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Abstract 
The aim of this thesis is to evaluate methods of predicting fatigue damage to wind 

turbines caused by random stress loading over long time periods.  Traditionally, such 

damage is calculated in the time domain using stress cycle counting methods such as the 

Rainflow counting algorithm which is used here as a control method.  Since the stress 

loadings are random, extrapolation of a time series evaluation from data lasting a few 

minutes to give an estimate for a period of 20 years gives rise to a likelihood of an 

inaccurate prediction.  Using much longer time series data would undoubtedly produce 

more accurate results but processing time taken to perform the calculations would also 

increase, ultimately to the point where it becomes unfeasible.  It would therefore be more 

beneficial if a reasonably accurate fatigue prediction could be calculated from data which 

is presented in a form that permits much quicker calcula tions.  Data that has been 

transferred from the time domain to the frequency domain and is presented in the form of 

a power spectral density (PSD) should , in theory, present the solution to this problem.  

The Dirlik method of stress cycle analysis in the frequency domain is the method that is 

tested here against the Rainflow method.  This report will show that the Dirlik method 

does indeed give very good fatigue estimation results when compared with the Rainflow 

counting method and, subsequently could be recommended for use when calculating long 

term fatigue damage caused by random stress cycle loading.  
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Introduction 

The very nature of a wind turbine and its function of deriving energy from the wind 

means that it has to operate in environmentally hostile conditions.  Land-based wind 

turbines are exposed to a great deal of stresses and strains caused by the forces of 

fluctuating wind and off-shore turbines also have to deal with additional forces produced 

by sea currents and waves.  These stresses and strains are varied in magnitude and 

direction and over time they will eventually cause fatigue which weakens the structure 

beyond serviceable limits.  One of the most important challenges facing modern turbine 

designers is to find ways of increasing the lifespan of wind turbines by minimising 

structural failure due to fatigue[4][5].  In order to do this, fatigue needs to be reasonably 

accurately predicted for the projected lifecycle of the turbine.  Current wind turbines have 

an approximate life expectancy of around 20 - 25 years.  Accurate computer modelling of 

structural fatigue enables designers to alter physical parameters of the turbine and 

examine any effect these changes have on the structure.  If a change has a positive effect 

on the modelled structure then, theoretically, the same change in the physical design of 

the turbine should prolong its life-cycle. 

 

There are some difficulties associated with this type of prediction though.  Firstly, it can 

be difficult to determine the accuracy of a newly created computer simulation/prediction 

model.  It is not feasible to compare the results of a simulation with real physical results 

since the time-span involved is so great so other methods must be used to validate results.  

One possible method could be to use two or more different prediction models and 

compare the results.  A particular model which has been previously proven to be 

reasonably reliable can be used as a control model in the development of new models.   

 

Another difficulty involves the nature of the damaging forces.  Wind is essentially 

random and intermittent.  Every wind farm site will have been subjected to a thorough 

feasibility study to ensure there is a sufficient wind resource available but it is ultimately 

impossible to accurately predict wind patterns over a 20 year period.  The subsequent 

problem for the designer is how to model the expected damaging effects of wind over the 

life of the turbine.  This problem may be tackled by examining the loads on the turbine in 
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a different manner.  Traditional methods of fatigue prediction using data presented in the 

time domain involve calculations that can become very time intensive.  If the design 

process involves creating a model then analysing changes in fatigue caused by subtle 

changes to component parameters, then the issue of calculation time becomes very 

important.  Instead of analysing the loads in the time domain, which plots signal 

amplitude against time, the loads can be analysed in the frequency domain, which plots 

signal amplitude against frequency.  The signal can be transformed from time domain to 

frequency domain using a Fourier Transform.  In the frequency domain, calculations can 

be performed much more quickly at the acceptable cost of a slight reduction in accuracy.  

Another significant advantage of this is that the fatigue prediction process can be directly 

incorporated into control design.  This approach is often the best where random signals 

span lengthy time series.     

 

Although wind patterns cannot be accurately predicted in the long term, this does not 

mean that they are a completely unknown quantity.  Clever use of probability density 

functions and other statistical methods can build a picture of wind patterns which is 

accurate enough for the purposes of the prediction model.  A probability density function 

is usually displayed on a graph as a bell shaped curve.  The x-axis contains a numerical 

variation of possibilities and the y-axis indicates the probability of each possibility.  It is 

known that the probability of wind speed occurrences follows a particular probability 

density function called a Weibull Distribution.  The exact shape of the Weibull 

Distribution for a particular site depends on the average wind speed measured during the 

feasibility study on that site.       

 

The aim of this project is to compare two different methods of fatigue prediction.  These 

are the Rainflow method and the Dirlik method.  The Rainflow method has been widely 

used in fatigue analysis since the 1970’s and is regarded as the control method here.  It is 

used to analyse data in the time domain and is a simple but effective way of identifying 

stress cycles.  The Rainflow method is renowned for its accuracy and the ease with which 

it can be programmed.  The Dirlik method has been around since the  mid 1980’s and is 

the method that is to be tested against the Rainflow method.  The Dirlik method analyses 
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data which has been transferred into the frequency domain and is a series of calculations 

based on four moments of area of a Power Spectral Density function.  Since the Dirlik 

method is used in the frequency domain then theoretically it should produce reasonably 

accurate fatigue prediction results more quickly than the Rainflow counting algorithm for 

random loading data over a lengthy time series.     
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Background 
The need to derive energy from non- finite sources is on the increase.  Advances in marine 

technology[7] indicate that wave and tidal power may soon become viable options.  Solar 

energy is a technology that has been commercially recognised for more than 3 decades 

and is now in use globally although the vast majority of its applications are small 

scale[8]. 

 

For national renewable energy production, wind and hydro power are the only viable 

energy sources that current technology allows to be exploited on a large enough scale and 

since the UK has the largest share of wind resource in Europe[6], it makes sense to 

exploit this resource to its maximum potential.  Maximising this exploitation ultimately 

means building bigger wind turbines and consequently technology needs to be pushed 

further to achieve this.  Onshore wind turbines are ultimately limited in size due to their 

visual impact on the environment.  The largest wind turbines currently being installed 

onshore in the UK have a rated power of approximately 2MW.  Offshore wind turbines 

have no such size restriction as they are considered to have little or no detrimental visual 

impact on the environment.  Offshore wind turbines are, therefore, restricted in size only 

by the available technology.  The largest offshore wind turbines currently being installed 

globally have the capacity to produce 4.5MW of power and 5MW turbines are currently 

being tested[10]. 

