it can be easily and safely transported as a single unit for 

simplified maintenance. The whole cartridge is assembled by its manufacturer, so no 

additional serious adjustments in order to provide concentricity are usually necessary. 

As described by Woodward et al. (1991) only minor setting up is required after the 

cartridge is installed inside the pump in order to obtain the expected coupling 

alignment.  

 

Upon installation of the cartridge into the pump barrel, both suction and discharge 

ends are moved apart and placed in the respective ends of the casing. Only three joints 

are required during the installation process – the suction ring and main housing ones. 

Even though there are some variations of the pump design, the cartridge replacement 

should be compliant with this process in order to ensure minimum downtime and cost. 

In order to secure quick replacement process of the cartridge, the bolted cover from 

previous model has been removed and replaced by a new version with a self-sealing 

joint system, which dramatically reduces maintenance time. Since this is a rather 

sophisticated system, in order to minimise replacement time, the operator has to use 

special equipment specifically designed for this purpose. 

 

High quality stainless steel is a material used for the impellers. The castings require 

detailed radiographic and dimensional inspection in order to deliver expected 

performance. According to Woodward et al. (1991) the design life for the impellers is 

around 45,000 hours operating at almost 100% of the design flow. 

 

The arrangement of diffusers can be either axial or radial, because both setups proved 

to be successful with this boiler feed pump design. In earlier design there was a 

problem with high pressure pulses between the impeller and diffuser blades and it was 

a significant safety risk. Advanced boiler feed pumps solve this problem by adding 

axial diffusers. On the other hand, radial diffusers tend to improve flow stability and 

the maximum efficiency is slightly higher than in case of axial arrangement. However, 

this can be neglected due to losses from gland leakage. 

In case of some power stations, where electricity generation is stopped during main 

boiler feed pump outage, forced cooling of boiler feeds pumps has been introduced.  
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This feature reduces outage time and allows for quick return to service and full 

capacity – it is a significant cost reducing factor. 

 

3.4 Design and arrangement  
 

In order to achieve a target of creating a pump able to perform dry-running without 

any problems, according to Woodward et al. (1991) the pump has to survive the 

following conditions without any damage: 

 

− Sudden reduction of suction pressure, while the pump continues to maintain 

expected head. Additionally, after the pressure is restored, the pump should be 

able to smoothly accept the new state without a need of manual intervention. 

− In case of a dramatic incident causing a total loss of water – this is an extreme 

situation, but the pump should survive it without damage and be shut down safely 

until the external failure is taken care of. 

 

The design described above led to a creation of an advanced class pump, which has 

the following common elements: 

 

− Reduced number of stages and drastically stiffened shaft provide high rotor 

rigidity and decrease shaft deflection 

− Clearances inside the pump are larger in order to provide dry-running capability 

− The bolted cover used in older models is replaced by a more advanced self-sealing 

system operating in high pressure 

− A balance drum is installed to reduce the axial hydraulic thrust 

− Advanced class pumps are designed to minimize downtime and permit quick 

replacement of internal pump elements with new parts due to so called cartridge 

design 
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The stiffened shaft used in this design and mentioned earlier allows to operate at 

relatively high rotational speed ranges (over 6 000 RPM) to obtain expected head per 

unit stage. Same as in the case of older pump arrangements, the design capacity 

margin is increased in order to counter internal wear in between outages.  

 

According to Woodward et al. (1991) there are several design and arrangement issues, 

which need to be taken into consideration in order to understand the impact of boiler 

feed pump on plant availability.  

 

According to Woodward et al. (1991) the main elements which constrain the optimum 

arrangement are: 

- The economic study, which must take into account following factors: 

o Capital cost 

o Running cost 

o Repair and maintenance costs 

o Impact of loss of availability 

- A study to make sure that a problem with one pump element does not 

dramatically affect the start-up of the main plant or total resultant capacity. 

- Making sure that the plant can operate at an acceptable level when a large load 

is rejected by the generator unit. This means that pump drives must be 

designed to work in this specified condition. 

- The pump system must be able to provide an acceptable pressure margin in 

case of reducing turbine load and consequent pressure decay. 

- It is required that at least two pumps are able to perform plant start-up. In case 

of turbine drive, there has to be an additional steam supply – for example from 

an auxiliary boiler. 

- In case of multiple pumps operating in parallel, both sets are expected to take 

over other pump's duties in an emergency situation. 
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- Since boiler feed pump is a crucial power plant element, it has to be capable of 

delivering sufficient capacity in extreme situations. Therefore, it is rather 

common to design boiler feed pumps with a capacity margin in order to handle 

larger than expected flow. Additionally, there is also a generated head design 

margin, which takes into account internal pump wear between maintenance 

actions.  

 

3.5 New developments 
 

One of the most important features of a boiler feed pump is its availability, because 

power station output depends on its downtime. Therefore, a lot of research has been 

done lately in this field. Additionally, according to Woodward et al. (1991) since 

boiler feed pump is an expensive plant item, there is a significant research interest in 

lowering the capital investment and maintenance (including part replacement) cost. 

 

In order to achieve high availability, there was a focus on delivering robust pump 

design and providing easy replacement parts. This has been partially achieved with 

advanced class boiler feed pumps. The cost of added redundant capacity has actually 

be outweigh by benefits in case of failure. Normally, such a failure would result in 

lost generating power and it can be avoided by added redundant capacity.  
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4. Condition monitoring examples 
 

This section is focused on examples of condition monitoring techniques used in 

diagnosing expensive rotating machinery, especially turbines. The availability and 

reliability of those important plant items has crucial impact on power generating 

plants and their downtime. Failure of a gas or steam turbine can be very expensive not 

only in terms of lost profit due to downtime when waiting for replacement, but also 

additional damage to structures and equipment caused by that failure. Therefore, 

companies are willing to invest significant sums of money in research devoted to 

condition monitoring methods, especially for most important and expensive plant 

equipment. According to Todd et al. (2007) early detection and classification of faults 

can reduce catastrophic failures to minimum.  

 

4.1 Expert systems 
 

Expert systems are one option to implement condition monitoring of turbines. They 

have been designed to help specialists by using rules created from knowledge 

gathered from various experts on plant equipment. According to Todd et al. (2007) 

the main problem with this approach is that the process of knowledge extraction is 

expensive and very time-consuming, because the number of true experts in very 

specialized fields is very limited and it requires a significant amount of resources to 

correctly transfer their knowledge. 

 

Expert systems have over a twenty year history with turbine condition monitoring 

systems. They were designed to examine data from sensors in order to establish the 

condition of plant item. One of the systems described by Gonzalez et al. (1986) 

analyzed sensor data and basing on corresponding fault probabilities established a 

possibility for each failure. This system required an engineer to review the results and 

confirm or alter them.  

 

Another example of expert system described in by Gemmell (1995) has a turbine 

model implemented and utilizes monitoring data from every element. The problem 
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with knowledge based systems is with events which happen rarely and there is not 

much expert information on them. However, in case of few catastrophic failure tests, 

the described systems actually managed to perform well.  

 

The most popular and successful expert system used for turbine condition monitoring 

is called TIGER described by Milne et al. (1997). It actually is build from a 

combination of two models – rule-based and model-based. The model is designed to 

compare the rules derived from knowledge elicitation to the current condition using 

sensorial data. The rules are created based on physical modelling of machine 

behaviour and expert knowledge coming from experience. TIGER system was very 

popular within the industry and has successfully worked with many installed turbines. 

 

According to Todd et al. (2007) the main disadvantage of expert or rule-based 

systems is that they are not capable of learning from new situations and actually 

helping to expand knowledge beyond current expert experience. Additionally, the 

design process of those systems is very time and resource consuming and requires 

access to knowledge of specialist engineers.  

 

4.2 Machine learning 
 

Machine learning is a very wide area of knowledge and it is not possible to cover it all 

in this report. However, it is necessary to mention a few examples of application of 

machine learning in condition monitoring.  

 

Machine learning is described by Simon (1983) as “any change in a system that 

allows it to perform better the second time on repetition of the same task or on another 

task drawn from the same population”. Therefore, machine learning systems are able 

to extract new knowledge from gathered data in order to perform their assigned tasks 

better and improve performance.  
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4.2.1 Artificial neural networks 
 
An example of machine learning method used in condition monitoring is application 

of artificial neural networks (ANN). According to Todd et al. (2007) they are similar 

to human nervous system because the system is created from a group of connected 

neurons with assigned knowledge and weights. This solution does not need expert 

knowledge in order to create rules – they are derived from available training data. 

ANN approach saves time by creating very complicated relationships using minimum 

expert knowledge and requiring little training time. However, in case of incorrect 

result, due to the fact that ANN works as a black box, it is very often not possible to 

understand the nature of a misdiagnosis. This major disadvantage immediate 

disqualified ANN as a viable condition monitoring tool for many industries. 

 

In case of expert systems, the problem with no explanation does not exist, because the 

rules are derived in a logical way from expert knowledge and are expected to be 

transparent. It is important in case of erroneous diagnosis causing a catastrophic 

failure, when consequently an investigation is undertaken. Clarity and good 

understanding of derived rules are crucial in finding and correcting problems with the 

implemented condition monitoring system. With unclear rules it is almost impossible 

and may have a negative effect on plant operator confidence. The knowledge that the 

system was designed using knowledge from experts, who devoted their careers to 

become specialists in relevant fields, can have a positive effect on the working 

environment. 

 

Expert systems, even with all their problems, appear to be very popular within the 

industry and it is expected that this trend will continue, because intuitively it is a 

natural evolution of expert knowledge. However, new methods are being developed 

which use the experience of expert based systems, but only as a training set for 

machine learning condition monitoring system. Those artificial intelligence methods 

are called symbolic machine learning according to Luger et al. (1998), which can be 

further divided into analytical and inductive techniques. The former is focused on 

extracting information from knowledge and creating rules based on an expert system 

training set. Inductive techniques analyze the supplied data and identify underlying 

patterns using numerous training data ranges.  
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4.2.2 Evolutionary algorithms 
 

According to Todd et al. (2007) another machine learning method or rather set of 

methods is called evolutionary algorithms. Those algorithms try to find a matching 

hypothesis from a random selection of various hypotheses. Numerous attributes are 

attached to each one in order to establish which one should be able to advance to the 

next stage. Evolutionary algorithms involve many sophisticated transformations – 

crossovers, mutations and reproductions in order to find the best solution. 

