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Executive Summary

This project presents a methodology for assessing the economic wave energy resource
for a given area of ocean. The methodology is implemented to assess the economic
wave energy resource in Europe, estimating the potential size of the future European
wave energy market. The Pelamis Wave Energy Conversion System (WECS),
currently being developed in Scotland, is selected as the baseline technology, applying
the latest technical performance and cost data. A Geographic Information System
(GIS) is developed to model and analyse the geographical wave resource data
collected from the European Wave Energy Atlas (WERATLAS). The GIS resource
model is divided into 10 km by 10 km cells. The internal rate of return (IRR) is
calculated for potential arrays deployed within each cell throughout European waters.
Cells that meet the required rate of return (RRR) are considered to be commercially
viable. The total commercially viable sites constitute the economic resource. Two
market scenarios are completed, firstly assuming a single electricity price and subsidy
for all European countries (internal), and secondly, applying existing regional market
prices and renewable policies. The methodology is designed to be consistent with the
draft performance assessment standard for wave energy conversion systems presented

by the European Marine Energy Centre.

Technology

The 750 kW Pelamis WECS is the selected device for the resource assessment. The
WECS power matrix and the wave scatter diagram provide an efficient representation
that allows a device’s wave energy conversion performance to be estimated for a

given site’s wave conditions.

Methodology Design

The methodology shown in figure A provides a systematic and reusable approach to
calculate the wave energy resource for a given area of sea based upon on the resource,
technology and economic data input. The first and second step focus on energy
related aspects of the assessment and the third and fourth performs the economic

tasks.
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Figure A: Overview of the assessment methodology
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Assessment of the European Wave Energy Resource

This project implements the methodology to assess the economic wave energy

resource in European waters.

Energy Analysis using Excel

Microsoft Excel and the European Wave Energy Atlas are used to implement the first

step in the methodology involving numerical analysis of the energy related data

(included in the Excel model shown in figure B).
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Figure B: The wave scatter diagram representing the wave conditions for a deepwater

location off the Portuguese coast.

Geographic Information System
The GIS model is developed to represent and analyse the geographical-based wave
resource data. The model is summarised as:

® Model cell size: 10 km

® Projection: Geographic

e Area of analysis: 13°W to 10°E and 65°N to 30°N

* Total area: 8,524,800 km’
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Figure C: The annual average wave energy resource is interpolated from the average

annual wave power levels (in kW/m) for each gridded wave data point obtained from
the WERATLAS. This surface displays the distribution of the wave resource around

Europe.
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The second step in the methodology generates the GIS data surfaces by interpolating
wave data and depth coordinates, and calculating the distance to shore for each model
cell. A GIS Surface provides an excellent tool for visualising the resource and allows
the entire wave resource for the assessed area to be interpolated from a limited set of

gridded wave data. An example of a surface is given in figure C.

Economic Analysis using Microsoft Excel

The third step in the methodology calculates the internal rate of return for potential
wave energy arrays deployed in European waters. Figure D shows the economic
model implemented using Microsoft Excel. The IRR is calculated for each cell in the
model. Cells that meet the RRR are considered to be commercially viable. Two
required rates of return for wave energy arrays are selected: 10% is considered

optimistic and 13 % more realistic.
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Figure D: The fixed cost estimates of the Pelamis WECS integrated within the

economic analysis in the Excel model.

The final step in the methodology compares the IRR to the RRR in each model cell.

The total commercially viable sites constitute the European economic wave resource
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and potential market. The Excel model identifies the potential market automatically
using an algorithm implemented using Visual Basic and data output from the GIS

model.

Results

Assuming the Internal Electricity Market scenario, WECS cost of 964 £/kW for 2010,
and a RRR of 10 %, an electricity entry price (including wholesale price and
premium) of just under 55 £/MWh is required to make wave energy devices
commercially viable (illustrated in figure E). An entry price of exactly 55 £/MWh
would generate an economic resource of some 1.5 GW capacity corresponding to a
capital investment of £1.4 billion. This resource is located around the Irish west
coast. For the realistic rate of 13 %, figure E indicates, the entry price for wave

energy is higher at approximately 60 £/MWh. The results are displayed in table G.
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Figure E: Estimated market in 2010 Figure F: Estimated market in 2025

For the Internal Electricity Market scenario and the WECS cost of 866 £/kW for 2025,
the market entry price required for wave energy to become commercial viability is
reduced to approximately 50 and 55 £/MWh for rates of return of 10 and 13 %
respectively. Table G shows at 10 % RRR, the selected entry price of 55 £/MWh
constitutes an economic resource of 137.4 GW corresponding to a market worth
approximately £120 billion. The majority of this resource is located off the west coast
of Ireland, the northwest region of Scotland and to the northwest of Norway. There is

no market if investors require 13 % return.



Year 10% RRR 13% RRR

Cells GwW £ Billion Cells GwW £ Billion
2010 5 1.5 1.4 0 0 0
2025 458 137.4 119 0 0 0

Table G: The economic wave energy resource, assuming an entry cost of 55 £/ MWh.

Conclusions

The European wave energy resource is modelled using GIS. The resource model is
interpolated from 23 wave data points obtained from the WERATLAS. This data is
not ideal for assessing the European resource because the UK Met Office models
underestimate swell waves which, in Western Europe, are an important contribution to
the overall resource and of particular importance to wave energy conversion. The
model is not accurate for intermediate depths due to the limited number of data points

obtained.

The methodology divides the resource model into 100 km® cells. The cell size limits
the accuracy of the modelled wave resource close to shore as the depth can range from
0 to as much as 500 metres. The equivalent unit of installed capacity of 300 MW
(based on a device packing density of 3 MW/km®) is too large. Instead, 1 km® cells

could provide more accurate resource estimates.

The methodology estimates the potential economic wave energy resource for a given
area of sea. The accuracy is dependent on the resolution of the wave energy resource
model, the technology cost estimates, market entry costs and the transmission and
array configuration assumptions. Using several assumed variables increases the level
of uncertainty of the estimate. For this reason, a single resource estimate is not
calculated; instead, estimates are generated for a range of optimistic and more realistic
technology cost estimates. When the actual commercial cost of wave devices is
established, a more accurate wave resource estimate could be generated using this

methodology.

The European resource assessment could also be improved by obtaining a new data
set of 50 or more, wave data grid points located in the Western European approaches
of the Northern Atlantic Ocean and North Sea where wave power levels are most

significant. The model cell size could be reduced to 1 km to allow the resource to be
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more accurately modelled and enable more sophisticated regional policy mechanisms,
which react to the rate of market growth, to be applied. European Transmission
Networks and grid supply points could be integrated into the model to allow the least
cost route for the submarine grid connection to be determined. Hence, the capital cost

estimated for each wave array would be more realistic.
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1 Introduction

1.1 Background

International awareness of the threat of “global warming” and “climate change” is
influencing international energy policy which emphasise the importance of a “carbon
free” and “sustainable” world economy. The problems that oil-dependent economies
face in the future are becoming more evident as global oil prices rise and as
production begins to dry out. Security of electricity supply is becoming increasingly
important for the UK as fossil fuel resources decline — the UK become a net importer
of gas by 2006. Nuclear energy is well known for being a carbon-free source of
electricity. However, due to public environmental concerns, national security risks
and the actual cost of decommissioning, the decision to build the next generation of
UK’s nuclear industry is not straightforward. The success of wind turbines is helping
accomplish EU renewable targets for 2010 [1]. However, problems incurred with
planning consent are restricting onshore projects. For these reasons, alternative
sources of renewable energy incorporated within a diverse energy mix are essential if

energy demand is to be met and climate change addressed.

Wave energy is one of the most abundant sources of renewable energy available
around the world that has not yet been harnessed to meet global energy demand.
Europe’s western shores lie at the end of a long fetch of the Atlantic Ocean and are
surrounded by stormy waters. The potential wave energy resource that could be
exploited is vast — particular in countries such as Portugal, Ireland, United Kingdom
and Norway. Previous attempts to harness the unpredictable power of ocean waves
have either perished in the harsh marine environment' or proven too uneconomical’.

However, new waves of innovative and competitive energy capture technologies are

! Norwegian interest in wave energy diminished after the Oscillating Water Column prototype funded by the
Norwegian government and built by engineering company Kvaerner was destroyed during a storm in 1988 [2].

% £15 Million was spent by the UK government on the wave energy program, which began in 1976 [3]. Several
resource assessments and WECS designs were completed. The program concluded that wave energy devices could
generate electricity for around 19 pence per kWh. This was deemed too expensive. Together with uncertainties
surrounding “survivability” due to the harshness of the marine environment, the program was abandoned in 1982.

Only one design reached the demonstration level.
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nearing the final stages of development’. Provided the prototypes can survive

demonstration at sea, a wave energy industry could be on the horizon.

1.2 Wave Energy Resource

The Wave Energy Resource is the entire amount of energy that is stored within the
waves in an area of ocean in offshore or inshore waters. The Accessible resource is
the amount of this resource that can be captured and converted into useful energy
taking into account certain technical, economic and environmental constraints. The
Technical wave energy resource is the total amount of electricity that can be
converted from wave energy regardless of economics, taking into account technical
factors. The Economic resource, which is lower than the Technical resource,
incorporates whether the Wave Energy Conversion System (WECS) used to extract
the energy is economically competitive with other forms of existing electricity
generation.
Several studies have investigated the wave energy resource aiming to identify the best
sites to deploy WECS technology and estimate the size of the resource, including:

® 120 GW located on the west and north coasts of the United Kingdom [6]

e 320 GW around Europe [7]

e 2TW globally [8]

However, as yet no comprehensive strategy has been applied to assess the potential
European wave energy market given the resource and technology data currently
available. Additionally, the benefit of using Geographical Information Systems (GIS)
to analyse the wave energy resource data has not yet been utilised for assessing the
European market.

Wave conditions required for shoreline-based WECSs are restricted to certain
“hotspots” where wave levels are unusually high. Wave power levels near to shore
are limited by decreasing depth. Subsequently, the shoreline and nearshore wave
energy resource is considered to be much lower than the deepwater resource [9]. This

assessment focused on the deepwater resource located offshore.

? Ocean Power Delivery Ltd — based in Edinburgh — have secured around £5 million in DTI capital grants and
venture capital and are nearing the final stages of demonstration of a full-scale version of the 750 kW Pelamis

WECS [4]. Several other R&D programs are in progress around the world [5].
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1.3 Motivation

This project is motivated by the following requirements and developments:

The need for a comprehensive economic assessment of the European wave
energy resource identifying the potential market, exploiting available GIS
techniques.

The increasing research and development into wave energy devices and
increased availability of device performance data and economic information.
The renewed support for potential wave energy industries within Europe in the
form of market-pull measures implemented by European governments".

The requirement for a generic resource assessment methodology that applies
the latest WECS draft standards being developed, which can be reused as new

technology, economic and resource data become available.

1.4 Aims and Obijectives

This project completes the following tasks:

Design a robust and reusable wave energy resource assessment methodology,
consistent with the EMEC WECS draft standard [13].

Collect the best available wave resource, technology and economic data.
Assess the economic wave energy resource in Europe by implement the
methodology to identify the size of the potential European market, based on
selected WECS technology (the Pelamis WECS) incorporating technical,
environmental and economic constraints.

Analyse the deepwater offshore wave energy resource and model using GIS.
Investigate different economic scenarios. For example, the Internal Electricity
Market framework versus existing regional electricity markets in Europe and

the effect of market fiscal mechanisms such as feed-in tariffs on market size.

* The government’s of Portugal and United Kingdom’s latest attempts to encourage the growth of wave energy

industries: £150M and £50M, respectively, in financial support to bridge the gap in public funding between the

demonstration of WECS prototypes and the development of full-scale WECS schemes [10].
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1.5 Approach

The resource assessment methodology incorporates technical parameters, including:

e Rated power of WECS

e Capture efficiency (capacity factor)

e System availability

¢ Losses in power chain including transmission losses

e Population density of WECS arrays

¢ Submarine transmission cabling required (length equivalent to depth and
distance to shoreline)

e Lifetime period

Economic factors are also incorporated, including:

e (apital cost

® Annualised costs (operation and maintenance)
® Annual energy output

¢ Internal rate of return

e Market mechanisms such as taxes, subsidies and the ETS.

Environmental constraints are also taken into account:

® Depth
¢ Distance to shoreline
o Areas To Be Avoided at sea (ATBA) e.g. shipping channels, explosives

dumping grounds

Wave data for Europe, WECS technology data and European market tariffs and prices
are collected. However, access to this data is limited and expensive, commercially
sensitive or may not even exist yet. Therefore it is important that the assessment
methodology is clearly described and outlined so it can be applied when more

information becomes available in the future.
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2 Wave Energy

Oceans cover two thirds of the earth’s surface and present a massive energy resource.
The global energy resource stored within the ocean’s waves is estimated at more that
2 TW [8]. Ocean waves could become an abundant source of renewable energy
provided the technical and economical challenges of wave energy capture are
overcome. The IEA have predicated that wave energy may eventually provide over

10% of the world’s electricity supply [5].

Waves are energy in transition stored in the ocean’s surface in the form of waves
being carried away from their origin. Wave energy can be considered as a
concentrated form of solar energy since the primary source of wind energy is the sun
and the main source of wave energy is the wind. Winds are generated by the
differential heating of earth giving rise to thermal air currents. As they pass over open
stretches of water they transfer some of their energy to form waves. The precise
mechanisms of energy transfer are complex and not yet fully understood. However,

three main processes appear to be at work:

1. Air flowing over the ocean surface exerts a tangible stress, resulting in wave

formation.

2. Turbulent airflow close to the waters surface creates rapidly varying shear
stresses and pressure fluctuations. Waves develop where these oscillations are

in phase with existing waves.

3. Wind can exert a stronger force on the upwind face of more developed waves
causing increased wave growth. This process is maximised when the speeds

of the winds and waves are equal.

Power intensity becomes more concentrated throughout this process of energy
transformation. The size of waves generated depends on the wind speed, the length of

time wind flows and the distance of water over which it blows — the fetch.

The basics of wave theory are described in this section to give a background on the
subject and help understand the wave resource calculations performed within the
assessment methodology detailed in section 5. For more on the mechanisms and

theory behind wave energy refer to [11].
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2.1 Wave Properties

2.1.1 Monochromatic Seas

Waves can be measured in terms of the Wave Height H (the distance from trough to
crest) and the Wave Period T (the time between successive waves). The simplest
theory used to describe the action of waves is the linear wave theory [11]. This is an
approximation of real sea conditions, representative of simple monochromatic or
sinusoidal waves. Linear theory characterises waves in terms of Wavelength A (the
distance between successive crests) and period T. The ocean can be classified

according to depth d, as:
e Deepwater where d > /2
¢ Intermediate water where A/2 > d > A/20
e Shallow water where d < A/20

For deep water, wavelength and period are related as follows:

x:g_T

o Equation 2.1

where g is the acceleration due to gravity.

Individual waves travel at a Phase Velocity C, where:

C= % Equation 2.2
The Total Energy E in a deepwater wave is equal to:

E (J/m) =E, + Ex = _p_gZSHZ¢ Equation 2.3

where b is the width of the crest and p is the density of water. The total energy
described by linear theory is equally composed of potential energy E, and kinetic

energy Ex.
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The transfer of wave energy from point-to-point in the direction of wave travel is

characterised by the Energy Flux or, more commonly, Wave Power P:

2
P (KW/m) :péiTT Equation 2.4
T

which represents the power level in kilowatts per metre of wave front (kW/m).

