Introductory PHPP Exercise

A Cabin in the Woods

Dr. Jon William Hand
Energy Systems Research Unit

08 October 2010

Contents

The PHPP Worksheets 9
U-Values worksheet 10
Areas Worksheet 12
WinType worksheet 14
Windows worksheet 15
Shading worksheet. 17
Ventilation worksheet 18
Internal heat gains worksheet 20
Ground worksheet 20
Verification worksheet 21
Options to explore. 22Note: This document makes reference to the PHPP (PassivHaus Planning Package)which is authored and maintained by:
The Passive House Institute
Rheinstr. 44/46, 64283 Darmstadt, Germany www.passiv.de
For more information see:http://passipedia.passiv.de/passipedia_en/planning/calculating_energy_efficiency/phpp - the passive_house_planning_packageas well as:
http://www.passiv.de/07_eng/phpp/PHPP2007_F.htm

Introductory PHPP Exercise

8 October 2010
Dr. Jon W. Hand
Department of Mechanical Engineering
University of Strathclyde, Glasgow Scotland

Introduction

PassivHaus projects are assessed via the PHPP (PassiveHaus Planning Package). It is also a major topic within CEPH workshops. The PHPP has lots of worksheets. Navigation comes with practice. PH has rituals and rules which you are going to be getting used to. In preparation for the workshop, here is a simple project, a retreat for a writer, somewhere in the woodland near Manchester to enter into the PHPP. This model is used in the CEPH workshop. You can also use it independently to improve your skills with the PHPP.

Your task is to read the Passive House Planning Package 2007 Manual in order to understand how this retreat gets translated into a PHPP model. The commentary points out some of the places to look and some strategies to take. As designed the performance comes close to that required by PassivHaus. It is a tough building type because the surface area to volume ratio is not optimal and the floor area is small.

Figure 1 is an outside view from the South-West showing the overhang over the large south window and a wooden deck on the south and west. Figure 2 shows that sun penetration is significant in the winter.

Figure 2 Winter solar view from South-East

Figure 3 shows a view inside looking from the SW corner of the room towards an inside partial height mass wall. Behind the mass wall is a kitchen and a vertical cabinet for the heating and ventilation system.

Figure 3 Inside view (from SW corner)
The plan in Figure 4 provides many of the dimensions that you will need (there is a difference between the architectural dimensions and the dimensions used in the PHPP which you will need to learn about).

Figure 5 is a section (looking West) includes dimensions that will be needed for the windows and shading.

Figure 4 Plan of the retreat
As you read the PHPP Manual you may notice that some information in the drawings is not applicable to the PHPP (e.g. the deck on the south and west sides are not part of the thermal envelope). The constructions for the retreat come from the IBO-PassivhausBauteilkatalog (ISBN 978-3-211-29763-6 SpringerWien New York) also include information that requires interpretation. As with all architectural drawings there will be some missing
details so you are going to have do make some assumptions. A PassivHaus assessor might want to know about the assumptions that you have made - so keep notes!

Before you begin, make a copy of the blank English PHPP spreadsheet that came with your PHPP software and manual. Name it something like retreat_base_case. As you progress through each task make backup copies so that you can re-wind from disasters. You might also take screen shots so that you can review your path through the PHPP.

Figure 5 Section through retreat (looking West)

Constructions for the Retreat

The specifications for the wall, roof and floor constructions are listed below in terms of the layers (from outside to inside). In the PHPP constructions are sometimes referred to as assemblies. The information on density and specific heat are not used directly in the PHPP but are included in the Appendix of the IBO book. The wall and the roof make use of Ibeams which we will assume are made of technically dried spruce $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ and a 6 mm web of OSB at 600 mm spacing. The batten for the inner gyp-board layer is assumed to be 25 mm at 600 mm spacing (so the percentage is the same as for the dried spruce in the I beams).

For this exercise lets also assume that a fictitious company named ALBA supply wooden window frames with a U-value of 0.70 and triple glazing with a U-value of 0.7 , a spacer psi value of 0.049 an installed psi value of 0.025 and a door system with a U-value of 0.8 .

In the drawing there is a rectangle in the North-east corner of the cabin which measures $800 \mathrm{~mm} \times 800 \mathrm{~mm}$. This is a thin-walled (50 mm) cabinet for the heat recovery ventilator and ducting. Lets assume the cabinet is constructed for acoustic isolation. Being adjacent to the facade the fresh and exhaust ducts connecting the ventilator will be passing through the facade and have short lengths. How might you use this information in the ventilation worksheet? What is the relationship between this cabinet and the treated floor area?