 

This method is applied to unprocessed condition monitoring data and it had some 

success within the industry. The main specific application of evolutionary algorithms 

is finding useful features from analysis of raw data. An evolutionary algorithm school 

called genetic programming can be used according to Guo et al. (2005) to establish a 

set of main features from raw data and then use it as inputs for neural network model 

in order to classify faults. This information can be obtained applying statistics and 

genetic programming operators. As described by Chen et al. (2001), genetic 

algorithms can again extract features from raw and transformed data and use the 

results as input data to a classifiers responsible for fault diagnosis of bearings.  

 

4.2.3 Bayesian learning 
 

According to Todd et al. (2007) Bayesian learning is another example of machine 

learning algorithm. It is a probabilistic technique which estimates the results knowing 

the probabilistic distribution of important features. Optimal solutions are selected by 

analyzing those probability values attached to gathered data. For example, Bayesian 

learning has been used in induction motor condition monitoring system – described by 

Haji et al. (2001). Additionally, a diagnostics system using Bayesian network has 

been mentioned by Chien et al. (2002). It was used on a network distribution feeder. 

The dependencies within the network were established using expert knowledge. 
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4.2.4 C4.5 algorithm 
 

Next algorithm described in this section is an inductive machine learning method 

called C4.5. According to Todd et al. (2007) this technique is able to create decision 

trees basing on supplied training data. The training data is tested at every non-terminal 

node of the tree and each consequent branch is a probable value of feature. In case of 

all training data belonging to the same classification, a terminal node is created. An 

example of application of C4.5 algorithm is described by Mejia-Lavelle et al. (1998), 

where it’s used to determine the power factor interval class. C5 algorithm is an 

upgraded version of C4.5 algorithm and has been used to extract rules diagnosis faults 

in using transformer data according to McArthur et al. (2004). 

 

4.2.5 Case-based reasoning 
 

Case-based reasoning is a very intuitive technique, sometimes referred to as lazy 

machine learning method. According to Watson (1997), it has been successful in 

many fields not at all related to engineering, especially in technical support. It 

basically stores all the initial cases based on training data and tries to match new data 

to existing cases. If  the result is close enough, then the new instance is added to an 

existing case. Otherwise, after being accepted by the system operator, a new case is 

created and then the whole process is repeated for the next instance. Case-based 

reasoning has been successfully used in condition monitoring as well – an example is 

described by Stanek et al. (2001), where CBR methods were used to find circuit 

breaker faults on a electricity distribution system. Another engineering example of 

CBR application is described by Devaney et al. (2005), where it has been successfully 

used to monitor the condition of General Electric gas turbines.   

 

4.3 Condition monitoring methods summary  
 

According to Todd et al. (2007) neural networks (ANNs) have been used successfully 

in some condition monitoring applications. However, this method is very data 

intensive and requires substantial amount of training data supplied. Unfortunately, in 

case of some plant equipment (especially expensive rotational plant items), there is 
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not much data available, because failure events have luckily been very rare and 

extremely little data is available. Another problem with ANNs is that due to their 

construction, the rules created by the system are impossible to trace back and verify 

by a specialist engineer.  

 

According to Todd et al. (2007) Bayesian learning and its variations has a great 

potential of success, but there might be difficulties in obtaining the required 

probability data, because sometimes historical data is practically unavailable or there 

is too little of it. It is of course possible to roughly estimate those probabilities, but 

there is a significant chance that it could be erroneous or not accurate enough.  

 

In case of instance-based learning methods according to Todd et al. (2007), lack of 

training data sets can be a major obstacle, because it might be not possible to setup an 

initial system capable of dealing with at least most common faults. However, those 

algorithms are capable of expanding and learning about new cases or instances just by 

being applied online.  
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5. Data analysis techniques 
 

5.1 Knowledge discovery from databases 
 

In the modern world different types of data are collected all the time in many various 

fields. Due to increases storage and processing capabilities of computers, the amount 

of data collected increases very quickly. According to Fayyad et al. (1996) it is not 

possible for human being or even less complicated algorithms to analyze the data and 

extract useful information. Therefore, is it essential that sophisticated new algorithms 

are created in order to deal with dramatically increasing volumes of electronic data. 

Those new methods and tools belong to a growing field of knowledge discovery in 

databases (KDD).  

 

In practice, KDD is responsible for techniques for understanding and retrieving 

information from data. According to Fayyad et al. (1996) the main problem KDD has 

to deal with is processing low-level voluminous data into something more useful and 

easier to understand, for example a model, short report or process description. 

Basically, KDD is expected to use data mining methods in order to discover 

underlying patterns in data.  

 

5.1.1 KDD and traditional methods 
 

According to Fayyad et al. (1996), traditionally, in order to extract useful information 

from data, manual analysis had to be performed. Data specialists tend to periodically 

process the data manually in order to produce reports about, for example trends or 

changes in trends. The result of this analysis has significant influence on future 

decisions and plans. Data analysis has been used in many sectors – from retail and 

marketing to science and finance. The main disadvantage of this system is that it 

relies on a specialist spending a significant amount of time on analyzing the data and 

being closely familiar with it. Additionally, manual data analysis is a very slow 

process and the result can very often depend on analyst’s biased personal opinion. 
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As the amount of data gathered and required to be analyzed increases, it becomes 

virtually impossible to manually process all the information and create reports in 

acceptable timeframe. The magnitude and complexity of data suggest that the analysis 

process should be somehow performed by computers, because it is not feasible 

anymore to do it manually anymore.  

 

According to Fayyad et al. (1996), many business or engineering decisions rely on 

large amounts of data being analyzed very quickly and accurately and it is rapidly 

becoming impossible to do it without any special data mining methods. In principle 

knowledge discovery from data tries to solve the problem of having too much data to 

analyze manually.  

 

5.1.2 Data mining and KDD 
 

The interest in research on knowledge discovery from data results in reports about 

successful data mining application in various fields. According to Fayyad et al. (1996), 

in scientific applications, astronomy is probably the leading area in terms of data 

overload and KDD has been used to data mine image data collected from various 

places around the world. Other applications include, but are not limited to: 

 

- Marketing 

- Investment 

- Fraud detection 

- Manufacturing 

- Telecommunications 

- Data cleaning 

 

The popularity of Internet, which definitely is an information-rich environment, the 

importance of intelligent data analysis applications is growing very rapidly. 

Especially various search engines, which provide results based on user interests or 

specification, for example in the areas of music preferences or searching for 

information in newspaper archives. The number of successful KDD systems is 

increasing rapidly – more details can be found in article by Fayyad et al. (1996). 
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The notion of data mining is very often used to describe the process of finding useful 

information and underlying pattern in data sets. Later on, according to Fayyad et al. 

(1996), a term knowledge discovery in databases (KDD) was introduced. 

Theoretically speaking, data mining itself is just one (very important) step in KDD 

process. Other steps of KDD will be described later in this chapter. Using data mining 

methods without any knowledge and understanding of the whole process can provide 

meaningless or invalid results. 

 

KDD is a process which involves different disciplines in order to be successful. In 

order to extract useful information from data, the following research areas are 

incorporated (according to): 

 

- machine learning 

- pattern recognition 

- databases 

- artificial intelligence 

- knowledge acquisition for expert systems 

- data visualization 

- high-performance computing 

 

Researchers working with KDD need to have significant knowledge at least in some 

of those areas and have a target to achieve useful knowledge from voluminous data. 

One may ask a question what the actual difference between data mining and KDD is 

and why the former is only a single step in the KDD process. Well, according to 

Fayyad et al. (1996) data mining focuses specifically on methods to extract 

knowledge from data – it is just a blind tool. KDD, on the other hand, investigates 

problems like data preparation, storage, access and focuses on the actual objective and 

selection which machine learning techniques will be most appropriate in this case. 

The KDD process is much more sophisticated and interdisciplinary than data mining 

itself. Additionally, it is responsible for optimization of algorithms used to make sure 

they are suitable for size and type of data analyzed.  

 

Very often supplied data is imperfect – there are incorrect or missing values. That is 

why knowledge discovery from data relies so heavily on statistics, because it can deal 
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with those uncertainties for a selected data range. Data mining is very often looked at 

with caution and suspicion, because according to Fayyad et al. (1996) the early data 

mining systems after analyzing the data long enough found underlying patterns, which 

were unfortunately misleading and insignificant. However, over the years the 

improvements to the data mining methods practically eliminated this problem and 

nowadays data mining can be safely used as long as it is not just a blind tool applied 

at random.  

 

According to Fayyad et al. (1996), the primary element shaping the KDD process is 

the database itself. The type and condition of the database itself will have a major 

impact on what tools will be used to analyze the data. In terms of hardware limitations, 

it is difficult to manipulate the database when there is not enough computer memory 

available to process it as a whole. Fortunately, modern computers have enough 

memory to handle most even very large databases. However, there are special 

algorithms to make efficient use of memory in case of huge databases or less powerful 

computers.  

 

There is a whole research field devoted to databases and it is called data warehousing. 

According to Fayyad et al. (1996), its aims are to provide easy (preferably online) 

access to clean collected data in order to support decision making. Data warehousing 

helps to set foundations for KDD process via two activities: 

- Data cleaning: aim is to store the data in a logical way and prevent from 

storage of missing or incorrect data. 

