

Gordon Day

University of Strathclyde

MSc Energy Systems and the

Environment

Thesis

Development of Linear
Analysis Tools to Aid Design

of Large Scale Wind
Turbines

 2

Contents

Page

Acknowledgements…………………………………………………………… .….………3

Abstract………………………………………………………………………….….……..4

Introduction…………………………………………………………………… .…….…....5

Background………………………………………………………………………… .….…8

Fatigue………………………………………………………………………………..…..10

Fourier Transform…………………………………………………………………….….12

Weibull Distribution……………………………………………….………………….....15

Power Spectral Density…………………………………………………………… .….…17

Rainflow Analysis………………………………………………………………… .….…19

Dirlik……………………………………………………………………………… ..……26

Results………………………………………………………………………………...….30

Discussio n………………………………………………………………………………..37

Conclusions……………………………………………………………………………… 41

References………………………………………………………………………………..42

Bibliography……………………………………………………………………………..43

Appendices……………………………………………………………………………….44

 3

Acknowledgements

None of this work would have been possible without the assistance of Prof W. Leithead

and Sergio Dominguez of Strathclyde University.

 4

Abstract
The aim of this thesis is to evaluate methods of predicting fatigue damage to wind

turbines caused by random stress loading over long time periods. Traditionally, such

damage is calculated in the time domain using stress cycle counting methods such as the

Rainflow counting algorithm which is used here as a control method. Since the stress

loadings are random, extrapolation of a time series evaluation from data lasting a few

minutes to give an estimate for a period of 20 years gives rise to a likelihood of an

inaccurate prediction. Using much longer time series data would undoubtedly produce

more accurate results but processing time taken to perform the calculations would also

increase, ultimately to the point where it becomes unfeasible. It would therefore be more

beneficial if a reasonably accurate fatigue prediction could be calculated from data which

is presented in a form that permits much quicker calcula tions. Data that has been

transferred from the time domain to the frequency domain and is presented in the form of

a power spectral density (PSD) should , in theory, present the solution to this problem.

The Dirlik method of stress cycle analysis in the frequency domain is the method that is

tested here against the Rainflow method. This report will show that the Dirlik method

does indeed give very good fatigue estimation results when compared with the Rainflow

counting method and, subsequently could be recommended for use when calculating long

term fatigue damage caused by random stress cycle loading.

 5

Introduction

The very nature of a wind turbine and its function of deriving energy from the wind

means that it has to operate in environmentally hostile conditions. Land-based wind

turbines are exposed to a great deal of stresses and strains caused by the forces of

fluctuating wind and off-shore turbines also have to deal with additional forces produced

by sea currents and waves. These stresses and strains are varied in magnitude and

direction and over time they will eventually cause fatigue which weakens the structure

beyond serviceable limits. One of the most important challenges facing modern turbine

designers is to find ways of increasing the lifespan of wind turbines by minimising

structural failure due to fatigue[4][5]. In order to do this, fatigue needs to be reasonably

accurately predicted for the projected lifecycle of the turbine. Current wind turbines have

an approximate life expectancy of around 20 - 25 years. Accurate computer modelling of

structural fatigue enables designers to alter physical parameters of the turbine and

examine any effect these changes have on the structure. If a change has a positive effect

on the modelled structure then, theoretically, the same change in the physical design of

the turbine should prolong its life-cycle.

There are some difficulties associated with this type of prediction though. Firstly, it can

be difficult to determine the accuracy of a newly created computer simulation/prediction

model. It is not feasible to compare the results of a simulation with real physical results

since the time-span involved is so great so other methods must be used to validate results.

One possible method could be to use two or more different prediction models and

compare the results. A particular model which has been previously proven to be

reasonably reliable can be used as a control model in the development of new models.

Another difficulty involves the nature of the damaging forces. Wind is essentially

random and intermittent. Every wind farm site will have been subjected to a thorough

feasibility study to ensure there is a sufficient wind resource available but it is ultimately

impossible to accurately predict wind patterns over a 20 year period. The subsequent

problem for the designer is how to model the expected damaging effects of wind over the

life of the turbine. This problem may be tackled by examining the loads on the turbine in

 6

a different manner. Traditional methods of fatigue prediction using data presented in the

time domain involve calculations that can become very time intensive. If the design

process involves creating a model then analysing changes in fatigue caused by subtle

changes to component parameters, then the issue of calculation time becomes very

important. Instead of analysing the loads in the time domain, which plots signal

amplitude against time, the loads can be analysed in the frequency domain, which plots

signal amplitude against frequency. The signal can be transformed from time domain to

frequency domain using a Fourier Transform. In the frequency domain, calculations can

be performed much more quickly at the acceptable cost of a slight reduction in accuracy.

Another significant advantage of this is that the fatigue prediction process can be directly

incorporated into control design. This approach is often the best where random signals

span lengthy time series.

Although wind patterns cannot be accurately predicted in the long term, this does not

mean that they are a completely unknown quantity. Clever use of probability density

functions and other statistical methods can build a picture of wind patterns which is

accurate enough for the purposes of the prediction model. A probability density function

is usually displayed on a graph as a bell shaped curve. The x-axis contains a numerical

variation of possibilities and the y-axis indicates the probability of each possibility. It is

known that the probability of wind speed occurrences follows a particular probability

density function called a Weibull Distribution. The exact shape of the Weibull

Distribution for a particular site depends on the average wind speed measured during the

feasibility study on that site.

The aim of this project is to compare two different methods of fatigue prediction. These

are the Rainflow method and the Dirlik method. The Rainflow method has been widely

used in fatigue analysis since the 1970’s and is regarded as the control method here. It is

used to analyse data in the time domain and is a simple but effective way of identifying

stress cycles. The Rainflow method is renowned for its accuracy and the ease with which

it can be programmed. The Dirlik method has been around since the mid 1980’s and is

the method that is to be tested against the Rainflow method. The Dirlik method analyses

 7

data which has been transferred into the frequency domain and is a series of calculations

based on four moments of area of a Power Spectral Density function. Since the Dirlik

method is used in the frequency domain then theoretically it should produce reasonably

accurate fatigue prediction results more quickly than the Rainflow counting algorithm for

random loading data over a lengthy time series.

 8

Background
The need to derive energy from non- finite sources is on the increase. Advances in marine

technology[7] indicate that wave and tidal power may soon become viable options. Solar

energy is a technology that has been commercially recognised for more than 3 decades

and is now in use globally although the vast majority of its applications are small

scale[8].