2.1.2 Random Seas

More detailed techniques are required to model real wave conditions that are random
in height, period and direction. Statistical measurements of varying wave heights and
energy period that occur at a location represent the variation in sea states. The most
commonly used parameters are the Root Mean Square of wave height, Hyy, or
Significant Wave Height — defined as the average of the one-third highest wave, H;

(~4H;ms) and the Wave Energy Period T, (seconds between successive wave crests).

2.2 Wave Scatter Diagram

The Scatter Diagram (also referred to as a Wave Scatter Matrix) is used to represent
the random wave conditions that occur in reality, recording the annual variation in sea
states for a measured location [12]. This location is determined by a specific measure
of Latitude and Longitude. The scatter diagram indicates how often a sea state with a
particular combination of significant wave height H; and wave energy period Te
occurs annually (recorded in parts per thousand). The scatter diagram is compatible
with the wave device power conversion matrix, as outlined by the EMEC [13],
allowing the annual energy that can be captured to be easily calculated (further detail
is given section 3.2). Table 2.1 shows an example of a scatter diagram for a

deepwater location close to Barra, off the Scottish west coast.
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Significant | Energy

Wave Period

Height Hs | Te

(m) (secs) 4 5 6 7 8 9 10 11 12 13 14 15 18
0.0-0.5 0 0 0 0 0 0 0 0 0 0 0 0 0
0.5-1.0 0 2 11 12 3 0 0 0 0 0 0 0 0
1.0-1.5 0 15 38 44 35 10 2 0 0 0 0 0 0
1.5-2.0 0 11 37 38 45 30 8 2 1 0 0 0 0
2.0-2.5 0 1 25 3 32 30 17 3 1 0 0 0 0
2.5-3.0 0 0 8 25 27 23 19 8 2 0 0 0 0
3.0-3.5 0 0 0 15 21 22 16 12 2 1 0 0 0
3.5-4.0 0 0 0 4 18 19 14 11 5 1 0 0 0
4.0-4.5 0 0 0 1 11 16 12 9 6 3 0 0 0
4.5-5.0 0 0 0 0 4 15 13 9 7 3 1 0 0
5.0-5.5 0 0 0 0 1 7 1 8 5 2 1 0 0
5.5-6.0 0 0 0 0 0 3 8 7 4 2 1 0 0
6.0-6.5 0 0 0 0 0 1 5 5 4 2 1 0 0
6.5-7.0 0 0 0 0 0 0 3 4 2 2 1 0 0
7.0-7.5 0 0 0 0 0 0 1 3 2 2 1 0 0
7.5-8.0 0 0 0 0 0 0 0 2 2 2 1 0 0
8.0-8.5 0 0 0 0 0 0 0 1 2 2 0 0 0
8.5-9.0 0 0 0 0 0 0 0 0 2 1 1 0 0
9.0-9.5 0 0 0 0 0 0 0 0 1 1 0 0 0
9.5-10.0 0 0 0 0 0 0 0 0 1 1 0 0 0
10-11.0 0 0 0 0 0 0 0 0 0 1 1 1 0
11-12.0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.1: Sea state scatter diagram representing the annual frequency of occurrence

of each combination of significant wave height H; (in half-metre intervals) and wave

energy period Te (in second intervals), plotted in parts per thousand. The matrix

represents the conditions for a deepwater location in the west coast region of Scotland

(57° N, 9° W).

2.3 Wave Power Level (kW/m)

The Power P within a particular sea state (combination of H;and T.) can be evaluated

by substituting the Hg and T. into equations similar to those describing monochromatic

seas (Equation 2.4), giving:

P (kW/m) = 0.49 H T.

Equation 2.5

The average annual power level for a location can be determined by using the power P

within each sea state and it’s Weighting Factor W which is the number of times that

that particular sea state occurs:

Pave (kW/ m) =

> PiW;
2 Wi

Equation 2.6
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where sea states with power levels P; occur W; times per year. The annual average
power level available in kilowatts per metre of wave front (kW/m) is commonly used
to present wave energy resource. Table 2.2 indicates how the power level for a deep
water location off the Scottish west coast is calculated using the wave scatter matrix

in table 2.1 and equation 2.6.

Wave
Significant Energy
Wave Period
Height Hs | Te
(m) (secs) 4 5 6 7 8 9 10 11 12 13 14 15 18 Total
0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 5 32 41 12 0 0 0 0 0 0 0 0 920
1.5 0 83 251 340 309 99 22 0 0 0 0 0 0 1104
2 0 108 435 521 706 529 157 43 24 0 0 0 0 2523
25 0 15 459 750 784 827 521 101 37 0 0 0 0 3494
3 0 0 212 772 953 913 838 388 106 0 0 0 0 4181
3.5 0 0 0 630 1008 1188 960 792 144 78 0 0 0 4802
4 0 0 0 220 1129 1341 1098 949 470 102 0 0 0 5308
45 0 0 0 69 873 1429 1191 982 714 387 0 0 0 5646
5 0 0 0 0 392 1654 1593 1213 1029 478 172 0 0 6529
5.5 0 0 0 0 119 934 1630 1304 889 385 208 0 0 5470
6 0 0 0 0 0 476 1411 1358 847 459 247 0 0 4798
6.5 0 0 0 0 0 186 1035 1139 994 538 290 0 0 4182
7 0 0 0 0 0 0 720 1056 576 624 336 0 0 3313
7.5 0 0 0 0 0 0 276 910 662 717 386 0 0 2949
8 0 0 0 0 0 0 0 690 753 815 439 0 0 2697
8.5 0 0 0 0 0 0 0 389 850 920 0 0 0 2160
9 0 0 0 0 0 0 0 0 953 516 556 0 0 2024
9.5 0 0 0 0 0 0 0 0 531 575 0 0 0 1106
10 0 0 0 0 0 0 0 0 588 637 0 0 0 1225
1 0 0 0 0 0 0 0 0 0 77 830 889 0 2490
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TOTAL 0 211 1390 3343 6284 9576 11451 11315 10165 8002 3463 889 0 66090
Average Annual Wave Power (kW/m) 66.6

Table 2.2: Displays the equivalent wave power level P; for each sea state represented
in the wave scatter matrix in Table 2.1 (calculated using equation 2.5) multiplied by
its weighting factor Wi. The annual average wave power level (kW/m) for that
location is then calculated by dividing the sum of products by the sum of all weighting

factors giving a value of 66.6 kW/m (equation 2.6).

2.4 Wave Direction

The direction of the waves in real seas changes constantly according to the direction
of weather systems and wind. In certain areas where a predominate wind blows, such
as the prevailing westerly wind common to the British Isles, the waves will also move

in a predominate direction.
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Directional Distribution
of Incoming Wave power

210°

Figure 2.1 Annual Wave Direction Rose for a deepwater location off the west coast of

Scotland (57°N, 9°W). Source: WERATLAS.

Wave direction can have a major effect on the design and captured efficiency of
WECS. The Wave Direction Rose can be used to present the directional distribution
of Incoming wave power for a certain location. For example, the direction rose in
figure 2.1 presents the directional distribution for a deep water location which
experiences an average of 65 kW/m of wave power. This indicates that over 75% of
waves come from bearings between 240° to 300°. The same information is presented

in tabular format in table 2.3.

The effect of the spread in wave direction on the amount of power that can be
intercepted by a unidirectional WECS in random seas can be represented using a
Directionality Factor. Multidirectional WECS installed in isolation, which are
capable of changing their orientation or capturing waves from any direction, do not
require directionality factors. However for arrays that are deployed in lines
perpendicular to the predominate wave direction, a change in wave direction may
effect the power output due to the Shadowing Effect of devices “up wave” (see section

3.5).
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Direction Mean Mean
(from) Direction Power
% (kW/m)
0 deg(North) 4.8 3.09
30 deg 2.2 1.14
60 deg 0.9 0.46
90 deg(East) 0.6 0.27
120 deg 0.9 0.49
150 deg 1.2 1.12
180 deg(South) | 2.9 2.54
210 deg 8.6 7.76
240 deg 22.3 14.96
270 deg(West) | 35.3 18.53
300 deg 14.3 10
330 deg 7 4.77
All Directions 100 65.43

Table 2.3 Annual Directional Distribution of Mean Wave Power for deepwater

location west of Scotland (57° N, 9° W). Source: WERATLAS.

2.5 Wave Energy Resource

The Wave Energy Resource is the entire amount of energy that is stored within the
waves in an area of ocean in deep or coastal waters. The Accessible resource is the
amount of this resource that can be captured and converted into useful energy taking
into account technical, economic and environmental constraints. The Technical wave
energy resource is the total amount of electricity that can be converted from wave

energy regardless of economics, taking into account technical factors.

Several studies investigating the deepwater, nearshore and shoreline resources aiming
to identify the best sites to deploy WECS technology and estimate the size, for

example:

¢ 120 GW located on the west and north coasts of United Kingdom [6]
e 25 GW surrounding Ireland’s north, west and south coasts [14]

¢ 10 GW around Portugal of which 5GW is exploitable [15]

e 320 GW around Europe [7]

e 2 TW globally [8].

The Economic resource, which is lower than the technical resource, incorporates

whether the WECS used to extract the energy is economically competitive with other

forms of existing electricity generation. So far a number of economic assessments
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have been completed, which identified the size of potential wave energy markets

taking into account competing sources of electricity:

Garrad Hassan assessed Scotland’s resource in 2001 [16]. The study
concluded that 13.8 GW of generation could be installed for under 7
pence/kWh for both 2010 and 2025 unit costs at 8 % and 15 % discount rates.

The global market is assessed by Thorpe in 1999 indicated that if the wave
energy devices performed as predicted, then their economic contribution
would be over 2000 TWh/year by the year 2025 [9]. This corresponds to a
capital investment of over £500 billion based upon the economic assessments
of shoreline, nearshore and offshore technology including the Islay Limpet,

Osprey OWC and Salter Duck.
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2.6 Global Resource

The global wave energy resource is taken to be to total power intercepted by a line
along the coasts of countries facing major oceans. The deepwater resource is
estimated at approximately 1.3 TW [17]. This estimate avoids assuming advanced
arrays such as devices located in the mid-Atlantic ocean and ignores the small scale
resource in seas such as the Baltic and Mediterranean. The annual average wave
power levels (kW/m) measured for certain locations around the world show the
resources distribution as in figure 2.2. The highest power level — the largest resource
— exists along the parallels of latitude of approximately 55° North and South of the
Equator.

T3
&,

70

Figure 2.2: Global distribution of wave power levels in kW/m of wave crest length.

Source: [18].
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2.7 European Resource

Europe’s western shores are positioned at the end of a long fetch of the Atlantic
Ocean. The predominately westerly winds generate stormy wave conditions giving
rise to a large European wave energy resource. The total resource has been estimated
at some 320 GW [7]. Figure 2.3 indicates the average annual power levels around
Europe. The west coast region of Ireland experiences some of the highest levels,
Scotland and Iceland experience equally high levels and Norway and Portugal also

have a sizeable resource.

Figure 2.3: European distribution of wave power levels in kW/m of wave crest length.
Source: WERATLAS. Averages are based upon on wave height and period
measurements from 1987-t0-1994 using the UK Met Office’s European Wind-Wave
Model.

2.8 Data Sources

To assess the economic wave energy resource for Europe, the European wave energy
resource must be modelled. The available resource can be calculated by measuring

and recording wave conditions — using wave scatter matrices and wave direction roses
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to present this data — at several locations over a period of time and then calculating
annual average power levels — using techniques already described. The parameters
required: wave height, wave period and wave direction, can be collected from a

number of sources including:

e Physical measurement using Waverider buoys fixed into position using

moorings and transmitting data in real time using radio or telecommunications.
* Wave condition estimates based upon models of wind speed and direction.

e More advanced theoretical techniques using weather models calibrated against

Satellite-derived and in-situ data.

The frequency of the measurement and the overall period at which the data is
collected, will effect accuracy and determine whether the data is representative of the
wave climate at that location. Although, the data is averaged over an annual period,
there is a degree of uncertainty because the actual sea state over the measured period
may have been unusually calm or stormy compared to the climate in the years before

or after the measurements are taken.

2.8.1 European Wave Energy Atlas (WERATLAS)

The WERATLAS [19] provides a comprehensive set of wave data for 85 grid point
positions around Europe. Significant wave height, wave energy period and directional
data are available in wave matrix, wave rose and tabular format, averaged over
seasonal and annual periods. The wave data is from the UK Met Office Wind-Wave
Model data set from 1987 to 1994. This data is not ideal for assessing the European
resource because the UK Met Office models are thought to underestimate swell waves
which, in Western Europe, are an important contribution to the overall resource and of
particular importance to wave energy conversion. 23 of the 85 data points lie within

the area analysed in this assessment outlined in section 6.1.

2.8.2 UK Met Office, European Wind-Wave Model (WAM)

The UK Met Office is requested for sets of wave height, period and directional data
for 50 locations around Europe, summarised over a 4-year period, from their latest 3rd
generation European Wind-Wave model [20]. The wave parameters are estimated

using wind speed and direction measurements and advanced modelling techniques.
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The cost for this data is considered too expensive for the purposes of this study [21].
For example, for 50 grid points for 5 years the cost equates to:

e 3-hourly data = £75,000

e 6-hourly data = £50,000

¢ 12-hourly data = £25,000

2.8.3 British Oceanographic Data Centre (BODC)

The BODC provided the complete data set of wave measurements from their
Waverider buoys positioned around the British Isles. The data sets are made up of
significant wave height, wave energy period and directional data measured over 2 to 5
year periods. Waverider buoys are thought to over estimate calm conditions.
Unfortunately the data sets are largely incomplete and attempts to retrieve the
complete data sets are unsuccessful. The data is not used to model the resource. For
the location of these buoys and for more information on these service readers should

refer to [22].

2.8.4 Oceanor, Eurowaves

The Eurowaves project completed in 2001 by Oceanor provides the wave data
required for locations — selected by Oceanor — within the area on interest [23].
Eurowaves uses data from the European Centre for Medium-range Weather Forecast
calibrated against Satellite-derived and in-situ data giving the most accurate wave data
available for the European region. Eurowaves provides the preferred data source
however the project budget could not justify the cost for the data requested [24]. For

example, a set of data for 10 points would cost €3,490.

2.8.5 Selected Source

Access to wave data for Europe is expensive. Due to a limited budget, this
assessment selected the WERATLAS to supply the wave data: significant wave
height, energy period and directionality, averaged over an 8 year period (1987 to
1994) from the UK Met Office Wind-Wave Model. Wave Scatter Matrices for 85

grid points within European waters are collected.
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2.9 Resource Assessment Methodologies

An assessment methodology outlines how something is assessed, in this case how the
economic wave energy resource is assessed. Previous assessments, for example,
Thorpe’s ‘Brief Review of Wave Energy’ [9], have applied the simple technique of
measuring the commercial viability of wave energy by predicting the cost of
electricity generated by potential WECS in terms of pence/kWh. The steps taken to
calculate this measure are outlined in figure 2.4. The methodology overview here is
device independent; however, certain aspects must be performed using different
techniques because of the design of the device (e.g. point absorber versus OWC).
This methodology was applied to shoreline, nearshore and offshore devices being
developed in the UK — the Islay Limpet, the Osprey OWC and the Salter Duck — using
the latest information available at the time. The study concluded that, if the wave
energy devices performed as predicted, then they could generate over 2000TWh/year
by the year 2025. This corresponded to a capital investment of over £500 billion.
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Figure 2.4: Example of a methodology for assessing the economic wave energy

resource.