- Data access: transparent and intuitive methods must be designed in order to 

provide quick and easy access, also in case of legacy data, which was stored 

offline 

 

After all the procedures and methods for storing and accessing data are established, 

the next step is to decide what kind of analysis is required. The main tool used with 

data warehousing is online analytical processing (OLAP) – according to Fayyad et al. 

(1996). The aim of OLAP is to provide interactive analysis tools for basic analysis 

and simplification of the data. However, KDD is designed to make most of this 

process automatic and, in general, is more advanced than OLAP. 
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According to Fayyad et al. (1996), in KDD data are a set of cases in the database and 

pattern is a description of a model applicable to the data. Therefore, the aim of KDD 

is to analyze the data and find a model or a structure which would describe the data. 

In principle, the aim of a KDD is to provide a high-level description of low-level data. 

The process involves many stages responsible for preparing the data, finding patterns, 

checking results against requirements and finally, repeating the process if required. 

The resultant patterns are supposed have a high degree of certainty that they will be 

valid with new data. Additionally, the results should be innovative (there is no need to 

learn something already known) and useful in further analysis of new data. Finally, 

the resultant pattern from KDD process should be understood and accepted by the 

analyst to make sure it is not just a computational error. 

 

According to Fayyad et al. (1996), it is possible to objectively estimate some of the 

qualities of the patterns derived using KDD – especially certainty (by using the 

pattern with new data) and utility (for example by amount of money saved due to 

better predictions). However, some qualities are very difficult to quantify, because 

they depend on the analyst – it is up to him to decide whether he understand the 

solution and if it is novel enough. According to Fayyad et al. (1996), there is another 

very important quality describing the results – it is called interestingness and takes 

into account multiple factors (some of them mentioned earlier) in order to derive a 

single figure describing the result of KDD process. After explaining briefly the basic 

notions in KDD, it can be seen that pattern actually corresponds to knowledge, if the 

result receives higher interestingness than the minimum required by the analyst, 

because something new can be learned from it.  

 

The difference between data mining and KDD is that the former is just one step and 

the latter describes the whole process including data preparation and taking into 

account additional constraints – for example computational, which can be later on 

used to adjust the data mining method used. The whole KDD process applies many 

steps to the selected database in order to extract knowledge from it. According to 

Fayyad et al. (1996), data has to be pre-processed and transformed before data mining 

techniques can be applied to it. Afterwards, the derived patterns have to be evaluated 

in order to select the most appropriate solution for this case. As it can be seen, data 
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mining is just a tool without any intelligence attached – it will perform the job being 

assigned, but won’t evaluate its usefulness.  

 

5.1.3 The steps of KDD 
 

 
Figure 5.1 Steps of KDD from Fayyad et al. (1996) 
 

The whole process supports user interaction and iteration in order to find the most 

suitable solution. According to Fayyad et al. (1996), the core steps are shown on 

Figure 5.1 and include: 

 

1) The analyst has to understand the scope, gather all prior knowledge and 

identify the aims of the KDD process 

2) Second step is to select whether the whole dataset will be analyzed or just a 

part of it. In the latter case, a new target dataset with chosen data should be 

created.  

3) Next step is to apply data pre-processing and cleaning – it involves tasks like: 

• removing noise (or at least reduction) if applicable 

• collecting of information about noise (in order to offset it) 

• deciding how to handle missing data 

• offseting known changes to the data 
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4) Reduce data dimensions (if possible) by finding additional information about 

it. Try to find a better way to represent the data, attempt to reduce number of 

variables. 

5) Review data mining methods and select one matching goals and expectations 

established in step one. 

6) This step is based on exploration. There should be at least a rough idea which 

data mining methods are best for established goals and most suitable for 

available data. Now there is a need to select a specific algorithm to search data 

for underlying patterns. Additionally, the analyst has to make sure that the 

selected model or algorithm is capable of providing required qualities. 

7) This step is the actual application of data mining – the analyst is looking for 

patterns in the selected data range. The aim is to represent those patterns in an 

understandable way – in a form of rules, structure trees, clusters, regression, 

etc. In order to fully use the capabilities of data mining techniques, the 

previous KDD steps have to be thoroughly done. 

8) After the data mining process is finished, this step is focusing on 

understanding and interpretation of resulting patterns. If it is necessary, the 

analyst should return to any of the previous steps and iterate. Additionally, the 

resulting models should be visualized in order to improve the interpretation 

process. 

9) The last step in KDD process is a very important one, because now there is an 

opportunity to apply the resultant model to new data, create a report describing 

the process and summarizing the results. Additionally, it is an opportunity to 

check the results, eliminate any errors. If comparison with previously 

established knowledge or rules shows inconsistencies, then they should be 

resolved. 

 

The learning from data process can be rather time consuming and may contain 

multiple iterations between two or more steps. Data mining step seems to be the most 

important the in the process, but without other steps it would not be as useful and 

possibly could provide incorrect results.  
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5.2 Data mining 
 

As described earlier in this section, according to Fayyad et al. (1996) data mining is 

only one step in learning from data process. There are many data mining methods 

which can used to gain knowledge from data and they all depend on what kind of 

information is needed and the outcomes of previous steps during learning from data 

process. From many data mining techniques only a few are actually used in this 

project and they will be described later in this chapter, but first the next section will 

focus a bit more on the data mining process as described by Witten et al. (2000). 

 

5.2.1 Data mining description 
 

First of all data mining is a practical thing, which focuses on actual tasks, not only 

theoretical issues. Therefore it can be (and usually is) very important when dealing 

with real problems – not only engineering ones. 

 

According to Witten et al. (2000) data mining focuses on finding and explaining 

patterns in analyzed data sets – it allows to understand what kind of problem the 

analyst is dealing with and prepare future predictions of possible behaviours – such 

information can have a positive impact on whatever task is being focused on and 

allows long-term planning. For example, maintenance schedule of plant equipment 

can be based on applying data mining techniques on historical condition monitoring 

data. This may dramatically reduce costs or downtime. Additionally, equipment life 

can be extended – this can have a significant impact on smooth plant operation and 

also safety of working environment.  

 

In data mining process supplied data can have very uneven quality. Usually an analyst 

should receive a data set with examples of different situations, for example what kind 

of drugs should be prescribed given a certain set of symptoms. In case of engineering 

applications and especially condition monitoring problems, an analyst should receive 

data sets with corresponding conditions – for example types of failures of their 

severity. Using this provided data and applying data mining techniques, it is possible 

to create a monitoring system which will analyze the data practically immediately and 
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determine current equipment condition. Using this approach the operator is aware, 

whether plant equipment is in good or bad condition without the need to shut it down 

and perform costly analysis.  

 

5.2.2 Clustering 
 

The main data mining tool used in this project is clustering. According to Witten et al. 

(2000) this technique is used when the supplied data is supposed to be divided into 

natural groups indicated by data distribution. It is expected that those clusters 

represent a pattern in data and help in understanding the mechanism causing certain 

instances fall into one cluster rather than the other. It can be shown in multiple ways – 

graphically or as a mathematical description of all clusters. 

 

There are different ways the groups manifest themselves. Sometimes the identified 

clusters might be overlapping, so the instance might fall into more than one group. 

The other extreme is that the clusters are exclusive and an instance can only fall into 

one group. In a situation, when a probability model is being used, each instance has a 

certain probability of belonging to a cluster. Another option is creating a hierarchical 

division. There is a large selection of possibilities how the data can be displayed. It 

really all depends on what the analyst is dealing with and what is to be achieved.  

 

In this section a few clustering methods will be described. The first one is k-means 

clustering which forms clusters from numeric data sets creating disjointed clusters. 

According to Witten et al. (2000) it is a popular simple and straightforward method, 

which has been used for some time now.  

 

Another clustering technique described in this report is an incremental clustering 

method called Cobweb. It takes into account so called category utility which 

corresponds to the quality factor of a cluster.  

 

The last one is a statistical clustering technique taking into account various probability 

distributions. This method does not determine to which cluster an instance belongs, 

but rather what is the probability that an instance belongs to a certain group.  
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5.2.2.1 Iterative clustering 
 

This method (called k-means clustering) is a simple iterative distance-based technique. 

In order to use it efficiently, one actually has to look at data distribution first and 

specify the parameter k, which is a number of clusters expected the data to be divided 

into. In the next step, the algorithm chooses k random cluster centres (within the data 

range) and for each instance calculates the distances to those cluster centres using the 

Euclidean distance formula. Afterwards, each instance is simply assigned to the 

nearest cluster. When all instances have an assigned cluster, for each group the 

centroid (mean value) of all instances is calculated, which become the new cluster 

centres. Next, the whole algorithm is repeated using newly calculated centres. 

Repetition does not stop until for two consecutive iterations, the same instances are 

assigned to the same group and, therefore, cluster centres are and will remain 

unchanged. 

 

According to Witten et al. (2000) this technique is rather simple yet effective in most 

situations. It should be noted that as with all clustering methods, the resultant 

centroids are only local extremes and may be totally different during another 

execution of the algorithm if initial random cluster centres are different.  It is possible 

for this method to fail to find suitable centroids, when the choice of initial random 

cluster centres is unfortunate.  

 

In order to maximize the possibility of finding a global extreme, it is wise to repeat 

the algorithm quite a few times with many variations of initial centroids and compare 

the results. Assuming it does not take an unreasonable amount of time to run the 

algorithm, using this approach the best set of clusters for a given data set can be 

selected. 

 

There is quite a significant number of variations of the classical k-means method 

according to Witten et al. (2000). Some focus on implementing hierarchical clustering 

by executing the algorithm with k = 2 for the given data set and then repeating the 

process within each new group. Some improvements focus on making the algorithm 
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faster, because the basic version can be time consuming for certain data sets due to 

multiple iterations each involving performing numerous distance calculations. 

Therefore, there are algorithms using reasonable and simple approximations which 

speed up the whole process. They, of course, can have decreased accuracy, so the 

quality of results might decline. It is important that the analyst is capable of deciding 

whether the benefits outweigh the cost of applying those approximations.  