 

As turbines increase in size, the stresses they have to endure also increase in size since 

they are being exposed to more of the damaging effects of the wind.  Without advances in 

fatigue prediction techniques, there would ultimately be a reduction in lifespan of wind 

turbines as their size increases.  This would make them commercially unattractive as the 

cost of installing large offshore wind turbines is considerably greater than that of 

installing onshore wind turbines to create the same amount of power.  In fact, figures 

supplied by the Danish Wind Industry Association[11] suggest that offshore wind 

turbines cost approximately 70% more per MW installed than onshore turbines.  It is 

therefore very important that wind farm operators are able to purchase turbines that will 

last as long as possible in order to maximise their potential. 
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The consequence of all this is that the ability to predict fatigue with a reasonable amount 

of accuracy is a fundamentally important part of the turbine design process.  If this 

prediction process can also be incorporated into the control design stage then the effects 

that small alterations to the control parameters have on the fatigue levels of the turbine 

can instantly be seen.  Traditional methods of fatigue estimation analyse data which is 

presented in the time domain and while these methods are sufficiently accurate, they are 

computationally time intensive and are not particularly suited to incorporation into 

control analysis.  This thesis will investigate the viability of a fatigue prediction 

technique which analyses data presented in the frequency domain where computations 

are much less time intensive and the ability to incorporate the fatigue analysis into control 

analysis should be a natural progression.               
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Fatigue 

The vast majority of structural failures are due to some sort of fatigue in the component 

material caused by stress and/or strain loading experienced over a period of time.  Very 

few modern structures experience purely static loading with some form of cyclic or 

repeated loading being the most commonly observed.  These cyclic or repeated loads 

often lead eventually to structural failure caused by fatigue.  This is particularly true of 

wind turbines which are deliberately placed in positions where they are exposed to 

somewhat hostile elements. 

   

Fatigue is defined as a failure which is caused by a varying or repeated load.  This load is 

never at a sufficiently high level to cause structural failure in a single application. There 

are two fundamental forms of cyclic stress called low-cycle fatigue and high-cycle 

fatigue and their characteristics are very different.  Subsequently the physical conditions 

caused by these cycles which lead to structural failure also differ. 

Low-cycle fatigue normally leads to structural failure in less than 100,000 cycles.  The 

cycles are usually large and result in a relatively short life.  Low-cycle fatigue is typically 

associated with significant amounts of plastic deformation.  

High-cycle fatigue normally leads to structural failure in greater than 100,000 cycles.  

The cycles are low load and high-cycle fatigue is normally associated with long 

component life.  The applied stress resulting from high-cycle fatigue is normally confined 

to the elastic region. 

 

In addition to this, the stress cycles can either be periodic, continuous or random.  

Periodic stress cycles need not be continuous but they can more or less be treated as such 

since the same set of stress cycles is repeated so even if there is a rest gap between the 

sets of cycles it makes very little difference to the analysis process.  Continuous stress 

cycles are the easiest to analyse with a degree of accuracy since the same stress cycles are 

repeated without a break.  Random loading stress cycles are by their nature very difficult 

to analyse for the purpose of fatigue prediction.  The stress cycles experienced by wind 

turbines are random and vary greatly in magnitude making it very difficult to predict 

turbine fatigue over an expected lifespan of around 20 years.   
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There are many different methods that can be employed to predict fatigue and 

subsequently estimate the expected lifespan of a component or structure.  The method 

employed will be largely dependent on the type of stress experienced during the lifespan.  

The aim of any fatigue prediction tool is essentially to estimate how many stress cycles 

will lead to failure of the component or structure in question.  To this end, the most basic 

form of fatigue prediction uses the Palmgren-Miner rule.  The Palmgren-Miner rule is 

commonly used and asserts that terminal fatigue is caused by a combination of stress 

cycles of differing magnitude (s 1, s 2, s3, s 4,……,s x, for x levels of stress).  The number 

of cycles to failure for each stress level is called N and can be obtained from a suitable S-

N Wohler curve for the material in question.  The number of stress cycles actually 

experienced by the component or structure is called n and is obtained from a method of 

cycle counting.  The fatigue level is deemed to be critical when 
1
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The Palmgren-Miner rule is a very basic concept and it has been found to have 

limitations in certain types of application.  Nevertheless, this rule and many variations of 

it are extensively used in the process of fatigue prediction. 
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Fourier Transform 
There are two different ways to view a signal and these are in the time domain and the 

frequency domain.  The most common method of viewing a signal is in the time domain 

which plots the signal amplitude as the dependent variable against time as the 

independent variable.  An example of a signal plotted in the time domain can be seen in 

figure 1. 

 

 
 

 

 For most signal analysis this simple method is sufficient and it is also relatively easy to 

understand.  There are some signal types that make this form of signal viewing somewhat 

impractical however, such as signals that are discontinuous or random over a large time 

period.  These signals are best viewed in the frequency domain where the signal 

amplitude as the dependent variable is plotted against signa l frequency as the independent 

Figure 1.  Time Series Signal of Stress Loading on a Wind Turbine  
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variable.  An example of this can be seen in figure 2 where the signal from figure 1 is 

represented in the frequency domain and is shown as a log- log plot. 

 

 
 

 

Although the concept of the frequency domain may be slightly ha rder to understand than 

the time domain, the mathematics involved the analysis are often easier.   

Any signal can be represented in either time or frequency domain and a Fourier 

Transform is used to convert the signal from the time domain to the frequency domain.  

An inverse Fourier Transform is used to convert the signal from the frequency domain 

back to the time domain.  Although the basic mathematical principal is the same, there 

are many different versions of the Fourier transform utilising variations on the 

mathematical formulae.  The Fast Fourier Transform is most commonly used for these 

applications and is a version of the Discrete Fourier Transform which reduces the number 

of computations for a series with N points by a factor of log2(N). 

 

Figure 2. Example of Time Series Signal Converted to Frequency Domain  
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The Discrete Fourier Transform is briefly described as follows. 

If the series  

  X0, X1, X2, X3 . . . Xk . . . XN-1 

 

is a complex series with N elements and that the series is out with this range N periodic 

so that Xk = Xk+N, then the Discrete Fourier Transform of this series is 

x(n) = ∑
−

=

−
1

0

/2)(
1 N

k

Nnjkekx
N

π
        for n = 0 . . . N-1 

 
The inverse function is as follows 

 

X(n) = ∑
−

=

1

0

/2)(
N

k

NnjkekX π
       for n = 0 . . . N-1 

 

A non-complex series can be similarly represented by setting the complex component of 

each element to 0. 
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Weibull Distribution 

Modern wind turbines are designed to operate throughout a range of wind speeds.  The 

significant points within this range being cut-in speed, rated speed and cut-out speed.  