In the drawing there is a partial height $(2.0 \mathrm{~m})$ partition within the retreat which is a massive stone construction that is 400 mm thick. Lets assume that it rests on the flooring screed and that there is no thermal bridge into the foundation. What information related to the mass partition is applicable to the PHPP?

Plattenfundament, unterseitig gedämmt, Nassestrich Slab foundation, insulated lower side, wet screed

Bauphysik = Building physics

	Einheit Unit	Gängig Usual	Alternati Alternati
Gesamtdicke - Total thickness	[cm]	58	58
Wärmedurchgangskoeffizient * Thermal transmission coefficient	[W/(m'K)]	0,15	0,15
Bewerteter Standard-Trittschallpegel Standard impact sound insulation level rating $L_{\text {ntin }}$	Lotw* [dB]	36	41
Feuchtetechnische Sicherheit * Moisture safety	[$\mathrm{kg} / \mathrm{m} \mathrm{m}^{2} \mathrm{a}$]	$0 / 0$	0/0
Wirksame Wärmespeicherkapazităt * Effective heat capacity	[kJ/ $\left.\left(\mathrm{m}^{\prime} \mathrm{K}\right)\right]$	98	97

unten

	$[\mathrm{cm}]$	Gängiger Aufbau von oben nach unten Usual construction from above to below
1	-	Fußbodenbelag* * Flooring layer*

	[cm]	Alternativer Aufbau von oben nach unten Alternative construction from above to below
1	-	Fußbodenbelag * Flooring layer*
2	5	Zementestrich - Cement screed
3	.	Baupapier * Building paper
4	3	Holzfaser-Trittschalldämmplatte • Wood fiberboard impact sound insulation panel
5	20	Stahlbeton - Reinforced concrete
6	-	PE-Trennlage, einlagig - PE separating layer, 1 -layer
7	24	Schaumglasplatten kaschiert - Laminated foamed glass panels
8	1	Polymer-Bitumen, $2 \mathrm{Lg} \cdot 2$-layer polymer bitumen
9	5	Magerbeton/Sauberkeitsschicht - Lean mortariclean layer
10	.	Baupapier - Building paper
11	215	Rollierung (Drănschicht) - Setting layer (drainage layer)
12	-	PP-Filtervlies - PP filter fleece
13	-	Erdreich - 5ubsoil

Figure 6: Details of foundation: EFu_01 (outside to inside)

The interior heat transfer coefficient would be 0.17 (floor orientation) but because it is in contact with the ground the exterior heat transfer coefficient would be zero. The PHPP should report a U-value of 0.155 for this construction.

Bauphysik = Building physics

	Einheit Unit	Gängig Usual	Alternativi Alternative
Gesamtdicke * Total thickness	[cm]	49	48
Wärmedurchgangskoeffizient * Thermal transmission coefficient	[W/ $\left.\left./ \mathrm{m}^{2} \mathrm{~K}\right)\right]$	0,12	0,12
Bewertetes Schalldāmmmaß R_{w} * Rated sound insulation value R_{w}	[dB]	50	50
Feuchtetechnische Sicherheit * Moisture safety	[$\left.\mathrm{kg} / \mathrm{m}^{2} \mathrm{a}\right]$	0,003/0,003	0/0
Wirksame Wärmespeicherkapazität • Effective heat capacity	$\left.[k] /\left(m^{2} \mathrm{~K}\right)\right]$	24	24

```
[cm] }\begin{array}{l}{\mathrm{ Găngiger Aufbau von außen nach innen}}\\{\mathrm{ Usual construction from outside to inside}}
11}22.5 Holzschalung * Wood shuttering
2 5 Hinterluftung zw. senkrechten Holzlatten* * Rear ventilation bet. upright
    wood lathes*
    Spanplatte * Chipboard
    4 30 Mineralwolleplatten zwischen vertikalen Doppel-T-Trägern * Mineral
        wool panels bet. vertical double T-beams
    5 2,2 Spanplatte mit innenseitiger Dampfbremse - Chipboard with interiorla-
    teral vapor barrier
6 5 Mineralwolleplatten zwischen horizontalen Latten (Installationsebene)
    Mineralwolleplatten zwischen horzonta (serviten level)
7 3 2 Lg.Gipskarton-Brandschutzplatten - 2-layer gypsum plasterboard fire
    protection panel
```

Figure 7: Details of walls: AWI_06 (outside to inside)

Thick (mm)	Conductivity	Density	Specific D heat	Description
25.0	0.140	650.	2000.	weatherboard (ignored in PHPP)
50.0				ventilated air space (ignored in PHPP)
16.0	0.080	780.	2000.	MDF based on info in IBO PassivHaus
300.0	0.040	35.	1900.	celulose fiber flakes and I-beam (see below)
18.0	0.130	650.	1700.	OSB wood
50.0	0.040	30.	1500.	lambswool felt insulation (4.2\% wood batten)
25.0	0.190	950.	840 .	white gypboard

Because there is a ventilated rain-screen in this construction we ignore the weatherboard and the air gap and set both the inside and outside heat transfer coefficient to 0.13 . The PHPP should report a U-value of 0.107 for this construction.