 

5.2.2.2 Incremental clustering 
 
As mentioned earlier, simple k-means algorithm repeats the process for the whole 

data set until the resultant clusters become stable. This clustering method works in a 

different way – it just adds instance by instance incrementally. Imagine a tree with 

leaves and roots representing instances, an example of incremental clustering is 

shown on figure 5.2. In the beginning, there is only one root and then more roots and 

leaves are added one by one. Adding a new instance may be as simple as just adding a 

new root/leave or as complex as redoing the whole tree or a part of it. The most 

important issue is deciding how a new instance should affect the existing tree. As 

described by Witten et al. (2000) in order to do this, a new quality called category 

utility is introduced – it measures the quality of a division of a group of instance into 

smaller clusters – the exact process will be described later. 

 

The first couple of instance added to the new tree structure form new one-instance 

clusters attached to the tree. Next, each added instance is assessed individually and 

basing on category utility it is determined whether it is going to be a suitable first 

instance for a new cluster. In order to prevent the algorithm from being dependant on 

the order in which instances are introduced to the structure, there is a possibility to 

rebuild the tree during the process of adding new instances. Using category utility, 

sometimes adding a new node may result in a merger of existing nodes with the newly 

added one to form a new substructure. A way of approaching this problem would be 

investigating all possible pairs of nodes and checking if they qualify for merger. 

Unfortunately, if this process was to be repeated every time when a new instance is 

added, it would require a lot of computational power and would not be efficient, 
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because some work would need to be repeated every time a new instance was being 

considered.  

 

 
Figure 5.2 Example of incremental clustering from Witten et al. (2000). 
 

However, according to Witten et al. (2000) in order to save time, whenever the pairs 

of nodes are evaluated for merging the instance with an existing one, the two best 

options for a certain level are memorized. Usually, then the best match will form a 

new cluster with a new instance unless according to category utility it is better for that 

new instance to be in a separate cluster. However, before that happens, the two best 

options mentioned earlier are considered for merger. If it appears to be feasible, this 

new cluster containing those two best options is created and then is it assessed 
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whether the new instance should be on its own or joined to this newly created 

subsection.  

 

In order to provide maximum flexibility, a splitting operation can be performed. As in 

previous case, when the best possible cluster for a new instance is found, it is assessed 

whether it’s worth splitting this cluster. If it is feasible, the cluster is split into two or 

more parts. Both merging and splitting operations provide a tool to rebuild the tree 

structure during the algorithm and correct any errors made due to order in which the 

instances are introduced to the structure.  

 

According to Witten et al. (2000) this algorithm works in the same way for both 

numerical and nominal attributes. The category utility value is based on mean and 

standard deviation of the value. Unfortunately, with numerical values in case of 

single-instance clusters the standard deviation is zero and this results in infinite value 

of category utility. Therefore, a solution has to be implemented in order to force 

minimum variance in each case. From theoretical point of view it is claimed that this 

forces minimum value represents a measurement error, which by definition has to be 

greater than zero.  

 

In some cases clustering produces a tree with an unreasonable amount of clusters and 

reducing the quality of data mining. In order to prevent the tree from growing to 

having too many separate instances, a new parameter is introduced – so called cut-off, 

which is used to reduce overgrowth as mentioned by Witten et al. (2000). If clusters 

are assessed as similar enough, then there is no point to have them as separate groups. 

Cut-off parameter defines what this similarity threshold is and it is defined using 

category utility. If creating a new cluster does not increase category utility by a 

defined value, the new instance is joined to an existing group.  

 

5.2.2.3 Probability-based clustering 
 

The clustering methods described earlier in this chapter have certain disadvantages, 

for example in case of k-means clustering, the k parameter has to be specified and its 

incorrect choice may lead to undesirable results. In case of Cobweb technique, the 
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cut-off parameter and problems with setting the minimum value for standard 

deviation in case single-instance clusters may cause problems and setting those values 

incorrectly may have negative impact on the analysis results. Additionally, even with 

merging and splitting functions described earlier, there is some uncertainly whether 

the order in which instances are introduced to the structure affects the final results and 

are the taken measures enough to deal with unlucky order of instances. Another 

disadvantage is that the need to repeat those algorithms in order to choose the best 

result increases the factor of human error in the formula. 

 

According to Witten et al. (2000) some of the disadvantages mentioned above can be 

overcome using a statistical approach. Since due to the way how clustering works it is 

not possible to be completely sure about how the data is divided into clusters, even 

training examples are not supposed to be assigned to only a single cluster. This is 

where probability-based clustering comes into play – it calculates probability that an 

instance belongs to a given cluster (it is assessed for each cluster).  

 

The base for this technique is statistical method called finite mixtures. It is a group of 

k distributions for k clusters, which is responsible for attribute values in each cluster. 

What it means is that a distribution should have a selection of attribute values specific 

for a cluster; therefore, it is different for every cluster. In practice, an instance can be 

only associated with a single cluster, but it cannot be confirmed which one. An 

instance is assigned a set of probabilities of belonging to each cluster.  

 

In the most basic case, there is only one attribute value and a normal distribution for 

every cluster with different means and standard deviations. The algorithm is 

responsible for looking at all the instances and calculating mean and variance for each 

cluster and how the instances are distributed between them. According to Witten et al. 

(2000) the finite mixture model combines together the distributions and creates a 

probability density function. In summary, when there is a set of instances, the finite 

mixture model uses them to calculate the mean and variance values for the clusters 

and probabilities of instance belonging to each cluster. In this case either there is a 

training model provided or the parameters defining the finite mixture model are 

known. 
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5.2.2.4 The EM model 
 

Sometimes there is no training set provided or the mixture model attributes are not 

available. In this case, according to Witten et al. (2000) an analyst has to use an 

approach similar to the already described k-means method – it contains iteration 

element. The first step is guessing the parameters of the finite mixture model and 

basing on this calculating the probabilities for each instance. Next step is recalculating 

the model parameters using the new probability values and repeating the whole 

process. Such an approach is called the EM (expectation-maximization) algorithm. 

Expectation – calculating the probabilities for each instance; maximization – 

calculating the model parameters. The probabilities basically act like weights 

according to Witten et al. (2000).  

 

As mentioned above, this algorithm uses iteration in a similar way to k-means. In case 

of the latter one, the iteration stops, when clusters stabilize and centroids are not 

changing between iterations. In case of EM algorithm it is a bit more complicated 

unfortunately – the algorithm aims to reach a stability point, but in practice is not able 

to reach it. In order to control this process, another parameter has to be introduced – 

the possibility of the instances being part of the dataset using the values of mixture 

model parameters.  

 

In practice, the formula described by Witten et al. (2000) calculates the quality of 

clustering and it is supposed to be increased with every iteration (for the EM 

algorithm). Since no normalization procedure is applied, this likelihood is not actually 

a probability; it can go beyond the zero to one interval. However, greater values are 

considered as better quality clustering. In real application, the value is usually 

presented in a form of logarithm – by summing logarithm values of components in 

order to avoid multiplication, but it is still required to apply iteration in the EM 

algorithm until the increase in this value is satisfactorily low. Usually, during the first 

initial iteration, this quality is expected to increase dramatically until a point when it 

is almost stable.  

 

The EM algorithm is still looking at the local maximum instead of the global one. 

Therefore, according to Witten et al. (2000) in order to choose the best solution, it is a 
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good idea to run the algorithm a few times in order to have a better insight and select 

the most useful solution. The best solution should have the highest likelihood or 

logarithm of likelihood value – this should correspond to best quality of clustering 

from available sets of results. In case of multiple clusters EM algorithm can get very 

complicated and require significant amount of time and computational power. 

 

5.2.2.5 Bayesian clustering 
 

According to Witten et al. (2000) the problem with EM algorithm is that when it is 

assumed that all attributes are dependent on each other, the solution might be overly 

conservative and suffer from overfitting. This can be a problem especially when there 

are many clusters and parameters present. In the worst case, there is only one instance 

belonging to every cluster – in such a situation data mining does not improve the 

understanding of the data set at all. It can happen to a finite fixture model when the 

distributions are too narrow to fit reasonable amount of instances. Therefore, newer 

algorithms force the clusters to contain at least two instances.  

 

When dealing with a large number of parameters, it is unsure which ones are 

dependent on each other – it increases computational time and it is more difficult to 

choose the best solution. Unfortunately, the likelihood of data belonging to the data 

set increases also when the overfitting occurs; it might compromise selecting the most 

suitable result. 

 

In order to suppress creation of new parameters and prevent overfitting, a so called 

Bayesian approach should be implemented. In this implementation, every parameter 

has a distribution assigned. Next, before a new parameter is introduced it is required 

to multiply its probability by the overall quality figure. Since the likelihood quality 

will be multiplied by a value less than one, it will be decreased. This way the 

algorithm is penalized for increasing the number of parameters in the system. 

Therefore, new parameter will only be introduced if it will really benefits the solution.  

 

In a same way it is possible to reduce the final number of clusters by penalizing the 

system by dramatically decreasing solution quality whenever a new cluster is added. 
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According to Witten et al. (2000), Weka software, which will be described later in 

this section, has a function called AUTOCLASS which is actually a Bayesian 

clustering scheme. It uses finite mixtures model with prior probabilities on all 

parameters. In order to estimate the parameters, EM algorithm is used and repeated 

several times to hopefully obtain a global minimum. Additionally, AUTOCLASS 

takes into account different numbers of clusters, different covariances and different 

types of probability distribution. The main drawback of AUTOCLASS is that it is 

very complicated and requires a significant amount of time and computational power 

for larger data sets.  

 

5.2.3 Data mining summary 
 

In this chapter, three different clustering methods have been discussed. As you can 

see, they all have certain advantages and disadvantages and produce different types of 

results. However, according to Witten et al. (2000) they are all capable of taking data 

as input and performing clustering on a given dataset. It is to be decided by the 

analyst which technique is the most desirable and which would provide best results. If 

it is feasible, it might be a good idea to try all of them using, for example, data mining 

software Weka and compare the results.  