The cut- in speed is the minimum wind speed that the turbine requires to generate 

electricity.  The rated speed is the wind speed at which the turbine is producing maximum 

power and the cut-out speed is the point at which the wind is has become too strong for 

safe operation of the turbine.  Precise figures vary depending on the turbine used and the 

wind resource at the site in question.  Wind turbines generally operate at their rated speed 

for around 25%  of their lifetime and will produce electricity for 75 – 80% of the time[6].  

Most wind turbines will produce 30-40% of their rated power over the course of their 

lifetime and this is mainly due to the fact that the winds that drive them tend to be fresh 

to moderate for most of the time.  Turbine designers need to kno w the type of 

environment that their turbines will be subjected to and so use statistical tools to try and 

predict wind distribution speeds.  The probability of wind speeds at a prospective wind 

farm site can be modelled using a probability density functio n (PDF).  Wind speeds are 

known to follow a particular PDF called a Weibull distribution and an example of this 

can be seen in figure 3.   

 

  Figure 3  An Example of the  Weibull Distribution 
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The Weibull distribution is a representation of wind patterns constructed by averaging 

wind speed over 5 or 10 minute intervals and is therefore suitable for long term wind 

estimation but would not take into account very short term effects like localised 

turbulence. 
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Power Spectral Density 
Stress loading on a structure for the purposes of fatigue damage analysis is normally 

displayed in the time domain. Under most circumstances, this method produces 

satisfactory results however, if the loading is random in nature then extremely large time 

records are required to determine an accurate description of the loading.  An alternative 

method is to represent the loading in the frequency domain.  This is done by using a fast 

Fourier transform and the result is a ‘Power Spectral Density (PSD)’ plot.  A Power 

Spectral Density plot is a normalised density plot.  It displays the mean square amplitude 

of each sinusoidal wave with respect to its frequency.  There are many variations in the 

calculation of a Power Spectral Density and in this case Welch’s averaged, modified 

periodogram method was used, this method is conveniently pre-programmed as a 

function within Matlab.  Welch’s method divides a discrete-time signal vector into eight 

sections using a 50% overlap.  A Hamming window is used on each section and eight 

modified periodograms are then computed and averaged.  This method vastly reduces an 

effect called ‘leakage’ and leads to a more accurate result.  If the signal is complex then 

Welch’s method will produce a two-sided PSD, otherwise a one-sided PSD will be 

produced.   

A typical PSD plot provided using Welch’s method is shown in figure 4.  For 

convenience, the PSD is shown as a log- log plot. 
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Figure 4.  Log-log plot of typical PSD obtained using Welch’s method  
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Rainflow Counting 

Description 

Rainflow analysis is a method of approximating stress cycles in a structure from time 

series data of loads on the structure.  It was developed in 1968 by Tatsuo Endo and M. 

Matsuiski[9] and has been widely used since the late 1970’s when advances in computer 

technology meant that this fairly simple algorithm could be easily programmed. 

 

 
 

 

Figure 5 shows a time series of random data.  The additional lines indicate how water (or 

rain) would flow if the diagram was rotated clockwise through 900.  The rainflow begins 

at each peak and ends when one of the following conditions is satisfied. 

 

1. The end of the time series is reached. 

2. It flows opposite a peak of greater magnitude to the one from which it started. 

3. It is interrupted by a flow which started at an earlier peak. 

 

Time 

1

2 

3 

6 

5 

4 
Strain  

Figure 5 Rainflow method 
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In figure 5, the flow that begins at position 1 ends at position 2 because it satisfies the 

second condition.  The flow that starts at position 3 ends at position 4 because it satisfies 

the first condition and the flow that starts at position 5 ends at position 6 because it 

satisfies the third condition. 

Each flow is classed as a half cycle.  If a half cycle can be matched to another half cycle 

of similar magnitude but opposite direction of flow then they are paired to make a full 

cycle.  The final cycle count will be a combination of full and half cycles and these will 

be classed into bins of magnitude ranges.     

Since a new cycle or half-cycle is started at every peak, the entire data range is counted. 

Despite its apparent simplicity, the Rainflow method is widely regarded as being the most 

accurate method of stress cycle counting available.  The reason it tends to give better 

results than other methods is that it successfully counts very small cycles which are often 

missed by other counting methods.  A typical rainflow counting algorithm will also 

contain an adjustable filter which can eliminate cycles that are insignificantly small by 

setting a minimum significant height.  It also accounts for the mean stress of each cycle 

which is the average of the positive and negative peaks of each cycle.   

 

There are variations of the algorithm that forms the basis of the rainflow analysis but 

each variation ultimately performs the same task.  A commonly used and relatively 

simple algorithm can be obtained from the American Society of Mechanical 

Engineers[2].  Rainflow counting consistently outperforms other methods of stress cycle 

analysis within the time series domain.  Since its use is limited to time series data, 

rainflow counting is best applied to periodic or continuous signals.  These limitations 

become more significant when dealing with random loading over a very long period of 

time.  Wind turbines have an approximate life-span of 20 years and the damage due to 

fatigue in that period will be largely due to the wind, which is random and intermittent.  It 

would be unfeasible to analyse a time series of data whose magnitude is counted in years 

and it is entirely conceivable that rainflow analysis of a data set lasting a few minutes 

would not give an accurate estimation when extrapolated to represent such a lengthy 

period of time.  Random loading of lengthy time periods may therefore be best estimated 
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by converting the data from the time series domain to the frequency domain for analysis.  

This can be done using a variation of the Fourier Transform. 

 

 

 

The process of programming the Rainflow counting method was relatively 

straightforward.  Figure 6 shows a typical data series of the type to be analysed. The data 

shows simulated stresses on a wind turbine tower over a 5 minute period.  These stresses 

require to be analysed as described above.   

 
 

 

 

 

 

 

Figure 6  Example of  Time Domain Data Series Showing 5 min of Stress Loading on a Wind Turbine  
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Rainflow Coding  

There are two basic programs that were provided by Mathworks[4] and these were used 

as the basis of the Rainflow analysis.  The first of these functions identifies the peaks in 

the data and the second performs the actual rainflow calculation.  A series of Matlab 

scripts were then written which used these functions to analyse the available data.  Many 

variations were considered and ultimately a very simple version was used.  Since the 

Rainflow counting algorithm was not the process which was on test here, it was deemed 

unnecessary to perform it on the full range of data samples used for the Dirlik procedure.  