For national renewable energy production, wind and hydro power are the only viable

energy sources that current technology allows to be exploited on a large enough scale and

since the UK has the largest share of wind resource in Europe[6], it makes sense to

exploit this resource to its maximum potential. Maximising this exploitation ultimately

means building bigger wind turbines and consequently technology needs to be pushed

further to achieve this. Onshore wind turbines are ultimately limited in size due to their

visual impact on the environment. The largest wind turbines currently being installed

onshore in the UK have a rated power of approximately 2MW. Offshore wind turbines

have no such size restriction as they are considered to have little or no detrimental visual

impact on the environment. Offshore wind turbines are, therefore, restricted in size only

by the available technology. The largest offshore wind turbines currently being installed

globally have the capacity to produce 4.5MW of power and 5MW turbines are currently

being tested[10].

As turbines increase in size, the stresses they have to endure also increase in size since

they are being exposed to more of the damaging effects of the wind. Without advances in

fatigue prediction techniques, there would ultimately be a reduction in lifespan of wind

turbines as their size increases. This would make them commercially unattractive as the

cost of installing large offshore wind turbines is considerably greater than that of

installing onshore wind turbines to create the same amount of power. In fact, figures

supplied by the Danish Wind Industry Association[11] suggest that offshore wind

turbines cost approximately 70% more per MW installed than onshore turbines. It is

therefore very important that wind farm operators are able to purchase turbines that will

last as long as possible in order to maximise their potential.

 9

The consequence of all this is that the ability to predict fatigue with a reasonable amount

of accuracy is a fundamentally important part of the turbine design process. If this

prediction process can also be incorporated into the control design stage then the effects

that small alterations to the control parameters have on the fatigue levels of the turbine

can instantly be seen. Traditional methods of fatigue estimation analyse data which is

presented in the time domain and while these methods are sufficiently accurate, they are

computationally time intensive and are not particularly suited to incorporation into

control analysis. This thesis will investigate the viability of a fatigue prediction

technique which analyses data presented in the frequency domain where computations

are much less time intensive and the ability to incorporate the fatigue analysis into control

analysis should be a natural progression.

 10

Fatigue

The vast majority of structural failures are due to some sort of fatigue in the component

material caused by stress and/or strain loading experienced over a period of time. Very

few modern structures experience purely static loading with some form of cyclic or

repeated loading being the most commonly observed. These cyclic or repeated loads

often lead eventually to structural failure caused by fatigue. This is particularly true of

wind turbines which are deliberately placed in positions where they are exposed to

somewhat hostile elements.

Fatigue is defined as a failure which is caused by a varying or repeated load. This load is

never at a sufficiently high level to cause structural failure in a single application. There

are two fundamental forms of cyclic stress called low-cycle fatigue and high-cycle

fatigue and their characteristics are very different. Subsequently the physical conditions

caused by these cycles which lead to structural failure also differ.

Low-cycle fatigue normally leads to structural failure in less than 100,000 cycles. The

cycles are usually large and result in a relatively short life. Low-cycle fatigue is typically

associated with significant amounts of plastic deformation.

High-cycle fatigue normally leads to structural failure in greater than 100,000 cycles.

The cycles are low load and high-cycle fatigue is normally associated with long

component life. The applied stress resulting from high-cycle fatigue is normally confined

to the elastic region.

In addition to this, the stress cycles can either be periodic, continuous or random.

Periodic stress cycles need not be continuous but they can more or less be treated as such

since the same set of stress cycles is repeated so even if there is a rest gap between the

sets of cycles it makes very little difference to the analysis process. Continuous stress

cycles are the easiest to analyse with a degree of accuracy since the same stress cycles are

repeated without a break. Random loading stress cycles are by their nature very difficult

to analyse for the purpose of fatigue prediction. The stress cycles experienced by wind

turbines are random and vary greatly in magnitude making it very difficult to predict

turbine fatigue over an expected lifespan of around 20 years.

 11

There are many different methods that can be employed to predict fatigue and

subsequently estimate the expected lifespan of a component or structure. The method

employed will be largely dependent on the type of stress experienced during the lifespan.

The aim of any fatigue prediction tool is essentially to estimate how many stress cycles

will lead to failure of the component or structure in question. To this end, the most basic

form of fatigue prediction uses the Palmgren-Miner rule. The Palmgren-Miner rule is

commonly used and asserts that terminal fatigue is caused by a combination of stress

cycles of differing magnitude (s 1, s 2, s3, s 4,……,s x, for x levels of stress). The number

of cycles to failure for each stress level is called N and can be obtained from a suitable S-

N Wohler curve for the material in question. The number of stress cycles actually

experienced by the component or structure is called n and is obtained from a method of

cycle counting. The fatigue level is deemed to be critical when
1

1

N
n

 +
2

2

N

n
 +

3

3

N

n
 +…+

x

x

N

n
 > 1.

The Palmgren-Miner rule is a very basic concept and it has been found to have

limitations in certain types of application. Nevertheless, this rule and many variations of

it are extensively used in the process of fatigue prediction.

 12

Fourier Transform
There are two different ways to view a signal and these are in the time domain and the

frequency domain. The most common method of viewing a signal is in the time domain

which plots the signal amplitude as the dependent variable against time as the

independent variable. An example of a signal plotted in the time domain can be seen in

figure 1.

 For most signal analysis this simple method is sufficient and it is also relatively easy to

understand. There are some signal types that make this form of signal viewing somewhat

impractical however, such as signals that are discontinuous or random over a large time

period. These signals are best viewed in the frequency domain where the signal

amplitude as the dependent variable is plotted against signa l frequency as the independent

Figure 1. Time Series Signal of Stress Loading on a Wind Turbine

 13

variable. An example of this can be seen in figure 2 where the signal from figure 1 is

represented in the frequency domain and is shown as a log- log plot.

Although the concept of the frequency domain may be slightly ha rder to understand than

the time domain, the mathematics involved the analysis are often easier.

Any signal can be represented in either time or frequency domain and a Fourier

Transform is used to convert the signal from the time domain to the frequency domain.

An inverse Fourier Transform is used to convert the signal from the frequency domain

back to the time domain. Although the basic mathematical principal is the same, there

are many different versions of the Fourier transform utilising variations on the

mathematical formulae. The Fast Fourier Transform is most commonly used for these

applications and is a version of the Discrete Fourier Transform which reduces the number

of computations for a series with N points by a factor of log2(N).

Figure 2. Example of Time Series Signal Converted to Frequency Domain

 14

The Discrete Fourier Transform is briefly described as follows.

