ESP-r Developers Guide

Edited by Jon W. Hand
Energy Systems Research Unit
of the University of Strathclyde

Version of 25 April 2012

Table of Contents

1 Introduction . .
1.1 How we got to thrs pomt .

2 The ESP-r distribution structure
2.1 Source code layout . . .
2.2 Mixed language 1mplementatron issues
2.3 The src folder contents
2 4 Exploration techniques

3 Supported Platforms and Development Envrronments .

3.1 Compilers
3.2 Linux
3.3 Solaris .
34 08X
3.5 Cygwin under Wmdows
3.6 Native Windows
3.7 File names & character sets
4 Installing ESP-r
4.1 Preparation .
4.2 Quick steps to Instalhng ESP ro.
4.3 Installing ESP-r with a personal branch
4 4 Environment variables and files .
4.5 Default file assumptions
5 Code Documentation .
5.1 General Principles .
5.2 Documentation patterns
5.2.1 Subroutine descriptions
5.2.2 Citing papers and references .
5.2.3 Describing assumptions & annotating code
5.2.4 Grouping lines of code
5.2.5 In-line comments .
6 Coding Style and use of FORTRAN/C
6.1 Source code files and subroutines
6.1.1 Equations .
6.1.2 Working with exrstrng ﬁles
6.2 Variable and subroutine names
6.2.1 Explicit declarations
6.2.2 Type casting .

6.2.3 FORTRAN/C parameter passing conventions

7 Quality Assurance Tasks .
7.1 Identifying faulty code
7.2 Syntax checking techniques .
7.3 Understanding syntax reports

8 Working with the ESP-r repository
8.1 Work flow within the repository .

8.2 Merging changes from the development branch .

8.3 Committing changes into your branch .

8.4 Getting your changes into the development_ branch

8.5 Finding differences with other branches
8.6 Adding a new subroutine to ESP-r .
8.7 Additional steps for complex developments
8.7.1 The Nuke & Pave approach
9 New release testing .
9.1 Audit Trail
9.2 Documentation for users
10 Subversion Guide
10.1 Revision history

10.2 What is a Subversion Repository?

10.3 Obtaining a Subversion Client . .

10.4 Anonymous access for Non-Developers .

10.5 ESP-r Development with Subversion .

10.6 Obtaining a Developer’s Account and Sub- branch

10.7 Checking out a Sub-branch .

10.8 Common Subversion Commands . .
10.8.1 Update files/directories of your workspace .
10.8.2 Conflicts .

10.8.3 Checking recent changes in development branch log

10.8.4 Resolving conflicts
11 References .

51
51
51
52
52
52
52
53
54
54
54
56

1 Introduction

This document covers a number of topics of interest to the ESP-r development community. It begins with a
short history of how ESP-r moved from a small group of developers into a world-wide development community.
It documents how an initially person-centric development process has scaled to a process that supports the con-
tribution of scores of developers as well as maintaining the quality of the ESP-r distribution. Some sections
have been revised and extended from community contributed sources in the archive and manual folders of the
ESP-r distribution. Some sections are extracted from the IBPSA conference paper Documentation of open-
source simulation - addressing multiple points of interest presented at BS 2009 in Glasgow.

The ESP-r development community is diverse. There are the hard-core geeks who focus on the calculation
engine and others who evolve the underlying data structures and there are also others who make valuable contri-
butions by updating the documentation in the code and in the handbooks as well as contributing new example
models. And the user community is also active in contributing notices of glitches that they detect as well as
wish lists.

Those who are new to the ESP-r community may find some portions of this document peg the geek-meter.
Hopefully we can work past the jargon and to an understanding of how the community works, some tips for get-
ting ESP-r running on your computer, and guidance for contributing to the evolution of ESP-r.

For active contributors this is both a reference and a working document which itself evolves to reflect the current
working practices in the community. The latter is particularly important because many developers never physi-
cally meet.

There are sections related to the organization of the ESP-r distribution, suggestions for coding styles, procedures
for checking the syntax of code and the numerical robustness of methods. There are also templates for creating
the audit trail of the changes submitted and the notifications broadcast to the ESP-r community.

1.1 How we got to this point

In June 2002 the Energy Systems Research Unit of the University of Strathclyde in Glasgow (ESRU) announced
that the simulation suite ESP-r would become an open source software project under the GNU license. The but-
terfly that set this storm in motion was the author’s reading of "rebel code" by Glyn Moody. This book dis-
cussed the benefits and drawbacks of making software available beyond its original development community
and freeing others to explore new uses. It argued that one can make a business plan around open source soft-
ware. The next flap of the wings was passing the book to Prof. Joe Clarke of ESRU who decided to buy into the
idea. The ESP-r development community debated this and adopted the (at the time) radical idea that the future
of simulation lay in opening it up so that others could build on it and use it for purposes that no one in the exist-
ing community could imagine.

The decision to open source carried with it a number of technical and philosophical issues necessitating changes
in how the developer and user community worked and communicated. Although many thousands of open source
applications exist, few could be described as million line virtual physics laboratories. Many of the challenges
since 2002 are unique to the whole-building technical domain while others confront open source projects in gen-
eral.

Decisions were required on how to co-ordinate the contributions of existing and new developers so that the ESP-
r distribution maintained its robustness as well as becoming a better platform for exploratory developments in
simulation.

The traditional sequence of tasks undertaken by developers and the archivist in ESRU had evolved over a
decade. The process might have seemed pedantic to outsiders, but there were few glitches in the million lines of
code. The process relied on at degree of paranoia as well as the maintenance of a strict regime within which the
actors performed their tasks.

Another mark of open software is adaptation to the goals of a community rather than its founding authors. Pro-
cedures must become sufficiently robust and largely independent of the individuals. The archivist role trans-
ferred from Joe Clarke in ESRU to Ian Beausoleil-Morrison initially at Natural Resources Canada and later at
Carlton University in Ottawa.

One of the early tasks, when opening up ESP-r, was to scale up without becoming a burden on the archivist:

» Passing code to an archivist in ESRU relied on a manual regime of enforced by convention - these needed to
be documented and codified.

* Detecting errors in coding and changes in predictions were manual processes. These processes needed to
become part of the work flow as well as a design issue for new facilities.

* The transfer of files had a limited audit trail and required considerable attention to detail.

» User access to the source as a set of compressed archive files on a file server was inefficient. It was Linux and
Unix platform-centric.

Many of the above issues were rooted in a person- centered version control system. Clearly what was required
was a software based version control. ESP- r, as a community, was a late adopter of version control.

In 2001, 2003 and 2004 source code repositories were implemented at different development sites. These made
use of CVS (concurrent versioning system) and were used to co-ordinate group coding and testing cycles. This
diverse testing ran in parallel with the archivist’s tasks.

In 2005 the repository moved from CVS to a versioning system named Subversion (svn). This allowed for a
clearer audit trail, easier manipulation of files and folders and more options for merging and testing different
development branches. It also automated the distribution of information about changes as they happened, pro-
vided facilities to view changes made by others.

ESP-r began with a core of developers who had access to a Sun Solaris box named sigma. Currently there are
scores of developers and users who, with a few keystrokes, can access the repository from any location and who
can know within minutes the latest changes. This virtual development environment is made possible because
the ESP-r repository is held on an externally hosted environment with a domain (espr.svn.cvsdude.com).

The transition from a machine named sigma to a virtual development community with more than 60 branches
and almost 8000 commits (sometimes as many as a dozen commits in a day) required time and the testing of
many ideas. There was a lot of scratching of heads. Why must we jump through all of these hoops? Why can’t
you just take my five line change? Why does everyone get to see my mistakes?

The answers to such questions are essentially to ensure the quality of the ESP-r distribution and to hopefully
identify glitches as soon as possible. The rituals surrounding the use of Subversion are in support of these goals.
Such rituals take time to become a habitual. It certainly seems like magic (and black magic to novices) and
working with an experienced developer can speed the process.

Of course, documenting procedures requires iteration. Actual practice evolves in subtle ways that are not part of
the published checklist. Indeed, this document must also be a work-in-progress and requires that others test it
and update it to reflect the current state of ESP-r.

2 The ESP-r distribution structure

The source distribution of ESP-r contains many resources for the development community. Beyond the contents
of this document, those wishing to understand the organization of the code or the details of existing functions
and subroutines within the Fortran, C and C++ code base can browse the ESP-r Common Coding Resources
document.

Documentation of source code tends to lag the evolution of the code and readers are advised to also review the
source code. This document should be considered work-in-progress. Check for updates regularly.

2.1 Source code layout

The source code of ESP-r is subdivided into a number of topic-focused folders. Each of the folders separates the
source files by functional task, data structure and/or analysis domain. There is a rough order within the roughly
million lines of code. There are chaotic corners which have yet to be consolidated and there is some duplication
which awaits consolidation.

Below is the overall layout of the source distribution along with notes on the contents of each folder:

-- src
-- archive documents for developers
-- bin scripts (batch command files) for developers and users
-- bitmaps images used by X11 version
-- cetc code from Natural Resources Canada and XML
—- climate climate data sets (ASCII versions)
-- databases materials, optics, constructions, plant components
-- env example Unix/Linux dot files
—- esruXxX ESP-r module specific source code
—-— esrucom ESP-r common source code
—- include header files used for Fortran and C code
-- 1lib library code and user interface code
-- manual documentation about ESP-r and operating system variants
-- shocc library of occupant preferences
-- training example models for use in workshops and training
-- tutorial holds additional contextual help text for interfaces
‘-- validation models for use in formal validation e.g. BESTEST
‘-— tester
| -- additional tests infrequently used automated test models
|-- scripts scripts (batch command files) for running automated tests
‘—-— test_suite test models for automated tests

One key aspect of source code evolution is testing of changes and the tester folder includes a number of scripts
to automate the process and over 250 test models to be run as part of the formal testing process. The tester folder
are listed below:

tester
| -- additional tests
| | -- A42_combustion_cogen comp_tests notes to be added

| |-- A42 fuel cell comp tests notes to be added

| | -- ASHRAE-140 notes to be added

| ‘—— HOT3000_test_cases notes to be added

|-- scripts

‘—-— test_suite
-- Annex42 fuel cell notes to be added
—-- alberta_infil model notes to be added
-- ascii_dbs notes to be added
-- basesimp notes to be added
-- bld PV notes to be added
-- bld ground reflectivity notes to be added
—-- bld_hc_IS015099 notes to be added
-- ccht_benchmark notes to be added
-- cellular_offices model with cellular offices
-- cetc_battery_model notes to be added
-- elec_gain_into_zone notes to be added
-- esru_benchmark model similar to validation/benchmark/QA
-- h3kreports notes to be added
-- idealized hvac notes to be added
-- multi year simulations notes to be added
-- plt_SDHW notes to be added
-- plt_adsorption_storage notes to be added

-- plt_boundary conditions notes to be added
-- plt_elec_net notes to be added
-- plt_electric_HWT notes to be added
-- plt_lookup_table notes to be added
-- plt_pre A42 PEMFC_model notes to be added
-- plt_pre A42 SOFC_model notes to be added
-- plt_radiant_floor notes to be added
-- plt_solar collector notes to be added
-- plt_trnsys_wrapper notes to be added
-- plt_zone_heat gain_coupling notes to be added
‘—-- pv_example notes to be added

The validation of ESP-r is also supported by a number of standard test models and scripts (automated command
files) in the validation folder.

src
‘—-- validation

-—- BESTEST
-- 195 test solid conduction
-- 200 test long wave radiation exchange at windows
-- 210 test long wave radiation external exchange on
-- 215 test long wave radiation external exchange off
-- 220 test long wave radiation internal exchange
-- 230 test infiltration
-- 240 test internal gains
-- 250 test exterior solar
-- 270 test south exterior solar
-- 280 test cavity albedo
-- 290 test south horizontal overhang
-- 300 test east and west external solar
-- 310 test east and west overhang and fins
-- 320 test thermostat dead-band
-- 395 test solid conduction
-- 400 test surface convection and long-wave exchange
-- 410 test infiltration
-- 420 test internal heat generation
—-- 430 test external solar incident
-- 440 test internal solar absorptance
-- 600 test south solar transmission
-- 600FF
-- 610 test south overhang
-- 620 test east and west solar transmission
-- 630 test east and west overhangs and fins
-- 640 test night setback
-- 650 test venting
-- 650FF
-- 800 test thermal mass with no solar
-- 810 test thermal mass with solar
-- 900 test thermal mass and solar interaction
-- 900FF
-- 910 test south overhang and thermal mass
-- 920 test east and west mass and solar interaction
-- 930 test east and west shading and mass interaction
-- 940 test night setback and mass interaction
-- 950 test venting and mass interaction
-- 950FF
-- 960 test test passive inter-zone transfer
-- 990
—-- climate climate files for use with BESTEST
‘—- dbs databases for use with BESTEST

-- CEN
|-- 13791
‘—- 15265

-- analytical
‘—- conduction01l

‘-- benchmark
| -- CFD
| | -- Archive Feb2004 archive of standard assessments
| ‘—— Models models for testing CFD
‘f__ QA

|-- Archive_linux_X11_ 040309

|-- Archive linux X11_ 230209 archive of earlier predictions
| -- benchmark model a set of archaic test models

| -- model test models with older geometry format

‘-— model 1.1 test models with new geometry format

The documentation associated with ESp-r is found in the manual and the archive folders.

src
—-- manual
| -- Adding_features
| -- Data model
| -- ESRUlib
| -- Implement
| -- Manual
| ‘—— Figs

|-- Apple
|-- Cygwin
| -- Linux

formal description of the ESP-r data model
notes about library subroutines (out-of-date)

text for the manual (out-of-date)
files for figures to the manual

instructions for 0SX install
instructions for Cygwin install
instructions for Linux install

‘-- Native_windows instructions for Native Windows install

There are a number of example models for use with training workshops and courses and these are located in the

training folder structure.

src
—-- training
-- 3_windows
—— CFD_room
-- acoustic
‘—- EOS_atrium
-- basic
-- burdie
-- cellular_bc
-- cellular_bound
-- cellular_contam
-- cellular_cvvt
-- cellular_earth
-- cellular_flh
-- cellular_furn
-- cellular_hires
-- cellular_hvac
—- cellular_hybrid
-- cellular_natv
-- cellular_pv
-- cellular_shd
-- cfd
-- IEA A20
-- M _Age
-- RoomVent98
-- displ_vent
‘-- rad_htg
-- cg_ctl
-- coupling
-- daylit_coef
-- el _chrom
‘-— static
-- chp
| -- sport_cen
‘—- unit
-- constr
| -- adapt
‘—— tp_sub
-- el chr_ctl
-- flow
-- gridding
-- sun_space
-- svph
-- mould
-- network
-- office
-- office dfs
-- office doctor
-- office vent
-- pattern
-- pid
-- plant
|-- ac_pp
| -- ahu
|-- coil_pp
|-- conv_ac_sys
| -- hvac_bas

model with different flow network window representations
model with CFD domain

model including acoustic calculations

a simple model with numerous variants

a house with moisture issues

base case version of two cellular offices
cellular offices with upper and lower bounding zones
cellular offices with contaminate tracking
cellular offices with idealized CV air supply
cellular offices with earth tube air supply
cellular offices with floor heating

cellular offices with furniture and internal mass
cellular offices with higher resolution geometry
cellular offices with HVAC

cellular offices with hybrid ventilation

cellular offices with operated windows

cellular offices with PV embedded in facade
cellular offices with shading obstructions