Therefore, the Rainflow counting program was simply tested on a few randomly selected 

data sets and the results compared with those of FLEX.  Since the results were identical 

to those of FLEX it could be safely concluded that a fully operational Rainflow counting 

program had been created within Matlab, albeit with the assistance of Mathworks[4].  A 

simple version of the rainflow script can be found in appendices.   

 

The data to be analysed contains information for wind speeds spanning the full operating 

range of the wind turbine (from 4 – 24m/s) in 2m/s steps.  There are 2 sets of data for 

each wind speed and these are taken at a +/- 10o offset from the direction of the wind.  

This can be seen in figure 7. 

 

 

Nacelle 

Blade 

Wind Direction 

Figure 7.  Plan View of Offset of Wind Turbine to Wind Direction 
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In addition to this, there are 2 versions of many of the data sets.  The first version features 

undamped data and the second version features data with the natural vibration of the 

tower damped out.  The difference in fatigue damage between these sets of data is given 

and it was originally intended to try and replicate these differences with the programs 

written here.  It was later considered that while this would have been useful, it would also 

have been a somewhat restrictive practice.  Since the calculated damage was provided 

with all the data sets, it was decided to run comparisons with as many different sets of 

data as possible and this would provide a much more robust test of both the Rainflow and 

Dirlik algorithms. 

 

When the Rainflow cycles have been counted, there are further calculations to be 

performed in order to calculate the damage which is expected over the 20 year life span 

of the wind turbine.  The damage calculation for a single wind speed is described in the 

following equation which was obtained from Thomsen[3]. 

 

                                       Req = 

m
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m
ii

n
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

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


 ∑  

 

Where Req represents the damage equivalent, ni is the number of cycles of magnitude Ri 

over i load range levels (usually 30–50), neq is a constant representing the corresponding 

number of load ranges and m is the Wöhler curve  exponent.  In the simple algorithm that 

was finally chosen, there was, in fact, no restriction on the number of ranges as each 

cycle was treated individually for increased accuracy.  Therefore the only way that there 

would be more than one occurrence of a cycle is if there was more than one cycle of 

exactly the same size.  The damage level for each wind speed also needs to be weighted 

according to the Weibull distribution to represent the statistical likelihood of that wind 

speed occurring.  The data is then adjusted to correspond to a 20 year period and the 

damage for each wind speed is finally summated.  The damage figures given by the final 

Rainflow program were identical to the figures supplied by FLEX.  This was to be 

expected since FLEX also uses a Rainflow counting method to calculate damage and was 
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simply a confirmation that a successful Rainflow counting program had been created 

specifically to determine the expected damage caused by random stress cycles to a wind 

turbine over a 20 year life span. 

 

While graphical output of the Rainflow counting algorithm was neither required nor 

feasible with so many data sets, figures 8 to 10 show typical graphical output that is 

available when performing a Rainflow counting procedure using Matlab. 

 

 

 
 

 

 

Figure 8  Histogram of Amplitudes 



 25 

 
 

 

 
 

Figure 9. Histogram of Mean Values 

Figure 10.  3D Histogram of Amplitudes and Mean Values  
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Dirlik 
Description 

The Dirlik method is a mathematical tool which can be used when performing fatigue 

analysis.  To use this method, signals to be analysed must first be transferred from the 

time domain to the frequency domain where they are presented in the form of a power 

spectral density (PSD) function.  Stress analysis in the time domain is ideally suited to 

signals representing periodic or continuous stress loading but for random stress loading 

data, prohibitively large time records are often required for an accurate analysis.  There 

are distinct advantages in performing stress analysis in the frequency domain rather than 

the time domain where a random stress loading signal forms the basis for analysis.  The 

main advantage is much less time intensive calculations although this comes at a cost of 

slight loss in accuracy.  

   

Any fatigue analysis process begins with the response of the structure or component.  

This is normally expressed as a time history of stress or strain.  Stress cycles in the time 

history result in fatigue and the most important aspects of these cycles are the stress 

amplitude ranges and the mean stress values.  These values are normally analysed using 

Rainflow Cycle Counting which is described in the previous chapter.   The time history 

data can be converted to data in the frequency domain by using a variation of the Fourier 

Transform.  In both formats, the y-axis displays the signal amplitude but in the frequency 

domain, the x-axis represents the signal frequency as opposed to time.  The Fourier 

Transform effectively breaks the signal down into discrete sinusoidal waves.  These 

waves vary in frequency, phase and amplitude and form the original time signal again 

when combined using an inverse Fourier Transform. 

 

The Dirlik procedure was developed during the 1980’s as a response to a need for 

effective fatigue analysis methods within the offshore oil industry.  Oil platforms were 

becoming very large and were subject to random stress loadings at sea.  The resultant 

Dirlik procedure was found to have much wider applications than previous methods and 

was also found to be very accurate when compared to other methods.  The Dirlik method 

consists of a series of calculations which are based on four moments of area of the PSD 
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function and was taken from Halfpenny[1].  These moments of area are m0, m1, m2 and 

m4.  The nth moment of area is calculated as  

                   

                                          
dffGfm n

n )(.∫=
     

where G(f) is the PSD function and f is the frequency in Hertz. 

 

The expected number of peaks E[P] is calculated as 
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Where S is the stress range in N/mm2, T is the time in seconds and N(S) is the number of 

stress cycles calculated for stress range S. 

 

Dirlik Coding  

Although the Dirlik procedure may be complex in appearance, it is relatively simple to 

program in Matlab.  A copy of the final Dirlik Matlab functions can be found in 

appendices.  Once the Dirlik procedure had been programmed, it was decided to treat the 

information provided by it in more or less the same way as the information provided by 

the Rainflow counting algorithm since they were both cycle counting algorithms.  So the 

stress amplitudes were divided into 50 range levels (this was the only real difference 

since the Rainflow algorithm had no restriction on the number of range levels) and the 

number of occurrences of each range were calculated.  The number of range levels used 

appeared to affect the results more than was expected but it was decided to stick to 50 as 

this seemed to be the number of range levels used by FLEX in its rainflow counting 
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algorithm although FLEX seemed to combine 2 or mo re range levels into one for reasons 

unknown. 

The information generated by the Dirlik method for each wind speed was subjected to the 

same formula as the Rainflow counting information, i.e. 