If the series

 X0, X1, X2, X3 . . . Xk . . . XN-1

is a complex series with N elements and that the series is out with this range N periodic

so that Xk = Xk+N, then the Discrete Fourier Transform of this series is

x(n) = ∑
−

=

−
1

0

/2)(
1 N

k

Nnjkekx
N

π
 for n = 0 . . . N-1

The inverse function is as follows

X(n) = ∑
−

=

1

0

/2)(
N

k

NnjkekX π
 for n = 0 . . . N-1

A non-complex series can be similarly represented by setting the complex component of

each element to 0.

 15

Weibull Distribution

Modern wind turbines are designed to operate throughout a range of wind speeds. The

significant points within this range being cut-in speed, rated speed and cut-out speed.

The cut- in speed is the minimum wind speed that the turbine requires to generate

electricity. The rated speed is the wind speed at which the turbine is producing maximum

power and the cut-out speed is the point at which the wind is has become too strong for

safe operation of the turbine. Precise figures vary depending on the turbine used and the

wind resource at the site in question. Wind turbines generally operate at their rated speed

for around 25% of their lifetime and will produce electricity for 75 – 80% of the time[6].

Most wind turbines will produce 30-40% of their rated power over the course of their

lifetime and this is mainly due to the fact that the winds that drive them tend to be fresh

to moderate for most of the time. Turbine designers need to kno w the type of

environment that their turbines will be subjected to and so use statistical tools to try and

predict wind distribution speeds. The probability of wind speeds at a prospective wind

farm site can be modelled using a probability density functio n (PDF). Wind speeds are

known to follow a particular PDF called a Weibull distribution and an example of this

can be seen in figure 3.

 Figure 3 An Example of the Weibull Distribution

 16

The Weibull distribution is a representation of wind patterns constructed by averaging

wind speed over 5 or 10 minute intervals and is therefore suitable for long term wind

estimation but would not take into account very short term effects like localised

turbulence.

 17

Power Spectral Density
Stress loading on a structure for the purposes of fatigue damage analysis is normally

displayed in the time domain. Under most circumstances, this method produces

satisfactory results however, if the loading is random in nature then extremely large time

records are required to determine an accurate description of the loading. An alternative

method is to represent the loading in the frequency domain. This is done by using a fast

Fourier transform and the result is a ‘Power Spectral Density (PSD)’ plot. A Power

Spectral Density plot is a normalised density plot. It displays the mean square amplitude

of each sinusoidal wave with respect to its frequency. There are many variations in the

calculation of a Power Spectral Density and in this case Welch’s averaged, modified

periodogram method was used, this method is conveniently pre-programmed as a

function within Matlab. Welch’s method divides a discrete-time signal vector into eight

sections using a 50% overlap. A Hamming window is used on each section and eight

modified periodograms are then computed and averaged. This method vastly reduces an

effect called ‘leakage’ and leads to a more accurate result. If the signal is complex then

Welch’s method will produce a two-sided PSD, otherwise a one-sided PSD will be

produced.

A typical PSD plot provided using Welch’s method is shown in figure 4. For

convenience, the PSD is shown as a log- log plot.

 18

Figure 4. Log-log plot of typical PSD obtained using Welch’s method

 19

Rainflow Counting

Description

Rainflow analysis is a method of approximating stress cycles in a structure from time

series data of loads on the structure. It was developed in 1968 by Tatsuo Endo and M.

Matsuiski[9] and has been widely used since the late 1970’s when advances in computer

technology meant that this fairly simple algorithm could be easily programmed.

Figure 5 shows a time series of random data. The additional lines indicate how water (or

rain) would flow if the diagram was rotated clockwise through 900. The rainflow begins

at each peak and ends when one of the following conditions is satisfied.

1. The end of the time series is reached.

2. It flows opposite a peak of greater magnitude to the one from which it started.

3. It is interrupted by a flow which started at an earlier peak.

Time

1

2

3

6

5

4
Strain

Figure 5 Rainflow method

 20

In figure 5, the flow that begins at position 1 ends at position 2 because it satisfies the

second condition. The flow that starts at position 3 ends at position 4 because it satisfies

the first condition and the flow that starts at position 5 ends at position 6 because it

satisfies the third condition.

Each flow is classed as a half cycle. If a half cycle can be matched to another half cycle

of similar magnitude but opposite direction of flow then they are paired to make a full

cycle. The final cycle count will be a combination of full and half cycles and these will

be classed into bins of magnitude ranges.

Since a new cycle or half-cycle is started at every peak, the entire data range is counted.

Despite its apparent simplicity, the Rainflow method is widely regarded as being the most

accurate method of stress cycle counting available. The reason it tends to give better

results than other methods is that it successfully counts very small cycles which are often

missed by other counting methods. A typical rainflow counting algorithm will also

contain an adjustable filter which can eliminate cycles that are insignificantly small by

setting a minimum significant height. It also accounts for the mean stress of each cycle

which is the average of the positive and negative peaks of each cycle.

There are variations of the algorithm that forms the basis of the rainflow analysis but

each variation ultimately performs the same task. A commonly used and relatively

simple algorithm can be obtained from the American Society of Mechanical

Engineers[2]. Rainflow counting consistently outperforms other methods of stress cycle

analysis within the time series domain. Since its use is limited to time series data,

rainflow counting is best applied to periodic or continuous signals. These limitations

become more significant when dealing with random loading over a very long period of

time. Wind turbines have an approximate life-span of 20 years and the damage due to

fatigue in that period will be largely due to the wind, which is random and intermittent. It

would be unfeasible to analyse a time series of data whose magnitude is counted in years

and it is entirely conceivable that rainflow analysis of a data set lasting a few minutes

would not give an accurate estimation when extrapolated to represent such a lengthy

period of time. Random loading of lengthy time periods may therefore be best estimated

 21

by converting the data from the time series domain to the frequency domain for analysis.

This can be done using a variation of the Fourier Transform.

The process of programming the Rainflow counting method was relatively

straightforward. Figure 6 shows a typical data series of the type to be analysed. The data

shows simulated stresses on a wind turbine tower over a 5 minute period. These stresses

require to be analysed as described above.

Figure 6 Example of Time Domain Data Series Showing 5 min of Stress Loading on a Wind Turbine

 22

Rainflow Coding

There are two basic programs that were provided by Mathworks[4] and these were used

as the basis of the Rainflow analysis. The first of these functions identifies the peaks in

the data and the second performs the actual rainflow calculation. A series of Matlab

scripts were then written which used these functions to analyse the available data. Many

variations were considered and ultimately a very simple version was used. Since the

Rainflow counting algorithm was not the process which was on test here, it was deemed

unnecessary to perform it on the full range of data samples used for the Dirlik procedure.