IEA Annex 20 models

model including mean age of air

models used for RoomVent 1998 paper

models demonstrating displacement ventilation
model with radiant heating

coupling of ESp-r and Radiance
model using Radiance daylight coefficients
model with electro chromic optical controls

model of sports centre with co-generation

model with adaptive thermophysical properties

model with electro chromic optical controls

model demonstrating network flow

model with 2D conduction gridding

house with a sun space

house with a sun space and solar ventilation preheating
model which includes mico-toxin parameters

model with network flows

a portion of an office building

portion of an office building with a double facade
portion of an medical practice (matches example in ESP-r Cookbook)
portion of an office building with controlled facade vent
folder with sample operation files

model for demonstrating PID controls

00000

a model with primitive part representations of air conditioning
a model with air handler plant components
primitive part representation of a fan coil

9.

| -- hvac_vav VAV system represented by plant components

|-- mixed_ac_sys

|-- solar a model with various solar components

| -- vent_detailed a model with detailed mechanical ventilation

|-- vent_simple a model with simple mechanical ventilation

‘—- wch a model with web central heating
-- pv_facade research facility with PV embedded facade
-- rad_room_heat explicit representation of radiant ceiling heating
-- trombe_wall explicit representation of a Trombe-Michelle wall
‘—- sunroom

2.2 Mixed language implementation issues

ESP-r is a mixed language environment. Essentially the data model and the decision about what to present to the
user and how to interpret user actions is handled in the Fortran source. The C code in lib implements the direc-
tives about what to display and captures and passes back user actions (mouse movements and keystrokes). The
goal is for the code in the application source folders to be substantially isolated from the underlying graphic API
via the use of intermediate code in the lib folder. There are a few exceptions to this goal. Both Fortran and C
offer the possibility to include or exclude blocks of code via so-called #ifdef statements. For example:

C IEEE callback (Solaris)
#ifdef SUN
#ifdef F90
external SIGFPE_bps
integer SIGFPE_bps
#endif
#endif

identifies a Solaris computer and Fortran 90 so that a floating point exception handler can be used. And

#ifdef GCC4

call CTIME(ICTIME,ECTIME)
#else

character*24 CTIME

ECTIME = CTIME(ICTIME)
#endif

associates particular blocks of code with the GCC version 4 compiler. And

#ifdef OSI

integer impxe,impye,iw,irpxe,irpye,inoe,ipflg,iuresp ! for use with evwmenu
#else

integer*8 impxe,impye,iw,irpxe,irpye,inoe,ipflg,iuresp ! for use with evwmenu
#endif

defines the size of integer variables depending on a compiler and operating system combination. The code relies
on very few #ifdef statements. There are also different library source files that are linked into executables to
allow ESP-r to use either the X11 graphic primitives or the GTK graphic library primitives.

2.3 The src folder contents

The source code and databases are held in the src folder structure as shown below

src
-- archive documents for developers
-- bin command files (scripts) for developers and users
—- bitmaps images used by X11 version
-- cetc code from Natural Resources Canada

‘—- h3kreports XML report generation code

‘—— xsl

-- climate climate data sets (ASCII versions)

-- databases materials, optics, constructions, plant components
‘-— UK_NCM patterns of occupancy used in UK national calculation method
-- env example Unix/Linux dot files
-- esruaco source code specific to the acoustics module
-- esrub2e source code specific to BEMS import module

-10-

—- esrubld source code for zone solver
-- esrubps source code for the multi-domain solver (bps)
-- esrucle source code for air flow pressure coefficients
-- esruclm source code for the clm module
-- esrucnv source code for importing and exporting to 3rd party tools
-- esrucom common code used by various modules
—-- esructl source code for global controllers
-- esrudbm source code for generic databases
‘—— db sample generic databases
-- esrudfs source code for the CFD solver and gridding setup
‘—- Info
-- esrue2r source code for interface to Radiance (e2r)
-—- esrueco source code for environmental impacts module (eco)
-- esrugrd source code for 2D and 3D gridding (grd)
—- esruish source code for shading and insolation pre-calculator (ish)
-- esrumfs source code for mass flow networks (mfs)
—- esrumld source code for mico-toxin assessments (mld)
-- esrumrt source code for surface-to-surface view factors (espvwf)
-- esrunet source code for an iconic network sketch module (net)
-- esrupdb source code for the plant template library manager (pdb)
—- esrupdf source code for electrical network manager
-- esrupfs source code for electrical network solver
—-- esruplt source code for plant component solver
—-- esruprj source code for the project manager module (prj)
-—- esrures source code for the results analysis module (res)
-- esrurun source code for converting 3rd party descriptions into ESP-r models
—-- esruvew source code for a hidden line wire-frame viewer
-- esruvld source code for validation and uncertainty studies
—- include header files for fortran and c code
-- 1lib library code and user interface code
—- shocc library of occupant preferences (placeholder)
-- tutorial holds contextual help text for many of the ESP-r modules
—- training holds exemplar models (see above)
-- validation holds models used to validate ESP-r

The use of a common code base for the ESP-r modules is demonstrated by looking at the contents of the esrubps
(the ESP-r simulator) and esrucom folders:

1ls esrubps
BC_data.F Makefile bmatsv.F input.F simcon.F
Lookup data.F SiteUtilities.F bps.F reslib.F tdrecbps.F

1ls esrucom

MultiYear climate.F e3dviews.F emkcfgg.F mcdbscn.F scsys.F
bsimsel.F ecasctl.F emoist.F nwkrewr.F senrwl.F
c2fdum.F ecdbscn.F enetmisc.F plelev.F setup.F
cfdrw.F econstr.F enetrewr.F pltcfg.F sort.F
cfgrid.F econtrol.F eroper.F psychro.F spmisc.F
common3dv.F edatabase.F esgrid.F rcdblist.F startup.F
cread3dv.F egeometry.F esru misc.F readTrnsys.F startup.c
ctlexp.F egrid.F esystem.F rnor.F tdfile.F
ctprob.F egtgeom.F fanger.F rwipv.F

ctread.F emfnetw.F filelist.F rwroam.F

dossupport.F emkcfg.F item.F rwsbem.F

2.4 Exploration techniques

The numerical engine of ESP-r only has a few files in its folder. At compile time the instructions for building
the module bps (esrubps/Makefile) are to use source files in esrucom (and other folders). The extent of the mod-
ular structure is further demonstrated by the number of references to esrucom/egeometry.F in the various mod-
ules:

grep -ni egeometry.F */Makefile

esrub2e/Makefile:33:egeometry.F:

esrubps/Makefile:184:egeometry.F:
esrucnv/Makefile:34:egeometry.
esrudbm/Makefile:34:egeometry.
esrudfs/Makefile:43:egeometry.
esrue2r/Makefile:62:egeometry.
esrueco/Makefile:59:egeometry.
esrugrd/Makefile:59:egeometry.
esruish/Makefile:59:egeometry.

Lo I B B B s B

esrumrt/Makefil
esrunet/Makefil
esruprj/Makefil
esrures/Makefil

e:
e:
e:
e:
esrurun/Makefile:

-11-

54:egeometry.F:
28:egeometry.F:
95:egeometry.F:
77 :egeometry.F:
l44:egeometry.F:

So what if we wanted to know where in the source distribution the subroutine georead from the above egeome-
try.F is used. The output of the command gives the folder and file name as well as the position in the file where
georead is called and places where it is mentioned in comments (lines beginning with a ’C’).

grep -ni georead */*.F

esruaco/acoesp.F:196: call georead(ITMP,LGEOM(ICOMP),ICOMP,0,iuout,IER)
esruaco/acoesp.F:564: call georead(ITMP,LGEOM(nZnog(J)),nznog(J),0,iuout,IER)
esruaco/acoesp.F:747: call georead(ITMP,LGEOM(nzZnog(k)),nznog(k),0,iuout, IER)
esruaco/acoesp.F:997: call georead(ITMP,LGEOM(nZnog(k)),nznog(k),0,iuout,IER)
esrubld/bcfunc.F:5241: call georead(ifil+l,lgeom(icomp),icomp,0,itu,ier)
esrubld/bcfunc.F:6860: call georead(iunit,lgeom(ICMP),ICMP,0,itu,ier)
esrubld/bcfunc.F:6869: call georead(iunit,lgeom(ICMP),ICMP,0,itu,ier)
esrubld/casual.F:1071: call georead(iunit,lgeom(icomp),icomp,0,itu,ier)
esrubps/bmatsv.F:1187: call georead(igu,LGEOM(icomp),icomp,1l,iuout,IER)
esrubps/input.F:1073: call georead(IUNIT,LGEOM(IZ),IZ,1,ITU,IER)
esrubps/input.F:1927: call georead(IFIL+1,LGEOM(IZ),I%Z,0,itru,IER)
esrucnv/e2vdxf.F:78: call georead(ITAl,LGEOM(newfoc),newfoc,1,IUOUT, IER)
esrucnv/e2vdxf.F:143: call georead(ITAl,LGEOM(newfoc),newfoc,1,IUOUT, IER)
esrucnv/e2vdxf.F:413: call georead(ITAl,LGEOM(mz),mz,1,IUOUT,IER)
esrucnv/e2vdxf.F:451: call georead(ITAl,LGEOM(mz),mz,1,IUOUT, IER)
esrucnv/e2vdxf.F:595: call georead(ITAl,LGEOM(newfoc),newfoc,1,IUOUT, IER)
esrucnv/e2vdxf.F:646: call georead(ITAl,LGEOM(newfoc),newfoc,1,IUOUT, IER)
esrucnv/e2vrml.F:186: call georead(ITAl,LGEOM(newfoc),newfoc,1,IUOUT, IER)
esrucom/common3dv.F:688: call georead(IUF,LGEOM(ifoc),ifoc,1,iuout,ier)
esrucom/common3dv.F:1322: call georead(IUF,LGEOM(IVALS(IZ)),IVALS(IZ),1,iuout,IER)
esrucom/egeometry.F:26:C GEOREAD: Reads V1.1 zone geometry data as ASCII strings, with or without
esrucom/egeometry.F:182:C the code should use georead to scan the file so return
esrucom/egeometry.F:1192:C *****xxkkxkkxk*xk*x* GEOREAD

esrucom/egeometry.F:1193:C GEOREAD reads V1.1l zone geometry data (LGEOMF) from a user-constructed data
esrucom/egeometry.F:1213: SUBROUTINE GEOREAD(IUNIT,LGEOMF,ICOMP,IR,ITRU, IER)

/egeometry.F:2379:

1002 write(outs,’(3a)’) ’'GEOREAD: conversion error in...’,

esrucom/egeometry.F:4934:C using georead or egomin and pass across into the appropriate array.

esrucom/egeometry.F:4942: call georead(IFIL+1,LGEOM(ICOMP),ICOMP,1,iuout,ier)
esrucom/esystem.F:2493: call georead(iuf,LGEOM(ICOMP),ICOMP,1,itru,ier)
esrucom/esystem.F:2741: call georead(iuf,LGEOM(ICOMP),ICOMP,1,itru,ier)
esrucom/plelev.F:135: call georead(IUF,LGEOM(newfoc),newfoc,0,IUOUT, IER)
esrucom/plelev.F:281: call georead(IUF,LGEOM(newfoc),newfoc,0,IUOUT,IER)
esrue2r/e2r.F:1380: call georead(ITAl,LGEOM(ICOMP),ICOMP,1,IUOUT, IER)
esrue2r/e2rform.F:371: call georead(ITAl,LGEOM(ICOMP),ICOMP,1,IUOUT, IER)
esruprj/bnlthp.F:119: call georead(IUNIT,LGEOM(ICOMP),ICOMP,1,IUOUT, IER)
esruprj/e2eplus.F:1582: call georead(ITAl,LGEOM(mz),mz,1,IUOUT,IER)
esruprj/edcasctl.F:188: call georead(IUF,LGEOM(ICOMP),ICOMP,0,ITRU,IER)
esruprj/edcfd.F:871: call georead(IFIL+1,LGEOM(nznog(l)),nznog(l),1l,IUOUT,IER)
esruprj/edcfd.F:1626: call georead(IFIL+1,LGEOM(nznog(l)),nznog(l),1,IUOUT, IER)
esruprj/edcon.F:157: call georead(IFIL+1,LGEOM(ICOMP),ICOMP,1,IUOUT, IER)
esruprj/edcondb.F:1653: call georead(IFIL+1,LGEOM(ICOMP),ICOMP,1,iuout,ier)
esruprj/edcondb.F:2955: call georead(IUF,LTMP,IZ,1,iuout,IER)
esruprj/edgeo.F:466: call georead(IFIL+2,LGEOM(IC2(ioc)),IC2(ioc),0,iuout,IER)
esruprj/edgeo.F:1129: call georead(IFIL+2,LGEOM(IC2(ioc)),IC2(ioc),
esruprj/edmrt.F:122: call georead(IUF,LGEOM(ICOMP),ICOMP,1,IUOUT, IER)
esruprj/edobs.F:778: call georead(IUF,LGEOM(ICOMP),ICOMP,0,ITRU,IER)
esruprj/edonecon.F:111: call georead(IUO,LGEOM(IC1(IFOC)),IC1l(IFOC),0,iuout,IER)
esruprj/edonecon.F:418: call georead(IUO,LGEOM(IC1(IFOC)),ICl(IFOC),0,iuout,IER)
esruprj/edonecon.F:458: call georead(IUO,LGEOM(IC2(IFOC)),IC2(IFOC),0,iuout,IER)
esruprj/edspmtl.F:628: call georead(IFIL+1,LGEOM(IZ),I%Z,1,iuout,IER)
esruprj/edspmtl.F:677: call georead(IFIL+1,LGEOM(IZ),IZ,1,iuout,IER)
esruprj/edspmtl.F:823: call georead(IFIL+1,LGEOM(IZ),I%Z,1,iuout,IER)
esruprj/edspmtl.F:857: call georead(IFIL+1,LGEOM(IZ),IZ,1,iuout,IER)
esruprj/edtopol.F:581: call georead(IFIL+1,LGEOM(IZ),I%Z,0,itru,IER)
esruprj/edtopol.F:635: call georead(IFIL+1,LGEOM(IZ),I%Z,0,itru,IER)
esruprj/edzone.F:623: call georead(IFIL+1,LGEOM(IC),IC,1,iuout,IER)
esruprj/edzone.F:1291: call georead(IFIL+1,LGEOM(IX),IX,1,iuout,IER)
esruprj/edzone.F:1390: call georead(IFIL+1,LGEOM(IW2),IW2,1,iuout,IER)
esruprj/edzone.F:1571: call georead(IFIL+1,LGEOM(ir),ir,1,IUOUT, IER)
esruprj/emeta.F:841: call georead(IFIL+2,LGEOM(ICOMP),ICOMP,1,iuout,IER)
esruprj/emeta.F:929: call georead(IFIL+2,LGEOM(ICOMP),ICOMP,1,iuout,IER)

esruprj/folders.F:1601: call georead(IUF,LGEOM(IZ),IZ,1,iuout,IER)