 

                                   Req = 

m

eq

m
ii

n

Rn
/1










 ∑  

 

Where Req represents the damage equivalent, ni is the number of cycles of magnitude Ri 

over i load range levels (usually 30–50), neq is a constant representing the corresponding 

number of load ranges and m is the Wöhler curve exponent.  The damage figures for each 

wind speed were then weighted according to the Weibull distribution and adjusted to 

represent a 20 year period.  

 

After some manipulation of the supplied Dirlik algorithm to account for unit differences, 

it was found that the Dirlik algorithm was able to produce results with reasonable 

accuracy when compared with the Rainflow counting algorithm.  These results compared 

favourably with previous studies by Halfpenny[1] which had declared successful results 

when the Dirlik method was, on average, within 4% of a time domain based stress cycle 

counting algorithm.      
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Results 

The results of this study were generally quite good.  Programming the Rainflow counting 

method was fairly straightforward and the results provided by that were identical to the 

results given by FLEX.  This was to be expected since FLEX also uses a Rainflow 

counting algorithm in its fatigue analysis.  Programming the Dirlik procedure was less 

straightforward as there were several unknowns involved.  The actual equations based on 

the four moments of area of the power spectral density were, despite their complexity, 

simple enough to program and were rigorously checked for errors.  The problems then 

arose when deciding what to do with the information provided by the Dirlik algo rithm.  It 

was decided to simply treat the Dirlik information in the same way as the information 

from the Rainflow counting algorithm.  The stress levels were raised to the Wohler curve 

exponent (m), multiplied by the number of cycles at that level and the relevant Weibull 

distribution coefficient.  These figures were divided by the Neq figure, raised to the 

power of the reciprocal of the Wohler exponent and summated.  In theory this process 

should have provided similar results to the rainflow process since one cycle counting 

algorithm was being compared with another in exactly the same way  but the results were 

not similar.  It was not immediately apparent why this was the case.  There was a 

likelihood of different units used between the power spectral dens ity calculation in 

Matlab and the units provided by the Dirlik method which measured stress in N/mm2.  

Since very little was known about the Dirlik procedure other than the supplied equations, 

it was decided to add a series of factors to the Dirlik calculation in order to replicate the 

Rainflow results.  It was not expected to be able to match the Rainflow results exactly but 

if an acceptable level of accuracy could be sustained for different values of m then it 

could be reasonably assumed that there was a conflict concerning the units and that 

applying a factor to resolve this difference was, in fact, a legitimate method of correction.  

Should a reasonable level of accuracy not be achieved then there were several possible 

reasons for this including incompatible data sets selected for analysis and the possibility 

of more appropriate weightings being placed in different parts of the equations. 

30 data sets were chosen at random to be analysed.  This was reduced to 18 after several 

were removed because it was thought that they were unsuitable and would give pointless 

results when compared.  One was removed specifically because it appeared to give rogue 
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results.  Although this did not guarantee absolute suitability of the remaining data sets, it 

was still desirable to keep the selection as random as possible and not ‘cherry pick’ data 

sets for analysis although it was later discovered that many of the data sets chosen were 

not the most accurate available.  For each of the data sets, the FLEX results were 

obtained and the Dirlik analysis performed.  The Rainflow result given by FLEX for each 

data set was plotted against the Dirlik estimation and these plots can be seen in appendix 

3.  The results were then compared.  Each FLEX result was compared with every other 

FLEX result and the same process was performed with the corresponding Dirlik results.  

The comparisons were performed by dividing each result by each of the other results. 

They were then plotted against each other in a scatter graph.  If the Dirlik ratios were 

consistently similar to the FLEX ratios then it could be reasonably concluded that the 

Dirlik procedure provided a very good estimation of fatigue damage.  When the results 

were plotted it appeared that they gave very poor results for very low m figures.  Figure 

10 shows the Dirlik comparisons against the FLEX comparisons for m = 3. 

 
 

Figure 11.  FLEX/Dirlik comparison (m=3) 
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It was hoped that the points would roughly follow a line equivalent to y=x (shown in red) 

and while this basic pattern was observed, it was thought that the points were too varied 

to declare a positive result.   

 

The results for m = 4, however were much better.  These can be seen in figure 11 and the 

results for m = 6, 8 10, 12 can be seen in figures 12 to 15.  

 

 

 
 

 

 

 

Figure 12.  FLEX/Dirlik comparison (m=4) 
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Figure 13.  FLEX/Dirlik comparison (m=6) 

Figure 14. FLEX/Dirlik comparison (m=8) 
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Figure 16  FLEX/Dirlik comparison (m=12) 

Figure 15.  FLEX/Dirlik comparison (m=10) 
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These results were much more encouraging and show that the Dirlik procedure does in 

fact provide a very good approximation for fatigue damage for higher values of m.  What 

was less clear was why such relatively poor results were obtained for very low values of 

m.  Since the results for higher m values are consistently good, it can be reasonably 

assumed that there are no undiscovered errors within the Dirlik program itself and that 

the process of placing factors within the program to weight the results was correct.  The 

most likely reasons for this are, therefore, unsuitable data sets or poorly placed 

weightings.  Closer examination of the points furthest from the line y = x revealed that 

almost all of the data sets were commonly involved but to differing degrees.  No pattern 

could be established between these data sets however and it was thought that enough sets 

of data had been removed already and to remove more would reduce the random nature 

of their selection and subsequently the validity of the tests.  The investigation therefore 

proved largely inconclusive however it was noted that there were accuracy issues with 

some data sets.  The possibility that the weighting factors were wrongly placed within the 

program remained and this was examined by placing different factors at different points 

in the calculation.  The number of different permutations possible here was very large 

and so some basic rules had to be applied in order to reach a quick and reasonable 

conclusion.  Factors were subsequently moved between key points in the equations and 

the effects on the positioning of the scatter graph points rather than the magnitudes of the 

results were observed.  It was decided that the current placing of the factors produced the 

best possible results. 