Therefore, the Rainflow counting program was simply tested on a few randomly selected

data sets and the results compared with those of FLEX. Since the results were identical

to those of FLEX it could be safely concluded that a fully operational Rainflow counting

program had been created within Matlab, albeit with the assistance of Mathworks[4]. A

simple version of the rainflow script can be found in appendices.

The data to be analysed contains information for wind speeds spanning the full operating

range of the wind turbine (from 4 – 24m/s) in 2m/s steps. There are 2 sets of data for

each wind speed and these are taken at a +/- 10o offset from the direction of the wind.

This can be seen in figure 7.

Nacelle

Blade

Wind Direction

Figure 7. Plan View of Offset of Wind Turbine to Wind Direction

 23

In addition to this, there are 2 versions of many of the data sets. The first version features

undamped data and the second version features data with the natural vibration of the

tower damped out. The difference in fatigue damage between these sets of data is given

and it was originally intended to try and replicate these differences with the programs

written here. It was later considered that while this would have been useful, it would also

have been a somewhat restrictive practice. Since the calculated damage was provided

with all the data sets, it was decided to run comparisons with as many different sets of

data as possible and this would provide a much more robust test of both the Rainflow and

Dirlik algorithms.

When the Rainflow cycles have been counted, there are further calculations to be

performed in order to calculate the damage which is expected over the 20 year life span

of the wind turbine. The damage calculation for a single wind speed is described in the

following equation which was obtained from Thomsen[3].

 Req =

m

eq

m
ii

n

Rn
/1










 ∑

Where Req represents the damage equivalent, ni is the number of cycles of magnitude Ri

over i load range levels (usually 30–50), neq is a constant representing the corresponding

number of load ranges and m is the Wöhler curve exponent. In the simple algorithm that

was finally chosen, there was, in fact, no restriction on the number of ranges as each

cycle was treated individually for increased accuracy. Therefore the only way that there

would be more than one occurrence of a cycle is if there was more than one cycle of

exactly the same size. The damage level for each wind speed also needs to be weighted

according to the Weibull distribution to represent the statistical likelihood of that wind

speed occurring. The data is then adjusted to correspond to a 20 year period and the

damage for each wind speed is finally summated. The damage figures given by the final

Rainflow program were identical to the figures supplied by FLEX. This was to be

expected since FLEX also uses a Rainflow counting method to calculate damage and was

 24

simply a confirmation that a successful Rainflow counting program had been created

specifically to determine the expected damage caused by random stress cycles to a wind

turbine over a 20 year life span.

While graphical output of the Rainflow counting algorithm was neither required nor

feasible with so many data sets, figures 8 to 10 show typical graphical output that is

available when performing a Rainflow counting procedure using Matlab.

Figure 8 Histogram of Amplitudes

 25

Figure 9. Histogram of Mean Values

Figure 10. 3D Histogram of Amplitudes and Mean Values

 26

Dirlik
Description

The Dirlik method is a mathematical tool which can be used when performing fatigue

analysis. To use this method, signals to be analysed must first be transferred from the

time domain to the frequency domain where they are presented in the form of a power

spectral density (PSD) function. Stress analysis in the time domain is ideally suited to

signals representing periodic or continuous stress loading but for random stress loading

data, prohibitively large time records are often required for an accurate analysis. There

are distinct advantages in performing stress analysis in the frequency domain rather than

the time domain where a random stress loading signal forms the basis for analysis. The

main advantage is much less time intensive calculations although this comes at a cost of

slight loss in accuracy.

Any fatigue analysis process begins with the response of the structure or component.

This is normally expressed as a time history of stress or strain. Stress cycles in the time

history result in fatigue and the most important aspects of these cycles are the stress

amplitude ranges and the mean stress values. These values are normally analysed using

Rainflow Cycle Counting which is described in the previous chapter. The time history

data can be converted to data in the frequency domain by using a variation of the Fourier

Transform. In both formats, the y-axis displays the signal amplitude but in the frequency

domain, the x-axis represents the signal frequency as opposed to time. The Fourier

Transform effectively breaks the signal down into discrete sinusoidal waves. These

waves vary in frequency, phase and amplitude and form the original time signal again

when combined using an inverse Fourier Transform.

The Dirlik procedure was developed during the 1980’s as a response to a need for

effective fatigue analysis methods within the offshore oil industry. Oil platforms were

becoming very large and were subject to random stress loadings at sea. The resultant

Dirlik procedure was found to have much wider applications than previous methods and

was also found to be very accurate when compared to other methods. The Dirlik method

consists of a series of calculations which are based on four moments of area of the PSD

 27

function and was taken from Halfpenny[1]. These moments of area are m0, m1, m2 and

m4. The nth moment of area is calculated as

dffGfm n

n)(.∫=

where G(f) is the PSD function and f is the frequency in Hertz.

The expected number of peaks E[P] is calculated as

 E[P] =
2

4

m
m

The Dirlik method is calculated as

4

2

0

1 .
m
m

m
m

xm =

40

2

mm

m

⋅
=γ

 2

2

1 1
)(2

γ
γ

+
−⋅

= mx
D

R

DD
D

−
+−−

=
1

1 2
11

2

γ

 213 1 DDD −−=

 28

 2
11

2
1

1 DD
Dx

R m

+−−
−−

=
γ

γ

1

23)(25.1
D

RDD
Q

⋅−−⋅
=

γ

02 m

SZ
⋅

=

0

2
3

2
2

21

2
)(

2

2

2

m

eZDe
R

ZD
e

Q
D

Sp

Z
R

Z
Q
Z

⋅

⋅⋅+⋅
⋅

+⋅
=

−
⋅

−−

)(][)(SpTPESN ⋅⋅=

Where S is the stress range in N/mm2, T is the time in seconds and N(S) is the number of

stress cycles calculated for stress range S.

Dirlik Coding

Although the Dirlik procedure may be complex in appearance, it is relatively simple to

program in Matlab. A copy of the final Dirlik Matlab functions can be found in

appendices. Once the Dirlik procedure had been programmed, it was decided to treat the

information provided by it in more or less the same way as the information provided by

the Rainflow counting algorithm since they were both cycle counting algorithms. So the

stress amplitudes were divided into 50 range levels (this was the only real difference

since the Rainflow algorithm had no restriction on the number of range levels) and the

number of occurrences of each range were calculated. The number of range levels used

appeared to affect the results more than was expected but it was decided to stick to 50 as

this seemed to be the number of range levels used by FLEX in its rainflow counting

 29

algorithm although FLEX seemed to combine 2 or mo re range levels into one for reasons

unknown.

The information generated by the Dirlik method for each wind speed was subjected to the

same formula as the Rainflow counting information, i.e.