2.10 Resource Surface

A common technique to represent the wave energy resource is to construct a Resource
Surface. This modelling technique bases the resource values on a set of gridded wave
data (e.g. significant wave height, wave energy period, or average power levels) and
interpolates these values using a GIS computer program to produce a GIS Raster
surface, generating a value for each cell based upon its orientation to the original
gridded data and the type of interpolation algorithm applied. Barriers and inner or
outer bounds can also be incorporated to give a more realistic model, for example, to
take into account shallow depths or coastline. The result is a graphical representation,
as displayed in figure 2.5, which is very useful for visualising the wave energy

resource and identifying the best locations to install devices.
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Figure 2.5: Wave Energy Resource surface representing the annual average power

level in British waters. Published by the UK Department of Trade and Industry in
2004 as part of the Atlas of UK Marine Energy Resources [25].
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3 Technology

3.1 Technology Selection

The Wave Energy Capture System (WECS) selected for this assessment is based upon
the current stage of development at the time of this assessment and the availability of
technical and economic data. Devices that are currently being demonstrated using
full-scale prototypes are preferred due to the availability of measured data as opposed
to estimated data. The availability of accurate data is also very important. Data
presenting the device’s energy conversion performance is required if the technical
resource is to be accurately assessed. For the purposes of determining the amount of
power converted by a device in different sea states, a WECS power conversion matrix
is required for the assessment methodology proposed in this project (see section 3.2).
Equally, capital and annualised cost estimates for the commercially manufactured
design are required. Ideally, data should be independently verified to ensure
soundness and where possible cost estimates from sources other than the developer
should be obtained to provide realistic and optimistic cost scenarios. The technology

considered in this study is summarised in this section.

3.1.1 Pelamis WECS
In 2004, Ocean Power Delivery Ltd began demonstrating a full-scale 750kW

prototype of their Pelamis wave device [4]. An artist’s impression of this wave
device deployed at sea in multiple arrays is shown in figure 3.1. The grid-connected
prototype is installed at EMEC in Orkney, Scotland. The device’s estimated
performance is represented using a power matrix [26] displayed in figure 3.2. Cost
estimates for the commercial version are available which include a broad range of
costs of components and array related costs [27, 16]. Aspects of the Pelamis R&D
program have been independently verified by W.S. Atkins Ltd.
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Figure 3.1: An artist’s impression of Ocean Power Delivery’s Pelamis wave device

deployed at sea in multiple arrays.

The Pelamis is an Attenuator wave device. It is secured in position using a flexible
mooring system. The flexible structure of four elements, each approximately 30 m
long, connected by hydraulic joints allows the device to change direction with the
waves. No directionality factor is applied to this multidirectional device. The
Pelamis WECS is selected for this assessment because of its advanced stage of
research, development and demonstration, the availability of a power conversion
matrix. Estimates of the device’s capital cost and operation and maintenance costs are
obtained from the developer and from OXERA Consulting LTD, an independent

consultant. The costs are included in section 3.8.

3.1.2 Wave Dragon
A full-scale prototype of the Wave Dragon WECS is being tested in Denmark [28].

No power matrix or detailed data representing the devices wave energy conversion
behaviour is available at the time of this assessment. Only very general cost estimates

are available.

3.1.3 WavePlane

The WavePlane is an overtopping WECS, which creates a water vortex to turn
turbines [29]. WavePlane International AS has developed the device over the past 7
years in Denmark. A full-scale prototype is being developed by Caley Ocean Systems
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who aimed to test the device at the EMEC in August 2004. No power matrix or
detailed data representing the devices wave energy conversion behaviour is available

at the time of this assessment. Required cost estimates are not available.

3.1.4 Archimedes Wave Swing (AWS)

The Archimedes Wave Swing (AWS) is a large device fixed to the seabed using a
buoyant air filled chamber to bob up and down with the waves, which in turn
generates electricity [30]. Initially developed in the Netherlands, a full-scale
prototype is being tested in Portugal. Due difficulties experienced with installation
onto the seabed, demonstration has been delayed. No power matrix or detailed data
representing the devices wave energy conversion performance is available at the time

of this assessment. Only general cost estimates are available.

3.1.5 Limpet OWC

The demonstration of the Limpet OWC has shown that the cost involved with
shoreline wave energy conversion greatly outweighs the potential economic benefits
[31]. The shoreline and nearshore wave energy resource around Europe’s shores is
considered to be much lower than the deepwater resource [32]. Therefore, this

assessment focused on deep water WECSs.

3.2 Power Matrix

The actual amount of available wave power that can be captured using a WECS can
be established using the Power Matrix representation presented by the EMEC [13].
The Pelamis WECS power matrix is shown in figure 3.1. The matrix presents the
amount of electricity that can be converted by an individual WECS unit (kW) in

different sea states (different combinations Hyand T.).
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Figure 3.2: The Pelamis 750kW WECS power matrix represents the amount of power
generated for different sea states (different combinations of significant wave height

and wave energy period). Source: [26].

3.3 Average Annual Power Capture

Therefore, the average annual power captured per unit, P,y (kW/Unit) for a specific
location can be determined by multiplying each weighting factor, W, in its wave
scatter diagram (section 2.2) by the corresponding captured power value, P, in the
WECS power matrix and then dividing the sum of all products by the sum of all

weighting factors:

> PiW;
2Wi

P.ye (kW/Unit) = Equation 3.1

where sea states where power capture equals P; occur W;j times per year. To ensure

compatibility, both matrices must use the wave data using similar ranges.

3.4 Shadowing effect and shadow zone

WECS will be deployed in arrays made up of parallel rows of devices, perpendicular
to the predominate wave direction — similar to offshore wave farms. In a simple wave

model neglecting three-dimensional scattering of waves, the line of WECSs at the
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front of the array will absorb energy from the waves and thus reduce the power flux
available to the WECS behind. For example, if a Pelamis WECS is assumed to
capture 40% of incoming energy, and the spacing is 40 times the devices diameter,
then only 1% of the incoming energy will be absorbed by each row. For the n row in
a array subjected to unidirectional waves, the available power flux will be attenuated
by 0.99 ™', Therefore, the second row in the array will receive 99% of the incoming
energy. For ideal unidirectional wave conditions with sinusoidal waves, a 10-row-
array will capture approximately 10% of the total available power flux. To minimise
this shadowing effect, the line of devices must be perpendicular to the predominate
direction of incoming swell. Changes in wave direction may increase the effect of
shadowing.  For example, arrays configured in long rectangles positioned
perpendicular to predominate wave direction would be significantly affected by a 90°
shift in direction. Different layouts such as circular arrays arranged in hexagonal

patterns may reduce shadowing effects [33].

As wave fields pass over a WECS, energy is absorbed, reflected and deflected
creating a shadow zone in the immediate wake of the device. If devices are located
too close together so devices lie in the shadow zone of other “up wave” devices, then
the energy captured decreases. Therefore spacing of adjacent devices must be
sufficient to allow this area of wave inactivity to dissipate due to the process of wave

diffraction.

3.5 Wave Regeneration

European waters experience prevailing westerly winds, therefore WECS arrays
deployed up wave over the ocean surface will shadow the ones behind them in the
same way that lines of WECS may shadow other devices within individual arrays.
However, this additional shadowing effect can be countered by leaving a sufficient
distance between arrays to regenerate waves from wind — the primary source of wave
energy. Assuming, arrays are positioned in straight rows perpendicular to a constant
wind direction, the distance required for wave regeneration can be calculated using a
relation between the significant wave height, Hs, wind speed, V and the length of

fetch, F [34]:
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For example, assume an initial significant wave height of 3.5 m is reduced to 3 m
immediately behind the first row of WECS arrays. For a wind speed of 12 m/s, the
required fetch to achieve 3.5 m waves in deep water is 208 km. The corresponding
fetch for a significant wave height of 3 mis 178 km. Thus the attenuated waves need

a distance of 30 km to regenerate.

3.6 Population Density and Array Configuration

To assess the annual output of multiple Pelamis WECS deployed in arrays, the
population density — the number of devices that can operate within a specified area —
must be determined. Devices must not be too densely packed or shadow zones may
affect the overall output. On the other hand, density should be minimised to reduce
array footprint and conflicts with other sea users. Also, longer lengths of transmission
cabling would be necessary to interconnect the array, thus raising the cost of

electricity produced.

Figure 3.2: OPDs planned configuration for 30 MW Pelamis WECS arrays.

OPD plan to deploy arrays of 39 Pelamis WECSs in three parallels perpendicular to
the wave direction. This configuration, shown in figure 3.2, constitutes arrays of
approximately 30 MW in capacity. Devices would be spaced 200 m apart to prevent
devices shadowing other devices [35]. As the Pelamis is 120 m in length, irrespective
of wave direction the minimum distance to the next device is 80 m. This is
considered enough to allow shadow zones, which occur in the wake of the device, to
dissipate due to wave diffraction and allow any variation in wave power directly

behind the line of device to disperse, becoming constant. Subsequently, ~30 MW

38



arrays would be 2600 m by 400 m giving a population density of approximately 30

MW/km®.
Row Units Width Spacing m 200
m Units 39
1 14 2600 Rows 3
2 13 2400 Breadth m 400
3 12 2200 Area km? 1.04

Table 3.1: OPD Pelamis configuration

Table 3.2: Pelamis array properties
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Figure 3.3: The shadowing effect is investigated for different wave conditions and
assuming the OPD array layout to determine the array density to be using in the

European resource assessment.

To determine the array density to be selected for the assessment, the shadowing effect
is investigated for different wave conditions assuming a constant wind speed of 12
m/s and the OPD array layout. The analysis is completed using Microsoft Excel as
illustrated in figure 3.3 and is included in Appendix 14.4. Due to the predominant
wind direction experienced in European waters and the flexibility of the Pelamis

device that allows energy to be captured from different wave directions, the required
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fetch is estimated assuming unidirectional wave conditions. Neglecting array effects
on wave period, the effect of wave height and equivalent wave power capture is
identified. The power captured per unit is estimated using a linear interpolation of the
Pelamis power matrix included in Appendix 14.4. The following scenarios assume

constant wave power received across the width of each line of WECS.

3.6.1 2.5 m significant wave height, 8 sec wave period, 24.5 kW/m wave

power

Energy Energy behind

Row Units Width | Hs Te Available Energy Absorbed by Row Row

Capacity Y%

m m secs | KW/m KW kW/Unit _ factor kW Absorbed | kKW kW/m
1 14 2600 250 8.00 | 24.50 63700 | 238.00 31.73% 3332 5.23% 60368  23.22
2 13 2400 243 8.00 | 23.22 60368 | 225.96 30.13% 2937 4.87% 57431 22.09
3 12 2200 2.37 8.00 | 22.09 57431 | 215.64 28.75% 2588 4.51% 54843 21.09

In this sea state, immediately behind the array, the wave height is 2.32 m and wave
power is 21 kW/m. Of the 24.5 kW/m — 63700 kW — of original energy flux, 8857
kW is absorbed or 14 %. The fetch required to regenerate the wave height of 2.5

metres is 10.7 km.

3.6.2 3.5 m significant wave height, 9 sec wave period, 54.02 kW/m

wave power

Energy Energy behind
Row Units Width | Hs Te Available Energy Absorbed by Row Row
Capacity Y%
m m secs | kW/m kKW kKW/Unit  Factor kw Absorbed | kW kW/m
14 2600 350 9.00 | 54.02 140459 | 377.00 50% 5278 3.76% 135181 51.99
13 2400 343 9.00 | 51.99 135181 | 365.10 49% 4746 3.51% 130434 50.17
12 2200 3.37 9.00 | 50.17 130434 | 354.90 47% 4259  3.27% 126175 48.53

In these conditions, the wave height is 3.32 m and wave power is 48.5 kW/m
immediately behind the array. 14283 kW is absorbed — 10.2 % — of the original 54
kW/m of energy flux — 140459 kW. The fetch required to regenerate the wave height
of 3.5 metres is 10.8 km.

3.6.3 4.5 m significant wave height, 7.5 sec wave period, 74.4 kW/m

wave power
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Ro Unit  Widt Energy Energy Absorbed by Energy
w S h Hs Te Available Row behind Row
Y%
sec | kW/ kW/Uni  Capacit Absorbe kw/
m m s m kW t y Factor kW d kW m
4.5 74.4 19348 907 18441 70.9
1 14 2600 | O 750 | 2 9 648.00 86.40% 2 4.69% 7 3
4.3 70.9 18441 813 17628 67.8
2 13 2400 9 750 | 3 7 625.56  83.41% 2 4.41% 4 0
43 67.8 17628 728 16899  65.0
3 12 2200 | O 750 | 0 4 607.20 80.96% 6 4.13% 8 0

In this wave climate, the wave height is 4.2 m and wave power is 65 kW/m
immediately behind the array. 24491 kW is absorbed — 12.6 % — of the original 74.2
kW/m of energy flux — 193489 kW. The fetch required to regenerate the wave height

of 4.5 metres is 17.5 km.

3.6.4 7 m significant wave height, 11 sec wave period, 264.1 kW/m wave

power

Energy Energy behind

Row Units Width | Hs Te Available Energy Absorbed by Row Row
Capacity Y%
m m secs kW/m kW kW/Unit  Factor kW Absorbed | KW kW/m

14 2600 7.00 11.00 | 264.11 686686 | 750.00 100% 10500 1.53% 676186 260.07
13 2400 6.95 11.00 | 260.07 676186 | 740.80 99% 9630 1.42% 666556 256.37
12 2200 6.90 11.00 | 256.37 666556 | 731.60  98% 8779 1.32% 657776  252.99

In this sea state, the wave height is 6.85 m and wave power is 253 kW/m immediately
behind the array. 28910 kW is absorbed, 4.2 % of the total 686686 kW wave power
available — 264.1 kW/m. The fetch required to regenerate the height of 7 metres is 8.8

km.

3.7 Selected Configuration and Device Density

The scenarios above show the OPD configuration would only absorb between 4% and
14% of the available energy flux for a range of sea states. The distances required to
regenerate the wave heights range from around 9 to 18 km. However, the shadowing
effect on arrays located behind is insignificant with 96 to 84 % of wave power still
available. Therefore, a wave regeneration distance of 9 km in front of each array is
considered adequate for the assessment. Assuming each 30 MW array takes up
approximately 1 km®, each 10 km cell contains 10 arrays. This gives a total installed

capacity of 300 MW/cell and an overall cell population density of 3 MW/km”. This

density would leave 9 km free in front of the devices within each cell to allow
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10 km

shipping vessels to safely navigate. The selected array layout for the model is shown

in figure 3.4.

A
10 km
10 km model cell 9 km ] oTkm
% |
v 10 km
EEENEEEEEEE
wave energy arrays multiple cells

Figure 3.4: The selected device density and distance between arrays.

3.8 Technology Costs

Cost estimates are collected from OPD and OXERA consultants. These provided a

lower and upper bound cost scenarios for the economic assessment respectively. The

OPD estimates are considered optimistic, therefore, more weight is given to the

OXERA costs as they are considered to be more representative [39]. The fixed costs

included:

3.8.1

Planning and approval

Pelamis WECS

Mooring System

Array electrical interconnection
Installation

Connection to the onshore grid

OPD Costs

OPDs more ambitious cost estimates [16] assume the “learning by doing” principle of

cost reduction, where the capital cost per unit is reduced by half when the number of

units produced doubles. The estimates are based upon a project size of 250MW and

the best information available to OPD.
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Year Capital O&M
£/kW £/kw/yr

2010 750 37.5

2025 500 25

Table 3.1: OPD capital and annualised operation and maintenance costs

3.8.2 OXERA Costs

OXERA cost estimates displayed in table 3.2 are more conservative [40]. The lower

bound is selected to represent the Pelamis WECS.