Note the 300 mm insulation with the I-beam should be treated as several layers within the construction definition. The I-bean is assumed to be at 600 mm centres. Each layer is a mix of wood or OSB and cellulose. The outside and inside layers includes 25 mm thickness of wood and the rest is cellulose. This gives a percentage of wood of (4.2\%). The centre insulation layer is composed of cellulose and OSB (1\%). In the PHPP entry we combine the two layers with 4.2% wood into a single 50 mm layer and use a 250 mm layer for the 1% wood portion. The lambswool felt insulation layer also has a batten which we will assume has 4.2% wood. Only 8 layers can be input without modifying the worksheet (lets avoid such risks).

Note that identical layers e.g. the inner and outer solid wood portions of an I beam can be lumped together. This can sometimes be used to save layers!

Bauphysik = Building physics

	Einheit Unit	Gängig Usual	Alternative Alternative
Gesamtdicke - Total thickness	[cm]	57	56
Wärmedurchgangskoeffizient * Thermal transmission coefficient	$\left[\mathrm{W} /\left(\mathrm{m}^{\prime} \mathrm{K}\right)\right]$	0.10	0,10
Bewertetes Schalldämmmaß R_{w} * Rated sound insulation value R_{n}.	[d8]	56	56
Feuchtetechnische Sicherheit * Moisture safety	[kg / m 'a]	0,002/0,002	010
Wirksame Warmespeicherkapazitat Effective heat capacity	$\left.[k]\left(m^{\prime} \mathrm{K}\right)\right]$	28	32

Wirksame Wärmespeicherkapazitat *
Effective heat capacity
$\left[\mathrm{kJ} /\left(\mathrm{m}^{3} \mathrm{~K}\right)\right] \quad 28$
32
[cm] Alternativer Aufbau von außen nach innen Alternative construction from outside to inside
Kies 16/32 - Gravel $16 / 32$
Filtervies (Polypropylen) - Fiter fleece (polypropylene)
8 Extrudiertes Folystyrol, CO_{2}-geschäumt • Extruded polsstirene. CO oamed
PE-Abdichtung und PP-Schutzviles * PE-sealing and PP protective fleees OSB-Platte • OSB panel
30 Zelluloseflocken zw. Doppel-F-Trägern • Cellulose flakes bet double 1 -bearns
1.8 OSB-Platte - OSB panel

PE -Dampfbremse, selbstklebend - Self-adhesive PE-vapor barrier
95 Schafwolle zwischen Latten - Lambsiwool between lathes
$10 \quad 2,5 \quad 2 \mathrm{Lg}$. Gipsfaserplatien $\cdot 2$-layer gypsum fiberboard

Figure 8: Details of roof construction: DAI_05

Thick	\| Conduc-	Density	\|Specific	Description
(mm)	\|tivity		heat	
60.0	0.360	1840.	840.	gravel : Gravel
80.0	0.040	38.	1450.	XPS CO2 foamed : XPS extruded polystyrene
3.0	0.060	1090.	1000.	bitumen paper : (ignored in PHPP)
18.0	0.130	650.	1700.	OSB wood
300.0	0.040	35.	1900.	cellulose fiber flakes (layers as in AWI_06)
18.0	0.130	650.	1700.	OSB wood
50.0	0.040	30.	1500.	lambswool felt insulation (with 4.2\% batten)
25.0	0.190	950.	840.	White painted Gypboard

The heat transfer coefficients are 0.1 for the inside and 0.04 for the outside. There are mixed layers (insulation and I beam sections) so follow the pattern established in the wall construction. Because there are only two column percentages we can use for the mixed layers we have to assume that the batten in the lambswool felt layer is the same as in the cellulose layer. The PHPP reports a U-value of 0.088-0.090 for this construction.

Door: assume that the door is 0.8 m wide and 2.1 m height and that the U -value of the door is 0.8 . Look at the areas worksheet for the door data cells. And what else are you supposed to do with the area of the door? Is shading an issue with doors? Are there reveals with doors?

The PHPP Worksheets

Give your self time to read through the PHPP manual. Next look at the drawings and specifications and write down information for later use in the PHPP. It will take a few iterations of scanning the manual to locate the appropriate sections of the PHPP. OK, open up your retreat_base_case.xls file!