 Req =

m

eq

m
ii

n

Rn
/1










 ∑

Where Req represents the damage equivalent, ni is the number of cycles of magnitude Ri

over i load range levels (usually 30–50), neq is a constant representing the corresponding

number of load ranges and m is the Wöhler curve exponent. The damage figures for each

wind speed were then weighted according to the Weibull distribution and adjusted to

represent a 20 year period.

After some manipulation of the supplied Dirlik algorithm to account for unit differences,

it was found that the Dirlik algorithm was able to produce results with reasonable

accuracy when compared with the Rainflow counting algorithm. These results compared

favourably with previous studies by Halfpenny[1] which had declared successful results

when the Dirlik method was, on average, within 4% of a time domain based stress cycle

counting algorithm.

 30

Results

The results of this study were generally quite good. Programming the Rainflow counting

method was fairly straightforward and the results provided by that were identical to the

results given by FLEX. This was to be expected since FLEX also uses a Rainflow

counting algorithm in its fatigue analysis. Programming the Dirlik procedure was less

straightforward as there were several unknowns involved. The actual equations based on

the four moments of area of the power spectral density were, despite their complexity,

simple enough to program and were rigorously checked for errors. The problems then

arose when deciding what to do with the information provided by the Dirlik algo rithm. It

was decided to simply treat the Dirlik information in the same way as the information

from the Rainflow counting algorithm. The stress levels were raised to the Wohler curve

exponent (m), multiplied by the number of cycles at that level and the relevant Weibull

distribution coefficient. These figures were divided by the Neq figure, raised to the

power of the reciprocal of the Wohler exponent and summated. In theory this process

should have provided similar results to the rainflow process since one cycle counting

algorithm was being compared with another in exactly the same way but the results were

not similar. It was not immediately apparent why this was the case. There was a

likelihood of different units used between the power spectral dens ity calculation in

Matlab and the units provided by the Dirlik method which measured stress in N/mm2.

Since very little was known about the Dirlik procedure other than the supplied equations,

it was decided to add a series of factors to the Dirlik calculation in order to replicate the

Rainflow results. It was not expected to be able to match the Rainflow results exactly but

if an acceptable level of accuracy could be sustained for different values of m then it

could be reasonably assumed that there was a conflict concerning the units and that

applying a factor to resolve this difference was, in fact, a legitimate method of correction.

Should a reasonable level of accuracy not be achieved then there were several possible

reasons for this including incompatible data sets selected for analysis and the possibility

of more appropriate weightings being placed in different parts of the equations.

30 data sets were chosen at random to be analysed. This was reduced to 18 after several

were removed because it was thought that they were unsuitable and would give pointless

results when compared. One was removed specifically because it appeared to give rogue

 31

results. Although this did not guarantee absolute suitability of the remaining data sets, it

was still desirable to keep the selection as random as possible and not ‘cherry pick’ data

sets for analysis although it was later discovered that many of the data sets chosen were

not the most accurate available. For each of the data sets, the FLEX results were

obtained and the Dirlik analysis performed. The Rainflow result given by FLEX for each

data set was plotted against the Dirlik estimation and these plots can be seen in appendix

3. The results were then compared. Each FLEX result was compared with every other

FLEX result and the same process was performed with the corresponding Dirlik results.

The comparisons were performed by dividing each result by each of the other results.

They were then plotted against each other in a scatter graph. If the Dirlik ratios were

consistently similar to the FLEX ratios then it could be reasonably concluded that the

Dirlik procedure provided a very good estimation of fatigue damage. When the results

were plotted it appeared that they gave very poor results for very low m figures. Figure

10 shows the Dirlik comparisons against the FLEX comparisons for m = 3.

Figure 11. FLEX/Dirlik comparison (m=3)

 32

It was hoped that the points would roughly follow a line equivalent to y=x (shown in red)

and while this basic pattern was observed, it was thought that the points were too varied

to declare a positive result.

The results for m = 4, however were much better. These can be seen in figure 11 and the

results for m = 6, 8 10, 12 can be seen in figures 12 to 15.

Figure 12. FLEX/Dirlik comparison (m=4)

 33

Figure 13. FLEX/Dirlik comparison (m=6)

Figure 14. FLEX/Dirlik comparison (m=8)

 34

Figure 16 FLEX/Dirlik comparison (m=12)

Figure 15. FLEX/Dirlik comparison (m=10)

 35

These results were much more encouraging and show that the Dirlik procedure does in

fact provide a very good approximation for fatigue damage for higher values of m. What

was less clear was why such relatively poor results were obtained for very low values of

m. Since the results for higher m values are consistently good, it can be reasonably

assumed that there are no undiscovered errors within the Dirlik program itself and that

the process of placing factors within the program to weight the results was correct. The

most likely reasons for this are, therefore, unsuitable data sets or poorly placed

weightings. Closer examination of the points furthest from the line y = x revealed that

almost all of the data sets were commonly involved but to differing degrees. No pattern

could be established between these data sets however and it was thought that enough sets

of data had been removed already and to remove more would reduce the random nature

of their selection and subsequently the validity of the tests. The investigation therefore

proved largely inconclusive however it was noted that there were accuracy issues with

some data sets. The possibility that the weighting factors were wrongly placed within the

program remained and this was examined by placing different factors at different points

in the calculation. The number of different permutations possible here was very large

and so some basic rules had to be applied in order to reach a quick and reasonable

conclusion. Factors were subsequently moved between key points in the equations and

the effects on the positioning of the scatter graph points rather than the magnitudes of the

results were observed. It was decided that the current placing of the factors produced the

best possible results.

Further numerical investigation of the results ind icated that the observed results for low

values of m were perhaps not as bad as they seemed. Previous studies by Halfpenny[1]

indicated that the Dirlik approach showed an average discrepancy of only 4% from

fatigue life calculated in the time domain. This discrepancy arises from a simple

summation of comparisons and performing the same summation here gives an average

discrepancy of 5.8% and a best of 0.4% at m = 12. These results can be seen in column 1

of the table in figure 16. This method of simply taking the average of the comparisons

can be misleading though as positive and negative differences can cancel each out. A

more indicative method is to average the absolute differences between the results and this

 36

can be seen in column 2 of the table. Here, the average is only slightly higher at 6.4%

with a best of 1.5% at m = 12. A better method again of testing the variance of the results

is to calculate the standard deviation. Columns 3 and 4 of the table show 2 standard

deviation measurements. The first, headed Std Dev 1, is the standard deviation of the

direct ratios between the FLEX results and the Dirlik results. These seem to be rather

good and are consistently around 0.027 for values of m = 6 and above with an average of