Year Capital Oo&M

£/kW £/kW/yr

Lower Upper Lower Upper

bound bound bound bound
2004 1500 1800 60 72
2010 964 1157 39 46
2020 866 1039 37 44
2025* 856 1027 37 43

Table 3.2: OXERA wave device cost profile. *Costs for 2025 are extrapolated.

3.8.3 Submarine Cable Costs

The cost of additional transmission infrastructure required to connect WECS arrays
together and transfer the energy ashore is not included in the above costs. It is
assumed that HVDC transmission technology rated at 440kV would be utilized. Cost
estimates shown in table 3.3 for the purchase and installation of submarine cable per

metre are obtained from EConnect Ltd [42].

kV £
Installation
Cost/m cost/m+
33 100 250
132 300 250
440 500* 250

Table 3.3: Cost estimates for Submarine cable. * Costs for 440kV are extrapolated. +
Installation costs may vary by +50% based upon the nature, depth and slope of the

seabed.
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4 Economics and Finance

4.1 Electricity Markets

Based upon the European wave energy resource outlined in 2.7, wave energy
generation could develop within the electricity markets of several countries,
including: Denmark, France, Germany, United Kingdom, Iceland, Ireland, Norway,
Netherlands, Portugal and Spain.
The extent of growth and share within these separate markets will depend on the:

1. Competitiveness of the cost of electricity compared to other generation

2. Feed-in tariffs and subsidies available
Separate market mechanisms are already available within these countries that are
helping Renewables to penetrate these markets and reduce the cost of generation, in
particular wind [42]. The current status of available subsidies is outlined by the
European Renewable Energy Foundation who identified the market price and
premium for a range of Renewables throughout Europe based upon 2003 market data

[43]. The prices and premiums available for marine energy are detailed in table 4.1.

€/ MWh £/ MWh
Country Market Price Premium__ Total Market Price Premium__ Total
Belgium 31.00 90.0 121 21.4 62.1 83.5
Denmark 34.60 48.0 82.60 23.9 33.1 57.0
United Kingdom 28.00 66.0 94 19.3 45.5 64.9
France 83.8 57.8
Germany 88 60.7
Ireland 60 41.4
Netherlands 68 46.9
Norway* 34.6 29.0 63.6 23.9 20.0 43.9
Portugal 225 155.3
Spain 35.4 26.7 62.1 24.4 18.4 42.8
Sweden 34.6 29.0 63.6 23.9 20.0 43.9
Average 33.0 48.1 92.0 22.8 33.2 63.5

Table 4.1: The prices and premiums available for marine energy in 2003. Where no
premium or price is available for wave energy, the values are taken for offshore wind.

*No value for Norway is available, so values from Sweden are used.

There are also plans within Europe to harmonise policy and unite individual
electricity markets into a single Internal Electricity Market (IEM) by 2010 where a

single price and premium framework is in place for all European countries [44].
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For the purposes of this assessment two market scenarios are investigated:

1. Internal Electricity Market with a single price and subsidy for wave energy

2. Regional Electricity Market using existing separate prices and premium

frameworks

4.1.1 Internal Electricity Market (IEM) — Price and Premium

The IEM electricity price selected is based upon OXERA consultant’s UK market

price profile from 2004 to 2025 displayed in table 4.2 [40]. The total price includes

the EU Emission Trading Scheme the embedded benefits and Climate Change Levy

exception certificates.

market mechanism throughout Europe.

This is considered to be a conservative representation of

The selected European renewable price,

which is slightly lower than the average of 2003 European prices in table 4.1, is

considered to be around 20% lower than the wholesale price [39].

Wholesale CCL Selected

Price (inc. Embedded Excemption | Total UK Renewable
Year ETS) benefits Certificates | Price Price*

£/MWh £/MWh £/MWh £/MWh €MWh | £MWh €/MWh
2004 20 2.5 3.87 26 38 22 32
2005 23 25 3.87 29 43 25 36
2006 23 25 3.87 29 43 25 36
2007 23 25 3.87 29 43 25 36
2008 23 25 3.87 29 43 25 36
2009 24 2.5 3.87 30 44 26 37
2010 24 2.5 3.87 30 44 26 37
2011 25 2.5 3.87 31 45 26 38
2012 25 2.5 3.87 31 45 26 38
2013 25 25 3.87 31 45 26 38
2014 25 2.5 3.87 31 45 26 38
2015 25 25 3.87 31 45 26 38
2016 25 25 3.87 31 45 26 38
2017 25 2.5 3.87 31 45 26 38
2018 25 25 3.87 31 45 26 38
2019 25 25 3.87 31 45 26 38
2020 25 25 3.87 31 45 26 38
2021 25 2.5 3.87 31 45 26 38
2022 25 2.5 3.87 31 45 26 38
2023 25 25 3.87 31 45 26 38
2024 25 2.5 3.87 31 45 26 38
2025 25 25 3.87 31 45 26 38

Table 4.2: UK electricity price profile from 2004 to 2005. Source: [40].

*Current

wholesale electricity prices for Renewable energy source are approximately 20%

lower than the figure given by OXERA.
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The UK total price for electricity generated from offshore wind, including subsidy, is
approximately £50/MWh in 2004. Therefore, an entry price of £55/MWh is
considered conservative and achievable for wave energy [39]. The selected price and
premium is displayed in table 4.3. Selecting an accurate subsidy is very difficult as
this depends on several factors such as current market share, competitiveness of the
cost of electricity supplied compared to other generation, the level of market pull
necessary to create the market size desired, objections from existing generator
companies and the effect on the existing electricity market. The influence of different
levels of subsidy on the potential market is presented in the Sensitivity Analysis in

section 8.

4.1.2 Regional Electricity Market — Price and Premium

The separate prices and premiums for wave energy in the countries listed above are
based on the EREF RES-E Market prices and frameworks available in 2003 for
marine energy as detailed in table 4.1. Where no premium or price is available for
wave generation, the values are taken for offshore wind, which is considered to be

representative for wave energy.

4.2 Transmission tariffs

The cost of transferring electricity across the existing transmission system to the
customer is included within a transmission tariff, which generator companies must
pay to the utility that own the transmission infrastructure. Tariffs may vary from
country to country and from region to region within a country in relation their
distance from centres of load population. In some countries, generators may not pay
any tariff such as in Spain and Portugal, or, actually receive funds if located close to

load centres such as in the United Kingdom.
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Country Transmission Tariff
Belgium 0
Denmark 1.076
United Kingdom | 2.32
France 0
Germany 0
Ireland 1.253
Netherlands 0.979
Norway 1.943
Portugal 0
Spain 0
Sweden 1.077
Average 0.8

Table 4.4: Transmission tariffs in €/ MWh based upon consuming a constant load of
15 MW during 16 hours (from 0800 to 2400) in working days, and no load in the

weekends (approximately 4200 hours per year), for European countries in 2002.

Transmission tariffs can be charged per unit of electricity generated per hour. Tariffs,
displayed in table 4.4, are obtained from a European Union study, which collected the

tariff data for all European countries in 2002 [45].

4.3 Internal Rate of Return

The Internal Rate of Return (IRR) of a Capital Budgeting project is the discount rate
at which the Net Present Value (NPV) of a project equals zero. The IRR decision rule
specifies that all independent wave energy projects with an IRR greater than the cost
of capital should be accepted. When choosing among mutually exclusive projects, the
project with the highest IRR should be selected (as long as the IRR is greater than the

cost of capital).

The determination of the IRR for a project, typically, involves trial and error or a
numerical technique. (The IRR function within Microsoft Excel is used to calculate

the IRR for wave energy projects throughout in this assessment).

The Net Present Value (NPV) of a Capital Budgeting project indicates the expected
impact of the project on the value of the company. Projects with a positive NPV are
expected to increase the value of the company. Thus, the NPV decision rule specifies

that all “independent” projects with a positive NPV should be accepted. When
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choosing among “mutually exclusive” projects, the project with the largest (positive)

NPV should be selected.

4.4 Required Rate of Return

The Required Rate of Return (RRR) is the financial return on an investment required
to attract investors. If this return is too low then investors will invest elsewhere. RRR
can be estimated by taking into account the risk associated with the technology and
the project. Financial analysis of wave energy projects by WAVENet recommend
that real after-tax RRR should be no less than 10 % [46]. The current RRR for
offshore wind projects in the United Kingdom is around 12.5 %. As more technical
risk is associated with the untested offshore wave technology compared to offshore
wind, a RRR of 13% is considered realistic for wave power [39]. Therefore, the RRR
used in this assessment to calculate the potential market — the areas of the European
ocean where WECS arrays are commercially viable — are as follows:
® 10% optimistic rate

o  13% realistic rate

4.5 RRR and discount rate

Discount rates are used to estimate the present value of a project based on the
perceived risk of a project. Normally, discount rates of 8 % apply to project using
mature technology, whilst 15 % apply to developments with technical risk such as
wave power projects. The discount rate that should be selected to compare
technology cost should be based on the RRR associated with the technology’s risk.
Therefore, discount rates close to 10 % should be applicable to wave energy cost

estimates.

4.6 Currency

Sterling (GBP, £) and Euro (EUR, €) currency are both used during the economic
analysis. A fixed rate exchange is applied:

e 1.45 GBP-EUR

¢ (.69 EUR-GBP

Sterling is used to represent monies in the project report.
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5 Methodology Design

The methodology is required to provide a systematic and reusable approach to
calculate the wave energy resource for a given area of sea based upon on the resource,

technology and economic data input.

The overview of the methodology is outlined in figure 5.1. The methodology is made
up of data input, the necessary step to calculate the market size and data output. The
data input is denoted by clear rectangles with a black outline. Each step in the
methodology performs operations on the given input, represented by grey rectangles
with black outlines. The output of each operation is presented by a rectangular oval
with black outline. Operations located within blue areas are performed for each grid
cell within the assessment model. Data input is displayed on the left-hand side and
linked to one of the four steps that run from top to bottom. Data parameters are

transferred between steps in the methodology.
The methodology consists of the following steps and are explained in this section:

1. Get Technology Capacity Factor for each Wave Data Grid Point
2. Get Data Surfaces

a. Interpolate Capacity Factor Surface

b. Interpolate Depth Surface

c. Calculate Distance to Shore Surface
3. Get Internal Rate of Return (IRR)

a. Calculate Capital Cost

b. Calculate Annual Energy Output

c. Calculate Net Income

d. Calculated IRR
4. Get Market Size
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Figure 5.1: Overview of the assessment methodology. The first and second step focus

on energy related aspects of the assessment and the third and fourth performs the

economic tasks.
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5.1 Calculate technology capacity factor

The first procedure calculates the WECS capacity factor (also known as load factor or
capacity coefficient) for each gridded wave data point displayed in section 7.6. The
procedure is outlined in figure 5.2. The capacity factor is calculated by dividing the

actual energy captured by the devices Rated Power.

For each wave data grid point

Wave scatter
matrix (Significant WECS technology

wave height-Wave power me?trix
energy period) (kW/device)

——— Multiply |-

Y

Average Annual
Energy captured
(kW/device)

WECS technology
Average |- power rating

(kW /device)
Ga pacity factor grid poinD

Y
:1

Figure 5.2: The first step in the methodology calculates the technology capacity factor

for the wave device if installed at the location of the wave data.
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5.1.1 Data Input - Wave Data

Explained in section 2, the wave data should comprise of measurements of significant

wave height wave period recorded for a specific location of latitude and longitude.

This data should be annualised over the total period of measurement to represent the

sea state of a typical year. The number of data points will affect the quality of the GIS

model generated in the next step of the methodology. Hence, the obvious importance

of using as many data points as possible to improve the accuracy of the overall

economic assessment. An example of the data points obtained from the WERATLAS

utilised to assess the European wave energy resource in this study is displayed in table

5.1
Mean
Energy Standard Variation
Point Latitude Longitude Available Deviation Coefficient
Code Name Coordinate  Coordinate  (kW/m) (kW/m) (%) Data Source
ATL.12 GORRINGE BK 36.00 -12.00 33.39 6.34 19 WAM 1987 — 2005
ATL.13 LISBOA 39.00 -12.00 39.01 7.33 19 WAM 1987 — 2006
ATL.14 VIGO 42.00 -12.00 46.02 9.54 21 WAM 1987 — 2007
ATL.15 CHARCOT 45.00 -12.00 55 11.72 21 WAM 1987 — 2008
ATL.16 LA CORUNA 45.00 -9.00 50.22 11.83 24 WAM 1987 — 2009
ATL.17 GIJON 45.00 -6.00 44.15 10.85 25 WAM 1987 - 2010
ATL.18 ARCACHON 45.00 -3.00 32.59 8.22 25 WAM 1987 — 2011
ATL.19 OUESSANT 48.00 -6.00 47.35 11.84 25 WAM 1987 — 2012
ATL.20 LUNDY 51.00 -6.00 46.05 10.17 22 WAM 1987 - 2013
ATL.21 FASTNET 51.00 -9.00 53.4 11.91 22 WAM 1987 — 2014
ATL.22 SHANNON 51.00 -12.00 67.81 14.46 21 WAM 1987 — 2015
ATL.23 BELMULLET 54.00 -12.00 74.97 16.33 22 WAM 1987 — 2016
ATL.24 BARRA 57.00 -9.00 65.44 17.04 26 WAM 1987 — 2017
ATL.25 FAIR ISLE 60.00 -3.00 61.47 13.61 22 WAM 1987 — 2018
ATL.26 NORTH RONA 60.00 -6.00 57.44 1217 21 WAM 1987 — 2019
ATL.27 FAEROES 63.00 -6.00 59.91 11.72 20 WAM 1987 — 2020
ATL.32 AUK 56.23 2.03 21.3 5.95 28 Directional buoy 1984 — 1994
ATL.33 K13 53.13 3.13 10.67 1.4 13 Directional buoy 1984 — 1995
ATL.34 GORM 55.58 4.75 21.12 7.04 33 Non-directional buoy 1981-
ATL.35 UTSIRA 59.30 4.82 23.12 5.52 24 Frequency buoy 1974 — 1986
ATL.36 STAD 62.50 4.37 57.24 Insuf. Data Insuf. Data Directional buoy 1990 — 1991
ATL.37 HALTENBANKEN 65.10 7.40 42.37 8.51 20 Directional buoy 1980 — 1988
ATL.38 TRAENABANKEN 66.30 9.53 48.2 Insuf. Data Insuf. Data Directional buoy 1981 — 1984

Table 5.1: Wave data for 23 measured locations in the Northern Atlantic and the
North Sea.
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5.1.2 Data Input — Wave Scatter Diagrams

For each wave data point, the wave height measurements and energy period data
should be represented using a sea state scatter diagram (or matrix) characterising the
variation in sea state for each location in a typical year (the method for displaying
wave energy data as outlined in section 2.2). In this study, these are obtained from the

WERATLAS, an example of which is shown in table 5.2.