 

Further numerical investigation of the results ind icated that the observed results for low 

values of m were perhaps not as bad as they seemed.  Previous studies by Halfpenny[1] 

indicated that the Dirlik approach showed an average discrepancy of only 4% from 

fatigue life calculated in the time domain.  This discrepancy arises from a simple 

summation of comparisons and performing the same summation here gives an average 

discrepancy of 5.8% and a best of 0.4% at m = 12.  These results can be seen in column 1 

of the table in figure 16.  This method of simply taking the average of the comparisons 

can be misleading though as positive and negative differences can cancel each out.  A 

more indicative method is to average the absolute differences between the results and this 
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can be seen in column 2 of the table.  Here, the average is only slightly higher at 6.4% 

with a best of 1.5% at m = 12.  A better method again of testing the variance of the results 

is to calculate the standard deviation.  Columns 3 and 4 of the table show 2 standard 

deviation measurements.  The first, headed Std Dev 1, is the standard deviation of the 

direct ratios between the FLEX results and the Dirlik results.  These seem to be rather 

good and are consistently around 0.027 for values of m = 6 and above with an average of 

0.022.  The second column of standard deviations is based on the process of comparing 

each FLEX result with every other FLEX result and doing the same with the respective 

Dirlik results.  The table shows the standard deviation of the ratio between the respective 

FLEX and Dirlik comparisons under the heading Std Dev 2.  This shows a best standard 

deviation of 0.025 and an average of 0.029.  Graphical representation of these results can 

be seen in appendix 4.  

 

m 
Simple 
Average 

Absolute 
Average Std Dev 1 Std Dev2 

3 0.006 0.0292 0.0352 0.0479 
4 0.1597 0.1597 0.0145 0.017 
6 0.1074 0.1063 0.0235 0.027 
8 0.0503 0.0503 0.0223 0.0279 

10 0.02 0.0247 0.0204 0.02688 
12 0.0039 0.0154 0.0186 0.0254 

Ave 0.057883333 0.064266667 0.022417 0.02868 
 

 

 

Considering the apparent poor quality of the random data sets which were used, these 

results must be considered as rather good and demonstrate that with some manipulation, 

the Dirlik procedure can be confidently used as a method of predicting fatigue damage in 

wind turbines.   

 

 

 

 

 

Figure 16.  Table of Results 
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Discussion 
The rainflow counting method of fatigue analysis is widely used and its accuracy is 

generally accepted to be very high.  As such it was used as the control model here and the 

Dirlik method was judged against it.  The rainflow counting method does, however have 

limitations and the most obvious of these is that it is used on data based in the time series 

domain.  Its accuracy, while remarkably high, can only be guaranteed with any real 

certainty on data which is periodic or has a short time span.  Its suitability for analysis of 

stress loading which is random and has a very long time span (typically several years) 

could feasibly be questioned by those seeking a high level of speed and accuracy in 

fatigue prediction.  Extrapolation of random stress loading of da ta that lasts a few 

minutes to give fatigue estimations for a period of 20 years will inevitably lead to 

inaccuracies within the results due to the relatively unpredictable nature of the loading, in 

this case wind.  These inaccuracies may be offset somewha t by the relative accuracy of 

the rainflow counting algorithm when compared with other fatigue estimation algorithms.  

It is also known that wind speed levels in the longer term follow a Weibull distribution 

and if average wind speed for the site is known then a suitable Weibull distribution can 

be applied for each of the wind speeds within the operational range of the wind turbine in 

question.  Use of these methods is standard within the wind industry and the predictions 

given by them are regarded to be of acceptable accuracy.  The dangers, however, lie in 

the fact that regardless of the statistical techniques being applied, random loading data is 

being extrapolated from a few minutes to several years and that the statistical weightings 

applied rely on the average wind speed remaining relatively unchanged for the 20 year 

period.  These factors may or may not reduce the ultimate accuracy of the fatigue 

predictions but they certainly affect the level of certainty that can be applied to them and 

it is a bit impractical to wait 20 years to test their accuracy.  

 

Another drawback of the Rainflow counting method is the fact that the calculations are 

computationally time intensive and this is a very important issue at the design stage.  A 

fatigue analyst who is testing the effects of many small parameter alterations is likely to 

be prepared to sacrifice a small amount of accuracy in what are, after all estimations, in 

order to gain a huge reduction in the time taken to carry out the procedures.  If the fatigue 
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analysis process can also be incorporated into the control design stage then this provides 

a further bonus in terms of time and efficiency of the design process. 

 

One method of resolving these issues is to convert the stress loading data from the time 

series domain to the frequency domain for analysis.  Here it is possible to categorise the 

random stress loadings with power spectral density functions.  The purpose of this project 

was to test the validity of the Dirlik method which predicts fatigue using data presented 

in the frequency domain.  The Dirlik method was specifically developed in the 1980’s for 

the offshore oil industry.  The fact that it analysed data in the frequency domain instead 

of the time domain meant that, theoretically, fatigue caused by random loadings could be 

more quickly predicted over very long periods of time albeit with a small reduction in 

accuracy.  This would make the Dirlik method preferable to time series based methods 

such as the Rainflow method as long as the relative accuracy of the method itself could 

be established.   

 

Some difficulties were encountered during the programming and subsequent testing of 

the Dirlik method and not all of these were resolved with absolute certainty.  The main 

problems centred around the suitability of the random sets of data that were chosen for 

analysis and the weightings that had to be applied at various points of the Dirlik 

calculations.  It was considered desirable to select data sets at random and simply 

compare results between each.  If data sets had been “cherry picked” then the validity of 

the results could be undermined.  If the ratios between the FLEX results for different data 

sets could be reproduced using the Dirlik method with sufficient consistency then that 

would be a positive result even if the actual figures were different.  It was later 

discovered that many of the data sets chosen were ‘short’ data sets and the accuracy of 

the FLEX figures were not particularly great.  It is highly likely that this caused the 

relatively poor accuracy for data that was tested at a value of m = 3 and the subsequent 

improvement in results as m increased.  The validity of attaching weighting factors to 

various stages in the Dirlik calculation was upheld.  The whole point of the project was to 

emulate the fatigue estimations given by the Rainflow counting algorithm using a stress 

cycle counting algorithm which has its basis in the frequency domain and this has been 
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achieved with reasonable accuracy.  The results show that the Dirlik method produced, 

on average, fatigue estimations that were within 6.4% of the estimations provided by 

FLEX.  This must be considered a very positive result considering the reduction in 

calculation time over the Rainflow method.  These results can be easily seen in 

appendices 3 and 4.  To create these charts, each FLEX estimation was compared with 

every other FLEX estimation and the same process was applied to the Dirlik estimation.  