0.022. The second column of standard deviations is based on the process of comparing

each FLEX result with every other FLEX result and doing the same with the respective

Dirlik results. The table shows the standard deviation of the ratio between the respective

FLEX and Dirlik comparisons under the heading Std Dev 2. This shows a best standard

deviation of 0.025 and an average of 0.029. Graphical representation of these results can

be seen in appendix 4.

m
Simple
Average

Absolute
Average Std Dev 1 Std Dev2

3 0.006 0.0292 0.0352 0.0479
4 0.1597 0.1597 0.0145 0.017
6 0.1074 0.1063 0.0235 0.027
8 0.0503 0.0503 0.0223 0.0279

10 0.02 0.0247 0.0204 0.02688
12 0.0039 0.0154 0.0186 0.0254

Ave 0.057883333 0.064266667 0.022417 0.02868

Considering the apparent poor quality of the random data sets which were used, these

results must be considered as rather good and demonstrate that with some manipulation,

the Dirlik procedure can be confidently used as a method of predicting fatigue damage in

wind turbines.

Figure 16. Table of Results

 37

Discussion
The rainflow counting method of fatigue analysis is widely used and its accuracy is

generally accepted to be very high. As such it was used as the control model here and the

Dirlik method was judged against it. The rainflow counting method does, however have

limitations and the most obvious of these is that it is used on data based in the time series

domain. Its accuracy, while remarkably high, can only be guaranteed with any real

certainty on data which is periodic or has a short time span. Its suitability for analysis of

stress loading which is random and has a very long time span (typically several years)

could feasibly be questioned by those seeking a high level of speed and accuracy in

fatigue prediction. Extrapolation of random stress loading of da ta that lasts a few

minutes to give fatigue estimations for a period of 20 years will inevitably lead to

inaccuracies within the results due to the relatively unpredictable nature of the loading, in

this case wind. These inaccuracies may be offset somewha t by the relative accuracy of

the rainflow counting algorithm when compared with other fatigue estimation algorithms.

It is also known that wind speed levels in the longer term follow a Weibull distribution

and if average wind speed for the site is known then a suitable Weibull distribution can

be applied for each of the wind speeds within the operational range of the wind turbine in

question. Use of these methods is standard within the wind industry and the predictions

given by them are regarded to be of acceptable accuracy. The dangers, however, lie in

the fact that regardless of the statistical techniques being applied, random loading data is

being extrapolated from a few minutes to several years and that the statistical weightings

applied rely on the average wind speed remaining relatively unchanged for the 20 year

period. These factors may or may not reduce the ultimate accuracy of the fatigue

predictions but they certainly affect the level of certainty that can be applied to them and

it is a bit impractical to wait 20 years to test their accuracy.

Another drawback of the Rainflow counting method is the fact that the calculations are

computationally time intensive and this is a very important issue at the design stage. A

fatigue analyst who is testing the effects of many small parameter alterations is likely to

be prepared to sacrifice a small amount of accuracy in what are, after all estimations, in

order to gain a huge reduction in the time taken to carry out the procedures. If the fatigue

 38

analysis process can also be incorporated into the control design stage then this provides

a further bonus in terms of time and efficiency of the design process.

One method of resolving these issues is to convert the stress loading data from the time

series domain to the frequency domain for analysis. Here it is possible to categorise the

random stress loadings with power spectral density functions. The purpose of this project

was to test the validity of the Dirlik method which predicts fatigue using data presented

in the frequency domain. The Dirlik method was specifically developed in the 1980’s for

the offshore oil industry. The fact that it analysed data in the frequency domain instead

of the time domain meant that, theoretically, fatigue caused by random loadings could be

more quickly predicted over very long periods of time albeit with a small reduction in

accuracy. This would make the Dirlik method preferable to time series based methods

such as the Rainflow method as long as the relative accuracy of the method itself could

be established.

Some difficulties were encountered during the programming and subsequent testing of

the Dirlik method and not all of these were resolved with absolute certainty. The main

problems centred around the suitability of the random sets of data that were chosen for

analysis and the weightings that had to be applied at various points of the Dirlik

calculations. It was considered desirable to select data sets at random and simply

compare results between each. If data sets had been “cherry picked” then the validity of

the results could be undermined. If the ratios between the FLEX results for different data

sets could be reproduced using the Dirlik method with sufficient consistency then that

would be a positive result even if the actual figures were different. It was later

discovered that many of the data sets chosen were ‘short’ data sets and the accuracy of

the FLEX figures were not particularly great. It is highly likely that this caused the

relatively poor accuracy for data that was tested at a value of m = 3 and the subsequent

improvement in results as m increased. The validity of attaching weighting factors to

various stages in the Dirlik calculation was upheld. The whole point of the project was to

emulate the fatigue estimations given by the Rainflow counting algorithm using a stress

cycle counting algorithm which has its basis in the frequency domain and this has been

 39

achieved with reasonable accuracy. The results show that the Dirlik method produced,

on average, fatigue estimations that were within 6.4% of the estimations provided by

FLEX. This must be considered a very positive result considering the reduction in

calculation time over the Rainflow method. These results can be easily seen in

appendices 3 and 4. To create these charts, each FLEX estimation was compared with

every other FLEX estimation and the same process was applied to the Dirlik estimation.

The respective comparisons were then plotted against each other in the form of scatter

charts shown in appendix 3 where perfect matches would be expected to follow the line

y=x. The Dirlik comparisons were then divided by their respective FLEX comparisons

and these results are shown in the graphs in appendix 4 where perfect matches would be

expected to fo llow the line y=1. The reason for this form of comparison, as opposed to

the table in the previous chapter which merely shows a comparison between each FLEX

and Dirlik result, is that consistency here would indicate a much more robust result. The

scatter charts in appendix 3 appear to show very good comparisons in all cases except

m=3, however this view is somewhat deceptive due to the scale of the graph. A clearer

picture can be seen in appendix 4 which essentially depicts the same results in a slightly

different manner. Here it can be clearly seen that for m=3, the Dirlik comparisons are

within 10% of the FLEX comparisons . The best results are for m=4 where the Dirlik

comparisons are all within 4% of the FLEX comparisons while the other values of m are

all reasonably consistent around 6-7%. These results are, in fact, comparable with the

direct comparisons tabled in the previous chapter.