Read the following section before you enter your details. There are several paths through the PHPP. We suggest you start with the Verification worksheet and progress to the UValue worksheet and then to the U-List worksheet and then to the Wi-Type worksheet and then the Areas worksheet. This sequence allows you to have full access to the pull-down selection lists of your constructions and windows. Once you get used to the process you can fine tune this for your style of working.

The verification worksheet (Figure 9) includes high level data such as the enclosed volume, number of occupants, internal heat gains and desired inside temperature. There is a small space at the top of the verification sheet for images of your project. You will need to remove the security lock on the workshop page to insert images. This page would also be a good place to insert documentation about the approach you are taking and the assumptions that you are making (making life easier for the assessor of the PHPP can save time).

For the purposes of this exercise lets assume that there are 1.5 people, on average, in the retreat. If you set the verification worksheet planned number of occupants to design (rather than verification) the 1.5 people is rounded up to two people (see Figure 10).

Figure 9: Verification worksheet

Figure 10 is a detail of the lower right portion of Figure 9 which further specifies the building type, the Utilization pattern, Type of Values Used and which method to use for the calculations. As you progress you will see the space heating demand cells will begin to be populated with interim results.

For this example select the monthly calculation method and find the UK Manchester climate location in the Climate Data worksheet. This location is not immediately obvious, first select regional data and then northern Europe and then the Manchester climate from the list.

Figure 10: Verification worksheet detail

U-Values worksheet

The thermal envelope has thermophysical properties defining these will be the topic of this section.

The U-Value worksheet is going to be based on a collection of details from the IBO Passive House book of construction details. Figures 6-8 have been extracted from the IBO book for reference. One challenge is that the IBO book was written as a general reference and the figures and details require interpretation for application within PassivHaus projects.

For example the AWI_06 wall construction in the IBO book (Figure 7) does not fully describe the wooden I-beam or the batten near the inside of the wall. For purposes of this exercise the web of the I-beam is 6 mm MDF and the wood sections can be considered as 25 mm square and l-beams are used at 600 mm centres. The l-beam also has a ventilated weatherscreen and if you look at page 53 of the PHPP manual you will find rules needed to translate this detail.

For this retreat you will need to define constructions for the walls, foundation and the roof. Using the rules on page 53 enter these constructions and then compare with the figures on the next page.

Figure 11: U-value worksheets for floor and wall constructions
The treatment of layers which include both insulation and framing or battens is a key skill and the facilities of the PHPP will be tested when attempting to enter the layers of the roof based on the information in Figure 8. If we want to stay within the bounds of the existing cells we are limited to 8 layers and there are only two percentages for alternative materials e.g. the battens and I-beam. Compare your solution to this with Figure 12 on the next page.

Figure 12: Roof construction
After you have completed the individual entries to the U -values worksheet select the U -list worksheet where you will find a summary of what is available for use within the project. And if you think you will be wanting to try alternatives you could add in additional constructions for reference later in the project.

Passive House Planning

```
U-LIST
```

	Type		
$\begin{gathered} \text { Assemb } \\ \text { ly } \\ \mathrm{No.} \end{gathered}$	Assembly Description	Total Thickness	U-Value
		m	W(mik)
1	Efu 01 (floor)	0.542	0.15
2	AWI 06 (wali)	0.409	0.11
3	DAI 05 (flat roof)	0.551	0.09
4			
5			

Figure 13: U-list worksheet

Areas Worksheet

For the Areas worksheet your task is to apply the rules for building dimensions and treated floor area to the drawings and enter the required cells. Note the user subtraction cell at (O 32). What items inside the cabin need to be excluded from the calculation of treated floor area? For this exercise we do not include the floor area at the south window recess.

In the PHPP manual you will find that there are several definitions of volumes in the PHPP (pages 83, 97). This cabin has a flat ceiling, but with a sloped ceiling there are some volume calculations that still use 2.5 m heights (a ritual within the PHPP) for air changes per hour ventilation calculations.

The List of Areas is where you will be transcribing your calculated areas into the Area Group Designations. For this retreat there is essentially a one-to-one mapping between the facade and the group designations. Imagine though, if the project was a large villa - the details for lots and lots of rooms are going to have to be distilled into these designations keeping careful notes is going to be critical to retain your sanity and ensure that if the assessor asks you questions about your submitted PHPP you can provide the relevant information.