 

Clustering helps to visualize the data and find underlying patterns and rules behind 

the association with certain cluster. Additionally, if clustering is used on training data, 

the results can be later used to create classification rules for decision support systems. 

In case of probabilistic clustering, the rule or decision system has to support using 

multiple weighs, which represent probabilities of instances being assigned to a certain 

cluster.  

 

Next important role of clustering is to fill in missing data values, because some 

attributes might be unavailable or corrupted. Therefore, basing on training data, it is 

possible to estimate missing values. In case of all methods described in this chapter, 

there is an underlying assumption that attributes are independent. Some actual 

implementations of the algorithms allow for tying multiple attributes together if there 

is a known dependence between them and in this case they are modelled together. 
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There are some limitations, which will not be described in this report. Further 

information can be found in a book by Witten et al. (2000).  

 

Before applying any clustering method, it is important to prepare the data first 

according to for example KDD process described earlier in this chapter.  

 

5.3 Weka 
 

Weka is a software package developed by Witten et al. (2000). It stands for Waikato 

Environment for Knowledge Analysis. The programming language chosen to write 

Weka was Java, because it provides a selection of methods for data processing and 

evaluation various data mining techniques.  

 

Weka has an implementation of various modern data analysis and modelling 

algorithm – detailed algorithms have been described by Witten et al. (2000). Weka 

provides a graphical user interface for easy access to its functionality. Additionally, it 

is a free tool on a GNU General Public License. Input data has to be provided in a 

single file prepared according to Weka specification.  

 

Weka is a powerful application supporting following data analysis tasks: 

- data pre-processing 

- clustering 

- classification 

- regression 

- visualization 

- feature selection 

 

In this project, Weka was used for some of those tasks – detailed description can be 

found in the next chapter.  
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6. Case study 
 

In this chapter a case study is described, where KDD process was used to extract 

knowledge from boiler feed pump data. In the first part of this chapter, the initial 

analysis attempt was described, where the data mining methods applied did not derive 

any useful knowledge from data.  

 

The second part of this chapter is focused on analysis of a second data set supplied by 

British Energy and using a radically different approach than in the initial analysis. As 

a result a system checking for alarms has been created in Excel. Provided that this 

solution is validated and approved by a British Energy engineer, in future this system 

can be implemented on-line.  

 

According to British Energy the goal of the data analysis was to create a system 

which would trigger an alarm in case of abnormal state of operation.  

 

6.1 Initial analysis attempt 
 

This section of the report contains the description of application of knowledge 

discovery from data process to boiler feed pump data supplied by British Energy.  

 

6.1.1 Data description 
 

Data supplied by the British Energy comes in two files representing two different 

periods: 

 

1) File 1: from 14-06-2007 to 27-11-2007 

2) File 2: from 26-11-2007 to 08-04-2008 

 

As it can be seen above, the supplied data spans over several months, therefore it is 

quite a large data set and may correspond to multiple changing states of the machine. 

There are about fourteen thousand instances for each quantity in each file. 
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Files supplied by British Energy include measurement of three different quantities: 

 

1) High pressure (HP) side peak to peak vibrations – measured in micrometers 

2) Low pressure (LP) side peak to peak vibrations – measured in micrometers 

3) Governor valve position – measured in percents  

 

All the measurements were taken every 10 minutes for each quantity for practically 

the whole period mentioned above. Due to extremely low sampling frequency it was 

not possible to apply special techniques designed to analyze vibration data with high 

sampling frequency – for example FFT.  

 

What makes this dataset so difficult to analyze is the fact that only raw data was 

received without any expert or any other knowledge added to it. Therefore, it was not 

known which parts of data correspond to normal or abnormal state of operation. 

Perhaps for the whole measurement range, the boiler feed pump was in a normal state 

and any spikes or suspicious measurement results are just regular behaviour or noise.  

 

 
Figure 6.1. HP data from file 1 
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It seems initially, that the analyst is not in a very advantageous situation here. This 

might be true, however, lack of any prior knowledge can actually be an advantage. 

Without any expert knowledge attached to the supplied data, there is no risk of any 

kind of bias towards known rules and solutions. This way, applying knowledge 

discovery from data process, maybe it will be possible to discover new rules and 

underlying patterns in the data, which might improve the fault identification and 

classification process and help experts with creation of new rules.  

 

Since the goal of this data analysis process is to establish a system able to trigger an 

alarm in case of abnormal state of operation, the next step in the KDD process is to 

decide how to divide the data and which parts of it should be used in the analysis 

process. In this case, it was decided to use the whole data set to check if it can be 

further divided into smaller parts corresponding to various states.  

 

In order to show the data on graphs Microsoft Excel software was used. On figure 6.1 

HP data from file 1 is shown. Figure 6.2 presents LP data from file 1 and on figure 6.3 

in appendix 1  governor valve data from file 1 can be seen.  

 

 
Figure 6.2. LP data from file 1 
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Figures 6.4 shows HP data from data file 2, on figure 6.5 presents LP data from file 2 

and figure 6.6 in appendix 1 presents governor valve data  from file 2. 

 

 
Figure 6.4. HP data from file 2 

 

 
Figure 6.5. LP data from file 2 
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Since there was no additional information about the data or knowledge which parts 

could be treated as noise, handling of noise was ignored. In step three of KDD 

process, the analyst should decide how missing data should be treated. Fortunately, in 

this case, there is no missing data and this step can be ignored.  

 

6.1.2 Data distribution 
In the next step, before analyzing which data mining method could be used to extract 

knowledge from data, it was attempted to present the data in a different way, so it 

would be easier to apply data mining to the supplied data set. Using Weka software 

described in section 5.3, data distribution of each measured quantity was investigated. 

This was applied to raw data without any averaging or data manipulation.  

 

The aim is not to show exact values and precise distribution, but rather have an 

appreciation of visual representation of the data in order to select the most appropriate 

data mining method a few steps later. It can be seen on figure 6.7 the data distribution 

for HP side vibration taken from file 1. On the graph one can immediately notice two 

or even maybe tree distinctive areas, around which the data is focused. Looking at 

figure 6.8 showing distribution of LP side vibration data, again two or possibly three 

areas, where data is concentrated, can be noticed.  

 
Figure 6.7. HP data distribution – from file 1 
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Figure 6.8. LP data distribution – from file 1 

 

In case of figure 6.9 in appendix 1, which presents governor valve distribution data 

possibly three or four areas of data concentration can be seen, which could be 

investigated. Before applying data mining techniques, there is a need to look at data 

distribution for the second file first. 

 
Figure 6.10. HP data distribution – from file 2 
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In case of second file, data distribution was also prepared in Weka software. The 

results shown on figure 6.10 for HP side data show three areas of data concentration. 

Similar results can be observed on figure 6.11, where LP side data are presented. It 

can be noticed that there is a certain similarity between HP and LP data distribution. 

 

 
Figure 6.11. LP data distribution – from file 2 

 

Figure 6.12 in appendix 1 presents governor valve position data for the second file. 

Similarly as in the first file, possibly four areas of data concentration can be identified 

on the graph.  

 

Next step in KDD process is to look at possible data mining techniques and assess 

which one will be most suitable in the analyzed case. After looking at data 

distribution diagrams for both files, it can be noticed that each quantity has two, three 

or even four areas, around which data instances are concentrated. 

 

Due to the fact that according to data distribution diagrams, data instances are 

gathered into natural groups, it was decided that clustering would be the most suitable 

data mining method in this case. Data instances form natural clusters, therefore it 

might be a good idea to investigate this approach.  

52 
 



 
 

6.1.3 Clustering 
 

After choosing a direction in terms of data mining methods, according to KDD the 

exact algorithm which should be used with the data should be specified. Since from 

data distribution plots it is known roughly how many clusters can be expected, it was 

decided to apply the fastest and simplest clustering method – k-means clustering, 

which was described in chapter 5 of this report. If a simple method is capable of 

performing the analysis, there is no point in trying to overcomplicate data mining.  

 

6.1.3.1 First file 
 

 
Figure 6.13. LP vs. HP data plot divided into two clusters – from file 1 

  

Step seven in KDD process is applying data mining methods – the results will be 

described in this section. K-means clustering was performed in Weka software, 

because it is capable of performing such an analysis and presenting the results in a 

very convenient way. At this point, it was decided to focus mainly on HP and LP 

vibration data and ignore governor valve position for the time being.  

53 
 



 
 

Clustering was performed for each HP and LP dataset and presented as an LP (on the 

horizontal axis) versus HP (on the vertical axis) data plot with different colours 

representing clusters.   

 

First attempt was to try to divide the data into two clusters. Resultant LP versus HP 

data plot for file 1 can be seen on figure 6.13. It can be noticed that one cluster is 

formed for lower range of vibrations and a second one for higher vibrations on both 

sides. This is a case, when data mining extracts knowledge from data, but this 

knowledge is not very useful.  

 

 
Figure 6.14. LP vs. HP data plot divided into three clusters – from file 1 

 

According to data distribution shown on figures 10 and 11, it could possibly be 

expected to have three clusters in the data, therefore the next step is to perform  

k-means clustering with k = 3 and see if any knowledge can be extracted from the 

results.  

 

Results can be seen on figure 6.14, where LP versus HP data graph is presented. It can 

be noted that clusters are formed in a similar way as on figure 6.13 in case of only two 
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clusters. Clusters are created in lower, middle and higher range of vibrations on both 

sides. Again, such a result from clustering does not provide any useful knowledge and 

cannot be taken any further to create a suitable alarm system. 

 

From shown results a trend can be seen here – adding more clusters will not help with 

extracting any knowledge from the data. Therefore, in order to confirm this theory it 

was decided to perform k-means clustering with k = 5. Results (shown on figure 6.15) 

are pretty much as expected. Clusters correspond to increasing vibrations on both 

sides and do not provide any additional useful knowledge.  