The respective comparisons were then plotted against each other in the form of scatter 

charts shown in appendix 3 where perfect matches would be expected to follow the line 

y=x.  The Dirlik comparisons were then divided by their respective FLEX comparisons 

and these results are shown in the graphs in appendix 4 where perfect matches would be 

expected to fo llow the line y=1.  The reason for this form of comparison, as opposed to 

the table in the previous chapter which merely shows a comparison between each FLEX 

and Dirlik result, is that consistency here would indicate a much more robust result.  The 

scatter charts in appendix 3 appear to show very good comparisons in all cases except 

m=3, however this view is somewhat deceptive due to the scale of the graph.  A clearer 

picture can be seen in appendix 4 which essentially depicts the same results in a slightly  

different manner.  Here it can be clearly seen that for m=3, the Dirlik comparisons are 

within 10% of the FLEX comparisons .  The best results are for m=4 where the Dirlik 

comparisons are all within 4% of the FLEX comparisons while the other values of m are 

all reasonably consistent around 6-7%.  These results are, in fact, comparable with the 

direct comparisons tabled in the previous chapter. 

 

While these results are very encouraging some further comment must be made about the 

data sets.  As previously stated, the data sets were chosen at random and contained a high 

proportion of short data sets with slightly questionable accuracy.  This was not known at 

the time of selection.  On initial analysis of results, some data sets were found to be 

common to extreme rogue results and these were legitimately removed, however it was 

desirable to minimise the practise of removing ‘bad’ data sets and so only a very few 

were eliminated in order to keep the data selection as random as possible.  Any 

continuation of this work may consider careful selection of data sets rather than random 

selection.  The reason being that if the accuracy of the data sets can be assured then this 
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factor can be eliminated as a cause for any inaccuracies in the result, particularly for 

m=3.  This was not done here as random selection of data was seen to be fundamental to 

the validity of the results.  Further investigation could also concentrate on the application 

of weighting factors to the Dirlik calculations.  It can be seen that the graphs in appendix 

4 have slight periodic characteristics and these could possibly be eliminated with further 

investigation into the weightings.            
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Conclusions 

1. The Dirlik procedure is much less computationally intensive than the Rainflow 

counting procedure therefore should produce faster results for fatigue analysts. 

2. The Dirlik procedure should lend itself to incorporation into control analysis 

since it analyses data in the frequency domain. 

3. The Dirlik procedure can produce fatigue estimations which are, on average, 

within 6-7% of the Rainflow counting algorithm. 
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Appendices 
 
1a. Rainflow Script 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 
%%%% Script to perform rainflow  
%%%% analysis on FLEX data 
%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
l=dir('*.int');        % Access .INT files             
load Ti;               % load Weibull distribution coefficients 
Neq=5e6; 
N=3; 
 
for i=1:length(l),                 % Call rainflow function 
  x=readint(l(i).name)             % to analyse data 
  d(i)=raindef(x,N,Ti(i)); 
end 
 
(sum(d)/Neq)^(1/N)      % Sum results 
 
 
1b. Rainflow Function 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 
%%%%  Function to perform  
%%%%  rainflow analysis 
%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function D=raindef(x,M,time) 
   
  Rinx = sig2ext(x.Myt0);       %% Find extremes of data 
  Rin = rainflow(Rinx);     %% Perform rainflow analysis on data 
  Ramp = Rin(1,:)*2;         %% Isolate amplitudes and   
  Rno = Rin(3,:);            %% number of occurrences 
  T=max(x.time); 
   
  D=sum((Ramp.^M).*Rno)*time*3600/T;  %% Apply Weibull coefficient and sum 
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2a. Dirlik Function 1 
 
function f=loadir(m) 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%                                                             %%%% 
%%%%  Script to process Dirlik evaluation    %%%% 
%%%%  of Flex results of fatigue damage      %%%% 
%%%%  to wind turbines                                 %%%% 
%%%%                                                             %%%% 
%%%%  Created by Gordon Day on 18/5/05   %%%% 
%%%%                                                              %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Neq = 5e6; 
%Neq = 1e7;                                 %% Select value for Neq 
%Neq = 5.8e8; 
disp(['Neq = ',num2str(Neq)]); 
%m = input(['Please select a value for m (3, 4, 6, 8, 10 or 12)    ']); 
 
if m == 3 
    k = 1;                     
elseif m == 4 
    k = 2; 
elseif m == 6                  %% Ensure correct calculation  
    k = 3;                          %% for chosen value of m 
elseif m == 8 
    k = 4; 
elseif m == 10 
    k = 5; 
elseif m == 12 
    k = 6; 
else 
    error('You must select m from 3, 4, 6, 8, 10, or 12'); 
end 
 
if Neq == 5e6 
    p = 1;                       %% Ensure correct calculation 
elseif Neq == 1e7        %% for chosen value of Neq 
    p = 2; 
elseif Neq == 5.8e8 
    p = 3; 
end 
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cd ('D:\Gordons project\DirlikG'); 
l = dir; 
l.name; 
for j = 3:20 
    cd(l(j).name); 
    cd int;                                                %% Loop to access 
    q = dir;                                              %% and read  
    q.name                                              %% relevant .int 
    DD(j-2) = loadall3(m, Neq);            %% files from 
    cd .. ;                                                 %% data sets and 
    cd('rain');                                           %% send to loadall function 
    FlxDam = ReadFRO('91_Myt0.rfo'); 
    DamFig(j-2) = FlxDam(p,k); 
    cd ('D:\Gordons project\DirlikG'); 
end 
 
DamFig 
DD 
for i = 1:length(DD) 
    avrge(i) = DD(i)/DamFig(i); 
    bestav(i) = 1+abs(1-(DD(i))/(DamFig(i))); 
end 
Avrge = mean(avrge)                        %% Calculate and  
Bestav = mean(bestav)                      %%  
figure;                                                %% graph 
scatter(DD,DamFig);                         %% 
title('Flex/Dirlik Comparisons');        %% 
xlabel('Dirlik ');                                  %% results 
ylabel('Flex ');                                     %%   
Results(1,:) = DamFig;                       %% using a  
Results(2,:) = DD;                               %% 
R = Results';                                        %% variety of 
Res = sortrows(R);                              %% 
Results = Res';                                     %% methods 
Damfig = Results(1,:); 
DDD = Results(2,:); 
figure; 
plot(Damfig,DDD); 
for i = 1:17 
    RD(i) = DamFig(i+1)/DamFig(1); 
    DirD = DD(i+1)/DD(1); 
end 
Rat = DamFig./DD 
StanDev1 = std(Rat) 
DD2 = DD; 
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DF2 = DamFig; 
 
count = 0; 
figure; 
for i = 1:17                                    %% The following nested 
    for j = (i+1):18                          %% loops were created 
        DD3 = DD2(j)/DD2(i);         %% To identify  
        DF3 = DF2(j)/DF2(i);           %% rogue data sets 
         