-12-

esruprj/hcfmk.F:254: call georead(IUF,LGEOM(ICOMP),ICOMP,0,iuout,IER)
esruprj/insert.F:161: call georead(IFIL+2,LGEOM(iotherzone),iotherzone,0,
esruprj/insert.F:202: call georead(IFIL+2,LGEOM(iotherzone),iotherzone,0,
esruprj/mfprbl.F:827: call georead(IFIL+1,LGEOM(IZ),IZ,0,ITRU,IER)
esruprj/mfprbl.F:1701: call georead(IFIL+1,LGEOM(IZ),IZ,1,iuout,IER)
esruprj/mksbem.F:3519: CALL GEOREAD(IUF,LGEOM(ICOMP),ICOMP,1,IUOUT, IER)
esruprj/mksbem.F:4352: call georead(IUF,LGEOM(ICOMP),ICOMP,1,iuout,IER)
esruprj/prescoef.F:579: call georead(IUF,LGEOM(IC),IC,1,iuout,IER)
esruprj/prescoef.F:702: call georead(IUF,LGEOM(IZU),IZU,1,iuout,IER)
esruprj/prj.F:779: call georead(IFIL+1,LGEOM(ICOMP),ICOMP,1,iuout,ier)
esruprj/prj.F:866: call georead(IFIL+1,LGEOM(index),bindex,1,iuout, IER)
esruprj/prjga.F:838: call georead(IUF,LTMP,IVALS(IZ),1,iuout,IER)
esruprj/prjga.F:1696: call georead(IUF,LTMP,IVALS(IZ),1,iuout,IER)
esruprj/read3dv.F:196: call georead(IFIL+1,LGEOM(nznog(IZ)),nznog(IZ),1,IUOUT,IERS)
esrures/enerbs.F:65: call georead(IUNIT,LGEOM(IZONE),IZONE,O0,IUOUT, IER)
esrures/enerbz.F:66: call georead(iunit,LGEOM(IZONE),IZONE,O0,iuout,ier)
esrures/fabcon.F:927: call georead(IUNITF,LGEOM(ICOMP),ICOMP,0,IUOUT, IER)
esrures/fabtmp.F:53: call georead(IUNITF,LGEOM(ICOMP),ICOMP,0,IUOUT,IER)
esrures/moget.F:4220: call georead(IUNIT,LGEOM(IZ),IZ,0,IUOUT, IER)
esrures/replsim.F:128: call georead(IUNIT,LGEOM(J),J,1,IUOUT,IER)
esrures/stats.F:2145: call georead(iunit,LGEOM(izone),izone,0,iuout,ier)
esruvld/anlytc.F:909: call georead(IUnit,LGEOM(IComp),IComp,1,IUOUT,IER)

Most of the modules of ESP-r make use of georead so scan in the definition of a zones coordinates and surface
attributes. Indeed, some modules do this many times (an artifact of how information is held within the data
structure). From the list above we see there is one instance of the phrase subroutine egomin so that also tells us
where the subroutine code is.

If, instead we wanted to know how many places update zone geometry files we would want to search for
instances of the subroutine geowrite:

grep -ni geowrite */*.F
esrucom/egeometry.F:28:C GEOWRITE: Write a geometry file (GEN V1.1 type) based on infor-

esrucom/egeometry.F:2399:C **x**%**xx*x%x* GEOWRITE
esrucom/egeometry.F:2400:C GEOWRITE to write a geometry file (GEN V1.1l type) based on infor-

esrucom/egeometry.F:2415: SUBROUTINE GEOWRITE(IFILG,GENFIL,ICOMP,ITRU,iwf,IER)
esruprj/clickonbitmap.F:1809: call geowrite(IFIL+2,LGEOM(ICOMP),ICOMP, iuout,3,IER)
esruprj/clickonbitmap.F:2210: call geowrite(IFIL+2,LGEOM(ICOMP),ICOMP, iuout, 3,IER)
esruprj/edcfg.F:1928: call geowrite(iuf,LGEOM(NCOMP) ,NCOMP,ITRU, 3,IER)
esruprj/edcfg.F:1988: call geowrite(iuf,LGEOM(NCOMP),NCOMP,ITRU, 3,IER)
esruprj/edcfg.F:4341: call geowrite(IUF,LTMP,IICOMP,ITRU,3,IER)
esruprj/edcfg.F:4427: call geowrite(IUF,LTMP,IICOMP,ITRU,3,IER)
esruprj/edcfg.F:4531: call geowrite(IUF,LTMP,IICOMP,ITRU,3,IER)
esruprj/edcfg.F:4651: call geowrite(IUF,LTMP,IICOMP,ITRU,3,IER)
esruprj/edcon.F:696: call geowrite(IUF,LGEOM(ICOMP),ICOMP,ITRU, 3,IER)
esruprj/edcondb.F:2990: call geowrite(IUF,LTMP,IZ,ITRU, 3,IER)
esruprj/edgeo.F:486: call geowrite(IFIL+2,LGEOM(IC2(ioc)),IC2(ioc),
esruprj/edgeo.F:636: call geowrite(IFIL+2,LTMP,ICOMP, iuout,3,IER)
esruprj/edgeo.F:807: call geowrite(IFIL+2,LTMP,ICOMP, iuout,3,IER)
esruprj/edobs.F:30:C << to keep the data refreshed so geowrite calls can be made.
esruprj/edobs.F:242: call geowrite(IUF,LGEOM(ICOMP),ICOMP,iuout,3,IER)
esruprj/edobs.F:549: call geowrite(IUF,LGEOM(ICOMP),ICOMP,iuout,3,IER)
esruprj/edonecon.F:434: call geowrite(IUO,LGEOM(IC1(IFOC)),IC1l(IFOC),iuout,3,IER)
esruprj/edonecon.F:471: call geowrite(IUO,LGEOM(IC2(IFOC)),IC2(IFOC),iuout,3,IER)
esruprj/edtopol.F:1666: call geowrite(IFIL+2,LGEOM(IZ),IZ,iuout,3,IER)
esruprj/edtopol.F:2980: call geowrite(IUF,LTMP,IVALS(IZ),iuout,3,IER)
esruprj/edtopol.F:3058: call geowrite(IUF,LTMP,IZ,iuout,3,IER)
esruprj/edtopol.F:3205: call geowrite(IUF,LTMP,IVALS(IZ),ITRU,3,IER)
esruprj/edzone.F:461: call geowrite(IFIL+2,LGEOM(ICOMP),ICOMP, iuout,3,IER)
esruprj/edzone.F:768: call geowrite(IFIL+1,LGEOM(ic),ic,iuout, 3,IER)
esruprj/edzone.F:1321: call geowrite(IFIL+2,LGEOM(IX),IX,iuout,3,IER)
esruprj/emeta.F:795: NCOMP=NCOMP+1 ! Temporarily update NCOMP for geowrite use.
esruprj/emeta.F:800: call geowrite(IFIL+2,LGEOM(ICOMP),ICOMP, iuout,3,IER)
esruprj/emeta.F:919: call geowrite(IFIL+2,LGEOM(ICOMP),ICOMP, iuout, 3,IER)
esruprj/emeta.F:1002: call geowrite(IFIL+2,LGEOM(ICOMP),ICOMP, iuout,3,IER)
esruprj/emeta.F:1029: call geowrite(IFIL+2,LGEOM(ICOMP),ICOMP, iuout, 3,IER)
esruprj/folders.F:1617: call geowrite(IUF,LGEOM(IZ),IZ,iuout,3,IER)
esruprj/insert.F:178: call geowrite(IFIL+2,LGEOM(iotherzone), iotherzone,
esruprj/insert.F:217: call geowrite(IFIL+2,LGEOM(iotherzone),biotherzone,
esruprj/insert.F:587: call geowrite(IFIL+1,LGEOM(ICOMP),ICOMP, iuout, 3,IER)
esruprj/insert.F:1004: call geowrite(IFIL+1,LGEOM(ICOMP),ICOMP, iuout,3,IER)
esruprj/insert.F:1023: call geowrite(IFIL+1,LGEOM(ICOMP),ICOMP, iuout, 3,IER)
esruprj/mksbem.F:3573: CALL GEOWRITE(IUF,LGEOM(ICOMP),ICOMP,ITRU,3,IER)
esruprj/mksbem.F:4388: call geowrite(IUF,LGEOM(ICOMP),ICOMP,ITRU, 3,IER)

esruprj/prj.F:4345: call geowrite(IUF,LGEOM(ICOMP), IComp,IUOUT, 3,IER)

-13-

esruprj/prj.F:4620: call geowrite(IUF,LGEOM(ICOMP),IComp,IUOUT,3,IER)
esruprj/prj.F:5020: call geowrite(IUNIT,LGEOM(ICOMP),ICOMP,ITRU, 3,IER)
esruprj/prjga.F:2684: call geowrite(IFIL+2,LGEOM(iz),iz,iuout,3,IER)
esruprj/prjga.F:2704: call geowrite(IFIL+2,LGEOM(iz),iz,iuout,3,IER)
esruprj/prjqga.F:2716: call geowrite(IFIL+2,LGEOM(iz),iz,iuout, 3,IER)
esruprj/prjga.F:2769: call geowrite(IFIL+2,LGEOM(iz),iz,iuout,3,IER)
esruprj/prjqga.F:2778: call geowrite(IFIL+2,LGEOM(iz),iz,iuout, 3,IER)
esruvld/anlytc.F:1034: call geowrite(IUF,LGEOM(ICOMP), IComp,IUOUT, 3,IER)

There are fewer instances of geowrite and almost all of them are in the esruprj folder which is associated with
the module prj. Prj is the ESP-r module primarily responsible for maintaining the composition of user models
and controlling access to the simulator and results analysis modules.

Enquiries about the data structures used by ESP-r can be demonstrated by searching for two different variables -
one which is held in an include file and one where common blocks are defined in the body of the source code.
Within the include/geometry.h file is the definition of a common blocks named g9 and g4:

C G9 holds information on children of a surface and its parent.

integer nbchild ! how many children (up to 4) for each connection
integer nbgchild ! how many grand children (up to 4) for each connection
integer ichild ! list of children for each connection

integer igchild ! list of grand children for each connection

integer iparent ! parent surface connection (zero is no parent)

integer igparent ! grandparent surface connection (zero is no grandparent)
common/G9/nbchild (MCON) ,nbgchild (MCON),ichild (MCON,4),
& igchild (MCON,4),iparent (MCON),igparent (MCON)

C Default solar distribution and shading directives.
integer ndp,idpn
common/g4/ndp (MCOM) , idpn (MCOM, 3)

The documentation of g9 is extensive while the two variables in common block g4 are rather terse (in terms of
their names and documention) so a search for where ndp and idpn are used might provide additional informa-
tion:

grep -ni idpn */*.F

esrubld/solar.F:1735: inssur(1)=IDPN(ICOMP,1)

esrubld/solar.F:1736: inssur(2)=IDPN(ICOMP,2)

esrubld/solar.F:1737: inssur(3)=IDPN(ICOMP,3)

esrucnv/zipcnv.F:278:C IDPN defines the default plane numbers.

esrucnv/zipcnv.F:279: read(ioin,*) NDP(IC), (IDPN(IC,i),i=1,3)
esrucnv/zipcnv.F:336: write(iotmp2,’(4i4,a)’)NDP(IC),IDPN(IC,1),IDPN(IC,2),IDPN(IC,3),
esrucom/egeometry.F:527:C IDPN defines the default plane numbers.
esrucom/egeometry.F:534: IDPN(ICOMP,1)=IV

esrucom/egeometry.F:536: IDPN(ICOMP,2)=IV

esrucom/egeometry.F:538: IDPN(ICOMP,3)=IV

esrucom/egeometry.F:544: if (IDPN(ICOMP,I).NE.-1.AND.IDPN(ICOMP,I).NE.O)then
esrucom/egeometry.F:545: if (IDPN(ICOMP,I).LT.IX.OR.IDPN(ICOMP,I).GT.NSUR)then
esrucom/egeometry.F:1093: & (IDPN(ICOMP,J),J=1,3),'# default insolation distribution’
esrucom/esru_misc.F:457: IDPN(IX,1)=0

esrucom/esru_misc.F:458: IDPN(IX,2)=0

esrucom/esru_misc.F:459: IDPN(IX,3)=0

esrucom/esru_misc.F:2279: COMMON/SG4 /NDP1,IDPN1(3)

esrucom/esru_misc.F:2296: IDPN1(1)=IDPN(ICOMP,1)

esrucom/esru_misc.F:2297: IDPN1(2)=IDPN(ICOMP,2)

esrucom/esru_misc.F:2298: IDPN1(3)=IDPN(ICOMP, 3)

esruprj/clickonbitmap.F:2080: IDPN(ICOMP,1)=0
esruprj/clickonbitmap.F:2081: IDPN(ICOMP,2)=0
esruprj/clickonbitmap.F:2082: IDPN(ICOMP,3)=0

esruprj/edgeo.F:2413: if (IDPN(ICOMP,1).gt.0)then

esruprj/edgeo.F:2414: 10c1=IZSTOCN (icomp,IDPN(ICOMP,1))

esruprj/edgeo.F:2416: if (IDPN(ICOMP,2).gt.0)then

esruprj/edgeo.F:2417: 10c2=IZSTOCN (icomp, IDPN(ICOMP,2))

esruprj/edgeo.F:2601: IDPN(ICOMP,1)=IS

esruprj/edgeo.F:2602: IDPN(ICOMP,2)=0

esruprj/edgeo.F:7751:C IDPN defines the default plane numbers.

esruprj/edgeo.F:7760: IDPN(ICOMP,1)=IV

esruprj/edgeo.F:7762: IDPN(ICOMP,2)=IV

esruprj/edgeo.F:7764: IDPN(ICOMP,3)=IV

-14-

esruprj/edgeo.F:7770: if (IDPN(ICOMP,I).NE.-1.AND.IDPN(ICOMP,I).NE.O)then
esruprj/edgeo.F:7771: if (IDPN(ICOMP,I).LT.IX.OR.IDPN(ICOMP,I).GT.NSUR)then
esruprj/edzone.F:443: IDPN(ICOMP,1)=0

esruprj/edzone.F:444: IDPN(ICOMP,2)=0

esruprj/edzone.F:445: IDPN(ICOMP,3)=0

esruprj/edzone.F:1549: IDPN(IX,1)=IDPN(IX+1,1)

esruprj/edzone.F:1550: IDPN(IX,2)=IDPN(IX+1,2)

esruprj/edzone.F:1551: IDPN(IX,3)=IDPN(IX+1,3)

Because the common block is defined in geometry.h the source code blocks only contain statments that use the
variable. For example in solar.F IDPN is copied to another variable INSSUR. IDPN is found on the left side of
equations in egeometry.F (related to file reading) and esru_misc.F (related to clearing data structures) and in
edgeo.F IDPN is linked to variables for user interactions.

This pattern of coding presumes that you will know to look for variables in include files if there is no documen-
tation within the source code block.