 

 
Figure 6.15. LP vs. HP data plot divided into five clusters – from file 1 

 

Analysis performed so far did not provide any useful knowledge and adding further 

clusters will not improve the results. Therefore, according to KDD process, it is 

necessary to return to one of the previous steps and iterate. In this case it was decided 

to use the second supplied data file, which contains similar amount of data instances.  
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6.1.3.2 Second file 
 

The data mining method used remains the same and result presentation is also the 

same as in previous case. At the first attempt, k-means with k = 2 clusters is 

performed. Results can be seen on figure 6.16. Again, the results do not highlight any 

possible abnormal states, just state the obvious – that with increasing vibration on one 

side it can be expected for vibrations on other side to increase as well.  

 

Figures 6.10 and 6.11 show that according to HP and LP data distribution it can be 

expected to possibly have three clusters in data. Consequently, k-means clustering 

with k = 3 was performed and the results were checked – they are shown on figure 

6.17 in appendix 1. It can be seen that the trend is rather similar to the previous data 

set and perform k-means with k = 5 clusters just to confirm the theory. Results shown 

on figure 6.18 in appendix 1 prove that useful knowledge cannot be extracted from 

this data set. 

 

 
Figure 6.16. LP vs. HP data plot divided into two clusters – from file 2 
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6.1.3.3 Clustering summary 
 

The analyses performed so far on two files separately show that applying clustering 

does not provide any useful knowledge. Data distribution graphs suggest that it is 

expected to have two or three clusters in HP and LP data.  

 

However, those clusters do not correspond to any useful knowledge and cannot be 

used to design an alarm system. The resultant clusters were only stating the obvious – 

increasing vibrations on one side should lead to increasing vibrations on the other side. 

This can be considered useful knowledge, but it was already known, therefore it is not 

novel.  

 

6.1.4 Combining the data 
 

6.1.4.1 Distribution of combined data 
 
Consequently, another iteration is required. This analysis will focus on combining the 

data and exploring the whole data range. First step after combining the data is to look 

at its distribution. Figure 6.19 and 6.20 show the data distribution for HP and LP data 

in case of combined set. It can be noticed on both that the data tends to concentrate 

around three areas and consequently, probably three natural clusters could be formed.  

 

Governor valve position distribution data is shown on figure 6.21 in appendix 1. It can 

be noticed that the data tends to focused around four areas. However, it was decided 

that governor valve position data will not be used in the analysis process.  
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Figure 6.19. HP data distribution – combined 

 

 
Figure 6.20. LP data distribution – combined 
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6.1.4.2 Clustering combined data 
 
After combining the data, for each measured quantity, there were over twenty eight 

thousand data instances. It was hoped that after combining the data, it would be 

possible to derive useful knowledge from the new data set.  

 

Again, it was decided to focus on HP and LP data and apply the same clustering 

method as in previous case – k-means clustering. The resultant data is presented in the 

same way as before – as an LP versus HP data plot.  

 

Figure 6.22 shows the results with two clusters. It can be noticed that the plot is rather 

similar to LP versus HP plot for data in the second file. In this case the division 

between clusters seems to be practically along a straight line and does not give us any 

additional knowledge. 

 

 
Figure 6.22. LP vs. HP data plot divided into two clusters – combined data 
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Since the data distribution showed that it can be expected to have three clusters in 

data, iteration was performed and k-means algorithm with k = 3 was applied. The 

resultant visualization of clustering can be seen on figure 6.23 in appendix 1. Again, 

the result does not provide novel or useful knowledge.  

 

In order to confirm that division into further clusters will give similar results as in 

previous cases, it was decided to perform k-means clustering with k = 5. The 

visualized results can be observed on figure 6.24 in appendix 1. It can be clearly seen 

that clusters are divided along inclined lines. This might look nice on a graph, but 

unfortunately does not provide any additional knowledge.  

 

6.1.4.3 Combined data analysis summary 
 

So far applying k-means clustering for various values of k and different data sets 

showed that when vibrations on one side increase, it can be expected that the 

vibrations on the other side to increase as well. Unfortunately, this is not any useful or 

novel knowledge, because such behaviour was expected, so this solution cannot be 

used to design an alarm system signalling abnormal machine condition.  

 

Therefore, it is required to have another look at KDD process – from there it can be 

read that an analyst could go back to any step and iterate in order to obtain expected 

results. In this case it was decided to go back and attempt to transform the data, 

present it in a different way and use the new dataset as input into clustering algorithm.  

In this case study, it was decided to focus on vibration data only, because it was  

expected that data mining the dependencies between LP and HP side vibrations will 

provide knowledge, which can be used later on to create an alarm system flagging 

abnormal boiler feed pump behaviour.  

 

6.1.5 LP/HP ratio 
 

It was decided to keep the focus on HP and LP data and just try to have a look at it 

from a different point of view. The relationship between LP and HP side vibrations is 

very important; therefore, it was decided to look at the LP/HP ratio for both data files. 
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Figure 6.25 shows the plot of LP/HP ratio for file 1 and figure 6.26 in appendix 1 

present LP/HP ratio for data in file 2. It can be observed that the plots are roughly at 

one level with some data instances away from the general trend.  

 

 
Figure 6.25. LP/HP data from file 1 

 

It is necessary to repeat the KDD process for this case as well, therefore as for 

previous data, distribution graphs were derived using Weka data mining software.  

 

6.1.5.1 LP/HP ratio data distribution 
 

Figure 6.27 shows the data distribution for LP/HP ratio using instances from file 1. 

The data is centred around one area, but with spikes indicating possibly a greater 

number of clusters than one.  
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Figure 6.27. LP/HP data distribution – from file 1 

 

Data distribution graph for LP/HP ratio from file 2 is presented on figure 6.28. Again, 

the instances are clustered around a single centre, but this time it is more uniform with 

less spikes indicating existence of additional groups. 

 

 
Figure 6.28. LP/HP data distribution – from file 2 
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6.1.5.2 LP/HP ratio data clustering – file 1 
 

Since the data seems to create natural groups and in order to maintain consistency,  

again clustering was used, specifically k-means clustering. The analysis was started 

with parameter k = 2 in order to check if it is possible to distinguish two separate 

clusters in given data.  

 

The results are presented in a slightly different way than in previous cases. On the 

horizontal axis is an instance number (corresponding to measurement time) ranging 

from one to around fourteen thousand. Vertical axis shows LP/HP peak-to-peak 

vibrations ratio, which does not have any unit.  

 

 
Figure 6.30. Instance number vs. LP/HP ratio divided into two clusters – from file 1 

 

In case of LP/HP ratio for data from file 1, results are shown on figure 6.30. It can be 

noticed that the data was divided into clusters along a horizontal line practically in the 
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middle of the data range. Unfortunately, this result does not provide knowledge,  

which it was hoped to extract. 

 

Next step was to increase the number of clusters to k = 3 and apply k-means 

clustering. Resultant visualization is shown on figure 6.31. This looks slightly more 

promising, because one cluster (blue coloured instances) seems to contain data a bit 

further from the main stream.  

 

 
Figure 6.31. Instance number vs. LP/HP ratio divided into three clusters – from file 1 

 

Before deciding on usefulness of results from clustering LP/HP ratio data, it was 

required to check what happens when parameter k in increased to five. The results are 

shown on figure 6.32. Similarly as in previous case, data instances with large LP/HP 

ratio are gathered in one cluster (light blue colour). This might be of use; however, the 

rest of the data is divided along horizontal lines, what indicates that those are not 

really natural clusters and are actually forced upon the data. Therefore, it is not of 

much use.  
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Figure 6.32. Instance number vs. LP/HP ratio divided into five clusters – from file 1 

 

6.1.5.3 LP/HP ratio data clustering – file 2 
 

Since LP/HP ratio from file 1 was not as useful as expected, it was decided to have a 

look at file 2. Figure 6.28 shows that data is shaped as normal distribution without 

many spikes indicating additional clusters.  

 

Figure 6.33 shows the visualized result for k = 2 clusters. As previously, the data is 

divided in the middle and will not be of much use. On figure 6.34 in appendix 1 it can 

see how data can be divided into three clusters – the divisions occur along horizontal 

lines. Increasing k to five is shown on figure 6.35 in appendix 1 and it can be 

confirmed that this trend will continue with more clusters and no useful knowledge 

can be extracted. 
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Figure 6.33. Instance number vs. LP/HP ratio divided into two clusters – from file 2 

 

6.1.6 LP/HP ratio – combined data 
 

Looking at LP/HP vibration ratios for separate data files did not prove to be 

successful. Therefore, in a similar way as with previous data, it was decided to 

combine it into a single file in order to hopefully extract some useful knowledge from 

data. 

 

Data distribution (shown on figure 6.36) is similar to the one for file 1 (shown on 

figure 6.27). It is focused around one area, but there are quite a few spikes indicating 

that there might be more clusters instead of a single centre. 

 

As with previous analyses, this one also starts with setting k = 2 and trying to divide 

the data into two clusters. The results are shown on figure 6.37 – it is noticed that due 

to combining the data, there are over twenty eight thousand instances analyzed in this 

case. Since k-means algorithm is rather fast and simple, it did not consume significant 

amount of time on the used workstation. The resultant visualization shows that again 

there is a horizontal line dividing the instances into two clusters. 
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Figure 6.36. LP/HP data distribution – combined  

 

 
Figure 6.37. Instance number vs. LP/HP ratio divided into two clusters – combined 
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Next step is to see what happens after increasing the number of clusters to three. 

Figure 6.38 in appendix 1 shows that as in previous cases, another horizontal line is 

added and data is divided into three parts now. Changing k to five shows (on figure 

6.39 in appendix 1) that this trend will continue and data will be divided further, but 

without providing any useful knowledge. 