The Temperature Zones fields use A, B, P and X of the upper portion of Figure 14 represent
boundary conditions. For this project there are no X entries. And for this exercise we will be using what are termed certified PH details and junctions in the retreat so we will not be filling in thermal bridge information (we will add them in the workshop). The lower part of Figure 14 includes some pre-defined entries e.g. South Windows and External Doors which are associated with a group number. It also has space for user defined building elements that will make up the thermal envelope of the retreat. Each entry has a name (short and clear) a group number which expands to an 'assigned to group'. To the right of this is a quantity column (we only need one of each entity in this small retreat) and its dimensions.

There are rules for dimensions (e.g. omitting ventilated air gaps in weather screens) so double check this. What you see on the drawing might not be what is expected in the PHPP.
Buidng:Cabin in the woods near Manchester... Dout

Group Mr.	AnsaGroup	Trmp Zons	Anco	Unt	Commer
1	Troated Floor Area		0.00	m^{2}	Livingan
2	North Windows	A	0.00	m^{2}	
3	EastWindows	A	0.00	m^{2}	
4	South Windows	A	0.00	m^{2}	
5	West Windows	A	0.00	m^{2}	
6	Horizontal Windows	A	0.00	m^{2}	
7	Exterior Door	A	0.00	m^{2}	Ploases
8	Exterior Wall - Ambient	A	0.00	m^{2}	Wridow
9	Exterior Wall - Ground	B	0.00	m^{2}	Tampora
10	RoolCeiling - Ambient	A	0.00	m^{2}	Tampara
11	Floor Slab	B	0.00	m^{2}	
12			0.00	m^{2}	Tompora
13			0.00	m^{2}	Tompera
14		X	0.00	m^{2}	Tompora

15	Thermal Bridges Ambient	A	0.00	m	Unts int
16	Perimeter Thermal Bridges	P	0.00	m	Unts int
17	Thermal Bridges Floor Slab	B	0.00	m	Unts int
18	Partition Wall to Neighbour	I	0.00	$\mathrm{~m}^{2}$	No hoat
Total Thermal Envelope	0.00	$\mathrm{~m}^{2}$			

Amolit.	Buiding Elemant Desorption	Group Na	Assignedto Group	Quan: tty
	Trastad Foor Aroa	1	Trasiad Foar Avas	
	North Windows	2	North Windows	
	East Windows	3	East Windows	
	South Windows	4	South Windows	
	Wost Windows	5	West Widows	
	Horzontal Windows	6	Hotzontal Windows	
	Exiaior Doar	7	Extaior Doar	
1				
2				
3				
4				
5				
6				

Figure 14: Initial state of the Areas worksheet.
Fill in as much as possible before you look at Figure 15 on the next page.
Review your input and see if the User Subtraction makes sense. Notice that each of the facade walls is part of the same group (8). Groups are a way to assign boundary conditions.

Area Input													
Area Nr.	Building Element Description	Group Nr .	Assigned to Group	Quantity	$\times 1$	$\begin{gathered} \mathbf{a} \\ {[\mathrm{m}]} \end{gathered}$	x	$\begin{gathered} \mathbf{b} \\ {[\mathrm{m}]} \end{gathered}$	+	User-Determined [m^{2}]	-	User Subtraction [m^{2}]	-
	Treated FloorArea	1	Treated FloorArea	1	x (4.000	\times	5.000	+		-	1.55	
	North Windows	2	North Windows	Please complete in Windows worksheet onl									
	East Windows	3	East Windows										
	South Windows	4	South Windows										
	West Windows	5	West Windows										
	Horizontal Windows	6	Horizontal Windows										
	Exterior Door	7	Exterior Door	1	x (0.80	x	2.10	+		-)-
1	South Wall	8	Exterior Wall -Ambient	1	x (4.96	x	3.65	+		-)-
2	East Wall	8	Exterior Wall -Ambient	1	x (5.96	x	3.65	+		-)-
3	North Wall	8	Exterior Wall -Ambient	1	x (4.96	x	3.65	+		-)-
4	West Wall	8	Exterior Wall -Ambient	1	x (5.96	\times	3.65	+		-	1.70)-
5	Roof	10	Roof/Ceiling -Ambient	1	x (4.96	x	5.96	+		-)-
6	Foor slab	11	Floor Slab	1	x (4.96	x	5.96	+		-)-
7					x (x		+		-)-
n													

Figure 15: Areas worksheet with user defined entities

WinType worksheet

Window frames: lets assume that the window frames are 135 mm wide on the left and right and head and 150 mm wide at the sill. Lets also assume that the frame is $\sim 100 \mathrm{~mm}$ deep and that the frame has a U-value of 0.70 , the spacer associated with the glass has a linear transmittance of 0.049 and the so-called installation psi value is 0.025 (supplied by the manufacturer as part of their documentation).