Significant | Energy
Wave Period
Height Hs | Te
(m) (secs) 4
0.0-0.5 0
0.5-1.0 0
1.0-1.5 0
1.5-2.0 0
2.0-2.5 0
2.5-3.0 0
3.0-3.5 0
3.5-4.0 0
4.0-4.5 0
4.5-5.0 0
0
0
0
0
0
0
0
0
0
0
0
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5.0-5.5
5.5-6.0
6.0-6.5
6.5-7.0
7.0-7.5
7.5-8.0
8.0-8.5
8.5-9.0
9.0-9.5
9.5-10.0
10-11.0
11-12.0 0

Table 5.2: The wave scatter diagram representing the wave conditions for a deepwater

location 57°N 9°W off the Scottish west coast obtained from the WERATLAS.
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5.1.3 Data Input — WECS Power Conversion Matrix

The actual amount of available energy that can be captured using the wave device unit
can be calculated using a Power Conversion Matrix (see section 3.2). The estimated
power conversion performance of the Pelamis device for typical wave conditions is

given in table 5.3.

Hs
(metres) | Te (seconds)

50 55 60 65 70 75 80 85 90 95 100 105 11.0 115 120 125 13.0

0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.0 0 22 29 34 37 38 38 37 35 32 29 26 23 21 0 0 0
15 32 50 65 76 83 86 86 83 78 72 65 59 53 47 42 37 33
2.0 57 88 115 136 148 153 152 147 138 127 116 104 93 83 74 66 59
25 89 138 180 212 231 238 238 230 216 199 181 163 146 130 116 103 92
3.0 129 198 260 305 332 340 332 315 292 266 240 219 210 188 167 149 132
35 0 270 354 415 438 440 424 404 377 362 326 292 260 230 215 202 180
4.0 0 0 462 502 540 546 530 499 475 429 384 366 339 301 267 237 213
4.5 0 0 544 635 642 648 628 590 562 528 473 432 382 356 338 300 266
5.0 0 0 0 739 726 731 707 687 670 607 557 521 472 417 369 348 328
5.5 0 0 0 750 750 750 750 750 737 667 658 586 530 496 446 395 355
6.0 0 0 0 0 750 750 750 750 750 750 711 633 619 558 512 470 415
6.5 0 0 0 0 750 750 750 750 750 750 750 743 658 621 579 512 481
7.0 0 0 0 0 0 750 750 750 750 750 750 750 750 676 613 584 525
7.5 0 0 0 0 0 750 750 750 750 750 750 750 750 750 686 622 593
8.0 0 0 0 0 0 0 0 750 750 750 750 750 750 750 750 690 625

Table 5.3: The Pelamis 750kW WECS power matrix representing the amount of
energy generated for different sea states. These figures are estimated values based

upon mathematical modelling and scale model tank testing.

5.1.4 Calculate average power captured and technology capacity factor

The WECS power conversion matrix indicates the power that can be captured for
different seas states. Therefore, the average annual energy captured per unit, Py
(kW/Unit) for an offshore location can be estimated by multiplying each weighting
factor, W, in the wave scatter diagrams for that location by the corresponding
converted power value, P, in the WECS power matrix and then dividing the sum of all

products by the sum of all weighting factors:

> Piw;
P.ve (kW/Unit) :W Equation 3.1
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To ensure compatibility, the scatter diagram and power matrix must represent the

wave data using similar ranges of wave height and wave period.

5.1.5 Data Output — Capacity factor grid points

The wave device capacity factor is then calculated by dividing P,,. by the devices
power rating. This is repeated for each wave data location. The complete list of wave
data including position of latitude and longitude, the average annual energy captured

(kW/unit) and capacity factors are then transferred to the GIS model.

5.2 Get Data Surfaces

The methodology uses gridded geographical data — data for a particular position of
latitude and longitude, for example measurements of sea depth or wave height. These
data sets are often limited in size due to the cost of acquisition. To represent the
entire area to be analysed, data surfaces can be interpolated from the original data sets
using Geographical Information Systems (GIS) interpolation techniques. A GIS
model is developed to represent and analyse the geographical-based wave resource
data. The GIS resource model is divided into grid cells. The GIS analysis is

explained in section 7.
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Figure 5.3: The second procedure in the methodology generates the GIS data surfaces

by interpolating capacity factors and depth, and calculating the distance to shore for

each cell in the resource model.

5.2.1 Interpolate Capacity Factor Surface

The second step in the methodology uses the GIS model to take the capacity factor
values calculated for each wave data grid point in the first step and interpolate values

for all cells within the GIS model. The GIS interpolation operation creates a surface
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representing the capacity factors. An average capacity factor is interpolated for each
model cell based upon its position relative to the original grid points and the type of
interpolation algorithm executed. This surface allows the energy captured by wave
energy arrays deployed within any cell to be estimated using the interpolated capacity

factor.

5.2.1.1 Data Input — Capacity factor grid points

The gridded WECS capacity factors calculated in the first step are input into the GIS

model.

5.2.1.2 Data Input — Areas to be Avoided (ATBA)

Environmental constraints that may restrict the deployment of WECS in certain areas
are incorporated. Any area that is designated by a European maritime authority is
avoided and excluded from the economic assessment. Areas to be avoided (ATBA)

including:
e Deep water shipping channels
e Traffic routing measures
¢ Inshore traffic zones
¢ Traffic Separation Arrays
e Explosives dumping grounds

The navigational risk associated with the amount of shipping activity in a particular
area is not included in this assessment. Areas of scientific interest are also not

incorporated.

5.2.2 Interpolate Depth Surface

The average depth must be calculated for each cell within the resource model so that
the cost of transferring the captured power onshore using submarine cable can be
calculated. The GIS depth surface can be interpolated from a gridded data set of

depths measurements, obtained from sources such as Admiralty Charts.

5.2.2.1 Data Input - Depth points (metres)

The number of gridded depth measurements input into the GIS model will affect the

accuracy of the GIS depth surface.
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5.2.3 Calculate Distance to Shore Surface

The distance to shore must be calculated for each cell within the resource model so
the cost of transferring the captured power onshore can be determined. A GIS map of
the area of shoreline to be assessed should be input into the GIS model so the distance

to the nearest shoreline for each cell can be calculated.

5.2.3.1 Data Input — European shorelines

A GIS map of Europe is input into the GIS model included in section 7.6.

5.3 Get Internal Rate of Return

The third step in the methodology calculates the internal rate of return for potential

wave energy arrays as shown in figure 5.4.

5.3.1 Calculate Capital Cost

The total cost to deploy WECS arrays is calculated for every cell within the resource
model. The fixed cost per MW is multiplied by the installed capacity (MW/cell) to
give the total fixed cost for each cell. The cells fixed cost is then added together with
the variable cost of submarine transmission cable to give the total capital cost for
every cell. The fixed costs (Cost/MW) included:

¢ Planning and approval

e Pelamis WECS

¢ Mooring System

® Array electrical interconnection

e Installation

¢ Grid connection onshore
The total submarine cable cost is calculated by multiplying the cost of purchasing and

installing per metre length of cable by the distance to shore and the depth of each cell.

5.3.1.1 Data Input

e Fixed costs (£)

e Depth surface (m)

e Distance to nearest shore surface (m)
e Submarine cable costs (£)

¢  WECS Population density (MW/Cell)
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Figure 5.4: The third step in the methodology calculates the internal rate of return for

potential wave energy arrays deployed in the selected area.
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5.3.2 Calculate Annual Energy Output (MWh)

The annual energy that could be generated by WECS arrays must be calculated for
each cell so the potential income can be estimated. The capacity factor for every 100
km® cell is obtained from the inputted capacity factor surface. This is multiplied by
the cell’s installed capacity (MW) and then by the hours in a year — 24 x 365.25 =
8766. To account for transmission losses, the annual output is multiplied by a factor.
To incorporate when the plant is not generating electricity due to maintenance work, a
system availability factor is also included, giving the total annual energy output in

MWh.

5.3.2.1 Data Input

e (Capacity factor surface
e  WECS Population density (MW/km)

® Losses and availability factor (%)

5.3.3 Calculate Net Income

The net income is required to calculate the Internal Rate of Return (IRR) described in
section 4.3. The annualised costs of operating the device array is input. The
annualised cost per MW is multiplied by the WECS population density, giving the
annual expenditure for each cell. The annual income is then calculated by multiplying
the annual output by the selected market price and subsidy displayed in section 4.1.

The expenditure is then subtracted from the income to give the net income.

5.3.3.1 Data Input

¢ Annual Output (MWh)

e Market Price (£/MWh)

e Market Premium (£/MWh)

e Technology Annualised O&M Cost (£/MW)

5.3.4 Calculate Internal Rate of Return (IRR)

The IRR described in section 4.3 is calculated for the WECS arrays that could be
deployed within each resource cell. Calculating the IRR allows all sites to be
considered, commercially viable cells to be identified based upon the Required Rate

of Return (RRR) and the potential market to be determined. To calculate the IRR the
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Capital Cost and annual cash flow for the arrays lifetime is required. The annual
income is based upon an estimated electricity price averaged over the developments
lifetime. The IRR is calculated for every cell within the resource model giving the

IRR surface. No form of tax is included in the methodology.

5.3.4.1 Data Input
e (Capital Cost
¢ Annual Output (MWh)
e Net Income (£/cell)

e Technology lifetime (yrs)

5.3.4.2 Data Output

o Internal Rate of Return Surface

5.4 Get Market Size

Comparing the IRR to the RRR in each cell identifies the potential market. If the IRR
is greater than or equal to the RRR, then the cell is considered to be a commercially
viable area to install wave energy arrays. The total annual output, market capacity
and capital investment equivalent to the number of commercially viable cells is then
counted giving the market parameters required. This process is illustrated in figure

5.5.
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Figure 5.5: The fourth procedure in the methodology determines the number of cells

within the resource model that are commercially viable if the IRR is greater than or
equal to the RRR, thus identifying the economic wave energy resource and potential

market.

5.4.1 Data Input

¢ Internal Rate of Return (IRR)
e Required Rate of Return (RRR)
e  WECS Population density (MW/km)

62



5.4.2

Data Output

Installed Capacity (GW)
Installed Cells
Total Annual Output (GWh)

Capital Investment (£)
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6 Methodology Implementation — Assessment of the
European Wave Energy Resource

The methodology presented in section 5 is implemented using Microsoft Excel to
analysis the numerical data and a Geographical Information System (GIS) to model
the geographical data. This assessment applies the methodology to the European
wave resource; however it can assess the economic viability of arrays installed in any
ocean area. This assessment also uses Ocean Power Delivery’s 750kW Pelamis wave
device; however any device can be applied provided a power conversion matrix is
available or similar data describing the device’s performance for a range of sea
conditions as required. The methodology design is independent of the
implementation and can be implemented using different tools and techniques to those

applied in this assessment.
As explained in Section 6, the methodology consists of the following steps:

1. Get Technology Capacity Factor for each Wave Data Grid Point
(Implemented using Microsoft Excel. The Energy Analysis Excel model is
included in Appendix 14.4)

2. Get Data Surfaces

a. Interpolate Capacity Factor Surface
b. Interpolate Depth Surface
c. Calculate Distance to Shore Surface
(Implemented using ARC View GIS. The GIS Model is included in Appendix 4.4)
3. Get Internal Rate of Return (IRR)
a. Calculate Capital Cost
b. Calculate Annual Energy Output
c. Calculate Net Income
d. Calculated IRR
(Implemented in Microsoft Excel. The economic Analysis Excel model is
included in Appendix 14.2)

4. Get Market Size

(Implemented in Microsoft Excel. The Economic Analysis Excel model is

included in Appendix 14.2)
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The first and second step focus on energy related aspects of the assessment and the
third and fourth performs the economic tasks. Microsoft Excel and Visual Basic are
used for the mathematical operations and data analysis in steps 1, 2 and 4. A GIS tool

is used in step 2 to model the wave energy resource and geographical data.
6.1 Calculate technology capacity factor

The first procedure calculates the WECS capacity factor for each gridded wave data
point displayed in section 7.6. The capacity factor is calculated by dividing the actual
energy captured by the devices Rated Power. Microsoft Excel and the European Wave
Energy Atlas are used to implement this step in the assessment. The energy related

data analysis is included in the Excel model in Appendix 14.4.
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6.1.1 Data Input - European Wave Data

The wave data is taken from the European Wave Energy Atlas described in section
2.8.1. Wave data for 23 locations within the area of analysis acquired from the
WERATLAS. The data is exported from the WERATLAS in text tab-delimited

format and then imported into the Excel model, as displayed in figure 6.1. The

location of these measurements is illustrated in section 7.6 of the GIS resource model.