 

6.1.7 Initial analysis summary 
 

In this section a case study was performed to show the application of KDD process to 

real data. Unfortunately, the process has never been finished, because it was not 

possible to extract useful or novel knowledge from the data provided by the British 

Energy.  

 

Applying k-means clustering to raw HP or LP side vibration data only provided 

knowledge which was obsolete – that with increasing vibrations on one side it can be 

expected that vibrations on other side increase as well. From LP versus HP plot 

shown for example on figure 6.13, it can be learned that over the whole data range 

those two values are highly correlated and it might be difficult to gather unusual data 

in separate clusters, because there are not many data instances available with data 

outside main trends.  

 

Converting the raw HP and LP vibration data to a ratio was a good idea, because it 

allowed visualization of machine behaviour – it was subconsciously expected that the 

vibration ratio will remain within certain limits and if an instance is outside those 

limits, it might suggest abnormal behaviour. Unfortunately, applying k-means 

clustering to LP/HP ratios did not provide useful or novel knowledge. The analysis 

led to division of data into groups, but unfortunately failed to clearly gather suspicious 

data in firm clusters. Therefore, it was concluded that there are not enough data 

instances available to put them in clear separate clusters.  
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6.2 Final analysis 
 
In this section, the final analysis performed on the data supplied by British Energy is 

described. This analysis was successful and led to creation of an alarm system 

working in Microsoft Excel.   

 

6.2.1 Data description 
 

This section deals with analysis of new data supplied by British Energy. The available 

data is (according to label) – measurement data from Boiler Feed Pump Turbine 2 and 

is divided into four files: 

 

1) File 1: from 05.05.2008 to 25.08.2008 

2) File 2: from 05.02.2008 to 04.05.2008 

3) File 3: from 05.11.2007 to 04.02.2008 

4) File 4: from 05.08.2007 to 04.11.2007 

 

The files themselves had the same layout as data previously supplied by British 

Energy and contained the same three variables: 

 

4) High pressure (HP) side peak to peak vibrations – measured in micrometers 

5) Low pressure (LP) side peak to peak vibrations – measured in micrometers 

6) Governor valve position – measured in percents  

 

The measurements were recorded every ten minutes through the whole data range – 

same as in previous files. The first step in data analysis process is to look at the raw 

data. Therefore, on figure 6.40 HP data for file 1 can be seen. Most data instances are 

hovering around one level, but there are some areas, which might be worth 

investigating.  
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Figure 6.40. HP data from file 1 

 

 
Figure 6.41. LP data from file 1 

 

Figure 6.41 presents to LP data from file 1 – it can be noticed that the profile is quite 

similar the one of HP data – it might be worth investigating the relationship between 

those two. On figure 6.42 in appendix 1 the governor valve data can be observed, 
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whose behaviour to some extent can be considered as similar to HP and LP profiles. 

However, governor valve position data will not be used in the analysis process. 

 

 
Figure 6.43. HP data from file 2 

 

 
Figure 6.46. HP data from file 3 
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HP data from the second supplied file can be viewed on figure 6.43. Again, the 

majority of data instances are around a certain level. The profile is similar for LP data 

for file 2 shown on figure 6.44 in appendix 1. 

 

On figure 6.45 in appendix 1 the governor valve data values taken from the third file 

supplied by British Energy can be seen.  

 

Figure 6.49 presents the HP data from file 3 for boiler feed pump turbine 2, while LP 

data from this file can be viewed on figure 6.50 in appendix 1. Governor valve 

position data for file 3 is shown on figure 6.51 in appendix 1.  

 

 
Figure 6.52. HP data from file 4 

 

In case of last file (number four) supplied by the British Energy, the HP data is shown 

on figure 6.52 and LP data with a similar profile can be viewed on figure 6.53 in 

appendix 1.  

 

The last graph showing raw data from boiler feed pump turbine 2 is shown on figure 

6.54 in appendix 1 – it presents governor valve position data for file number four.  
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6.2.2 Difference data 
 

In the last subchapter it was described how k-means clustering technique was applied 

to either raw (HP vs. LP) or transformed data (LP/HP) supplied by the British Energy. 

Unfortunately, those attempts were unsuccessful and did not provide any useful or 

novel results which could be later used to design an alarm system flagging up 

abnormal machine behaviour. 

 

Therefore, after receiving this data set, it was to decided to transform the raw data 

first and investigate the relationship between LP and HP in order to extract knowledge 

from the supplied data.  

 

In order to reduce noise and have a better visual representation of data, normalization 

was applied to the data – each instance was divided by the average of first 1500 

measured values. This way there is no need to have the whole database in order to 

process the data. The next step was applying a moving average of one hundred (100) 

points to HP and LP data. The resultant dataset is smaller than the original one by 100 

points, because due how moving average works, 50 points at the beginning and the 

end had to be removed.  

 
Figure 6.55. Normalized HP data with moving average of 100 points – from file 1 
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Figure 6.55 shows HP data plot after normalizing and applying moving average of 

100 points. Since the data was divided by its average, it is normalized around 1. It can 

be noticed that the graph is much easier to read and looks much smoother – the sharp 

edges have been removed and now actually it is possible to see the trends in the data. 

Additionally, the data is slightly shifted to the right due to being averaged over a 

certain range.  

 

Figure 6.56 shows LP data after normalizing and applying a moving average of 100 

points to the dataset in file 1. The profile has a similar shape to the HP curve and 

similar consequences of applying moving average can be noticed – the data is less 

noisy and the profile is much smoother. As with HP data, trends in analyzed data can 

now be actually noticed. 

 

 
Figure 6.56. Normalized LP data with moving average of 100 points – from file 1 

 

After applying moving average, it was decided to further investigate the relationship 

between HP and LP side vibrations. Since both datasets are normalized around 1, it is 

possible to perform operations on both of them. The comparison of trends change 

between HP and LP side vibrations was of interest. 
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6.2.2.1 Difference between trends 
 

Since the focus was on a trend change of HP and LP side vibrations, it was decided 

not to take adjacent points into account, but calculate the difference between instances 

further apart. In order to choose the best solution, it was decided to investigate 

differences between points distant by:  

 

a) 100 points 

b) 200 points 

c) 300 points 

 

Therefore, the difference (for both HP and LP) between a given measurement and a 

point placed 100, 200 or 300 instances earlier in the data was calculated. This way it 

was possible to observe how the trends in LP and HP change. Examples for the case 

of 200-point difference can be observed on figure 6.57 for HP vibration data and on 

figure 6.58 for LP vibration data.  

 

 
Figure 6.57. HP data trend change with difference of 200 points 
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It was expected that the HP and LP data will have rather similar trends and if for 

example one is increasing and the other is decreasing, it might potentially be a 

problem. Therefore, in order to visualize this difference between two trends, one point 

difference calculated above was subtracted from the other one (actually it was HP – 

LP) and moving average of 100 points was applied to the result. 

 

 
Figure 6.58. LP data trend change with difference of 200 points 

 

The resultant data should allow to visualize potentially problematic behaviour when 

for example HP vibration are increasing over a period of time and LP vibrations tend 

to decrease. Such a system can possibly trigger an alarm when such a suspicious 

behaviour is noticed and should be investigated by an engineer.  

 

In order to select the best solution, as mentioned above it was decided to have a look 

at comparison between trends calculated from differences between points distant by 

100, 200 or 300 instances.  

 

Figure 6.59 shows averaged HP – LP results using 100 point difference and 

normalized around 1. It is noticed that especially in the beginning, the plot is rather 

close to 1 and there are a few spikes indicating differences in data. Those areas are 
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possibly problematic and an alarm system should be able to flag a potential problem 

there. Due to the fact that 100 point difference and 100 point moving average is used, 

the plot starts after the first 150 data instances.  

 
Figure 6.59. HP – LP with difference of 100 points 

  

Next trend comparison was done looking at differences between instances 200 points 

apart. Figure 6.60 shows the resultant differences after normalizing and applying 

moving average of 100 points. The plot starts around data instance number 250 due to 

200 point difference and 100 point moving average. As in previous case, it can be 

noticed that the values are close to 1 most of the time, just in areas where HP and LP 

go in opposite directions, there are noticeable spikes.  

 

In comparison with figure 6.59, where 100 point difference was used, the problematic 

areas are emphasised with larger spikes in the data and therefore can be easier noticed 

by a potential alarm system. 

 

The last trend comparison for the case of 300 point difference in order to calculate the 

vibration behaviour is shown on figure 6.61. Since 300 point difference and 100 point 

moving average was used, the plot is delayed by 350 points to the raw data. It is 

noticed that the profile is actually more similar to the one with 100 point difference 
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than the one with 200 point difference. Additionally, with 300 points the problematic 

areas do not seem to be as strongly emphasised as in case of figure 6.60 – spikes are 

smaller and less regular.  

 

 
Figure 6.60. HP – LP with difference of 200 points 

 

 
Figure 6.61. HP – LP with difference of 300 points 
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After looking at three trend comparison algorithms – for 100, 200 and 300 difference 

between points, the best one to be used for creation of an alarm system is the one with 

200 point difference. This is due to the fact that it highlights (with large spikes on the 

plot) potentially problematic areas while the rest of the profile is fairly stable. 

 

Therefore, it was decided to use this algorithm in order to create an alarm system 

flagging potential issues. Since it is expected that in the beginning of the operation or 

measurement there should not be any problems with a boiler feed pump, in order to 

establish limits for trend comparison it was decided to use the first 1500 points as 

reference data. From those 1500 points a maximum and minimum values will be 

extracted, which will be used as upper and lower limits for the alarm system.  

 

Those initial 1500 points equal to about 250 hours or just over 10 days of operation. It 

will be required to closely monitor the operation of a new machine or a boiler feed 

pump switched on after maintenance. After that time, the extracted limits can be used 

to trigger alarm systems.  

 

 
Figure 6.62. HP – LP with limits (file 1) 
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Figure 6.62 presents an example of how the system will be implemented. As it can be 

seen, the first 1500 points are used to establish those limits – red line represents the 

upper limit and green line is the lower limit.  