An example of a common block that is defined within the code blocks is COM-
MON/MFLOW7/LVALCM(MCMYV) where LVALCM is a string variable.

grep -ni LVALCM */*.F

esrucom/emfnetw.F:73:C LVALCM - short description of each valid component type
esrucom/emfnetw.F:154: COMMON/MFLOW7 /LVALCM (MCMV)

esrucom/emfnetw.F:164: CHARACTER LVALCM*60,LTPCMP*60,CMNAM*12, NDNAM*12
esrucom/emfnetw.F:295: 45 LTPCMP (ICMP)=LVALCM(IC)

esrucom/nwkrewr .F:783: COMMON/MFLOW7 /LVALCM (MCMV)

esrucom/nwkrewr .F:808: character NWICNTXT*72,LVALCM*60

esrucom/nwkrewr.F:912: 45 LTPCMP (NCMP) =LVALCM(IC)

esrudfs/cfdat.F:110: COMMON/MFLOW7 /LVALCM (MCMV)

esrudfs/cfdat.F:158: CHARACTER LVALCM*60,LTPCMP*60,CMNAM*12,NDNAM*12,outs*124
esrudfs/cfdat.F:808: LTPCMP (NCMP) =LVALCM (22)

esrumfs/mfcdat.F:27: COMMON/MFLOW7 /LVALCM (MCMV)

esrumfs/mfcdat.F:29: CHARACTER*60 LVALCM

esrumfs/mfcdat.F:33: LVALCM(1)=

/mfprbl.F:1332: COMMON/MFLOW7 /LVALCM (MCMV)

esruprj/mfprbl.F:1340: CHARACTER LVALCM*60,LTPCMP*60,CMNAM*12,CMPID*12, MOD*1
esruprj/mfprbl.F:1381: WRITE(clist(ic),’(I4,A,A)’) IVALCM(IC),’ : ’',LVALCM(IC)
esruprj/mfprbl.F:1396: LTPCMP (IFCMP)=LVALCM(IC)

esruprj/mfprbl.F:2098: COMMON/MFLOW7 /LVALCM (MCMV)

esruprj/mfprbl.F:2139: CHARACTER LVALCM*60,LTPCMP*60,CMNAM*12
esruprj/mfprbl.F:2391: LTPCMP (NCMP) =LVALCM(7)

esruprj/mfprbl.F:2701: LTPCMP (NCMP) =LVALCM(7)
esruprj/mfprbl.F:2744: LTPCMP (NCMP) =LVALCM(7)

In this case the basic rule of ESP-r development has been followed and there is at least one definition of the vari-
able in the place where it is scanned in from file (emfnetw.F). Other common blocks and variables may be doc-
umented in multiple places, but typically once per source file.

And there are also legacy blocks of code which are substantially devoid of documentation and even some com-
mon blocks for obscure facilities which are short on documentation. Are they obscure because they are poorly
documented - probably. Is it less efficient to work with undocumented variables - absolutely!

Currently there is an evolution of coding practices to move common block definitions into include files and reg-
ularize their documentation and explicitly typing each variable.

Searching tasks are mostly related to finding patterns. The tool grep used in the above examples is a key tool
for pattern searches. It is available on all of the computing platforms used for ESP-r development work (on Win-
dows it comes as part of the MSYS environment along with other useful tools such as find.

Further details about the source files and the API of ESP-r can be found in the document Structure of the ESP-r
Source Code Archive (January 2008). The raw troff document is held in the source code distribition in the ar-
chive folder.

-15-

3 Supported Platforms and Development Environments

ESP-r was initially a suite of tools running on Sun workstations and then with the advent of Linux running on
lower cost personal computers the code was adapted to also run on Linux. There are a few lines of code which
required adaptation for Solaris and Linux platforms and there are almost no differences in user interactions and
in administrative tasks.

ESP-r implicitly assumes a range of operating system services and file protections. For example, that corporate
databases and example models are held in folders where normal users can read but not overwrite such files. On
other computing platforms such protections are either enforced in a different way or absent. Thus a novice user
can redefine the conductivity of steel in a corporate database and thus cause many other models, even models
used by other people on that machine to alter their predictions.

Note that ESP-r assumes the computer environment is using a USA or UK locale and that real numbers use a
period as a decimal point and that a comma, tab or space is a separator between data. Use of a locale which uses
a comma for a decimal point will cause extensive corruption of ESP-r models.

There is also a restriction that names of entities use an ASCII character set rather than extended character set.
These dependencies are related to the underlying Fortran source code read and write statements. ESP-r has been
observed to have problems with some Asian keyboards and locales.

3.1 Compilers

Solaris and Enterprise Linux computers support the Sun Studio FOO/C/C++ compiler suite. Other platforms rely
on the GNU compiler collection (versions 4.1 or newer). The former is particularly useful for development work
as Sun Studio supports IEEE floating point exceptions (e.g. divide by zero) and array bounds checking (e.g.
asking for the 12th value of an array of size 10).

Note that recent Linux distributions tend to have version 4.1/2/3/4 of the GNU compilers and ESP-r currently
has very few sensitivities to which version of the compiler is used. ESP-r can not be compiled with F77 compil-
ers.

There is also a general issue with 64 bit computers - there are slight differences in predictions and occasional
risk of some graphical displays are incorrect or graphic tasks causing program crashes. ESP-r is currently a bit
more robust when running on 32 bit computers.

3.2 Linux

For many groups, Linux computers are the preferred platform for production simulations and for high levels of
security. Corporate databases can be protected from casual corruption if care is taken when installing ESP-r and
in setting folder permissions.

Linux supports both the X11 and GTK interface as well as text mode operation (for automated work). On Linux
machine with substantial memory some data recovery tasks are speeded up because simulation results files tend
to be scanned from memory rather than from the binary file.

Information about setting up several version of Ubuntu are included in the source distribution in the folder
src/manual/OS/Linux. There are also hints on the ESRU web download page.

For those interested in enterprise class environments such as Red Hat Enterprise Linux and its clone CentOS,
ESP-r has been deployed for production tasks. Again, there are a few issues with 64 bit computers under which
GTK versions should be considered work-in-progress. X11 and text-only use on enterprise machines is the more
common approach.

3.3 Solaris

This was the original platform for ESP-r and was known for the numerical robustness of the Sun Studio compil-
ers and the extreme security of the operating system. The Sun Studio compilers are able to identify some numer-
ical issues which are not possible with the GNU compilers. Few developers and practitioners use Sun machines
however the Sun Studio compilers freely available for enterprise class Linux boxes those needing access to the
numerical robustness has additional choices.

-16-

34 OSX

With the advent of OSX, Apple computers offer many of the same compilers and low level operating system ser-
vices as Linux and so it has been possible to port ESP-r to Apple computers using PPC or Intel chips. There are
a few minor differences in operating system services (file name case sensitivity is incomplete and users folders
are found in /Users rather than /home. As with Linux and Unix there are no A/B/C/D drive letters in OSX.

In terms of use the interface is the same as is offered on Linux. Because it does not follow the full OSX look and
feel rules, some users find this confusing. The reliance on the X window environment also requires additional
steps in setting up OSX machines.

OSX supports the GNU compiler collection as well as X11 libraries and source code conventions. OSX 10.5 and
10.6 support the X11 interface compiled either to 32bit or 64bit while the GTK interface must be compiled for
64bit because the GTK libraries are only available in 64bit. For development work it is necessary to install the
so-called fink or MacPorts facilities as well as X11 support. Information about setting up an OSX machine is
included in the source distribution in the folder src/manual/OS/Apple. There are also hints on the ESRU web
download page.

3.5 Cygwin under Windows

Because of the differences in compilers and operating system services it took some time to realize a version of
ESP-r that runs natively on Windows computers. The initial approach to ESP-r running on Windows computers
was to use an emulation environment called Cygwin. Cygwin provides the compilation environment required by
ESP-r as well as translating many operating system requests and providing a similar command line interpreter
(shell scripting) as one would find on a Linux machine. The same automation scripts that work on Linux tend to
work under Cygwin. Such scripts are different in syntax and tend to perform more complex operations in com-
parison to DOS batch files because they are based on an extended command language. Cygwin can also host
X11 and GTK versions of ESP-r whereas the Native Windows version is compiled with the GTK or a pure-text
interface.

Again there few code differences required for development and use of ESP-r on Cygwin. In terms of user expe-
rience, ESP-r thinks it is running on a Linux box and the same user interactions apply.

Cygwin supports the usual GNU compiler collection and development tasks are essentially the same as on
Linux. File permissions are less strict than Linux and thus care should be exercised to avoid overwriting files
that ESP-r assumes have strict permissions. Information about setting up Cygwin is included in the source distri-
bution in the folder src/manual/OS/Cygwin.

3.6 Native Windows

The native Windows version of ESP-r is an almost complete port of the facilities available on other computer
platforms. This version works on Windows XP and W7 computers and some users report stability under Vista.
There has been little or no testing of 64-bit versions of Windows.

The underlying graphic libraries currently restrict some functions (this is work-in-progress). The major differ-
ences are found in the facilities provided by the operating system and in the layout and conventions of the file
system.

Development for Native Windows currently requires the MSYS collection of tools in addition to MinGW, a port
of the GNU compiler collection. Information about setting up MSYS is included in the source distribution in
the folder src/manual/OS/Native_windows.

3.7 File names & character sets

ESP-r currently has a limited ability to cope with spaces in file names or non-ASCII characters. In some Asian
locations new user accounts with simpler login names often will improve the operation of ESP-r. ESP-r also has
limits on the length of file names and paths. These limit where ESP-r can be installed as well as how deeply
nested model folders can be before file names become truncated. For this reason, pre-compiled versions of ESP-
r are designed to be in c:\Esru\esp-r rather than in c:\Program Files\Esru. ESP-r models work better in
Cc:\Esru\Models rather than c:\Documents and Settings\Fred\My Current Models\

-17-

4 Installing ESP-r

Many users of ESP-r will acquire a working version of ESP-r via the download page of the ESRU web site. For
those who require the most current state of ESP-r or a non-standard version of ESP-r this is done via the source
repository used by the development community. This also allows the ESP-r community to fulfill the require-
ments of the GNU public license to distribute the source code as well as ensure that those who alter the code are
also able to conform to the license requirements to return their changes as a contribution to the ESp-r commu-
nity.

4.1 Preparation

Before you proceed to setup a set of folders to hold the ESP-r source code and the destination folders for the
compiled executables and databases consider the purpose of your ESP-r installation. A single user on a laptop
who may wish to compile ESP-r but who does not anticipate much development work has considerable flexibil-
ity. There are only a few of the subversion commands required to get access to the current official distribution or
the current development branch. The ESP-r Install script provides most of the choices needed. As covered in
subsequent sections there are some additional tasks needed to ensure that users accounts get access to the func-
tionality of ESP-r.

The source and the destination folders for casual developers on might reside in their own area of the computer
e.g. /home/fred/Src/ with executables in /home/fred/esp_fred. Such an install would typically not require admin-
istrator access. For those who would rather install to more traditional locations of /usr/esru or /opt/esru) admin-
istrator access is required. Unix/Linux/OSX often place optional (user supplied) software in /opt. There is a tra-
dition within the Energy Systems Research Unit of the University of Strathclyde to place ESP-r distributions in
either /usr/esru or /home/esru and this is still observed by a number of developers. Indeed the development test
regime retains several dependencies on the existence of a folder /usr/esru. At some point in the future this
requirement in the testing process will be relaxed.

Someone who will be an active developer may have a number of source folders e.g. /home/fred/cvsdude/devel-
opment_branch, /home/fred/cvsdude/fred and install the standard development_branch version to /usr/esru and
their own working version to /home/fred/esru_fred. The computer will need to be setup so that the PATH envi-
ronment variable can point to either of these versions of ESP-r. One technique is to create a folder
/home/fred/bin and create a link (in Unix/Linux/OSX/Cygwin a link is a special type of file which is actually a
pointer to a real file in another location) to each of the relevant ESP-r executables and ensure that /home/fred/bin
is EARLY in the PATH definition. The script below (assuming the user is named fred) will define a link to each
ESP-r executable if it is passed the full path to the executables:

#!/bin/csh
create a link in /home/fred/bin to current esp-r executables
echo "use is"
echo "bin_link to [folder with executables]"
foreach i (aco bps c2e cfg clm dfs e2r ecnv eco grd ish mfs mld mrt pdb prj res viewer)
if (-f $1/$i)then
if (-f /home/fred/bin/$i) rm -f /home/fred/bin/$i
1ln -s $1/$i /home/fred/bin/$i
echo $i " is now pointing to "$1/$1i
endif
end

Note the first line of the script invokes the esh command interpretor to process the commands (the foreach syn-
tax is specific to that interpretor). You can find a copy of this link_to script in the source distribution bin folder.
Most users on Linux or OSX will default to the bash command interpretor. If you want to know more about
command interpretors there are any number of books about Linux which discuss available command interpre-
tors.

The result of running the above script for a set of ESP-r executables in the folder /Users/jon/esru_jwhgfort/esp-
r/bin would look like:

lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 aco -> /Users/jon/esru_jwhgfort/esp-r/bin/aco
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 bps -> /Users/jon/esru_jwhgfort/esp-r/bin/bps
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 c2e -> /Users/jon/esru_jwhgfort/esp-r/bin/c2e
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 clm -> /Users/jon/esru_jwhgfort/esp-r/bin/clm
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 dfs -> /Users/jon/esru_jwhgfort/esp-r/bin/dfs
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 e2r -> /Users/jon/esru_jwhgfort/esp-r/bin/e2r
lrwxr-xr-x 1 jon staff 39 Feb 12 11:39 ecnv -> /Users/jon/esru_jwhgfort/esp-r/bin/ecnv
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 eco -> /Users/jon/esru_jwhgfort/esp-r/bin/eco
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 grd -> /Users/jon/esru_jwhgfort/esp-r/bin/grd

-18-

lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 ish -> /Users/jon/esru_jwhgfort/esp-r/bin/ish
—rWX—————— 1 jon staff 443 Dec 23 2008 link_to

lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 mfs -> /Users/jon/esru_jwhgfort/esp-r/bin/mfs
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 mld -> /Users/jon/esru_jwhgfort/esp-r/bin/mld
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 pdb -> /Users/jon/esru_jwhgfort/esp-r/bin/pdb
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 prj -> /Users/jon/esru_jwhgfort/esp-r/bin/prj
lrwxr-xr-x 1 jon staff 38 Feb 12 11:39 res -> /Users/jon/esru_jwhgfort/esp-r/bin/res
lrwxr-xr-x 1 jon staff 41 Feb 12 11:39 viewer -> /Users/jon/esru_jwhgfort/esp-r/bin/viewer

Someone who is administrating ESP-r in a company with many users and many projects will ensure that the
standard version of ESP-r is installed with file and folder permissions that prevent others from altering corporate
files. Such security is possible if one login account maintains and installs ESP-r and other login accounts only
have permissions to read and access the ESP-r applications and databases. Many groups thus create a login
account with a name such as ’esru’ to maintain ESP-r and to ensure that only people logged into that account are
able to update or modify ESP-r.

There is also an issue for development work that some of the QA tests required in the submission process
assume that there is a version of ESP-r installed in the folder /ust/esru and that there are ESP-r executables in the
folder /usr/esru/esp-r/bin. The pattern to follow is to acquire the current development branch of ESP-r and
install it to /usr/esru and then separately install their own version of ESP-r in a different location such as
/home/fred/esru_fred.

sudo mkdir /usr/esru

sudo chown fred /usr/esru
sudo chgrp staff /usr/esru

Optional Linux software is typically installed to the /opt folder. Users would like to follow this pattern should
first check that /opt exists. If is does then issue the following command to create and own (e.g. if your login
name is fred and your group is staff):

sudo mkdir /opt/esru

sudo chown fred /opt/esru
sudo chgrp staff /opt/esru

4.2 Quick steps to Installing ESP-r

If have read this far and you want to just grab the current tested version of ESP-r and compile it to the /opt/esru
folder structure here are the steps you would take:

cd

mkdir Src

cd Src

mkdir cvsdude

cd cvsdude

svn checkout https://espr.svn.cvsdude.com/esp-r/branches/development branch

cd development_branch/src

./Install -d /opt/esru --gcc4 --reuse_ish_calcs

You will be asked a few questions as part of the install process.
* Your computer identifies ... if correct say y

* Compiler choice ... most people will choose option 2

e XML output ... you need this if you will be doing validation tests or if you want to output predictions in csv
and/or XML output.