Microsoft Excel - EWER_Energ)
DEld & B vo-| = & 2 Ml 75 - @ 2 s

Elle Edit Wiew Insert Format Tools Data AgressoExcelerator Window Help

[ A1 | = IO
A B E [ E F & H i ] 3 W o F ] R =
Mesn 1=
Latitude WeanPower Standard  Yaristion Power WeanSig Mean Wave MWlean_Wave_Len
Point Coordinat Longitude  Available  Dlevistion Coefficie Captured  Capacity Energy Period gth_m [Assuming
1o deode  hame . Cocrdinate kiim KWIm o ntw DatsSource kW Factor % Heightm Depthm  indespuater)  Dlots
2 | TATLI |FLORES w200 3300 sau| 974 18 Directionalsp 31080 #1452 322 0
3 2 ATLZ  FalaL 3900 3000 w4 792 17 Dirsctionalsp 26841 292 862 161138951
4 3 ATL3  TERCERA 3900 2700 4593 sz 18 Dirsctionalsg 25059 286 869 173319541
5 4 ATLS  SMIGUEL 3900 2400 4499 89 20 Dirsctional sy 24994 285 868 176437384
3 5 ATLS | AZORES/NE 00 2400 893 705 19 Dirsctionalsp 22229 265 867 17.3397375
7 6 ATLE | MADEWR? W 300 800 2923 880 19 Dirsetionalsp 19643 244 281 1212342759
8 TATLT | MADERAIE 300 500 2798 bar 19 Dirsetionalsg 177.35 240 857 114.7773099
[ 3 ATLE  LASPALMAS 000 180 2083 488 20 Dirsetionalsp 16076 230 87 125.7084509
0 9 ATLS | SELWAGENS 000 1500 2376 488 20 Direetionalsp 165.26 225 862 16.1333081
i 0 ATLID | LANZAROTE 000 200 66 474 18 Dirsetionalsp 17570 243 842 110.7549553
2 WATLY | SAGRES 3600 -am 18.37 43 22 Dirsetional speetra from WAM 1987 - 1994 Large Underestimate. Data Point lgns
[ 2 ATLIZ | GORAINGE BK 00 200 339 64 19 Dirsctionalsp 205.66 259 863 eson 16156915
14 13 ATLIZ LISBOA 39.00 -12.00 39m 733 19 Directional sp 22840 273 8BS 2750 1168373889
15 " ATLI WIGO 4200 -12.00 46.02 954 21 Directional sp 22840 291 858 3020 1150639396
16 15 ATLIS CHARCOT 45.00 -12.00 55 nrz 21 Directional sp 2nin 3.07. 854 3662 137968028
7 ® ATLIE | LACORUNA 4500 a0 5022 24 Directional s 24825 288 836 a2 103126650
1 7 ATLY | GlON 4500 £00 45 1035 25 Directional sy 21542 267 843 aE34 124326177
1 1 ATLIZ | ARCACHON 4500 200 2289 sz 25 Dirsctionalsp 16213 226 849 1830 28166728
20 19 ATL1S | OUESSANT 4200 £00 4235 25 Dirsctionalsp 22546 276 848 05 121520401
2 20 ATL20 | LUNDY 5100 £00 4605 Wi 22 Dirsctional sy 23161 275 843 89 105260641
2z 20 ATL2I  FASTNET 5100 a0 534t 22 Dirsctionalsp 25237 293 850 50 2533408
= 22 ATL22 | SHANNON 5100 -z 6781 1446 21 Dirsetionalsg 30546 335 866 1627 170735505
2 23 ATL2} | BELMULLET 5400 -lz00 Te97T B3 22 Direetionalsp 31951 248 8.5 380 17018231
% 24 ATL2¢  BARRA 57.00 200 654 T4 26 Dircetionalsg 28567 224 858 200 114.8356838
% 25 ATLZE | FAIRISLE 6000 200 647 1361 22 Direetionalsp 29243 321 848 40 1121635317
27 26 ATL26 | WORTHRONA 6000 500 XTI 21 Dirsetionalsg 28567 32 834 03 1024341266
= 27 ATL2ZT  FAERDES 5200 £00 5991 172 20 Dirsetionalsp 30038 321 834 987 108502335
29 28 ATL28 | ICELAND/E B00 -l20n 5062 784 18 Dirsctionalsp 29652 31 533 593 08241977
30 29 ATL.29 ICELAMD ! RISE B3.00 -12.00 BB.53 5 17 Directional sp 327.35 a4 .44 M1435792
n 30 ATL30 ICELAMD ! S B3.00 -12.00 B2.52 895 14 Directional sp anrn 329 8.0 118.2386128
32 3 ATLH ICELAMD f S B3.00 -24.00 6491 755 12 Directional sp 33490 3.40 855 41073775
3 32 ATLI2 | AUK 5623 203 23 588 28 Directional s 18017 207 500 5624476783
3 33(ATLI3  |KE3 5313 313 1087 14 13 Directional sy 1644 213 569 5056350733
% 34 ATL34 | GORM 5558 475 Az 704 33 Mon-Directiol 24543 255 16 30.05867547
® 35 ATLI5 | UTSIRA 59.30 482 3z 552 24 Frequencysp 19254 224 588 7400365348
37 36 ATL36 | 5TAD 6250 37 57.24) Insuf, Dats Insuf. Diats Cirectionalsg_ 275,51 293 o 78.99632336 Unrelisble data, Assumed Valus tskiny
% 37 ATL37  HALTENBANKER 650 740 237 a8t 20 Dirsctionalsp 27551 293 k0 78.93692338
39 38 ATL3F | TRAEMABANKEN 6630 953 482 Insuf, Dats Insuf. Dia: Cirectional sp_ 238.80 309 720 50.90228931
0 39 ATL39 | VESTERAALEN 6298 1287 aues| 556 18 Dirsetionalsp 24306 264 731 3333903842
“ 40 ATL#D  TROMSOFLAKET 7150 1800 06| 382 12 Frequencysp 23369 260 690 74.25206961
2 #ATLH  WORDKAPFEAN 7200 3100 3137 Insuf. Dats Insuf. Dat: Frequencyspl 22399 208% 286 573 074282262
3 42 MECL | Cde GATA 3650 200 267 038 13 Spectral parameters from WAM 1992 - 1995
" 42 MED2 | ALIGANTE 3250 050 w2 ow 24 Spectral parameters from WA 1992 - 1995
" 4 MED3 | C.de TORTOSA, 050 150 w0z 28 Spectral parameters from WAM 1992 - 1995 -
14/ 4 » M WERATLAS / Flores £ Faial / Terceira 4 San Miguel £ Azores NE £ Madeira W/ MadeiraE £ Las Paimas { SELVAGENS / Lanzarote / Sagres 4 Gorinnge BK / Lisbi [[

Read

Figure 6.1: Wave data for 23 measured locations in the Northern Atlantic and the

North Sea imported from the WERATLAS into the Excel model.
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6.1.2 Data Input — Wave Scatter Diagrams

Wave Scatter Diagrams (explained in section 2.2), obtained from the WERATLAS,
represent the variation in sea state at a specific site. For each of the 23 locations, a
wave scatter diagram is exported from the WERATLAS in text tab-delimited format

and then imported into the Excel model, as shown in figure 6.2. The complete set of

wave scatter diagrams for each site is included in the Excel model in Appendix 14.4.
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Figure 6.2: The wave scatter diagram representing the wave conditions for a
deepwater location off the Portuguese coast obtained from the WERATLAS and input

into the Excel model.
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6.1.3 Data Input — Pelamis WECS Power Matrix

The actual amount of available energy that can be captured using the Pelamis 750 kW

WECS unit is established using the power matrix (explained in section 3.2). This is

also integrated into the Excel model as shown in figure 6.3.
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Figure 6.3: The Pelamis 750kW WECS Power Matrix representing the amount of

energy generated for different sea states within the Excel model.
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6.1.4 Calculate average annual power capture and technology capacity
factor

The Pelamis WECS power matrix determines the energy captured in different seas
states. Applying equation 3.1 outlined in section 5.1.1, the average annual energy

capture per device for a specific location is calculated within the Excel model as

shown in figure 6.4.
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Figure 6.4: Calculating the average annual power capture and technology capacity
factor for the Pelamis device located at a location off the Portuguese coast within the

Excel model.
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6.1.5 Data Output — Capacity factor grid points

The Pelamis capacity factor is then calculated within the Excel model by dividing the
average annual power capture by the devices power rating — 750 kW. This is repeated
for each site. The complete list of wave data sites including the average annual power
capture (kW/unit) and capacity factors are shown in figure 6.5. This data is then
exported from Excel in text tab-delimited format and transferred to the GIS model.

The capacity factors calculated are included together with the other energy data in the

energy related analysis Excel model in Appendix 14.4.
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Figure 6.5: The Excel model showing the complete list of wave data including the
average annual power captured (kW/unit) and technology capacity factor for the

Pelamis device located at 23 sites within European waters.
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6.2 Get Data Surfaces

The second step in the methodology generates the GIS data surfaces by interpolating
capacity factors and depth and calculating the distance to shore for each model cell

using a GIS.

6.2.1 Interpolate Capacity Factor Surface

The Pelamis capacity factors calculated for each wave data grid point in the first step
are imported into the GIS model. Capacity factors for all locations in European
waters are then estimated from the original 23 capacity factors data points using a GIS
interpolation operation. An average capacity factor is interpolated for each cell in the
model based upon its position relative to the original data points and the type of
interpolation algorithm executed (the Spline interpolation algorithm is selected in this
case). The interpolated surface generated allows the energy captured by wave energy
arrays deployed within any cell to be estimated using the interpolated capacity factor.

The interpolated GIS surface is displayed in section 7.12.

6.2.1.1 Data Input — Capacity factor grid points

The gridded Pelamis WECS capacity factors calculated in the first step are input into
the GIS model.
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6.2.1.2 Data Input — Areas to be Avoided (ATBA)

The ATBA within the area of analysis are acquired from UKHO Admiralty Charts
[44]. Coordinates outlining these areas are obtained and input into the GIS resource
model. The format of this data set is shown in figure 6.6. A GIS surface is generated
representing the ATBA included in section 7.9. If a surface cell is within an ATBA
then it is given a value of 0, else the cell is set to 1. The capacity factor surface is then
multiplied by the ATBA surface so any cells within an ATBA are set to zero. The
navigational risk associated with the amount of shipping activity in a particular area is

not included in this assessment. Areas of scientific interest are also not incorporated.

The ATBA coordinates are included in Appendix 14.1.
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Figure 6.6: Coordinates outlining the ATBA within the area of analysis are obtained
from UKHO Admiralty Charts. The position of latitude and longitude are converted

into decimal degrees and input into the GIS.
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6.2.2 Interpolate Depth Surface

The average depth must be calculated for each cell within the resource model so that
the cost of transferring the captured power onshore using submarine cable can be
calculated. Over 2700 depth measurements (metres) covering the area of analysis of
the Northern Atlantic Ocean and North Sea are obtained from UKHO Admiralty
Charts [44]. The depth surface is interpolated from the gridded depth data within the
GIS model. The depth surface is made up interpolated values contained within each
10 km model cell, as illustrated in section 6.7. Appendix 14.7 gives the depth data

set.
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Figure 6.7: Depth measurements (in metres) covering the area of analysis are obtained
from UKHO Admiralty Charts. The position of latitude and longitude are converted

into decimal degrees and input into the GIS.

The capacity factor grid points are mostly located in deepwater (3 are located in
intermediate depths approximately less than 60m in the North Sea). Therefore the
interpolation for the Northern Atlantic waters does not incorporate intermediate or
shallow waters (see section 2.1). To correct the surface cells that lie within areas of

intermediate or shallow waters, a depth correction factor surface is calculated to
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correct the device capacity factors (and the wave energy resource model). For each
cell in the model, if the cell depth is less than half of the average wavelength (~60 m)
then the cell is defined as not being located in deepwater and the depth correction is
set from between 1 and O by dividing the depth by 60. If the cell is in deepwater the
factor is set to 1. The capacity factor surface is then factored by the depth correction
surface. This approach is not exact but allowed more realistic capacity factors to be
calculated for shallower waters. Corrected values are tested against a number of
capacity factors for locations in intermediate depth using wave scatter diagrams from
separate wave resource studies. The deviation is as little as 20% which is considered
acceptable due to the European scale of this assessment. When assessing a smaller
region such as the UK resource a more precise method is recommended. It should be
noted that any attempt to incorporate shallower depths is limited because of the 10 km
model cell size. The accuracy of the model within this region is imperfect because the
depth often increases from 0 to over 200 metres over a 10 km distance from shore.
This could be improved by increasing the resolution of analysis, for example, by using

1 km? cells as in [16].

6.2.2.1 Data Input - Depth points (metres)

Over 2700 gridded depth measurements are input into the GIS model.

6.2.3 Calculate Distance to Shore Surface

The distance to shore must be calculated for each cell within the resource model so
the cost of transferring the captured power onshore can be determined. A GIS map of
Europe is input into the GIS model and the distance to the nearest shoreline for each
cell is calculated using the Find Distance GIS operation. The corresponding Distance

to Shore surface generated is included in section 7.8.

This methodology only considers distances to landmasses with transmission grid rated
at 132 kV or above, therefore discarding islands with lower voltage distribution
networks. Also, the distance to the nearest shoreline, i.e. the shortest distance to
shore, added to the depth would determine the length of submarine cable required to
transmit the power ashore from each cell. Separate studies have successfully applied
GIS techniques to marine energy-related tasks, such as optimising the integration of

marine energy stations into the electricity network by determining the Least Cost
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Route [45]. However, this methodology does not take into account the nature of the

sea or attempt to select the least cost route for submarine cable.

6.2.3.1 Data Input — European shorelines

A GIS map of Europe is input into the GIS model included in section 7.6.

6.3 Get Internal Rate of Return

The third step in the methodology calculates the IRR for potential wave energy arrays
deployed in European waters. The economic analysis Excel model implemented to

calculate the IRR for each cell within the model is included in Appendix 14.2.

6.3.1 Calculate Capital Cost

The total cost to deploy arrays of the Pelamis device is calculated for every cell within
the resource model by adding the fixed costs per MW of capacity together with the

variable cost of the submarine transmission cable for each cell.
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Figure 6.8: The fixed cost estimates of the Pelamis WECS obtained from OXERA

Consulting integrated within the economic analysis in the Excel model.
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The technology related parameters selected for this assessment in the Excel model are

shown in figures 6.9. The selected device population density (explained in section

3.5) specifies that each 100 km? cell contains a total installed capacity of 300 MW.
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Figure 6.9: The selected technology parameters and variables in the Excel model used
to calculate the internal rate of return for arrays of Pelamis devices deployed in each

cell in the assessment model.

The total submarine cable cost is calculated by multiplying the cost of purchasing and
installing per metre length of cable by the distance to shore and the depth of each cell.
The depth and distance to shore is included in the Excel model as illustrated in Figure
9.10 and 9.11. For example, using costs estimates based on the OPD cost estimates
for the Pelamis WECS in 2010 and the cable costs outlined in 3.7:

® 500 £/kW Pelamis WECS fixed cost

e 750 £/m 440 kV submarine cable costs
Hence, a 300 MW array 10 km from shore would cost approximately £160 M:

® (300 x 500,000) + (10 x 1000 x 750) = 157,500,000
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Figure 6.10: The distance to shore (in km) of each cell as included in the Excel model.
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Figure 6.11: The depth (in metres) of each cell as included in the Excel model.

77



This simple capital cost model assumes that there is a point of connection to the
onshore grid at the nearest shoreline and includes a flat grid connection charge within
the fixed cost. In reality, connecting to the nearest Grid Supply Point (GSP) once
onshore could require laying additional transmission equipment, upgrading the
existing grid infrastructure to manage the additional power levels and dealing with
associated planning restriction. The existing grid and planned upgrades would greatly
affect the least cost route for the submarine cable. Therefore the shortest route to
shore, utilised in this model, may not be the least cost route. The methodology does
not model the existing European transmission systems hence it is not possible to
account for the cost involved with onshore transmission (a major limitation of this

implementation).

6.3.1.1 Data Input

® Fixed costs — the assumed fixed costs are selected in the Excel model as
shown in figure 6.9 (as explained in section 3.8).

¢ Distance to nearest shore surface in metres —input into the Excel model shown
in figure 6.10

® Depth surface in metres — shown in the Excel model figure 6.11

e Submarine cable costs — assumed in the Technology parameters worksheets of
the Excel Model shown in figure 6.9 (as detail in 3.8.3)

e  WECS Population density — 300 MW deployed in each cell (as explained in

section 3.6)
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6.3.2 Calculate Annual Energy Output (MWh)

The annual energy that could be generated by Pelamis WECS arrays is calculated for
each cell so the potential income can be estimated. The capacity factor surface is
exported from the GIS model and imported into the Excel model (as shown in figure
9.12) giving the capacity factor for every 10 km® site. This is multiplied by the cell’s
installed capacity (MW) and then by the hours in a year — 24 x 365.25 = 8766. To
account for transmission losses, the annual output is then multiplied by a factor of 98
% a factor (assuming losses of 2 %). To incorporate when the plant is not generating

electricity due to maintenance work, a system availability of 95 % is also included,

giving the total annual energy output in MWh.
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Figure 6.11: The capacity factor for every cell in the Excel model.

6.3.2.1 Data Input

e (Capacity factor for each cell — see figure 6.11
e  WECS Population density —300 MW deployed in each cell

e Losses and availability factor — 98% and 95%
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6.3.3 Calculate Net Income

The annualised cost per MW is multiplied by the Pelamis population density of
300MW per cell, giving the annual expenditure for each cell. The annual income is
then calculated by multiplying the annual output by the selected market price and
subsidy (as show in the Excel model in figure 6.12). The expenditure is then

subtracted from the income to give the net income for device arrays deployed in each

cell.
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Read

Figure 6.12: The IEM electricity market price used within the economic Excel model.
These prices are based upon OXERA consultant’s UK market price profile from 2004
to 2025 explained in section 4.1.1.

6.3.3.1 Data Input

¢ Annual Output (MWh)

e Market Price (£/MWh)

e Market Premium (£/MWh)

e Technology Annualised O&M Cost (£/MW)
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6.3.4 Calculate Internal Rate of Return (IRR)

The IRR described in section 4.3 is calculated for arrays of the Pelamis device
deployed within each resource cell. The IRR is generated within the Excel model
using the Excel IRR function as shown in figure 6.13. The detailed algorithm used to
calculate the IRR automatically for every model cell is implemented using Visual
Basic within Excel. The algorithm inputs the capital cost, annual energy output
(shown in figure 6.14) and net income, and the lifetime of the Pelamis device
(assumed to be 20 years) in the Technology Parameters worksheets in the Excel

model shown in figure 6.9. The result is shown in figure 6.15. This can be examined

in greater detail in Appendix 14.2.