We need to consider where to place the windows within the depth of our wall. If we place them flush with the inside face of the wall the reveal is rather deep and less sunlight will enter the room. If we place the frame at the outside face the installed psi value will be higher (the outside insulation cannot wrap around the frame). Lets use a compromise position and set the face of the glass back 175 mm from the outer face of the wall.

Window glass: lets assume that Alba are supplying a triple glazing product which has a gvalue of 0.5 and a U-value of 0.7 .

Figure 16: Details of glazing and frames from WinType worksheet

Windows worksheet

Read the windows worksheet (a few times). There are many concepts related to the overall opening, the frame and the glass. Have a look at a worked example PHPP for a useful window (and door) descriptions. For this exercise we assume that there is a company call Alba which is introducing a new glazing and framing system to the UK market and we want to test its use in the retreat.

Figure 17: Initial windows worksheet (left and right portions).
On the windows work sheet you will be entering the rough opening areas as found in the drawings as well as the orientation of the window (north is zero, east is 90 degrees etc.) and the surface that it is placed into (assuming that you first entered the walls/rooffloor into the areas worksheet). Good names for entities makes them easy to select and reduces errors.

Essentially, you will be filling in information on several of worksheets which causes other fields to be calculated. Until you have finished the PHPP is working with an incomplete set of information. If you look at the verification worksheet part way through the process you might find that the heating demands are high (because you have not defined your windows) or there is an overheating problem because you have yet to fill in the shading worksheet.

Again, get as far as you can before you turn to the next page and look at the data within Figure 18.

	g -Value	U-Value		Window Frame Dimensions				Installation			
' Nr .	Perpendicular Radiation	Glazing	Frames	Width Left	Width Right	Width Below	Width Above	$\begin{aligned} & \text { Left } \\ & 1 / 0 \end{aligned}$	$\begin{gathered} \text { Right } \\ 1 / 0 \end{gathered}$	$\begin{aligned} & \text { Sill } \\ & 1 / 0 \end{aligned}$	$\begin{gathered} \text { Head } \\ 1 / 0 \end{gathered}$
	-	W/(m² ${ }^{\text {c }}$	W/(m²K)	m	m	m	m				
-	0.50	0.70	0.59	0.14	0.14	0.15	0.14	1	1	1	1
,	0.50	0.70	0.59	0.14	0.14	0.15	0.14	1	1	1	1
,											
\bigcirc											

in		Ψ-Value		Results			
j	Head 1/0	$\Psi_{\text {saxas }}$	$\Psi_{\text {matano }}$	Window Area	Glazing Area	U-Value Window	Glazed Fraction per Window
		W/(mK)	W/(mK)	m^{2}	m^{2}	W/(m²K)	\%
	1	0.049	0.025	4.2	3.14	0.83	0.75
	1	0.049	0.025	1.0	0.52	0.94	0.52

Figure 18: Windows worksheet (left middle right portions)
Did you need to go back to your drawings and find particular dimensions? The Installation cells were straightforward for the retreat, but it can bend your mind if you have complex frames or multiple glazings within one rough opening.

Filling in the window worksheet will have had an impact on other worksheets in the PHPP. Look back at the areas worksheet. What do you notice has changed?

Figure 19: Areas sheet detail after work in windows worksheet.

Shading worksheet

Scan the shading section of the PHPP manual (page 76) and the worksheet. There is one overhang in the retreat. What else is there that needs to be taken into account? The term reveal in the PHPP is used for the vertical sides of the wall adjacent to the window. One dimension is from the face of the glass to the face of the wall. The other dimension is from the edge of the glass to the edge of the facade that potentially shades the glass. Building components which are horizontal and which can shade the glass are termed overhangs. Thus the reveal at the head of the window opening is considered an overhang. How many overhangs are there? If you think there is only one think again.

Take your time with the dimensions needed for this worksheet. Look at the drawings to locate the overhang in relationship to the south window glass and the reveal at the head of the south window. Notice that the glass is set into the facade and the sun entering the room will be further reduced by the reveals. But is it the overhang or the head reveal that is most likely to shade the glass?

The face of wall to face of glass (reveal distance) is 170 mm and the edge of glass to the shading edge of the reveal on the left and right and head is 135 mm . The north window reveal at the head of the window needs to be entered as an overhang - did you spot that? The sun rarely sees the north facade but the reveal does reduce the diffuse light reaching the glass.

And you will need to transform the architectural dimension of the overhang (1.0 m from the face of the wall). The distance from the face of the glass needs to be added and so this becomes 1.170 m . The distance from the edge of glass to the overhang we will use the 220 mm (above rough opening) +135 mm (width of the frame).

Figure 20: Shading worksheet (left and right portions)
The new information in the shading worksheet will have an impact on other worksheets. Which ones? On the following page some of the dependencies are shown.