* SQLite support... a new feature, if you don’t know about it say n

 Graphics library ... select one. Note it is possible to host a version of ESP-r with X11 interface as well as one
with GTK interface on your computer - they must live in different locations. You will need to run the Install
script multiple times to do this.

* Retain debugging symbols ... if you say y then if it crashes it might give you more clues as to where and why.
Also needed if you are going to be using a debug tool.

¢ Install database files ... if the first time or they have changed then you should answer y

e Install training files ... these are exemplar models (accessed if you use the open existing command in the
Project manager. If this is the first time or they have changed then say y. The command line --reuse-ish-calcs
speeds up the process of installing the training models.

-19-

P "e " 2 Proceed ... this is your chance to bail-out or continue y
At the end of the process you might want to issue the following command to clean up the source folders.

make clean

4.3 Installing ESP-r with a personal branch

Lets say the developer had already contacted the archivist to request a source code branch and that the branch
was named fred. Subversion commands given by the archivist will create a branch in the database maintained by
subversion and associate it with a particular person so that any changes made continue to be associated with the
person. To work on the code or the models or databases requires that the developer checks out their branch and
subversion will create a so-called sandbox in the users computer which includes their source/models/databases
as well as hidden files and folders which keep track of any changes that they make in their sandbox. The com-
mand sequence would be as follows:

cd

mkdir Src

cd Src

mkdir cvsdude

cd cvsdude

svn checkout https://espr.svn.cvsdude.com/esp-r/branches/fred
cd fred/src

Remember that the sandbox is a local copy of the branch that is associated with this developer and any changes
made remain within the sandbox until specific subversion commands are given which instruct changes to be
passed back into the subversion repository database. Indeed, the developer, can also checkout other branches to
find out the details of other developer’s work. Would this allow others to corrupt a branch that they did not own?
No. The commit command is password protected so you other can only look.

The above commands would apply to the command line subversion clients that are available on most computer
platforms. For Windows there is a graphic tool named TortoiseSVN <http://tortoisesvn.tigris.org> which adds
functionality to Windows Explorer so that a right-click on a folder provides many of the subversion commands.
There is a section defining subversion commands in a later section.

If the standard compile instruction does not work because you have several versions of the compiler on your
computer then you might want to adapt your Install command:

./Install -d /opt/esru --gcc4 --compiler version -4.1

You can find out more about the source code compile process by giving the command:
./Install --help

4.4 Environment variables and files

When ESP-r is initially compiled several types of information are embedded in the executables e.g. where ESP-r
is installed. Information on where to find example models and what databases to initially load is scanned in
from text files. One of these text files is called esprc and the standard version is assumed to be in the installa-
tion sub-folder esp-r. Its contents are listed below and the meaning of the tokens is presented after the listing
in Figure 1.

*ESPRC

*gprn,rectangular dump,import

*tprn, Text dump,/tmp/tx dump

*gxwd, screen dump, import -window root

*cad,CAD package,xzip,ZIP

*image_display,TIF,display

*image display,XBMP,display

*image_display,GIF,display

*image display,XWD,display

*journal,OFF

*editor,editor,nedit

*report_gen,Reporting tool,xfs

*exemplars,Exemplars, /Users/jon/esru_prj_dev/esp-r/training/exemplars
*validation_stds,Validation standards,/Users/jon/esru_prj_dev/esp-r/validation/stds_list
*db_defaults,Defaults, /Users/jon/esru_prj_dev/esp-r/default

-20-

*db_climates,climatelist,/Users/jon/esru_prj_dev/esp-r/climate/climatelist
*end

Figure 1 A typical esprc file.

The file is in tag - data, data format. Typically the first token is a label and the second token is either an
executable to be invoked or the name of a file to be used. To alter this initial specification use a text editor and
change the relevant token as required. Look in the preferences menu of the Project Manager to access the
details of this file.

The initially created version of the esprc file is held in the ESP-r installation folder. If a user wants a custom ver-
sion of this file to use they should copy it to their home folder with the name .esprc.

e *ESPRC - this is the file type tag. It must be the first line

e *gprn - commands associate with capturing a rectangular section of the screen. The 2nd token import is the
executable (on Linux) which captures a section of the screen.

e “*tprn - commands associated with dumping the current text feedback buffer to file will write to the file identi-
fied in the second token.

e *gxwd - a variant of *gprn but which captures the whole screen.

* *cad - instructions for a CAD tool to invoke. The second token is the executable and the third token is a key
word describing the type of file it creates.

* *image_display - commands related to the display of model-associated images. The second token is a key
word identifying the format of the file and the third token is the name of the executable to invoke to display
that type of image. There can be several *image_display lines in the esprc file.

* *journal - turns on a time-stamp facility which logs user actions and the key words are ON and OFF.
» “*editor - which ASCII text editor to invoke if an external application is required.
e *report_gen - not used

* *exemplars - the name of the file to read which includes a list of models which can be accessed and where
they are stored. The initial contents of the exemplars file is for use in ESP-r workshops but the contents can be
edited to include other models.

o *validation_stds - the name of a file to read with information needed to commission standard tests

e *db_defaults - the name of a default file which holds a list of initial databases. If you want to use an alterna-
tive list of initial databases edit this file or include a reference to an alternative list of databases.

* *db_climates - the name of a climatelist file which holds a list of climate data sets and their location. If you
want to use an alternative list edit the file or provide the name of an alternative file.

4.5 Default file assumptions

The second file which is commonly scanned when ESP-r modules start is the default file. The name of this file is
included in the esprc file. The file is a tag - data format and is typically found in the installation folder. An
example of this file is listed below (Figure 2). Note that the path /Users/jon/esru_prj_dev points to an installa-
tion made for testing purposes and this path was generated as the test version of ESP-r was compiled based on
the directives given at the time.

*ESP-r Defaults

*ipth /Users/jon/esru_prj_dev/esp-r

*cfg /Users/jon/esru_prj_dev/esp-r/training/basic/cfg/bld_basic.cfg

*ctl /Users/jon/esru_prj_dev/esp-r/training/basic/ctl/bld _basic.ctl

*mfn /Users/jon/esru_prj_dev/esp-r/training/basic/networks/bld _basic_afl.afn
*dfd /Users/jon/esru_prj_dev/esp-r/training/cfd/template.dfd

*pnf /Users/jon/esru_prj_dev/esp-r/training/plant/vent_simple/cfg/vent.cfg
*res /Users/jon/esru_prj_dev/esp-r/databases/test.res

*mfr /Users/jon/esru_prj_dev/esp-r/databases/test.mfr

*clm /Users/jon/esru_prj dev/esp-r/climate/clm67

*prs /Users/jon/esru_prj_dev/esp-r/databases/pressc.dbl

*prm /Users/jon/esru_prj_dev/esp-r/databases/material.db3.a

*mlc /Users/jon/esru_prj_dev/esp-r/databases/multicon.db3

*opt /Users/jon/esru_prj_dev/esp-r/databases/optics.db2

*evn /Users/jon/esru_prj_dev/esp-r/databases/profiles.db2

*pdb /Users/jon/esru_prj_dev/esp-r/databases/plantc.dbl

*ecdb /Users/jon/esru_prj_dev/esp-r/databases/elcomp.dbl

21-

*mcdb /Users/jon/esru_prj_dev/esp-r/databases/mscomp.dbl
*icdb /Users/jon/esru_prj_dev/esp-r/databases/icons.dbl
*mldb /Users/jon/esru_prj_dev/esp-r/databases/mould.dbl
*sbem /Users/jon/esru prj_dev/esp-r/databases/SBEM.dbl
*end

Figure 2 A typical default file.

As with the previous files the name of the file is associated with a specific topic and/or dialogue within the user
interface. These dialogues associated with specific types of model files require a default name and the default
file names are scanned in via the default file rather than being hard-coded into the interface. The name of the file
can be altered by editing the file.

o *ESP-r Defaults - this must be the initial line of the file.

e *ipth - this is the path to where ESP-r has been installed based on the specific commands given during the
installation process

e *cfg - this is a default file name for a model configuration file (useful for demonstration purposes)
e “*ctl - this is a default file name for control loop definitions

e *mfn - this is a default file name for an air flow network

e *dfd - this is a default file name for a CFD domain description

e “*res - this is a default file name for a zone predictions (results) file. This file should be created during the
install process so that it is easy to demonstrate ESP-r.

* *mfr - this is a default file name for mass flow predictions

e *clm - this is a default file name for climate data. This climate file should be created during the install
process.

e *prs *prm *mlc *opt *evn *pdb - these are default file names of databases (in case the user request a
default database. Many users will change the name of the database files to suite the needs of their work. This
file can be accessed via the preferences menu of the Project Manger.

The last ASCII file which is used by ESP-r modules on a regular basis is the so-called climatelist file. This file is
referenced by the esprc file (see above discussion) and includes a list of the climate data sets that were installed
on the computer. When the interface of one of the ESP-r modules presents a list of available climate data it scans
this file.

Each time you want to add climate data to your computer you should edit this file with a text editor so that the
listing will include the new file. There is a detailed discussion of how to use clm to add new climate files in
Chapter 6 of the ESP-r Cookbook. A portion of this file is shown below (Figure 3).

*CLIMATE_LIST

*group ESRU standard climates

WARNING: Keep this file up to date with current directory structure !
*item

*name Default UK clm Climate

*aide Climate data as distributed with ESP-r for testing purposes.
*dbfl /usr/esru/esp-r/climate/clm67

*winter s 2 1 12 3 30 10 31 12

*spring s 13 3 14 5 4 9 29 10
*summer s 15 5 3 9
*winter t 6 2 12 2 20 11 26 11
*spring t 17 4 23 4 2 10 8 10

7 7

*summer_t 3 9
*avail ONLINE
*help start

Location is 52.0N and 0.0E. The solar radiation is Direct Normal.

Month Minimum Time Maximum Time Mean
Jan -6.4 @20h00 Sun 8 12.7 @14h00 Sun 29 3.8
Feb -1.9 @ 5h00 Tue 14 12.2 @13h00 Thu 2 5.2
Mar -0.8 @24h00 Fri 31 16.1 @15h00 Tue 21 6.8
Apr -1.9 @ 2h00 Sat 1 19.4 @15h00 Mon 17 7.1
May 0.0 @ 3h00 Wed 3 22.7 @14h00 Thu 11 10.4
Jun 5.0 @ 2h00 Fri 9 21.1 @15h00 Tue 6 13.6
Jul 9.4 @ 3h00 Mon 3 27.7 @12h00 Mon 17 18.0
Aug 7.7 @ 4h00 Sat 5 24.4 @12h00 Tue 1 15.6
Sep 5.0 @ 6h00 Thu 21 22.2 @12h00 Tue 26 13.5
Oct 2.2 @ 5h00 Mon 30 19.4 @13h00 Sat 7 10.8

22-

Nov -0.8 @ 5h00 Mon 27 14.4 @14h00 Sat 11

Dec -4.2 @ 1h00 Ssat 9 12.7 @ 9h00 Sat 23

All -6.4 @20h00 Sun 8 Jan 27.7 @12h00 Mon 17 Jul 9.5
Typical winter week begins Monday 6 Feb,

Typical spring week begins Monday 17 April,

Typical summer week begins Monday 3 July.

Typical autumn week begins Monday 2 October.

Typical winter week begins Monday 20 November,

*help end

*item

*name ALBUQUERQUE NM USA iwec 723650

*aide ALBUQUERQUE NM USA iwec 723650 was sourced from US DoE web Sep 2005
*dbfl /usr/esru/esp-r/climate/USA_NM_Albuquerque_iwec

o N

Figure 3 A typical section of a climatelist file.

The climatelist file includes the following types of information:

¢ adisplay name for the climate data (as seen the the interface list)
* a brief documentation about the climate data

* its location on the computer

* the start and end dates of each of five seasons (winter from 1 Jan, spring, summer, autumn, winter ending 31
Dec). These dates typically were supplied by a person who knows the climate of the region and the social cus-
toms of the region.

* the start and end dates of a typical week in each season. There is an facility in the clIm module which searches
for typical weeks based on heating and cooling degree days and solar radiation patterns.

¢ a block of text up to 60 lines which provides a summary of the climate. This block is auto-generated within
clm and you can edit it and extend it if required.

-23-

5 Code Documentation

The ESP-r community has evolved guidelines for coding that is included in the ESP-r distribution. Ideally, one
would judge code documentation by whether others are able to understand the purpose of subroutines, follow
procedural logic and understand looping structures.

There is also a need for clarity in data structures such as common blocks and local variables as well as the
parameters which are passed into and returned from subroutines and functions.

Clarity is a challenge. Extremes tend not to work e.g. ij and loop_for_number_of _boilers_counter both have
drawbacks. If a common block is used a dozen times in one source file does it obscure the code if it is fully doc-
umented each time?

ESP-r contains much legacy code. Some of this requires passion to digest even if compilers can do it without
complaint. Where the author of the code is still active they may be able to re-code but some code the loss of the
initial flow diagram presents a considerable barrier for reverse engineering.

The diverse backgrounds in the development community has resulted in a number of coding and documentation
’styles’. Being open source, there is limited scope to enforce coding styles. What follows is a set of general
principles and examples of patterns/styles of coding and documentation. These guidelines have evolved over
time in response to the evolution of FORTRAN an C coding conventions and trends within the ESP-r develop-
ment community and are considered during the submission of code.

5.1 General Principles
* Clear and concise documentation has the same importance as bug-free code.

* The source code should be well documented through the use of appropriately chosen variable and subroutine
names and a transparent code structure.

* Details about the operation of code sections should be provided within related code annotations and not in
external documentation.

* Invest the necessary time to ensure that your code is understandable to your colleagues (and to yourself in a
few years time!).

* Use proper English sentences to document code—this includes capitalization and punctuation. Strive for clar-
ity as incoherent language leads to confusion and ambiguity.

* When adding new functionality maintain consistency in style with existing source code. For example, coeffi-
cient generator subroutines for different plant component types will usually differ only in the equations used
to calculate matrix equation coefficients. To install a new plant component it is usually possible to adopt the
pattern of an existing component.

* Be consistent in the use of variable names throughout the code. For example, all plant component coefficient
generators produce coefficients for the plant matrix solver. These are local variables to each subroutine and
are passed in the calling statement. These local variables are named *COUT’ in each plant coefficient genera-
tor. Therefore, for consistency’s sake it is preferred to use this same variable name in a new plant coefficient
generator. sp

5.2 Documentation patterns

The source code should be well commented and these comments should precede the code fragments to which
they relate. If code is related to methods published in the literature or in reports include a reference within the
source code (see example below). This is especially important if the document shows the code works as
expected.

Comments enchance understanding, but they can obscure the code it poorly implemented. The layout of com-
ments can be used to logically group blocks of code. Two examples that illustrate acceptable commenting styles
follow.