E4 Microsoft Bxcel - EWER._Economic_Analysis.xls
DEeld & B v9- = & 2 il we -3 2 sl

Elle Edit Wiew Insert Format Tools Data Agresso Excelerator Window Help =5 ﬂ
[ H24 [=| =
A B c D E I G H J 8 I i} =
1 =
2
3 | Cashflow Template
4 Year Income
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37
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41
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| 4 » | M} Technology ,(Pri[e ,{ Transmission tariff ,{ Energy captured A‘ Capacity factar ,( Depth ){ Dist. to shore Dg A‘ Dist. to shore km )\IRR [al(ulatnr,{IRR ‘ Ll | E 3 ‘ r

Read

Figure 6.13: Comparing the IRR to the RRR in each cell identifies the potential
market. Selecting the appropriate button initiates the Visual Basic algorithm, which
automatically calculates the rate of return for each cell (using the Excel IRR function).
Two different algorithms are required to calculate the IRR under the /JEM market

scenario and the Regional market scenario as explained in section 4.
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6.3.4.1 Data Input

e (apital Cost
¢ Annual Output (MWh)
e Net Income (£/cell)

e Technology lifetime (yrs)
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Figure 6.14: The estimated annual energy output for each cell within the Excel model.

6.3.4.2 Data Output

e [RR - calculated for arrays of the Pelamis device deployed within each cell

shown in figure 6.15.
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Figure 6.15: The IRR calculated for arrays of the Pelamis device deployed within

each cell within the economic analysis Excel model.

6.4 Get Market Size

Comparing the IRR to the RRR in each model cell identifies the potential market and
thus gives the economic European wave energy resource. Two required rates of rates
of return are selected: an optimistic RRR of 10 % and a more realistic RRR of 13%.
This is explained in greater detail in section 4.4. The implementation can be examined

in greater detail in the economic analysis Excel model included in Appendix 14.2.

The Excel model compares the IRR to the RRR in each cell to identify the potential
market automatically using an algorithm implemented within the Excel model using
Visual Basic. If the IRR is greater than or equal to the RRR, then the cell is
considered to be a commercially viable area to install wave energy arrays. The total
annual output, market capacity and capital investment equivalent to the number of
commercially viable cells is then counted giving the market size in annual energy

output, installed capacity and capital invested as shown in figure 6.16.
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Figure 6.16: The potential European market is calculated algorithm by pressing the

button within the Excel model.

6.4.1 Data Input

¢ Internal Rate of Return — shown in figure 6.15.
® Required Rate of Return — an optimistic 10 % and a more realistic 13%.

e  WECS Population density — 30 MW/km (or 300 MW installed per cell).

6.4.2 Data Output

¢ Installed Capacity (GW)
e [Installed Cells
e Total Annual Output (GWh)

e (apital Investment (£)
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6.16: The economic wave energy resource assessment results for the Internal

European Market scenario. The market results are explained in section 9.1.
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7 GIS Assessment Model

The Geographical Information System (GIS) model is developed to represent the
wave energy resource and related geographical data. The model is summarised as:

e Model cell size: 10 km

® Projection: Geographic

e Area of analysis: 13°W to 10°E and 65°N to 30°N

* Total area: 8,524,800 km’

Developing a GIS model optimised data analysis, allowing:

® Analysis of data dependent on geographical position.

¢ Interpolation of gridded wave data points, depth data points and ATBA data.
e Representation of resource, environmental and economic data using surfaces.
e (alculation of the distance of potential sites and the cost of transmission.

® Areas, where potential wave energy arrays would be commercially viable, to

be represented graphically.
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Figure 7.1: ARC View 3.2 GIS within the Microsoft XP computer environment.

86



ARC View 3.2 GIS [46], illustrated in figure 7.1, is used to develop the GIS model.
For more on ARC View and GIS refer to [47]. A world map together with the
parallels of latitude and meridians of longitude are imported from a supplied GIS

library to form the default view.

7.1 Area of Analysis

Initial analysis of the European wave resource identified the area to be analysed. Due
to limitations in resources this area is restricted to the Western European approaches
of the northern Atlantic Ocean and the North Sea. This area experiences high wave
power levels because of the long fetch of Atlantic Ocean that runs from the Gulf of
Mexico up to Western Europe combined with the prevailing westerly winds. The
Baltic and Mediterranean seas are discarded, as the available wave energy is
negligible in comparison due to the shelter of surrounding landmasses, shorter fetches
and shallower depths. The area selected is from 13°W to 10°E longitude left to right
and from 65°N to 30°N latitude top to bottom as highlighted in figure 6.2.
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Figure 7.2: Selected area of analysis from 13°W to 10°E and from 65°N to 30°N.

This gave an area of 8,524,800 km” of Europe to be analysed. The selected area did
not include all European maritime territory. For example, the maritime territory of
United Kingdom extends beyond 20°W of the Greenwich meridian and Norway’s
waters extend beyond 20°E. However, these waters are too far away from load
centres and any wave energy projects, using current transmission technology, would

require uneconomical lengths of cable to connect to onshore grids.
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7.2 GIS Raster Grids and Surfaces

For the purposes of analysis a GIS Raster Grid is initialised. This format allows for
geographical grid-based data i.e. data which is identified by its position with respect
to the specified datum — in this case latitude and longitude — to be represented and

manipulated within the GIS computer environment. For example:

e Sets of gridded data such as average wave heights can be interpolated into
data surfaces — interpolating values for each grid cell — thus giving a wave
height for all locations within the area assessed.

e Geographical data sets such as coordinates of sea depth to be displayed as
depth surfaces.

e Data surfaces such as the distances to nearest coastlines can be to be exported

from the GIS in tab-delimited table format.

For more information on using ARC View GIS and Raster Grids refer to [48].

7.3 Cell Size

The resource model is divided into 10 km cells size using a GIS raster grid consisting
of 333 rows and 256 columns. This is selected because Microsoft Excel worksheets
are limited to 256 columns. This allowed the surfaces to be exported from the GIS
model — as a tab-delimited text file — and imported into the Excel model using one
worksheet. Transfer of data transfer between the GIS and Excel environment is made
easier when working within this limit. If the raster grid exceeded these limits then the
grid must be displayed on multiple worksheets. This is a rudimentary and is very
slow process. Also, performing economic analysis on a raster grid within Excel, for
example using Visual Basic scripts, is much more practical when working on a single

worksheet.

7.4 Interpolation of gridded resource data points into
surfaces

This assessment selected the WERATLAS to supply the wave data for 23 grid points

within European waters. The GIS program enabled surfaces of wave data to be

interpolated from the original data in the form of GIS Raster surface. The value for

any location within the area of interest is represented by the equivalent interpolated
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cell value. The gridded wave resource grid points within the area assessed are
illustrated in 7.6 and the equivalent interpolated surface representing the wave energy

resource is displayed in section 7.11.

7.5 Projection

The Geographic Projection is used to display the GIS model. Difficulties experienced
with ARC View GIS 3.2 prevented selecting the favoured Mercator projection used in
UKHO Admiralty Charts.
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7.6 WERATLAS Wave Data (23 grid points)

9
)
e

& Wave data grid point

Figure 7.3: The WERATLAS [18] provides a comprehensive set of wave data for 85 positions
around Europe. Significant wave height, wave energy period and directional data are
available in wave matrix, tabular and wave rose format, averaged over seasonal and annual
periods. The wave data is from the UK Met Office Wind-Wave Model data set from 1987-to-
1994. 23 of the 85 data points lie within the area analysed. The wave data is represented in

the GIS resource model as gridded data points displayed as red points.
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7.7 Bathymetry (depth in metres)
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Figure 7.4: The GIS bathymetry surface, in metres, is interpolated from the gridded
depth data input into the GIS model. Over 2700 depth measurements covering the
Northern Atlantic Ocean and North Sea are obtained from UKHO Admiralty Charts
[44]. The average depth must be calculated for each cell within the resource model,
combined with the distance to shore, so that the cost of transferring the captured

power onshore using submarine cable can be calculated.
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7.8 Distance to Shore (kilometres)
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Figure 7.5: The distance to shore must be calculated for each cell within the resource

model so that the cost of transferring the captured power onshore can be determined.
A GIS map of Europe is input into the GIS model and the distance to the nearest
shoreline for each cell is calculated in decimal degrees and then converted into metres

to generate the Distance to shore GIS surface.



7.9 Areas to be avoided (ATBA)

¥
*
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' Area to be avoided

Figure 7.6: Environmental constraints that may restrict the deployment of WECS in certain
areas are incorporated. Any area that is designated by a European maritime authority is
avoided and excluded from the economic assessment. Areas to be avoided (ATBA) include
deep water shipping channels, traffic routing measures, inshore traffic zones, traffic
separation arrays and explosives dumping grounds. The ATBA are acquired from UKHO
Admiralty Charts [44]. Coordinates outlining and identifying these areas are input into the

GIS resource model. The equivalent GIS surface represents the ATBA as red zones.
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7.10 European Maritime Territories
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Figure 7.7: For the purposes of the regional electricity market scenario, the nationality
of each potential site must be known so the market price and subsidy applicable ca be
determined. @ The Maritime boundary GIS surface is interpolated based upon
international maritime territorial coordinates of the included countries. The correct

market data is identified using this surface.
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7.11 Annual Average Wave Energy Resource
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Figure 7.8: The annual average wave energy resource is interpolated from the average

annual wave power levels (in kW/m) for each gridded wave data point obtained from
the WERATLAS. The annual average power level available in kilowatts per metre of
wave front (kW/m) is commonly used to present wave energy resource. This surface

displays the distribution of the wave resource around Europe.
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7.12Pelamis WECS Average Annual Capacity Factor (%)
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Figure 7.9: The WECS average annual capacity factor (also known as load factor or capacity

coefficient) is calculated for each wave data point included in section 7.6. The capacity factor
is calculated by dividing the actual energy captured by the devices Rated Power, outlined in
section 5.1 of the methodology. The GIS surface is interpolated from the individual data
points, allowing the annual average power captured to be estimated for all areas assessed.

The capacity factor is represented as a decimal percentage.
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8 Sensitivity Analysis

The methodology is tested to determine the effect of changing economic variables on
the estimated wave energy market, including:

e  WECS unit cost (£/kW)

e Electricity markets entry price, including wholesale price, benefits and

premium (£/MWh)

The methodology implementation in tested extensively using a wide range of required
rates of return, unit costs and different entry prices to identify any errors and make
amendments where necessary. After successful testing, the wave energy market is
estimated using two different RRR to show the effect on optimistic rate of 10 % and a
conservative of 15 % (see section 4.4). The analysis showed the unit costs required
for wave energy generation to become commercially viable for a range of entry

prices.

Graphs 8.1 to 8.4 show the estimated market trends for a range of entry prices from 55
£/MWh down to 34 £/MWh. The expected behaviour is observed:
® Market capacity increases in size as the cost of the WECS technology
decreases.
* Lower entry prices require lower technology costs for a market to develop.
e [f investors require a return of 15 % the potential market is considerably

lower compared to a 10 % RRR.

For an entry price of 55 £/MWh, based upon 10 % RRR a market would develop
when the WECS cost drops to ~850 £/kW. For a 15 % RRR, wave generation
becomes commercially viable for technology costs less than and equal to ~720 £/kW.
A lower entry price of 48 £/ MWh, requires WECS costs of ~760 and ~560 £/kW at 10

and 15 % RRR, respectively, for commercial viability.
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Graph 8.1: 55 £/MWh entry price 10
and 15 % RRR.
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Graph 8.3: 41 £/ MWh entry price and
10 and 15 % RRR.
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Graph 8.2: 48 £/MWh entry price and
10 and 15 % RRR.
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Graph 8.4: 34 £/MWh entry price and
10 and 15 % RRR.

Dropping to 41 £/MWh, the technology costs required are ~650 and ~540 £/kW for 10

and 15 % RRR, respectively. At market prices in the region of 34 £/ MWh — including

no significant premium, only 10 % RRR with unit costs less than or equal to ~550

£/MWh stimulate market growth. Graph 7.4 indicates wave energy would not

penetrate the electricity market at this price if a 15 % rate of return is required.
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9 Results of the European Assessment

The economic assessment of the European wave energy resource undertaken in this
study investigates two different market scenarios:
1. Internal Electricity Market with a single price and premium for wave energy

2. Regional Electricity Market using existing prices and premium frameworks

9.1 Internal Electricity Market Scenario

The Internal Electricity Market scenario assumes European electricity market
harmonisation which applies a single electricity entry price — including wholesale
price and premium — for wave energy projects throughout Europe (detailed in section
4.1). The methodology is executed using a variable entry price to identify the level of
subsidy required for wave energy to penetrate the market and produce market trends.
The scenario is applied to two different estimates of probable WECS costs for 2010
and 2025. The OXERA and OPD WECS cost estimates applied are summarised in
section 3.10. The equivalent economic wave energy resource and potential market for
a range subsidy of entry prices are given. The complete results are included in

Appendix 14.9.

9.1.1 OXERA WECS Costs

Assuming the Internal Electricity Market scenario and the WECS cost of 964 £/kW
for 2010, wave energy would penetrate the market at just under 55 £/MWh for the
optimistic RRR of 10 %. This is shown in graph 9.2 by the point at which the market
curve crosses the x-axis (i.e. what entry price is required for the market to develop
under the given RRR). The required entry prices are displayed in table 9.1. Table 9.4
shows the economic wave energy resource based on 2010 OXERA cost estimates,
assuming an entry cost of 55 £/ MWh. This entry price would generate an economic
resource of some 1.5 GW capacity — 5 cells — corresponding to a capital investment of
£1.4 billion. This resource is located around the Irish west coast. For the realistic rate
of 13 %, the entry price for wave energy is higher at approximately 60 £/MWh.
Graph 9.2 also indicates that no market would develop at the selected entry price of

55 £/MWh at 13% RRR.
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Under the Internal Electricity Market scenario and the device cost of 866 £/kW for
2025, the market entry price required for wave energy to become commercial viability
is reduced to approximately 50 and 55 £/MWh for rates of return of 10 and 13 %
respectively, as indicated by graph 9.3. Table 9.4 displays the economic wave energy
resource based on 2025 OXERA cost estimates, assuming an entry cost of 55 £/ MWh.
At 10 % RRR, this selected entry price gives an economic resource of 137.4 GW —
458 cells — corresponding to a market worth approximately £120 billion. The
majority of this resource is located off the west coast of Ireland, the northwest region
of Scotland and to the northwest of Norway illustrated in figure 9.5. There is no

market if investors require a 13 % return.

9.1.1.1 Required Entry Price (£/MWHh)

Year RRR

10% 13%
2010 55 60
2025 50 55

Table 9.1: The wave energy entry price (£/MWh) based on OXERA WECS unit cost
estimates for 2010 and 2025.

9.1.1.2 2010 Market Trend

2010 WECS Cost 964 £/kWh | —10% ——13%
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Graph 9.2: The 2010 WECS cost is estimated at 964 £/kW. The equivalent economic

resource is displayed against the electricity entry price.
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9.1.1.3 2025 Market Trend

2025 WECS Costs 866 £/kW | —10% ——13%
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Graph 9.3: The 2025 WECS cost is estimated at 866 £/kW. The equivalent market

size is plotted against the electricity entry price.