While these results are very encouraging some further comment must be made about the

data sets. As previously stated, the data sets were chosen at random and contained a high

proportion of short data sets with slightly questionable accuracy. This was not known at

the time of selection. On initial analysis of results, some data sets were found to be

common to extreme rogue results and these were legitimately removed, however it was

desirable to minimise the practise of removing ‘bad’ data sets and so only a very few

were eliminated in order to keep the data selection as random as possible. Any

continuation of this work may consider careful selection of data sets rather than random

selection. The reason being that if the accuracy of the data sets can be assured then this

 40

factor can be eliminated as a cause for any inaccuracies in the result, particularly for

m=3. This was not done here as random selection of data was seen to be fundamental to

the validity of the results. Further investigation could also concentrate on the application

of weighting factors to the Dirlik calculations. It can be seen that the graphs in appendix

4 have slight periodic characteristics and these could possibly be eliminated with further

investigation into the weightings.

 41

Conclusions

1. The Dirlik procedure is much less computationally intensive than the Rainflow

counting procedure therefore should produce faster results for fatigue analysts.

2. The Dirlik procedure should lend itself to incorporation into control analysis

since it analyses data in the frequency domain.

3. The Dirlik procedure can produce fatigue estimations which are, on average,

within 6-7% of the Rainflow counting algorithm.

 42

References

1. A frequency domain approach for fatigue life estimation from Finite Element Analysis
Andrew Halfpenny
nCode International Ltd, Sheffield UK

2. ASME 1985, Standard Practices for Cycle Counting in Fatigue Analysis, ASTM
E1049-85(1997),
American Society of Mechanical Engineers, USA.

3. The Statistical Variation of Wind Turbine Fatigue Loads
Kenneth Thomsen
Riso National Laboratory, Roskilde, Denmark (1998)

4. Review of Control Algorithms for Off-Shore Wind Turbines
Prof. W.E.Leithead, Sergio Dominguez
University of Strathclyde (2003)

5. On the Fatigue Analysis of Wind Turbines
Herbert J. Sutherland
Sandia National Laboratories, Albuquerque, New Mexico (1999)

6. http://www.bwea.com/ref/faq.html

7. http://www.bwea.com/marine/index.html

8. http://www.history.rochester.edu/class/solar/solar.htm

9. http://en.wikipedia.org/wiki/Rainflow-counting_algorithm

10. http://www.c-power.be/applet_mernu_en/index01_en.htm?windturbines
/index_wit.htm~right_frame

11. http://www.windpower.org/en/tour/econ/offshore.htm

 43

Bibliography

Fatigue of Metallic Materials
M. Klesnil, P. Lukas
Elsevier

Analysis of the FLEX Model
Prof. W.E.Leithead, Sergio Dominguez
University of Strathclyde (2003)

Analysis of the Fatigue Loading of an Offshore Wind Turbine Using Time and Frequency
Domain Methods
Silke Schwartz, Kimon Argyriadis
Germanischer Lloyd Windenergie Gmbh, Johannisbollwerk 6-8, 20459 Hamburg

http://www.absoluteastronomy.com/encyclopedia/F/Fa/Fatigue_(material).htm

http://www.answers.com/topic/fatigue-material

http://www.maths.lth.se/matstat/staff/pj/Research/BELU/Description/

http://ocw.mit.edu/NR/rdonlyres/Materials-Science-and-Engineering/3-11Mechanics-of-
MaterialsFall1999/93EAB4DF-4E69-47EE-8FED-7015DDEC2D99/0/fatigue.pdf

 44

Appendices

1a. Rainflow Script

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%% Script to perform rainflow
%%%% analysis on FLEX data
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

l=dir('*.int'); % Access .INT files
load Ti; % load Weibull distribution coefficients
Neq=5e6;
N=3;

for i=1:length(l), % Call rainflow function
 x=readint(l(i).name) % to analyse data
 d(i)=raindef(x,N,Ti(i));
end

(sum(d)/Neq)^(1/N) % Sum results

1b. Rainflow Function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%% Function to perform
%%%% rainflow analysis
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function D=raindef(x,M,time)

 Rinx = sig2ext(x.Myt0); %% Find extremes of data
 Rin = rainflow(Rinx); %% Perform rainflow analysis on data
 Ramp = Rin(1,:)*2; %% Isolate amplitudes and
 Rno = Rin(3,:); %% number of occurrences
 T=max(x.time);

 D=sum((Ramp.^M).*Rno)*time*3600/T; %% Apply Weibull coefficient and sum

 45

2a. Dirlik Function 1

function f=loadir(m)
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% %%%%
%%%% Script to process Dirlik evaluation %%%%
%%%% of Flex results of fatigue damage %%%%
%%%% to wind turbines %%%%
%%%% %%%%
%%%% Created by Gordon Day on 18/5/05 %%%%
%%%% %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
Neq = 5e6;
%Neq = 1e7; %% Select value for Neq
%Neq = 5.8e8;
disp(['Neq = ',num2str(Neq)]);
%m = input(['Please select a value for m (3, 4, 6, 8, 10 or 12) ']);

if m == 3
 k = 1;
elseif m == 4
 k = 2;
elseif m == 6 %% Ensure correct calculation
 k = 3; %% for chosen value of m
elseif m == 8
 k = 4;
elseif m == 10
 k = 5;
elseif m == 12
 k = 6;
else
 error('You must select m from 3, 4, 6, 8, 10, or 12');
end

if Neq == 5e6
 p = 1; %% Ensure correct calculation
elseif Neq == 1e7 %% for chosen value of Neq
 p = 2;
elseif Neq == 5.8e8
 p = 3;
end

 46

cd ('D:\Gordons project\DirlikG');
l = dir;
l.name;
for j = 3:20
 cd(l(j).name);
 cd int; %% Loop to access
 q = dir; %% and read
 q.name %% relevant .int
 DD(j-2) = loadall3(m, Neq); %% files from
 cd .. ; %% data sets and
 cd('rain'); %% send to loadall function
 FlxDam = ReadFRO('91_Myt0.rfo');
 DamFig(j-2) = FlxDam(p,k);
 cd ('D:\Gordons project\DirlikG');
end

DamFig
DD
for i = 1:length(DD)
 avrge(i) = DD(i)/DamFig(i);
 bestav(i) = 1+abs(1-(DD(i))/(DamFig(i)));
end
Avrge = mean(avrge) %% Calculate and
Bestav = mean(bestav) %%
figure; %% graph
scatter(DD,DamFig); %%
title('Flex/Dirlik Comparisons'); %%
xlabel('Dirlik '); %% results
ylabel('Flex '); %%
Results(1,:) = DamFig; %% using a
Results(2,:) = DD; %%
R = Results'; %% variety of
Res = sortrows(R); %%
Results = Res'; %% methods
Damfig = Results(1,:);
DDD = Results(2,:);
figure;
plot(Damfig,DDD);
for i = 1:17
 RD(i) = DamFig(i+1)/DamFig(1);
 DirD = DD(i+1)/DD(1);
end
Rat = DamFig./DD
StanDev1 = std(Rat)
DD2 = DD;