24-

<preceding code fragment>

C Loop through each of the selected zones and scan the Operations file
C if it exists. If not, insert default crack connection.
do 38 izt=1,izn
iz=ivals(izt)
<following lines of code>

C Increment pointer to the current zone.
nodeforcurrent=nodeforcurrent+1l

<preceding code fragment>

C Passed parameters for cfgtogg
#ifdef OSI
integer icfg type
integer icfgz

! model cfg type
! if non-zero then there are zones
integer icfgn ! if non-zero then there are networks
integer icfgc ! if non-zero then cfg file known
integer icfgdfn ! if non-zero then cdf domain exists
integer iicfgz ! there are zone related images
integer iicfgn ! there are network related images
integer iicfgc ! there are control related images
integer iicfgdfn ! there are cfd related images
#else
integer*8 icfg type,icfgz,icfgn,icfgc,icfgdfn,iicfgz
integer*8 iicfgn,iicfgc,iicfgdfn
#endif

<preceding code fragment>
C Combine the comment from the first line with the one after the zone CTYPE.
ipra=lnblnk(phrasea)
iprb=1nblnk(phraseb)
iprc= 63 - ipra
iwidth=ipra + iprb + 1
if (iwidth.1lt.64)then

write(zdesc(ICOMP), ' (3a)’) phrasea(l:ipra),’ ',
& phraseb(l:iprb)
lnzdesc(ICOMP)=1nblnk(zdesc(ICOMP)) ! update the length of this string.
else
write(zdesc(ICOMP),'(3a)’) phrasea(l:ipra),’ ',
& phraseb(l:iprc)
lnzdesc (ICOMP)=1nblnk(zdesc(ICOMP)) ! update the length of this string.
endif

<next code fragment>

<preceding code fragment>

Cm e e
C Calculate the molar flow rate of each gas constituent.
Cm e e e
Co—————- N2 in air and fuel flowing into FCPM does not react.
Ndot_FCPMexh N2 = chi_air N2*Ndot_ FCPM_air
& + chi_fuel N2*Ndot_ FCPM_fuel
Com—— Ar in air flowing into FCPM does not react.
Ndot_FCPMexh Ar = chi_air_ Ar*Ndot_FCPM_air
Cmmmm——— 02 in exhaust comes from fuel and excess air.
Ndot_FCPMexh 02 = chi_fuel_02+*Ndot_FCPM_fuel
& + lambda_FCPM*Ndot FCPM_02_stoich

<next code fragment>

5.2.1 Subroutine descriptions

Each subroutine should start with a high-level explanation of its purpose and how this is achieved. An example
follows.

-25-

C Subroutine XYZ calculates the four heat loss factors for the foundation
C in the zone under consideration. Correlation coefficients for

C the ‘corner-correction method’ are used. The factors are placed into

C Common Block BSHLF for use in later heat loss calculations.

It is also useful to define the parameters passed with the subroutine in terms of their data types and what each
parameter is used for.

khkkkhkhkkkhkkkhkkkk*x EMKGEO
Generic routine to write a geometry file (GEN type) based on infor-
mation currently held in common blocks GO Gl G3 G4 G6. It is
assumed that this information has been checked.
GENFIL is the name of the file to be written to (any existing file
by this name is overwritten).

SUBROUTINE EMKGEO (IFILG,GENFIL,ICOMP,iwf,IER)
#include "building.h"

cNeNo NN Xe!

C geometry.h provides commons G0/G2/G4/precl7/precz/c20.
#include "geometry.h"

integer 1lnblnk ! function definition

C Parameters
integer IFILG
character GENFIL*72
integer ICOMP
integer iwf
integer IER

file unit

file name

the zone number

3 create/overwrite, 4 confirm before overwriting.
IER 0 OK IER 1 problem

5.2.2 Citing papers and references

Citations to algorithms and data sources should be given at the beginning of a subroutine. These citations should
be complete as a colleague may need to locate the paper or report in the future. Refer to proprietary reports
(internal reports, drafts reports, private sources) only when the information is not available in the public domain
(conference proceedings, journals, theses). An example follows.

C Smith A and Jones B (1999), ‘Heat Transfer Coefficient Correlations for
C Building Energy Modelling’, Int. J. Heat and Mass Transfer, 38(8), pp856-884.

Then, further down in the source code immediately preceding the algorithm cite the appropriate reference
from those specified at the beginning of the subroutine and include the specific page numbers, table numbers,
equation numbers efc, as applicable. This can be helpful to your colleagues (and to yourself) in tracing bugs. An
example follows.

elseif(icor .EQ. 5)then

C Coefficient correlation for a wall with a radiator located under
C a window (Smith and Jones publication, Table 2, Equation 6).
he = 2.30*(dt**0.24)

5.2.3 Describing assumptions

Whenever an assumption is made, add a comment specifying where the assumption came from. If the assump-
tion can be referenced to a paper, report or book it should be. If it came from a discussion, explain why the
assumption was made.

Annotating blocks of code

Use comments to mark ends of blocks. This is useful in identifying blocks when IF, DO or WHILE constructs
extend over many lines of code or where there are multiple embedded loops or conditional code blocks. An
example follows.

-26-

do jj=1,mpcdat

C Has iteration for this plant additional output been requested?
if (iP1lt_Output Iter_ Flag(ii,jj) .ne. 1) then
< line of code >
< line of code >
< line of code >
endif ! <- matches if (iP1lt_Output Iter Flag(ii,jj)...
enddo ! <- matches do jj = 1,

5.2.4 Grouping lines of code

Code annotations should be succinct but sufficiently detailed so that the purpose of every line of the code is
obvious. If in doubt, say more. Annotate code by grouping lines logically. An example follows.

<preceding code fragment>

C Override the calculated values if user has specified a convection file
C with fixed coefficients (ie. ‘type 1’ control over convection calculations).

Co—————- Does a convection file exist?
IF(IHC(ICOMP).EQ.l1) THEN
Commm——— Has the user specified fixed coefficients in the convection file?
Ltypel = 0

DO 22 k=1,NHCFP(ICOMP)
if(iCTLTP(ICOMP,k).eq.l) Ltypel=1
22 CONTINUE

<following code fragment>

5.2.5 In-line comments

Comments can be added to the end of any code line using the ’!” character. This makes commenting blocks of
variable definitions and short code lines easier to read. However, in-line comments must not be embedded
within statements spanning multiple lines as some compilers will experience problems when parsing such com-
ments.

27-

6 Coding Style and use of FORTRAN/C

6.1 Source code files and subroutines

Long subroutines can be cumbersome to read, understand and test. It is good practice to keep the size of sub-
routines small and use calls to other subroutines when a distinct set of calculations need to be performed. If
there is no distinct grouping of calculations, it is preferable to keep all calculations together. Further, if a set of
equations is used in more than one area, the set should be relocated into its own subroutine.

When adding significant new functionality, related subroutines should be grouped into a file and this file
located within an appropriate directory. There is no practical limit to file size, however files should contain sub-
routines that perform related functions or relate to a common theme or purpose. For example, the static tem-
plate, coefficient generator and related subroutines for a new plant component should each be grouped into a sin-
gle file and this file added to the plt directory.

Saved variables, global variables and common blocks
Any code that depends on static variables should explicitly declare these variables with a SAVE statement.

When multiple routines reference a large set of global variables held in a COMMON statement, consider placing
the COMMON declarations in a header file. This reduces the risk of mismatches between the type and dimen-
sion of declared global variables, which invariably lead to segmentation faults.

6.1.1 Equations

Equations should be evaluated in the same manner that they would be written in a scientific publication. Avoid
combining terms (and hence distorting clearness) in an attempt to produce computationally efficient code.

6.1.2 Working with existing files
When working with existing source code files maintain compatibility with the style.

* Code line length should be confined to 72 characters. Unless you are specifically working in FO0 free form, in
which case the source file name must end with .f90.

¢ Use the *&’ character for line continuations (6th column).

* Do not use tab characters within the source code, including comment lines. If using a file editor which
allows tab characters, be certain to configure it such that tab characters are converted to spaces upon saving
the file.

* All loop statements (IF-THEN, DO, WHILE) should be indented by 2 characters.
GOTO statements
GOTO statements should be avoided. There are plenty of alternatives in modern FORTRAN (e.g. the WHILE

statement). A possible exception is when working with an existing subroutine that makes extensive use of
GOTO statements in which case it may be clearer to maintain the style.

Floating point comparisons

All possibilities for division by zero must be trapped at the highest possible level and floating point comparisons
avoided because variation in compilers and machine architectures can produce unexpected behavior when the
differences in values approach machine precision. For instance, the following example may produce inconsis-
tent results. The way real numbers are held makes it unlikely that a comparison of the real number y and the
constant 0.0 would be evaluated as true.

real x, y, 2
if (y .eq. 0.0) then

stop "Divide by zero error in Subroutine ABC: y is zero!"
else

z=x/y
endif

By comparing the difference between the floating numbers with a tolerance (presumably one several orders of
magnitude less than the variation between the variables), these inconsistencies can be eliminated. A utility sub-
routine eclose is provided for this.

-28-

real x, y, 2
logical close
call eclose(y,0.0,0.0001,close)
if (close) then
stop "Divide by zero error: y is zero!"
else
z=x/y
endif

6.2 Variable and subroutine names

Variable and subroutine names should be descriptive and clearly delineated from other names. Most modern
FORTRAN compilers can support long names.

Generic variable names (e.g. INTEGER i, j, k; LOGICAL Done) for loop controls are discouraged. Instead, use
descriptive names (e.g. INTEGER iZone, iSurface, iLayer; LOGICAL Loop_Unconverged).

When working with numerical constants or integer flags, define meaningful symbolic parameters to represent
the constant or flag.

Documenting local and common block variables

COMMON block variables should be documented in the subroutine where they are first introduced. When vari-
ables are defined in the code, the comment should include the units of the variable (e.g.,J, kW, °C, K etc).

Local variables should be documented in the subroutines in which they are used.

Two examples that reveal acceptable styles for documenting variables follow.

Maximum infiltration (’finfmax’) and ventilation (’fvntmax’) flow
rates (m"3/sec) for each zone. Variable ’icompforinf’ is the component
number associated with unique infiltration flow paths while ’isrczforvent’
is the source zone associated with the largest ventilation rate.

dimension finfmax(mcom), fvntmax(mcom), icompforinf (mcom)

dimension icompforvent (mcom),isrczforvent (mcom)

integer icompforinf,icompforvent,isrczforvent

real finfmax, fvntmax

[eNeNeoNe!

real fCyl Volume
real fCyl_solid_mass
real fCyl solid Cp
real fCyl UA ambient

Cylinder gas volume (m3)
Mass of cylinder wall (kg)
Specific heat of cylinder wall (J/kg oC)
Heat transfer coeff. between cylinder
& ambient (W/oC)

6.2.1 Explicit declarations

Implicit type casting must be avoided. All new subroutines must include an "’IMPLICIT NONE’ statement. This
requires that all variables be defined before use and forces programmers to give proper consideration to their
name, use, type and documentation. Explicit declarations also reduce debugging effort and strengthen confi-
dence in the program’s validity, as mismatches in variable names will produce errors at compile time.

Many existing ESP-r subroutines use the IMPLICIT rule to automatically define all variables that start with the
letters *I" through "N’ as INTEGER and all other variables as double precision REAL. This naming convention
should be followed when altering existing subroutines that use the IMPLICIT rule, but any new variables added
to the routine should be explicitly declared.

6.2.2 Type casting

Data must often be converted between real and integer formats during execution. Rather than rely on the com-
piler’s native type casting behavior, such conversions must always be done explicitly:

-20.

real x, y

integer i

x =1 ! <- Implicit casts
i=x ! (bad practice)
y =i

x =1.0 ! <- Explicit casts
i = int(x) ! (good practice)
y = float(i)

6.2.3 FORTRAN/C parameter passing conventions

ESP-r technical modules are primarily written in FORTRAN with graphics implemented in C (e.g. X11 or GTK
library calls) and some facilities making use of C++ code. An intermediate layer of C code exists to mediates
between the low level graphics calls and the primary FORTRAN code. Typically FORTRAN calls C although
there are cases where the reverse is true.

There are a number of established patterns for passing integers, reals, characters and arrays between the
two languages, which work with a number of compilers and across platforms. Examples can be found in
esru_lib.F and esru_x.c both located in the ’lib’ directory. (For example, for every string array passed to C, the C
parameter list includes an additional ’int’ that holds the array length.)

As a rule, FORTRAN never calls directly to the low level graphic functions although C will occasionally
call FORTRAN to request information.

A limited number of C++ source files are associated with ESP-r. Passing conventions are less established
for this.

In some cases ’#ifdef’ statements are used to signal differences between the X11 and GTK implementa-
tions or to differentiate between F90 and F77 code. Ifdefs are not needed for Windows/Linux/Unix differences
as an isunix function is provided.

-30-

7 Quality Assurance Tasks

To ensure that the evolution of ESP-r is robust the ESP-r community has agreed that a broad range of tests are
necessary. The objectives of testing is to:

¢ identify code which includes syntax errors, variables which are not correctly typed as well as code logic
which could cause numerical errors or might work inconsistently across a range of computer and operating
system types,

* demonstrate to other ESP-r developers and users that source code additions and modifications function as
expected,

 ensure that the changes you’ve made behave consistently on all supported platforms, and
 ensure that changes do not interrupt the work of other ESP-r users and developers around the world.

Although the initial regime was supported by familiarity within a small community, the expanding community
required evolved procedures which recognized that:

* each commit introduces the risk of errors and there is a considerable benefit in identifying these as early as
possible

* developers who are focused on one facet of ESP-r may not realize that their work may have unintended conse-
quences,

* the audit trail built into source code control tools is a powerful aid to testing new features

The testing method is multi-faceted. The code has to pass a syntax check (discussed further below), it had to
compile on multiple platforms, over a hundred example models had to be installed successfully and the predic-
tions from simulations on test models had to be within a specific tolerance.

What was initially a ritual undertaken by the core developers been codified and some parts have been automated
so that others could participate more easily.

7.1 Identifying faulty code

New entrants to the development process often begin with the view that code that compiles must be correct. The
archivist has a more specific set of requirements:

* it must compile,
* if the code relates to an interface the response to users actions must have been tested,

* code which reads files should be well tested and if file formats change there should be some means for older
models to be used and/or updated,

* code associated with calculations must not introduce unexplained changes.

7.2 Syntax checking techniques

The identification of faulty code relies on several complementary techniques:
* the use of the reporting facilities of the compiler

e third party syntax tools such as forcheck!

* run time error traps via compilers or debuggers

The Forcheck static analyzerl inspects code for inconsistencies and errors that might otherwise be missed by
compilers. Some developers (including the author) use these tools prior to compilation and others rely on the
automatic invocation of syntax tools triggered by a submission to the repository.

To make best use of tools such as forcheck, you’ll first need to ensure that the ESP-r source code folders include
the full set of source files associated with a particular module. This is most easily accomplished by answering
“yes” at the Install script prompts: “Retain debugging symbols? (y/n) [y]”.