9.1.1.4 Market Size

Year 10% RRR 13% RRR

Cells GwW £ Billion Cells GwW £ Billion
2010 5 1.5 1.4 0 0 0
2025 458 137.4 119 0 0 0

Table 9.4: The economic wave energy resource based on 2010 and 2025 OXERA cost

estimates, assuming an entry cost of 55 £/ MWh.
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9.1.1.5 2025 Economic Resource
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Figure 9.5: The internal rate of return GIS surface representing the economic wave

energy resource based on 2025 OXERA WECS unit cost estimate of 866 £/kW,

assuming an entry cost of 55 £/ MWh. The commercially viable cells are coloured
blue where the internal rate of return is equal to or greater than the required 10 %

return.
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9.1.2 OPD WECS Costs

Assuming the Internal Electricity Market scenario and the optimistic device cost of
750 £/kW for 2010, wave energy would penetrate the market at just under 45 and 50
£/MWh for the RRR of 10 % and 13 % respectively (see table 9.6 and graph 9.7).
Table 9.8 shows the wave energy market for 2010 OPD cost, assuming these entry
costs. At 10% RRR, an entry price of exactly 45 £/MWh would generate an economic
resource of some 541 GW capacity corresponding to a capital investment of over
£400 billion. The majority of this resource is located off the west coast of Ireland, the
northwest region of Scotland and to the northwest of Norway as illustrated in figure
9.9. For the more realistic rate of 13 %, the entry price for wave energy is higher at
approximately 50 £/MWh. This would generate an economic resource of some 65

GW corresponding to a market worth approximately £49 billion (shown in table 9.8).

Assuming a device cost of 500 £/kW for 2025, the market entry price required for
wave energy to become commercial viability is reduced to approximately 30 and 35
£/MWh for rates of return of 10 and 13 % respectively (see table 9.6 and graph 9.10).
At 10 % RRR, the selected entry price of 30 £/ MWh constitutes an economic resource
of 135 GW - 452 cells — corresponding to a market worth approximately £68 billion
(see table 9.11). For the realistic rate of 13 %, the entry price for wave energy is
higher at approximately 35 £/ MWh. This would generate an economic resource of 2.1
GW corresponding to a market worth approximately £1 billion as detailed in table

9.11.

9.1.2.1 Required Entry Price (£/MWHh)

Year RRR

10% 13%
2010 45 50
2025 30 35

Table 9.6: The entry costs (£/MWh) for wave energy projects assuming OPD WECS
unit cost estimates for 2010 and 2025.
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9.1.2.2 2010 Market Trend
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Graph 9.7: The 2010 WECS cost is estimated at 750 £/kW. The equivalent market

size is displayed against the electricity entry price.

9.1.2.3 2010 Market Size

Year 10% RRR 13% RRR
Cells GwW £ Billion Cells GwW £ Billion
2010 1804 541.2 406 219 65.7 49

Table 9.8: The estimated wave energy market for 2010 OPD cost estimate.
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9.1.2.4 2010 Economic Resource
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Figure 9.9: The internal rate of return GIS surface representing the estimated wave

energy market for 2010 OPD WECS unit cost estimate of 750 £/kW, assuming an
entry cost of 55 £/ MWh. The commercially viable cells are coloured red where the
internal rate of return is equal to or greater than the more realistic 13 % RRR. Both

the blue and red cells indicate the equivalent market based on the optimistic return of

10 %.
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9.1.2.5 2025 Market Trend
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Graph 9.10: The 2010 WECS cost is estimated at 500 £/kW. The equivalent market

size is displayed against the electricity entry price.

9.1.2.6 2025 Market Size

The OPD cost estimates for 2025 are very optimistic and thus would not receive a

subsidy of 55 £/MWh in the European market.

Therefore, an entry price of 35

£/MWh is selected for 2025 including a lower more realistic premium of

approximately 10 £/ MWh.

Year 10% RRR 13% RRR
Cells GwW £ Billion Cells GwW £ Billion
2025 452 135.6 68 7 2.1 1

Table 9.11: The estimated wave energy market assuming the 2025 OPD cost estimate.
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9.2 Regional Electricity Market Scenario

The Regional Electricity Market Scenario uses existing electricity prices and
renewable subsidies available within the European countries presented in section 4.1.
The methodology is modified to allocate each resource cell with the corresponding
market price and feed-in tariff available for wave energy projects in that country. The
nationality of each cell is determined using international maritime boundaries

coordinates [52] input into the GIS model as illustrated in section 7.10.

Unfortunately, this scenario could not be completed because the methodology
implementation is not advanced to manage technology feed-in tariffs that change
according to the level of capacity installed. For example, the initial subsidy for wave
project developed in Portugal is 225 €/MWh only applies to the first 50 MW installed
[43]. The implemented methodology would not take this 50 MW limit into account.
Subsequently, the assessment overestimates the potential market size to a large
degree. However, the GIS market representation displayed in figure 9.12, gives an
indication of which country offers the most lucrative market. For example, although
the Portuguese energy resource is not as large as the Irish or British resource, the
available subsidy of 225 €/MWh for wave energy generation makes the Portuguese
market worth much more. Therefore, WECS array would be developed in Portugal

until the subsidy limit of 50 MW of installed capacity is reached.
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Figure 9.12: The internal rate of return GIS surface representing for the Regional

Electricity Market scenario. The darker red cells located within Portuguese maritime
territory indicates that a much higher rate of return is available. The IRR percentage

is represented as a decimal number in the above figure.
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10 Conclusions

10.1 Europe’s western shores lie at the end of a long fetch of the Atlantic Ocean and
are surrounded by stormy waters. The potential renewable wave energy

resource that could be exploited is vast.

10.2 The economic wave resource assessment methodology design presented in this
project can assess the resource for an given location of water provided wave
measurements are available in the form of a wave scatter diagram, and for any

device provided it has a power matrix representing conversion performance.

10.3 The methodology utilises the Internal Rate of Return economic analysis

mechanism together with GIS modelling techniques.

10.4 This project implements the methodology to assess the economic wave energy

resource in European waters.

10.5 The GIS model is developed to represent and analyse the geographical-based
wave resource data. GIS surfaces provide an excellent method of visualising
the resource and allows the entire wave resource model for the assessed area of

sea to be interpolated from a limited set of gridded wave data.

10.6 The European wave energy resource is modelled using GIS. The resource model
is interpolated from 23 wave data points obtained from the WERATLAS. This
data is not ideal for assessing the European resource because the UK Met Office
models underestimate swell waves which, in Western Europe, are an important
contribution to the overall resource and of particular importance to wave energy
conversion. The model is not accurate for intermediate depths due to the
limited number of data points obtained. 50 to 100 gridded wave data points
would be preferred for further European assessments. Oceanor’s Eurowaves
project would provide more precise data and thus much more accurate results;

however commercial costs would apply.

10.7 The methodology divides the resource model into 100 km”* cells. The cell size
limits the accuracy of the modelled wave resource close to shore as the depth

can range from O to as much as 500 metres. The equivalent unit of installed
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10.8

10.9

capacity of 300 MW (dependent on a device packing density of 3 MW/km?) is
too large. 1 km cells could provide more accurate resource estimates.
However, resource models applying a higher resolution of analysis increase the

complexity of the analysis which requires more computation.

The 750 kW Pelamis Wave Energy Conversion System (WECS) is selected as
the baseline device for the assessment. The WECS power matrix and the wave
scatter matrix provide an efficient representation that allows a device’s wave
energy conversion performance for a given site’s wave conditions to be

estimated.

The methodology estimates the potential economic wave energy resource for a
given area of sea. The accuracy is dependent on the resolution of the wave
energy resource model, the technology cost estimates, market entry costs and
the transmission and array configuration assumptions. Using several assumed
variables increases the level of uncertainty of the estimate. For this reason, a
single resource estimate is not calculated; instead, estimates are generated for a
range of optimistic and more realistic technology cost estimates. When the
actual commercial cost of wave devices is established, a more accurate wave

resource estimate could be generated using this methodology.

10.10 Due the shadowing effect, the capture efficiency of a single WECS array, and

multiple arrays of devices, is dependent on array configuration and population
density. Due to the long fetches required to regenerate waves, WECS should be
deployed in single lines of arrays, with each array consisting of multiple rows of
devices. The wave power levels available would determine the number of rows.
For example, for a wave resource of power levels of 55 kW/m, with
predominate direction and assuming device spacing of 200m, Pelamis WECS
could be deployed in arrays of up to 10 rows before the devices located at the
back are significantly affected. WECS located towards the rear of the array
would receive less energy flux, thus they could be built smaller with lower
power ratings to make the overall array more economical. The hexagonal

layout may also neglect the effects of waves changing direction.
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10.11 Dividing the wave energy resource into 100 km® cells for the purpose of the
assessment required a deployment strategy of installing a certain capacity in
each cell. A cell population density of 300 MW is selected to allow for wave
regeneration and sea vessels to navigate around the arrays. However, this is
unrealistic due to the additional transmission and installation expense of sites
further from shore located in greater depths. In reality, much larger arrays
would be developed in a single line perpendicular to predominate wave
direction. Therefore, WECS arrays would not be shadowed by other “up wave”
arrays and submarine cable length would be minimised. . This GIS based
methodology does not take this principle into account as it does not apply an

“intelligent” deployment strategy.

10.12 The assessment considered a single HVDC Submarine transmission cabled
connection, rated at 440 kV, to be suitable for each 300 MW of installed

capacity. This provides no redundancy.

10.13 The capital cost included in the methodology assumed that there is a Point of
Connection (POC) to the onshore grid at the nearest shoreline and included a
flat grid connection. In reality, connection costs may vary because connecting
to the nearest Grid Supply Point (GSP) once onshore may require additional
transmission lines, upgrading the existing grid infrastructure or resolving
additional planning problems. The existing grid and planned upgrades would
greatly affect the least cost route for the submarine cable. Therefore the shortest
route to shore, utilised in this model, may not be the Least Cost Route. The
methodology does not model the existing European transmission systems hence

it is not possible to account for the cost involved with onshore transmission.

10.14 Two required rates of return for wave energy arrays are selected: 10% is

considered optimistic and 13 % more realistic.

10.15 The market capacity estimated by the methodology is not limited by demand.
For example, the Internal Electricity Market scenario estimated the Irish
economic resource to be over 20 GW. However, this is unrealistic because it
outweighs domestic electricity demand. On the other hand, the energy surplus

could be exported to the UK or other European markets.
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10.16 Assuming the more realistic technology cost estimates, for the Internal
Electricity Market scenario, a required entry price — made up of wholesale price
and subsidy — of £55/MWh for 2010 for wave energy devices to become
commercially viable. Selecting an accurate subsidy is very difficult because it
depends on several factors such as current market share, competitiveness
compared to other generation, the level of market pull necessary to create the
market size desired and the effect on the existing electricity market. The

methodology can be used to help identify the required entry price.

10.17 Assuming the Internal Electricity Market scenario and the WECS cost of 964
£/kW for 2010, wave energy would penetrate the market at just under 55
£/MWh for the optimistic RRR of 10 %. An entry price of exactly 55 £/ MWh
would generate an economic resource of some 1.5 GW capacity — 5 cells —
corresponding to a capital investment of £1.4 billion. This resource is located
around the Irish west coast. For the realistic rate of 13 %, the entry price for
wave energy is higher at approximately 60 £/MWh. No market would develop
at the selected entry price of 55 £/MWh.

10.18 For the Internal Electricity Market scenario and the WECS cost of 866 £/kW
for 2025, the market entry price required for wave energy to become
commercial viability is reduced to approximately 50 and 55 £/MWh for rates of
return of 10 and 13 % respectively. At 10 % RRR, the selected entry price of
55 £/MWh constitutes an economic resource of 137.4 GW — 458 cells —
corresponding to a market worth approximately £120 billion. The majority of
this resource is located off the west coast of Ireland, the northwest region of
Scotland and to the northwest of Norway. There is no market if investors

require 13 % return.

10.19 Scenario were also completed for assuming technology costs of 750 £/kW for
2010 and 500 £/kW for 2025, however the resource estimates were considered

to be too optimistic.

10.20 Under the Internal Electricity Market conditions, the location of the
commercially viable resource is located where the highest levels of wave energy

are located. This is because of the single IEM market price assumed for each
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European County. For markets to develop in other countries, a separate wave
energy policy is required which provides a higher subsidy to offset the lower

wave energy levels available.

10.21 To apply separate electricity prices and policy frameworks for each European
country, the nationality of each cell is determined using international maritime
boundaries. However, feed-in tariffs for renewable technologies decrease as the
capacity increase. The methodology implementation cannot accommodate this
dynamic. Also, several of the capacity limits are below the minimum capacity
of 300 MW that is installed in each commercially viable cell. To solve this, the
methodology must be perfected to accept technology subsidy profiles that
allocate the corresponding subsidy to each level of generation capacity installed.
However, this level of detail does not yet exist for wave energy within European
renewable policy framework. The analysis cell size could also be reduced to
identify when the different levels of capacity are installed so the correct feed-in

tariff can be applied.

10.22 Under current market prices and subsidies available for wave energy projects,
the Portuguese market is the most attractive to potential developers. Although
the resource around Portugal is not as large as the Irish or UK resource, the
available feed-in tariff of 225 €/MWh would subsidise the lower levels of
energy generated. Therefore, the first WECS arrays will be developed in
Portugal until the subsidy limit of 50 MW installed capacity is reached, unless

other European countries propose more competitive wave energy policies.

10.23 The European resource assessment could be improved by obtaining a new data
set of 50 or more, wave data grid points located in the Western European
approaches of the Northern Atlantic Ocean and North Sea where wave power
levels are most significant. The cell size could be reduced to 1 km® to allow the
resource to be more accurately modelled and enable more sophisticated regional
policy mechanisms, which react to the rate of market growth, to be applied.
European Transmission Networks and grid supply points could be integrated
into the model to allow the least cost route for the submarine grid connection to
be determined. Hence, the capital cost estimated for each wave array would be

more realistic.
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13 Glossary of Abbreviations

ATBA
AWS
BODC
EMEC
EREF
EWER
GIS
GSP
HVDC
IEM
IRR
kV
kW
MW
MWh
OPD
OXERA
OWC
POC
RRR
REM
™
UKHO
UKMO
WECS

Areas To Be Avoided

Archimedes Wave Swing

British Oceanographic Data Centre
European Marine Energy Centre
European Renewable Energy Foundation
European Wave Energy Resource
Geographical Information System
Grid Supply Point

High Voltage Direct Current

Internal European Market

Internal Rate of Return

Kilovolt

Kilowatt

Megawatt

Megawatt hours

Ocean Power Delivery Ltd

Oxford Economic Research Associates
Oscillating Water Column

Point Of Connection

Required Rate of Return

Regional Electricity Market

Terawatt

United Kingdom Hydrographical Office
United Kingdom Met Office

Wave Energy Conversion System

WERATLAS Wave Energy Resource Atlas
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14 Appendix

The following data files collected and created during the project are included on the

project CD-ROM

robin.murray @aeat.co.uk:

14.1 ATBA Coordinates (Microsoft Excel)

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

EWER Economic Analysis (Microsoft Excel)

EWER Economic Assessment Methodology Figures (Adobe lllustrator)
EWER Energy Analysis (Microsoft Excel)

EWER GIS Model (ARC View GIS 3.2)

EWER Sensitivity Analysis (Microsoft Excel)

Depth Coordinates (Microsoft Excel)

Coordinates defining European Maritime Boundaries (Microsoft Excel)

Scenario Results — IRR (Microsoft Excel)

which can be requested from the author by email at
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