 47

DF2 = DamFig;

count = 0;
figure;
for i = 1:17 %% The following nested
 for j = (i+1):18 %% loops were created
 DD3 = DD2(j)/DD2(i); %% To identify
 DF3 = DF2(j)/DF2(i); %% rogue data sets

 if DD3 > 1
 if DF3 < 1
 Diff = abs(DD3-DF3)
 if Diff >= 0.05
 disp(['DD3 = ',num2str(DD3)]);
 disp(['DF3 = ',num2str(DF3)]);
 disp(['i = ',num2str(i)])
 disp(['j = ',num2str(j)]);
 disp(['Difference = ',num2str(Diff)])
 disp(' ');
 disp(' ');
 end
 end
 elseif DD3 < 1
 if DF3 > 1
 Diff = abs(DD3-DF3)
 if Diff >= 0.05
 disp(['DD3 = ',num2str(DD3)]);
 disp(['DF3 = ',num2str(DF3)]);
 disp(['i = ',num2str(i)])
 disp(['j = ',num2str(j)]);
 disp(['Difference = ',num2str(Diff)])
 disp(' ');
 disp(' ');
 end
 end
 end

 scatter(DD3,DF3,'+');
 hold on;
 count = count + 1;
 end
end

x = 0.8:0.1:1.2;

for i = 1:length(x)

 48

 y(i) = x(i);
end
plot(x,y,'r');

count
grid;
title('Flex/Dirlik Comparisons');
xlabel('Dirlik Comparisons');
ylabel('Flex Comparisons');

count = 0; %% Calculate and plot
figure; %% Comparison figures
for i = 1:17
 for j = (i+1):18
 count = count + 1;
 DD4 = DD2(j)/DD2(i);
 DF4 = DF2(j)/DF2(i);
 DRat(count) = DD4/DF4;
 %plot(count,DRat,'+');
 hold on;
 end
end
plot(DRat);
Deviate = std(DRat)

x=0:1:(count-1);
for i = 1:count
 y(i) = x(i)*0+1;
end
%plot(x,y,'r');

ylim([0.5,1.5]);
title('Flex/Dirlik Comparisons');
xlabel('Index');
ylabel('Flex/Dirlik');

 49

2b. Dirlik Function 2

function Dd = loadall3(M, Neq)

%%%%%%%%%%%%%%%%%%%%%%
%%%% Function to process data %%%%
%%%% from Loadir script and %%%%
%%%% send to Dirlikdef function %%%%
%%%%%%%%%%%%%%%%%%%%%%

A=dir('*.int'); %% Access directory of .int files
load Ti; %% Load Weibull distribution figures

A.name
for i=1:length(A), %% Loop to send
 x=readint(A(i).name); %% all .int files
 d(i)=Dirlikdef(x,M,Ti(i)); %% to Dirlikdef function
end
Dd=(sum(d)/Neq)^(1/M); %% Final damage calculation
disp('loadall finished')

2c. Dirlik Function 3

function D = Dirlikdef(x,m,Weibcoef)

%%%%%%%%%%%%%%%%%%%%%%%
%%%% Function to perform Dirlik %%%%
%%%% analysis on data sent from %%%%
%%%% loadall3 function %%%%
%%%%%%%%%%%%%%%%%%%%%%%

f = 1/(x.time(2)-x.time(1));
[xs,fxs]=pwelch(x.Myt0,2^11,2^10,2^11,f); %% Generate PSD using Welch's
method
Mzero = simp(fxs,xs); %%
Mone = simp(fxs,fxs.*xs); %% Calculate 0th - 4th...
Mtwo = simp(fxs,(fxs.^2).*xs); %% moments of area
Mfour = simp(fxs,(fxs.^4).*xs); %%

Ep = sqrt(Mfour/Mtwo); %%
time = max(x.time); %%
stressmax = (max(x.Myt0)-min(x.Myt0)); %% Set maximum value in stress range
slightly above value of highest stress peak
lambda = Mtwo/(sqrt(Mzero*Mfour)); %%
Xm = (Mone/Mzero)*(sqrt(Mtwo/Mfour)); %% Generation of...

 50

Done = 2*(Xm- lambda^2)/(1+lambda^2); %% calculation constants
R = (lambda-Xm-Done^2)/(1- lambda-Done+Done^2); %%
Dtwo = (1- lambda-Done+Done^2)/(1-R); %%
Dthree = 1-Done-Dtwo; %%
Q = 1.25*(lambda-Dthree-Dtwo*R)/Done;
stresstep = stressmax/50;
stresslev = zeros(1,50);
for b = 1:50;
 stresslev(b) = b*stresstep; %% Loop to calculate ranges of
 Z(b) = 0.5*stresslev(b)/(sqrt(Mzero)); %% stress and expected occurrence
 Ps(b) = ((Done/Q)*exp((-Z(b))/Q)+(Dtwo*(Z(b))/(R^2))*exp((-
((Z(b))^2))/(2*R^2))+Dthree*Z(b)*exp(-((Z(b))^2)/2))/(2*sqrt(Mzero));
 Ns(b) = Ep*631152000*time*Ps(b)*(2*pi)/1000;
 %Ns(b) = Ep*time*Ps(b);
end
stresstotD = 0;
D = sum(stresslev.^m.*Ns)*Weibcoef*3600/time/1000;

%D=sum((Ramp.^m).*Rno)*time*3600/T;

 51

3. Scatter Plots of FLEX Vs Dirlik

These plots are designed to be an indicator of accuracy of the Dirlik procedure when

compared to the Rainflow counting results supplied by FLEX. Each FLEX estimation

was compared with every other FLEX estimation by division and the same procedure was

undertaken with the Dirlik estimations. The respective FLEX and Dirlik comparisons

were then plotted against each other in the form of scatter graphs. Perfect results would

be expected to follow the line y=x. This form of comparison is regarded to be a more

robust indicator of accuracy than simply comparing the FLEX estimation of a data set

with the respective Dirlik estimation.

m = 3

 52

m = 4

m = 6

 53

m = 8

m = 10

 54

m = 12

 55

4. Graphical Results of FLEX Comparisons Vs Dirlik Comparisons

The graphs in this appendix depict the same information as the graphs in appendix 3 but

in a slightly different way. The Dirlik comparisons and the FLEX comparisons shown in

appendix 3 have been compared by division and plotted. Perfect comparisons would be

expected to follow the line y=1.

m = 3

 56

m = 4

m = 6

 57

m = 8

m = 10

 58

m = 12