Figure 21: Windows sheet after shading details added.

Ventilation worksheet

Now it is time to check-out the ventilation worksheet (PHPP manual page 81). You will find that a number of cells have already been filled in. The default supply air is going to be 30 cubic metres per hour per person and thus 45 is the supply air requirement for 1.5 people. You need an extract volume and in the PHPP this is usually assigned to rooms such as kitchen, bathroom or WC.

For this exercise create a new category of room with a flow rate of 45 so there is no imbalance in the supply and extract. In the section on Daily Operation Duration below notice that the standard rate is used for 20 hours a day and the basic rate is used for 4 hours a day to reflect periods when the retreat is not occupied. Why bother? Well air flow costs in terms of heat loss and running costs.

VENTILATION DATA

Figure 22: Ventilation worksheet (upper portion)
In the middle of the ventilation worksheet (Figure 23) is a section for EN 13790 infiltration. This is described on page 85 of the PHPP handbook. Lets assume that the site is slightly sheltered. Because we do not yet have a pressure test for the building do not fill in the cells related to pressure testing. The 0.7 value entered into the Wind Pressure Coefficient cell was taken from the table above it on the worksheet.

Figure 23: Ventilation worksheet (centre portion)
In the lower portion of the ventilation worksheet are cells describing how the heat recovery ventilation system works. Select one of the available units that has an efficiency greater than 80%.

CERTIFIED HEAT RECOVERY UNITS

No.	Hoat Rocovery Unit	Hoat Rocovery Efficionay	Electric Efficiency
		\%	Whim ${ }^{3}$
1	- User defined -		
2			
3			
4			
5			
6	Compact unit as selected in Compact workshee.	kg/a	
7	Reco-BOXX COMPORT - AEREX	85%	0.35
8	Comfoair 500 - StorkAir	88%	0.42
9	aeronom WS 250 - MAICO	85%	0.35

Figure 24: Ventilation worksheet (lower portion)
Note that when air duct details are added the efficiency will be reduced so start with the most efficient system. Choose the 200 DC Paul which is 92% efficient rather than the multi 100 DC unit by Paul which is only 79% efficient). You can switch components if this efficiency is not required.

Assume 150 mm supply and exhaust duct sizes and 100 mm of insulation (lambda 0.16) and a length of 0.5 m for both supply and exhaust. These details are entered in a form to the right of the HRV cells (Figure 25). This will reduce the overall efficiency of the MVHR system to
89.1\%.

Secondary Calculation:
Ψ-value Supply or Ambient Air Duct

Nominal WidthInsul. Thickness:	200	mm
	100	mm
Reflective? Please mark with an " x "! Yes		
x No		
Thermal Conductivity	0.16	W/(mK)
Nominal Air Flow Rate	33	$\mathrm{m}^{3 / h}$
$\Delta 0$	14	K
Interior Duct Diameter Interior Diameter	$\begin{aligned} & 0.200 \\ & 0.200 \end{aligned}$	m
Exterior Diameter	0.400	m
α-Interior	1.98	$W /\left(m^{2} \mathrm{~K}\right)$
α-Surface	7.31	W/ $\left(\mathrm{m}^{2} \mathrm{~K}\right)$
Y-value	0.624	W/(mK)
Surface Temperature Difference	7.944	K

Figure 25: Secondary duct definitions (ventilation worksheet)

Figure 26: HRV performance after update

Internal heat gains worksheet

Because we are in design mode rather than verification mode we need to visit the IHG worksheet and make sure that the green cell value is entered into the yellow cell (or we will not get $7.32 \mathrm{~W} / \mathrm{m} 2$ credit for the occupants).

Figure 27: Internal heat gains worksheet

Ground worksheet

This is an optional page. It is ok to set the ground characteristics. In the building data enter the slab area and perimeter and the U-value. You need to check the Floor Slab Type box
that indicates slab-on-grade. Some of the cells will remain blank on this worksheet. Some cells will already be filled in when you go to this worksheet.