        if DD3 > 1 
            if DF3 < 1 
                Diff = abs(DD3-DF3) 
                if Diff >= 0.05 
                    disp(['DD3 = ',num2str(DD3)]); 
                    disp(['DF3 = ',num2str(DF3)]); 
                    disp(['i = ',num2str(i)]) 
                    disp(['j = ',num2str(j)]); 
                    disp(['Difference = ',num2str(Diff)]) 
                    disp(' '); 
                    disp(' '); 
                end 
            end 
        elseif DD3 < 1 
            if DF3 > 1 
                Diff = abs(DD3-DF3) 
                if Diff >= 0.05 
                    disp(['DD3 = ',num2str(DD3)]); 
                    disp(['DF3 = ',num2str(DF3)]); 
                    disp(['i = ',num2str(i)]) 
                    disp(['j = ',num2str(j)]); 
                    disp(['Difference = ',num2str(Diff)]) 
                    disp(' '); 
                    disp(' '); 
                end 
            end 
        end 
                     
        scatter(DD3,DF3,'+'); 
        hold on; 
        count = count + 1; 
    end 
end 
 
x = 0.8:0.1:1.2; 
 
for i = 1:length(x) 
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    y(i) = x(i); 
end 
plot(x,y,'r'); 
 
count 
grid; 
title('Flex/Dirlik Comparisons'); 
xlabel('Dirlik Comparisons'); 
ylabel('Flex Comparisons'); 
 
count = 0;                                  %% Calculate and plot  
figure;                                        %% Comparison figures 
for i = 1:17 
    for j = (i+1):18 
        count = count + 1; 
        DD4 = DD2(j)/DD2(i); 
        DF4 = DF2(j)/DF2(i); 
        DRat(count) = DD4/DF4;  
        %plot(count,DRat,'+'); 
        hold on; 
    end 
end 
plot(DRat); 
Deviate = std(DRat) 
 
x=0:1:(count-1); 
for i = 1:count 
    y(i) = x(i)*0+1; 
end 
%plot(x,y,'r'); 
 
ylim([0.5,1.5]); 
title('Flex/Dirlik Comparisons'); 
xlabel('Index'); 
ylabel('Flex/Dirlik'); 
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2b. Dirlik Function 2 
 
function Dd = loadall3(M, Neq) 
 
%%%%%%%%%%%%%%%%%%%%%% 
%%%%  Function to process data     %%%% 
%%%%  from Loadir script and        %%%% 
%%%%  send to Dirlikdef function   %%%% 
%%%%%%%%%%%%%%%%%%%%%% 
 
A=dir('*.int');                     %% Access directory of .int files 
load Ti;                               %% Load Weibull distribution figures 
 
A.name 
for i=1:length(A),                          %% Loop to send 
     x=readint(A(i).name);              %% all .int files 
     d(i)=Dirlikdef(x,M,Ti(i));        %% to Dirlikdef function 
end 
Dd=(sum(d)/Neq)^(1/M);             %% Final damage calculation 
disp('loadall finished') 
 
 
2c. Dirlik Function 3 
 
function D = Dirlikdef(x,m,Weibcoef) 
 
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%  Function to perform Dirlik     %%%% 
%%%%  analysis on data sent from      %%%% 
%%%%  loadall3 function                     %%%% 
%%%%%%%%%%%%%%%%%%%%%%% 
 
f = 1/(x.time(2)-x.time(1)); 
[xs,fxs]=pwelch(x.Myt0,2^11,2^10,2^11,f);               %% Generate PSD using Welch's 
method 
Mzero = simp(fxs,xs);                                            %%  
Mone = simp(fxs,fxs.*xs);                                     %% Calculate 0th - 4th... 
Mtwo = simp(fxs,(fxs.^2).*xs);                             %% moments of area 
Mfour = simp(fxs,(fxs.^4).*xs);                            %% 
 
Ep = sqrt(Mfour/Mtwo);                                         %% 
time = max(x.time);                                                %% 
stressmax = (max(x.Myt0)-min(x.Myt0));             %% Set maximum value in stress range 
slightly above value of highest stress peak 
lambda = Mtwo/(sqrt(Mzero*Mfour));                   %%   
Xm = (Mone/Mzero)*(sqrt(Mtwo/Mfour));            %% Generation of... 
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Done = 2*(Xm- lambda^2)/(1+lambda^2);                 %% calculation constants 
R = (lambda-Xm-Done^2)/(1- lambda-Done+Done^2);       %% 
Dtwo = (1- lambda-Done+Done^2)/(1-R);                 %% 
Dthree = 1-Done-Dtwo;                                             %% 
Q = 1.25*(lambda-Dthree-Dtwo*R)/Done; 
stresstep = stressmax/50; 
stresslev = zeros(1,50); 
for b = 1:50; 
    stresslev(b) = b*stresstep;                                      %% Loop to calculate ranges of  
    Z(b) = 0.5*stresslev(b)/(sqrt(Mzero));                  %% stress and expected occurrence 
    Ps(b) = ((Done/Q)*exp((-Z(b))/Q)+(Dtwo*(Z(b))/(R^2))*exp((-
((Z(b))^2))/(2*R^2))+Dthree*Z(b)*exp(-((Z(b))^2)/2))/(2*sqrt(Mzero)); 
    Ns(b) = Ep*631152000*time*Ps(b)*(2*pi)/1000; 
    %Ns(b) = Ep*time*Ps(b); 
end 
stresstotD = 0; 
D = sum(stresslev.^m.*Ns)*Weibcoef*3600/time/1000; 
 
 
%D=sum((Ramp.^m).*Rno)*time*3600/T; 
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3. Scatter Plots of FLEX Vs Dirlik 
 
These plots are designed to be an indicator of accuracy of the Dirlik procedure when 

compared to the Rainflow counting results supplied by FLEX.  Each FLEX estimation 

was compared with every other FLEX estimation by division and the same procedure was 

undertaken with the Dirlik estimations.  The respective FLEX and Dirlik comparisons 

were then plotted against each other in the form of scatter graphs.  Perfect results would 

be expected to follow the line y=x.  This form of comparison is regarded to be a more 

robust indicator of accuracy than simply comparing the FLEX estimation of a data set 

with the respective Dirlik estimation. 
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4. Graphical Results of FLEX Comparisons Vs Dirlik Comparisons  
 

The graphs in this appendix depict the same information as the graphs in appendix 3 but 

in a slightly different way.  The Dirlik comparisons and the FLEX comparisons shown in 

appendix 3 have been compared by division and plotted.  Perfect comparisons would be 

expected to follow the line y=1. 
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