 

The majority of the data is within the limits, but there are a few significant spikes 

breaching the limits and triggering the alarm system. Those spikes are consistent with 

sudden changes in HP and LP vibrations shown on figures 6.55 and 6.56.  

 

Each of those spikes triggering the alarm system should be investigated by an expert 

and then further classified as a normal or abnormal behaviour.  

 

6.3 Validation 
 

It can be seen on figure 6.62 that the system is able to create limits basing on provided 

data and check each new data instance if it is within those limits. Otherwise it is 

flagged as a potential problem. 

 

 
Figure 6.63. HP – LP with limits (file 2) 
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The system was based on exploration of data in file 1. However, it has to work 

correctly with other data sets in order to analyze historical data and especially with 

new data in order to work as a proper condition monitoring system. Therefore,  the 

same algorithm was applied as described earlier to data in other files supplied by 

British Energy in order to verify that the system will work with them as well.  

 

On figure 6.63 presented results for file 2 can be seen. In this case the initial data is a 

bit rough and the limits are wider than they were for file 1. However, the limits are 

still narrow enough to flag large spikes on the plot as potential problematic areas, 

which need to be investigated by an expert. The limits might be revised after an expert 

decides that certain machine behaviour is just normal operation or noise.  

 

Applying the derived algorithm to data file number 3 supplied by the British Energy 

provided the widest limits so far (as seen on figure 6.64). However, even in this case 

the system is able to notice some large spikes indicating areas, where vibrations on 

one side are increasing while the trend on the other side shows a decrease. Those 

results show that the limits are very dependent on the initial 1500 measurements and 

the machine behaviour has to be carefully observed during those first 10 days after 

start-up to ensure that the data for normal operation is collected.  

 
Figure 6.64. HP – LP with limits (file 3) 
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The last file supplied by the British Energy is actually the one containing the oldest 

data. Applying the algorithm to this file results in receiving very narrow limits – this 

is shown on figure 6.65. As in previous cases, there are quite a few large spikes on the 

plot, which are outside established limits and are triggered as possible abnormal 

behaviour.  

 

 
Figure 6.65. HP – LP with limits (file 4) 

 

It was assumed that the data is divided into four files for a reason – maybe a new file 

was started after a minor maintenance or machine restart. Therefore, the algorithm has 

been applied in order to calculate the limits for each file separately. However, it is 

possible that the data was divided into four files for reasons not related with the boiler 

feed pump equipment (for example for data storage purposes). In such a case, it would 

be a reasonable assumption that the limits calculated in file 4 correspond to normal 

machine operation and it is possible to apply them to other files.  
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Figure 6.66. HP – LP with limits (combined files) 

 

The results can be seen on figure 6.66. It can be immediately noticed that those limits 

are very narrow and actually trigger more alarms than limits established for separate 

files. Many spikes indicating different trends in HP and LP data are outside the 

calculated limits, but all those breaches still need to be evaluated by an expert who 

can decide whether it is normal behaviour or a fault.  

 

In this section it was showed that the derived method is able to properly calculate 

limits from all the files supplied by the British Energy and use as a part of an alarm 

system responsible for flagging up potentially abnormal behaviour.  

 

6.4 Summary of Excel implementation  
 

The derived algorithm has been implemented in Microsoft Excel, because it is a very 

popular tool used in practically every office environment and is capable of performing 

required analysis and presenting the results.  
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Here is the summary of the algorithm used to create the alarm system: 

 

1) Normalize HP and LP data (divide every data instance by the average of first 

1500 points) 

2) Apply moving average of 100 points to HP and LP data  

3) Calculate the trend difference for both pre-processed HP and LP data using 

points distant by 200 instances as described earlier in this chapter 

4) Calculate the difference HP – LP 

5) Apply moving average of 100 points to calculated difference data and add 1 

6) Calculate minimum (lower limit) and maximum (upper limit) values for the 

first 1500 data points  

7) Check every new data instance if it is within the limits 

 

This is an outline how my system works in Excel. The main drawback is that it 

requires 1500 data instances in order to calculate the limits properly and start 

checking if new instances are within those limits. This equals to over 10 days of 

operation, when the machine has to be carefully monitored by expert to ensure that it 

does not develop any faults, because the alarm system will not work yet.  

 

However, during those initial 10 days of operation the upper and lower limits will be 

dynamic and will be changing based on how many data instances have been entered 

into the spreadsheet. The limits might actually stabilize after a few hundred points and 

remain unchanged, but it is essential that during this setup period the plant equipment 

is closely monitored. Otherwise, the results might be inaccurate and lead to incorrect 

conclusions.  
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7. Recommendations and conclusions 
 

7.1 Future recommendations 
 

As mentioned in the previous chapter, the data supplied by British Energy did not 

arrive with any expert knowledge attached to it. Since it was not known which parts 

of data corresponded to normal condition, some assumptions about the results had to 

be made. The most important one was about the difference data. It was assumed that 

averaged and normalized HP – LP results shown on figures in previous chapter were 

expected to be close to one for normal operating state. Therefore, it was considered 

that data outside the limits was corresponding to abnormal state of operation.  

 

The first recommendation or rather actually a necessity is to have the system checked 

by an expert and see if the alarms triggered by the designed system actually 

correspond to real abnormal behaviour. This can be used by analyzing historical data 

with corresponding knowledge or as a carefully monitored part of an on-line system.  

 

After an expert verifies the results of the created algorithm it needs to be tested over a 

few months with on-line data and possibly adjusted for best performance. If it proves 

to be successful during the testing period and keeps delivering comprehensive results, 

then it might be a good idea to develop a full software application written in (for 

example) Java or C++. This way the data would be connected with the system more 

directly and the analysis would possibly be faster. Additionally, a proper software 

application could overcome all the systems limitations due to the fact that it has so far 

been implemented in Excel – for example data storing and visualization of selected 

historical data.  

 

Another possible future development of the software could implement case-based 

reasoning in order to improve the condition monitoring system. For example, a minor 

breach of imposed limits could be categorized by an expert as normal behaviour and a 

case could be created, so next time the system does not trigger an alarm. Additionally, 
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if certain breach of limits can be linked to a certain type of fault, a case could be 

created in order to automatically classify this fault in future.  

 

7.2 Conclusions 
 
The main aim of the project was to create a system, which would analyze supplied 

boiler feed pump data and trigger an alarm if the input data suggested an abnormal 

state of operation. This was divided into three parts: 

 

1) Background research – to investigate condition monitoring methods and data 

analysis techniques 

2) Data analysis – to analyze the supplied data and find an underlying pattern 

which could be used to design an alarm 

3) System design – to use the extracted pattern in order to design an alarm system 

and then validate it using other available data sets 

 

All three objectives have been reached and described in detail in this report. Various 

examples of condition monitoring techniques available for rotating machinery have 

been investigated, researched and presented in this thesis. 

 

In terms of data analysis techniques, KDD process with all its advantages has been 

described in chapter 5 together with detailed explanation what exactly data mining is 

and how specific techniques actually work.  

 

The most important part of this work was data analysis. In the first part of chapter 6, 

an unsuccessful data analysis attempt has been described. In this case k-means 

clustering did not provide any useful or novel knowledge. The pattern derived was 

already known or at least expected by the analyst. Additionally, the instances which 

could possibly be interesting, were not numerous enough to be gathered in a firm and 

stable cluster.  

 

The final analysis of a second data set supplied by the British Energy proved to be 

successful. In this case various data transformation techniques were used in order to 
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compare how HP and LP side vibration trends were interconnected and how they 

changed. Basing on reference data the limits were established and a system has been 

implemented in Excel – breaching the calculated limits would trigger an alarm 

system.  

 

The designed alarm system has been applied to other data sets supplied by the British 

Energy and it managed to calculate the limits and highlight possibly problematic data 

instances. 

 

Now the system has to be validated by British Energy specialists and thoroughly 

tested on either live or historical data for a few months in order to ensure that it does 

not trigger false alarms and can correctly notify the operator in case of a fault. 

 

Working with raw data without any knowledge attached to it made it impossible to 

validate the results. At the moment, it is not possible for the analyst to establish 

whether the designed system is able to correctly abnormal behaviour, because there is 

not information what normal operation is and which parts (if any) of data correspond 

to faulty working conditions. Therefore, before the development of the system can be 

taken any further, it has to be verified by a boiler feed pump expert, who will be able 

to add useful knowledge to the data. 
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Appendix 1 – additional figures 
 

 
Figure 6.3. Governor valve data from file 1 

 

 
Figure 6.6. Governor valve data from file 2 
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Figure 6.9. Governor valve data distribution – from file 1 

 

 
Figure 6.12. Governor valve data distribution – from file 2 
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Figure 6.17. LP vs. HP data plot divided into three clusters – from file 2 

 

 
Figure 6.18. LP vs. HP data plot divided into five clusters – from file 2 
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Figure 6.21. Governor valve File 1 combined distribution 

 

 
Figure 6.23. LP vs. HP data plot divided into three clusters – combined data 
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Figure 6.24. LP vs. HP data plot divided into five clusters – combined data 

 

 
Figure 6.26. LP/HP data from file 2 
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Figure 6.34. Instance number vs. LP/HP ratio divided into three clusters – from file 2 

 

 
Figure 6.35. Instance number vs. LP/HP ratio divided into five clusters – from file 2 
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Figure 6.38. Instance number vs. LP/HP ratio divided into three clusters – combined 

 

 
Figure 6.39. Instance number vs. LP/HP ratio divided into five clusters – combined 
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Figure 6.42. Governor valve data from file 1 

 

 
Figure 6.44. LP data from file 2 
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Figure 6.45. Governor valve data from file 2 

 

 
Figure 6.50. LP data from file 3 
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Figure 6.51. Governor valve data from file 3 

 

 
Figure 6.53. LP data from file 4 
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Figure 6.54. Governor valve position data from file 4 
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