HEAT LOSSES VIA THE GROUND

Ground Characteristics			
Thermal Conductivity		2.0	W/(mK)
Heat Capacity	$\rho \mathrm{c}$	2.0	$\mathrm{MJ} /\left(\mathrm{m}^{3} \mathrm{~K}\right)$
Periodic Penetration Depth	δ	3.17	m

Climate Data			
Av. Indoor Temp. Winter	T	20.0	${ }^{\circ}$
Av. Indoor Temp. Summer	T	25.0	c
Average Ground Surface Temperature	Tse	10.6	c
Amplitude of $\mathrm{T}_{\text {ase }}$	T_{s}	6.0	C
Length of the Heating Period	n	6.7	months
Heating Degree Hours - Exterior	G	68.4	KKh/a
Floor Slab U-Value	U,	0.151	W/($\left.\mathrm{m}^{2} \mathrm{~K}\right)$
Thermal Bridges at Floor Slab	$\Psi_{8}{ }^{*}$	0.00	W/K
Floor Slab U-Value incl. TB	U_{1}	0.151	W/($\left.\mathrm{m}^{2} \mathrm{~K}\right)$
Eq. Thickness Floor	d,		

For Basement or Underground Floor Basement Depth	Slab	\%	U-Value Belowground Wall	U_{wB}	W/(m²)
Additionally for Unheated Basements Air Change Unheated Basement Basement Volume	$\begin{aligned} & \mathrm{n} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{c\|c} 0.20 & \mathrm{~h}^{4} \\ \mathrm{~m}^{3} \\ \hline \end{array}$	Height Aboveground Wall U-Value Aboveground Wall U-Value Basement Floor Slab	$\begin{aligned} & h \\ & U_{w} \\ & U_{8} \\ & \hline \end{aligned}$	W/(m²K) $\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$
For Perimeter Insulation for Slab on Perimeter Insulation Width/Depth Perimeter Insulation Thickness Conductivity Perimeter Insulation Location of the Perimeter Insulation (checkonly one field)	Grade D d_{n} λ_{n} horizontal vertical	0.40 0.24 0.045 $\mathrm{~m} /(\mathrm{mK})$	For Suspended Floor U-Value Crawl Space Height of Crawl Space Wall U-Value Crawl Space Wall Area of Ventilation Openings Wind Velocity at 10 m Height Wind Shield factor	$U_{\text {cam }}$ h U_{w} $e P$ v f_{w}	
Additional Thermal Bridge Heat Loss Phase Shift	$\begin{aligned} & \text { es at Perime } \\ & \beta \end{aligned}$	months	Steady-State Fraction Harmonic Fraction	$\begin{aligned} & \Psi_{\text {Pasti}}{ }^{*} \\ & \Psi_{\text {fixm }} \end{aligned}$	$\begin{array}{c:l} \hline 0.000 & W / K \\ \hdashline 0.000 & W / K \\ \hline \end{array}$
Groundwater Correction Depth of the Groundwater Table Groundwater Flow Rate Groundwater Correction Factor	$\begin{aligned} & z_{w} \\ & \mathrm{q}_{\mathrm{w}} \\ & \mathrm{G}_{\mathrm{w}} \end{aligned}$		Transm. Belowground El. (w/o Ground) Relative Insulation Standard Relative Groundwater Depth Relative Groundwater Velocity	$\begin{aligned} & \mathrm{L}_{\text {wo }} \\ & \mathrm{d} / \mathrm{B}^{\prime} \\ & \mathrm{z}_{2} / \mathrm{B}^{\prime} \\ & 1 / \mathrm{B}^{\prime} \end{aligned}$	$\begin{aligned} & 4.46 \mathrm{~W} / \mathrm{K} \\ & 4.89- \\ & 1.11- \\ & 0.30- \end{aligned}$

Figure 28: Ground worksheet

Verification worksheet

Return to the verification worksheet. Make the building type is still residential and the internal heat gains utilization pattern as dwelling and the type of values as PHPP Calculation Residential and the planned number of occupants as 2 and the adjacent selection box as design.

If you forgot to set your climate, the standard assumption of central Germany will result in a heating demand over $40 \mathrm{kWhr} / \mathrm{m} 2 / \mathrm{a}$ but it you selected Manchester climate the heating prediction will be close to the requirements for PassivHaus certification (e.g. around 24 $\mathrm{kWhr} / \mathrm{m} 2 / \mathrm{year}$). Given that the area/volume relationship of the retreat is not optimal and the internal floor area is small this is a very good result!

Figure 29: Verification worksheet

Options to explore

Options for making the retreat more efficient are up to you to explore. What happens if you put in a better quality of glazing - say a glazing U-value of 0.5 ? What happens if you claim more floor space by shrinking the internal partition footprint (there is no overheating) from 400 mm to 100 mm ? What about the recess at the south window? What happens if you increase the thickness of the glass foam in the foundation to 300 mm (and reduce the concrete to compensate)? Can you reduce the prediction to $16 \mathrm{kWhr} / \mathrm{m} 2 /$ year?

Meeting the PassivHaus evaluation criteria as defined on page 23 of the PHPP manual is possible with this cabin. Explore the PHPP and use your experience to accomplish this!

Figure 30: Verification page after several iterations.