Forcheck output is generally verbose, and can be even more so if it’s not configured to respect language exten-
sions available in modern compilers. A Forcheck configuration file (esp-r.cnf) suitable for use with ESP-r is
available in the tester/scripts folder; to use it you must first set the FCKCNF environment variable. Some users
prefer to copy the file esp-r.cnf to the installed location of Forcheck (typically /usr/local/lib/forchk). Using the
bash shell, enter the following command:

Uhttp://www.forcheck .nl/

-31-

export FCKCNF="/path/to/forcheck/configuration/esp-r.cnf"

To carry out a syntax check, move to the esru folder corresponding to the ESP-r binary you wish to test
(you can also create a script to run the tests in multiple folders). For instance, to test the ESP-r Project Manager
prj, move to the folder “esruprj”. To test an ESP-r binary when linked to the X11 graphics library, invoke
Forcheck using the following command:

forchk -I ../include *.F *.£f90 ../lib/esru_ask.F ../lib/esru_blk.F ../lib/esru_libNonGTK.F
To test an ESP-r binary when linked with the GTK library, invoke forcheck using the following command

forchk -I ../include *.F *.£f90 ../lib/esru_ask.F ../lib/esru_blk.F ../lib/esru_libGTK.F

7.3 Understanding syntax reports

Forcheck will produce a report identifying errors and warnings and advise related to your source. Pay particular
attention to portions of the report pertaining to files you’ve changed. And because your changes may conflict
with source code in other locations (e.g. esrucom) it is also necessary to scan other portions of the report.

The following are extracts from a syntax report from Forcheck. The first extract is the header of the file with the
version number and compiler emulation used:

FORCHEC CEK (R) V13.7.02
Copyright (c) 1984-2007 Forcheck b.v. All rights reserved
Licensed to: University of Strathclyde, Mechanical Engineering, UK
PC/Linux (), serial: 9611386
/usr/local/lib/forcheck/esp-r.cnf
—-- gfortran compiler emulation

-- Fortran 95 syntax

-- scanning input files
-- program unit analysis

Note: there will be a slightly different report generated depending on which compiler you are emulating. In the
program unit analysis section each of the source files and subroutines will be listed along with information mes-
sages, warnings and errors.
-- file: e3dviews.F

- program unit: LENS

- program unit: MATPOL

- program unit: MATPOLS

- program unit: CLIPFL

- program unit: CLIPSUR

- program unit: PLNBX

- program unit: PLNOFSUR

- program unit: CUTPOL

- program unit: CUTSUR

This is what we am for! Subroutines with no messages. When we do get information messages or warnings or
errors this indicates that there is still work to do.

-- file: aco.F
- program unit: REVTIME
(file: aco.F, line: 171)
694 write (outs,’(2a,3(F6.2,5x),F7.5)")DESCR(1:6),’@",

-32-

695 THR, TTMax , RHMax , FMax
DESCR
(file: aco.F, line: 694)
**[313 I] possibly no value assigned to this variable
THR
(file: aco.F, line: 695)

**%[313 I] possibly no value assigned to this variable

The variables DESCR and THR might not have a value at this point in the code. They might have been set
within a logic statement that is not always used (e.g. if()....then()....endif). The code may work ok, but the
advise is to look at the logic to determine if these variables should be initialized at the start of the subroutine.

-- file: acoesp.F
- program unit: OPENDB
ICLN
(file: acoesp.F, line: 51)
**[325 I] input variable unreferenced

- program unit: ZONEDISP
CLOSE
(file: acoesp.F, line: 306)
**[681 I] not used
/c1/
(file: egeometry.F, line: 3987)
**[676 I] none of the objects of the common block is used

- program unit: CHECKSORT
CHECKSORT, dummy argument no 4 (IER)
(file: eroper.F, line: 2474)
**[557 I] dummy argument not used

INICNN

(file: nwkrewr.F, line: 676)
**[313 I] possibly no value assigned to this variable

678 write(ddatrib(INICNN,JJ,2),’(a)’) WORD(1:12)

- program unit: EVSET

4631 ELSEIF(IVERT.EQ.19.AND.INPIC.GE.1)THEN
INPIC
(file: ../lib/esru_libNonGTK.F, line: 4631)

**[313 I] possibly no value assigned to this variable

Are these variables unreferenced or unused because of a typographic error? Did you intend to use a variable but
forgot? Is it left over from a prior version of the code? For example, the report on CHECKSORT indicates a
parameter IER is not used. Were you intending to return an error state but forgot to set this variable in the code
of the subroutine?

The write statement which include INICNN could be a serious issue. If INICNN has not been defined then it
may be treated as a zero and this may be outside the range of the array and cause a crash.

The ELSEIF()THEN statement message could also result in the flow of the ELSEIF logic occasionally being
wrong. An undefined variable INPIC would result in the wrong ELSEIF statement being used.

-- file: ADS_storage_tanks.F

- program unit: ADS_TANK FUEL STATIC_ TEMP

397 tank_DHW_draw = ADATA(IPCOMP,13)
tank_DHW_draw = ADATA(IPCOMP,13)
(file: ADS_storage_tanks.F, line: 397)

**[699 I] implicit conversion of real or complex to integer

**%[699 I] implicit conversion of real or complex to integer

2391 needHTOperLoad=(1l-relaxFact)*needHTOperLoad +
2392 relaxFact* (MAX (0.0, (neededHeatTOper - pIntHeat)))
1

(file: CETC_BATTERY.F, line: 2391)

**[344 I] implicit conversion of constant (expression) to higher accuracy
(Specify the constant (expression) in the appropriate data type kind)

-33-

- program unit: DG_CONTROLLER_INITIALIZE
1436 if (HWT _coeff a .gt. 1 .or. HWT coeff a .lt. 0) then
1
(file: DG_controller.F, line: 1436)
**%[344 I] implicit conversion of constant (expression) to higher accuracy
(Specify the constant (expression) in the appropriate data type kind)

There are several issues. Firstly, tank. DHW_draw looks like it might be a real number but is has been defined
as an integer. Second, the value of ADATA() is a real and the compiler is being forced to cast this value to a less
accurate representation when it assigns it to tank. DHW_draw. For clarity the code should use an NINT() to
explicitly cast the variable.

In the second case, if the value *1’ should have been *1.0” then the compiler would not have to work as hard and
the logic would have been clearer.

In the third case we are not testing for equality so the logic will work as intended. The computer is, however,
forced to do extra steps to cast the constant to a real representation.

1768 IF(DC_required by PCU == PCDATP(IPCOMP,1)) THEN
DC_required_by PCU == PCDATP(IPC...
(file: Annex42_ fuel cell.F, line: 1768)

**[340 I] equality or inequality comparison of floating point data
(comparing real data for (in)equality is potentially risky)

This information message signals logic that probably will not work as intended. Because of the way real num-
bers are represented this IF()THEN statement will rarely, if ever, be executed as intended. What is required is to
find out if two real numbers are very close to each other in value and for this there is a library function eclose().

-- file: CETC_BATTERY.F

- program unit: POWOC_CETC_BATTERY

256 IF (batDemandP .EQ. 0.) THEN
batDemandP .EQ. 0.
(file: CETC_BATTERY.F, line: 256)

**%[342 I] eq.or ineq. comparison of floating point data with zero constant

We should assume that batDemandP is never exactly zero (to the full range of the type real) and thus the block
of code that follows will not be called.

- program unit: CSTATE_NAME

291 cState Name = ’'water’
cState Name = ’‘water’
(file: h2 _matrix_ library.F, line: 291)
**[383 I] truncation of character constant (expression)
293 cState Name = ‘air’
cState Name = ‘air’
(file: h2 _matrix library.F, line: 293)

**[383 I] truncation of character constant (expression)

This message says that cState_Name (a string variable) is not large enough to hold the string defined on the right
side of the equation. Some compilers might treat this by only putting in sufficient characters for the string vari-
able. Other compilers might treat this as a string buffer overflow. String buffer overflows are nasty. They can
corrupt memory. They can also cause the application to crash.

3451 call add_to_xml reporting (
3452 AIMAG (ENODVLT (iElec_node)),
3453 H3K_rep_ NAME,
3454 ‘units’, ’(radians)’,
3455 'Electrical network node: V angle’)
ADD_TO_XML_REPORTING, dummy argument no 1
(file: h3k_report data.F, line: 3455)

**[690 I] data-type length inconsistent with data-type length at first ref.
(The data-type length is explicit in one instance and implicit in the other)

-34-

This could indicate a problem between two different instances of AIMAG. In one place and explicit type has
been given and in the other the type is assumed. For some compilers this may not be a problem if the implicit
assumption is the same as the type.

FDHW_COLDMAINTEMP, referenced in FDHW_WATERDRAW, argument no 1 (IMONTH)
**[616 E] input or input/output argument is not defined

The subroutine FDHW_COLDMAINTEMP is passed an argument IMONTH and this argument is used within
the subroutine but the calling code has not defined the value of IMONTH. Some compilers will treat IMONTH
as a zero. If the code in the subroutine is able to accept a zero value this compiler assumption should not cause
a problem. If the code in the subroutine is not expecting a zero then the wrong value will be calculated or a
numerical error result.

/HVAC_H3KNAMES/, declared in INITIALIZE SYSTEM TYPES
*%[233 I] common block inconsistently included from include file(s)

The syntax check has found that there are two different definitions for the common block HVAC_H3KNAMES.
This may or may not cause a problem for the application. Or the common block may be defined in two different
include files. This information may be helpful in guiding the developer to the locations in the code which can
then be manually checked.

- program unit: ARCHIVEIT

3
(file: cadio.F, line: 2283)
**[124 I] statement label unreferenced
(file: cadio.F, line: 2283)

**[84 I] no path to this statement

This probably signals that the code has been revised and some of the logic can no longer be reached. This may
not cause problems for the compiler but is potentially confusing to those reading the code.

The archivist has the option of requiring reported warnings and errors to be fixed prior to taking the code into
the main development branch.

-35-

8 Working with the ESP-r repository

A version control system (subversion) is used to facilitate the management of the ESP-r source code archive.
The archive holds the current and past states of the ESP-r source code and databases and example models and
documentation within a database. Subversion also supports the concept of different simultaneous versions of
ESP-r via separate named branches within the repository.

The version control system provides commands to add and remove and update files within the repository based
on permissions established by the Archivist. Individuals in the development community check out particular ver-
sions of ESP-r or states of ESP-r into local sand boxes on their computer and changes made within a sand box
may eventually be merged back into the repository and shared with others if it passes a testing regime.

To re-iterate, the repository is held remotely. Developers may have one or more local sand boxes which are cre-
ated via subversion requests to the repository. Alterations in a local sand box remain local to their computer
and unknown to the repository until subversion commands (e.g. add, delete, move, commit) are given.

Subversion is well documented on the web and there are a number of tutorials and books on subversion which
the novice developers are advised to read. The last section of this document gives many examples of the use of
subversion so reading that before you proceed could save you time.

A schematic representation of the ESP-r repository is given in Figure 4.

time

Release branch (trunk)

Development branch

() ()| ,
Y Trusted developer’s
sub—branch (TD-1)

TD-2

merge test sandbox

|

} testing sub—branch
v Novice developer’s
sub—branch (ND-1)

& ® ® ;

—— > Archivist actions

******** + Developer action
Figure 4: Schematic representation of the ESP-r repository.

The process associated with contributing code includes a number of steps. The intent is to maintain the quality
of the ESP-r distribution and identify potential bugs before they become an issue for the community.

Any interested party can, at any time, download the source representing the latest, quality assured version of
ESP-r.

The development_branch is updated periodically following the completion of quality assurance procedures (rep-
resented by ’2a’ in Figure 4). This procedure comprises the simulation of a number of pre-constructed models
and the comparison of predictions against archived results corresponding to previous releases. The procedure
also entails testing on various supported operating systems and several compilers.

When the development_branch is updated a summary of the changes is provided. All interested parties have
access to the development_branch through subversion (all may read, only the Archivist can write to the develop-
ment_branch). Binary distributions of ESP-r for a number of operating systems and computer types are created
several times a year from the development_branch.

-36-

8.1 Work flow within the repository

The following discussion provides examples of many of the steps shown in Figure 4. The archivist is under no
obligation to take your contributions unless you demonstrate that the changes do no harm. The discussion also
reflects the risks associated with corrupting your work and recommendations for backups and additional checks
along the way.

Developers who wish to contribute source code should contact the Archivist and request that a branch be cre-
ated. Developer-specific sub-branches (e.g. ND-1 and TD-1 in Figure 4) start as a copy of the develop-
ment_branch, and modifications made by a developer remain in the sub-branch until they are merged into the
development_branch by the Archivist (at which point all others in the development community have access to
the changes.

The development community has evolved a number of strategies which enhance working with the repository and
with others in the community. A few of the strategies are:

¢ Keep in sync with the development branch. When notice is given of a change in development_branch check
out a fresh sandbox of your branch and merge in the development_branch changes. If all goes well commit
the result of the merge.

* Subversion commits should be documented (what issue was addressed, what was changed, what will users
notice, what will other developers notice, is it work-in-progress or a completed task, how was it tested, what
were the results of the test, what compilers and operating systems were used, results of syntax checks and QA
tests run). Figure 5 is an example of the kind of message that all developers get as changes are made in a
branch.

COMMIT LOG MESSAGE

ol Pl Pl Pl Pl Pk Pl Pl P Pl Pl P P P P Pl Pt P P Pl Pk

- Reduce differences between Install scripts.

Include Solaris F30 CC library dependencies (libstdc++ is
differently named in Sun Studio).

This commit to allow testing on different platforms (Solaris,
32 bit, Solaris &4 bit, OSX PPC and Intel etc.)

Testing

- Compile GCC 3.4 X11 with and without -m32 compiler directive
on a 32 bit Ubuntu 8.4 and run tester.pl script with no
differences reported.

CHANGE-SET SUMMARY

R PR P L P P P P P P8 P o P P 8 P P P

A summary of these changes is available at:
http: //noded.cvsdude.com/trac/espr/esp-richangeset/3736

CHANGE LOG

ol Pl Pl Pl Pl Pk Pl Pl P Pl Pl P P P P Pl Pt P P Pl Pk

U branches/Jon_Hand/src/Install
U branches/Jon_Hand/src/Install_32
U branches/Jon_Hand/src/Install_RH_studio

REVISION HISTORY

R P Pl ol Pl Pl P Pl Pl Pl Pl P8 P Pl P Pl P Pl Pl Pl

Revisions:
- http: //noded.cvsdude.com/trac/espr/esp-rflog/?verbose=on

Figure 5: Example of broadcast message of a new contribution.

* Subversion commits should be atomic. For example, if a common block is altered, change all instances of the
common block and, after testing, commit this as one commit. If an example model has also been updated
commit this separately from the common block changes. If an equation is changed which will alter predic-
tions commit this change separately. If you merge in changes made in the development_branch into your
branch commit the merge as a separate commit.

-37-

If possible compile on more than one platform so that compiler specific issues are identified. If you have
access to a syntax checker use this to identify issues before they are committed (see the discussion elsewhere
about how this saves time).

The testing procedures are intended to limit the chance that ESP-r crashes for other users. Take the time to test
and debug interface changes. If an interface dialogue has been updated try it. The automated testing is not
focused on interface issues. Open existing models as well as checking that new models or zones or compo-
nents can be created. If possible, get others involved in the testing. They will almost always provide useful
feedback as well as using facilities in unexpected ways.

Back up work-in-progress which has not yet been committed into the repository.

Periodically review the log of your branch as well as the development branch to ensure that all relevant com-
mits have been accounted for. Annotating a copy of the subversion log file to indicate which commits have
been taken and which are pending is a useful technique.

8.2 Merging changes from the development branch

Merging changes from the development_branch is done via subversion merge commands, represented by ’3a’ in
Figure 4. Some human intervention (on the part of developer ND-1 aka fred) will be required if there are con-
flicts detected during the merge process. If there are no conflicts developer ND-1 should issue a commit com-
mand immediately after the merge from the development branch. If there are conflicts these should be docu-
mented and manually resolved prior to committing the merge.

The development branch (thick line in Figure 4) is the primary channel by which contributions from developers
are shared. Changes are only incorporated into the development_branch after a sequence of tests have been
passed. Once the changes are in place a message will be sent when the archivist commits changes to the devel-
opment_branch. Extracts from such a message are shown below:

COMMIT LOG MESSAGE

This commit merges the changes c4340 of the sub-branch ’'Jon_Hand’
into ’‘development_branch’.

Summary of changes:

Further data typing to improve 64 bit implementation.
Users on 64 bit platforms will notice fewer interface
(line drawing) glitches.

Focus on climate data and seasons with data structures
moved into header files, code consolidation and longer
climate file name string. Users will not notice this
but developers will find better documentation,
additional data typing and more common code.

Move data structures related to integrated performance view
into a header file and make explicit. Users will not notice
and developers will find better documentation.

Correct a glitch which often caused application failure

in GTK version (occasional with GCC 3.4/4.1 and often with
GCC 4.3 and newer). Users of Native Windows version will
notice greater stability.

Update documentation in the manual/OS folder to reflect
version 11.7

Testing summary:

Compiled with GCC 4.1.2 on Ubuntu Linux X11.

Compiled with GCC 4.3.2 on Cygwin.

Ran tester.pl against the latest development branch with no reported
differences!

Interactive tests of prj and clm and bps and res during development
stages of the commits that were re-merged. Both X11 and GTK

versions were tested earlier.

All sub-branches of ’'development branch’ should now be synchronized

with ’‘development branch’. These actions are to be completed by the owners
of these sub-branches following the instructions included in
src/archive/subversion.trf.

CHANGE-SET SUMMARY

A

summary of these changes is available at:

-38-

http://node9.cvsdude.com/trac/espr/esp-r/changeset/4350

CHANGE LOG

U branches/development_branch/
branches/development branch/src/cetc/h3koutput.F
branches/development_branch/src/climate/climatelist
branches/development_branch/src/esrubld/blibsv.F
branches/development_branch/src/esrubld/input.F

cccacal

branches/development_branch/src/esrurun/Makefile
branches/development_branch/src/esruvew/azalts.F
branches/development_branch/src/include/esprdbfile.h

branches/development_ branch/src/include/ipvdata.h
branches/development_branch/src/include/seasons.h
branches/development_branch/src/lib/esp_draw.c
branches/development_branch/src/lib/esru_lib.F
branches/development_branch/src/lib/esru_nox.c
branches/development_branch/src/lib/esru_x.c

branches/development branch/src/manual/0S/Apple/esp-r_v1l.7_osx precomp.readme.txt
branches/development branch/src/manual/OS/Apple/instructions for esp-r osx installer.txt
branches/development_ branch/src/manual/0S/Apple/setup
branches/development_branch/src/manual/0S/Apple/setup_osx

branches/development branch/src/manual/0S/Cygwin/esp-r_v1ll.6_ cygwin_ precomp.readme
branches/development_ branch/src/manual/0S/Cygwin/esp-r_vl1ll.7_cygwin_precomp.readme

pPocprpacoppcCccaccppracac:.

branches/development_branch/src/manual/OS/Native_windows/Windows_esp-r_development_may09.rtf
branches/development_branch/src/validation/CEN/13791/shade/ref fullshd.cfg
branches/development_branch/src/validation/CEN/13791/shade/ref noshd.cfg

aacp-.

U branches/development_branch/src/validation/CEN/15265/Test_8/Test_8.cfg
U branches/development_branch/src/validation/CEN/15265/Test_9/Test_9.cfg

REVISION HISTORY

Revisions:
- http://node9.cvsdude.com/trac/espr/esp-r/log/?verbose=on

Source tree:
- http://node9.cvsdude.com/trac/espr/esp-r/browser

ESP-r Central is a source code repository that provides access to ESP-r
source code for all users and developers.

-- Provided by, CVSDude, http://cvsdude.com. Professional CVS and SVN outsourcing --

The above message includes several sections of interest to developers. The first item is the source branch of the
revisions and which revisions of that branch were included. This is followed by a high level summary of the
changes that are included. Curious developers could look at the log of the contributing branch for further infor-
mation. This is followed by a list of the files that have changed (M), added (A), deleted (D). If these files are
also files that have been recently modified in the fred branch then it is well worth a closer inspection. It might
also be useful to make a backup of the fred branch files that were modified in the development_branch in case
there are problems in the merge.

Lets assume that the user is named fred and keeps his source code in /home/fred/Src/cvsdude and to setup for
the merge a fresh version of the fred branch will be checked out, a local version of the distribution will be com-
piled to /home/fred/esru_pre_merge (including databases and example models) and the syntax checked on all of
the modules (via the scripts all_fckX11 and checkdiff).

Working with a freshly checked out local copy of the fred branch rather than an existing sandbox prevents
glitches.

The command sequence to implement this is:

cd

cd Src/cvsdude

svn checkout https://espr.svn.cvsdude.com/esp-r/branches/fred fred merge
cd fred merge/src

./Install -d /home/fred/esru_pre _merge --gccé

The title of the message about the development branch included the information that it related to revision 4350.
Lets assume that the fred branch has been kept up to date with the development_branch and thus the only

-39-

changes needed will be from revision 4349:4350. The command sequence is:

cd /home/fred/Src/cvsdude/fred merge/
svn merge -r 4349:4350 https://espr.svn.cvsdude.com/esp-r/branches/development branch

The process can take some time to complete. There will be messages as files are modified and/or added and
deleted from the fred branch to reflect the recent changes in the development_branch. Particular attention should
be paid to warnings about conflicts (see a later section for details of how to respond to conflicts).

If you are happy with the merge process then you can commit this merge into your branch (make sure your com-
mit message documents the specific range of revisions taken in and that it brings your branch up to date with a
specific revision of the development_branch). You might want to carry out a test Install prior to committing the
merge. It is important to commit the merge (and any manual conflict resolutions) separately from other changes.

8.3 Committing changes into your branch

When you checkout your branch into a local sandbox and work in the sandbox nothing that happens in the sand-
box can impact what is in the repository of your branch until you specifically commit the changes. Used well,
subversion can allow you to try out new ideas and toss them away if you find they do not work and remember
them (and potentially share them easily with others) if they do work.

Those who use subversion regularly develop habits which help them to work more quickly, reduce risk from
human and machine glitches as well as making life easier for the archivist. The Work flow within the repository
section has some good hints.

Atomic commits and good documentations of commits are key. If you want to see how others have managed the
commit process you could check out one of the developer branches and extract a log of the changes made in that
branch:

svn log -v https://espr.svn.cvsdude.com/esp-r/branches/Jon_Hand >jwh_ log.txt
nedit jwh_log.txt

If you have a personal branch you should automatically see the commits made by others. If you want a quick
look at what changed in a commit look in the email message for a line that includes:

A summary of these changes is available at:

https://espr.trac.cvsdude.com/esp-r/changeset/XXXX

where XXXX is a specific number.

Assuming that you made two relate changes, one in esrucom and the other in the lib folder. To commit these
changes on a Linux computer or Cygwin or OSX you would issue the following commands:

SVN_EDITOR=nedit

export SVN_EDITOR

svn commit lib esrucom

Sending esrucom/edatabase.F

Sending lib/esru_lib.F

Transmitting file data ..
Committed revision 4533.

The SVN_EDITOR is an environment variable that tells subversion what editor to use so you can type in a mes-
sage about the commit. Some people prefer to compose their messages in advance and paste the text into an edi-
tor.

8.4 Getting your changes into the development_branch
The archivist has several tasks to carry out. A message needs to be composed which describes the change and
the process goes more quickly if you prepare a synopsis of your contribution that follows the pattern seen above.

The archivist will also be interested in whether the new contribution will result in any change to the numerical
predictions. In the source distribution is a folder named tester and it contains test models and a Perl script which
runs hundreds of tests to identify changes in predictions.

-40-

One use of the tester.pl script is to exercising both the official development branch version of ESP-r and the cur-
rent fred branch across all of the models of the testing regime. The second approach is to first generate an ar-
chive of the predictions of the development branch (which can be re-used) and then generate an archive of the
current fred branch predictions.

To carry out either of these we need to checkout the current version of the development branch, install it to the
standard location (/ust/esru) and then run the tester.pl script. The sequence of commands needed for this are
shown below (note that the ./tester.pl command needs to be on one line):

sudo mkdir /usr/esru

sudo chown fred /usr/esru

sudo chgrp staff /usr/esru

cd Src/cvsdude

svn checkout https://espr.svn.cvsdude.com/esp-r/branches/development branch
cd development_branch/src

./Install -d /usr/esru --gccd --reuse_ish_calcs

cd /home/fred/Src/cvsdude/development branch/tester/scripts

./tester.pl -v --databases /usr/esru/esp-r /usr/esru/esp-r/bin/bps
--ref_loc /usr/esru/esp-r/bin/ --test_loc /usr/esru/esp-r/bin/
--create_historical_archive ESRU_dev_linux.tar.gz

To run tester to directly compare the standard version of ESP-r (in /usr/esru) and your version of ESP-r some-
thing like the following command (on one line) would be used:
cd /home/fred/Src/cvsdude/development branch/tester/scripts
./tester.pl -v --databases /usr/esru/esp-r /usr/esru/esp-r/bin/bps

/home/fred/esru_pre_merge/esp-r/bin/bps
--ref_loc /usr/esru/esp-r/bin/ --test_loc /home/fred/esru_pre merge/esp-r/bin/

To compare two archives the command sequence is:

cd /home/fred/Src/cvsdude/development branch/tester/scripts
./tester.pl -v -a ESRU_dev_linux.tar.gz -a ESRU_pre_merge_linux.tar.gz

Lets assume that the performance predictions were close enough to be considered a match. We can now. To be
polite, it is useful to check that what we propose to merge into the development_branch can be done without any
conflicts. In preparation for the merge the local copy of the fred branch should be cleaned and it is also a good
idea to make a backup of it in case the merge process fails (e.g. a power outage).

cd /home/fred/Src/cvsdude/fred _merge/src

make clean

cd /home/fred/Src/cvsdude
tar cf fred prior to merge.tar fred merge

Lets say that that your revisions to be taken are r7888:7895 and r7998:8012. Check out a fresh develop-
ment_branch to test your contribution on:

cd

cd Src/cvsdude

svn checkout https://espr.svn.cvsdude.com/esp-r/branches/development branch dev_test

cd dev_test

svn merge -r7888:7895 https://espr.svn.cvsdude.com/esp-r/branches/fred
svn merge -r7998:8012 https://espr.svn.cvsdude.com/esp-r/branches/fred

If this merge happens without any conflicts then you are good to go! Your next step is to send a message to the
archivist with the summary of the changes and testing carried out as well as specific instructions about which
revisions in your branch to take.

8.5 Finding differences with other branches

If you want to clearly see the differences between your branch and the current development_branch before you
do the merge you could use a script to compare the two distributions. In the source distribution bin folder is a
script named shortdiff. Copy it into your SHOME/bin folder so you can run it easily. It is given two paths:

./shortdiff /home/jon/Src/cvsdude/development branch/src
/home/jon/Src/cvsdude/jwh/src

41-

The result of running that script will be a file named mydifferences. It will include information on which files
have differences. You can then use a file difference viewing tool on the two files to check the details of differ-
ences.

currently comparing /home/jon/Src/cvsdude/Jon_Hand/src and ../../jwh_for merge/src

cetc

looking at cetc ../../jwh_for merge/src/cetc

diff cetc/ashp_cooling.F ../../jwh_for_merge/src/cetc/ashp_cooling.F

diff cetc/chemical properties.F ../../jwh_for merge/src/cetc/chemical properties.F

diff cetc/DHW_module.F ../../jwh_for_merge/src/cetc/DHW_module.F

diff cetc/h3k_report_data.F ../../jwh_for_merge/src/cetc/h3k_report_data.F

diff cetc/RE-H2-ctl.F ../../jwh_for_merge/src/cetc/RE-H2-ctl.F

cetc/h3kreports

looking at cetc/h3kreports ../../jwh_for merge/src/cetc/h3kreports

diff cetc/h3kreports/TReportsManager.cpp ../../jwh_for merge/src/cetc/h3kreports/TReportsManager.cpp
diff cetc/h3kreports/TVariableData.cpp ../../jwh_for merge/src/cetc/h3kreports/TVariableData.cpp
diff cetc/h3kreports/TVariableData.h ../../jwh_for merge/src/cetc/h3kreports/TVariableData.h
esrubld

looking at esrubld ../../jwh_for merge/src/esrubld

diff esrubld/casual.F ../../jwh_for_merge/src/esrubld/casual.F

diff esrubld/complex_fenestration.F ../../jwh_for_merge/src/esrubld/complex_fenestration.F

diff esrubld/solar.F ../../jwh_for_merge/src/esrubld/solar.F

diff esrubld/spmatl.F ../../jwh_for merge/src/esrubld/spmatl.F

8.6 Adding a new subroutine to ESP-r

To clarify the proceeding discussions, lets follow the sequence of tasks involved in introducing a new feature
into ESP-r. Below is a fragment of code from esrucom/edatabase.F that checks if three real numbers are all very
close to zero in order to determine if data scanned from a file is correct.

C If all values are still 0.0 then not an actual element.
CALL ECLOSE(DBCON,0.0,0.001,CLOSEL)
CALL ECLOSE (DBDEN,0.0,0.001,CLOSE2)
CALL ECLOSE(DBSHT,0.0,0.001,CLOSE3)
if (CLOSEl.and.CLOSE2.and.CLOSE3)then

write(outs,’(A,I3,A,2i4)’) ' Material db reference ’,IEL,
& ’ has no data, or all zero...’,IR,IFMAT
call usrmsg(outs,’ Please check your selection! ’,'W’)
ier=1
return
endif

The subroutine eclose is used hundreds of times to test if numbers are close to a specified value. There are many
places where a vector e.g. XYZ requires testing to see if all are within a tolerance. The project is thus to create a
subroutine that tests one vector against another for a given tolerance and return a single logical indicator. This
new subroutine call would look like:

C If all values are still 0.0 then not an actual element.
call eclose3(DBCON,DBDEN,DBSHT,0.0,0.0,0.0,0.001,CLOSE4)
if (CLOSE4)then

write(outs,’(A,I3,A,2i4)’) ' Material db reference ’,IEL,
& '’ has no data, or all zero...’,IR,IFMAT
call usrmsg(outs,’ Please check your selection! ’,'W’)
ier=1
return
endif

The implementation of the subroutine is as follows:

C EEEE R R EEEEEEEEEEEEE T ECLOSE3
C ECLOSE3 allows two real vectors Rl & R2 & R3 to be checked for closeness
C to a given tolerance TOL with X1 X2 & X3 and returns CLOSE = .TRUE. or .FALSE.
SUBROUTINE ECLOSE3(R1,R2,R3,X1,X2,X3,TOL,CLOSE)
LOGICAL CLOSE,CLOSEA,CLOSEB,CLOSEC
real R1,R2,R3 ! the vector to test
real X1,X2,X3 ! the vector to compare against
real TOL ! how close

-42-

call eclose(R1l,X1,TOL,CLOSEA) ! test first pair
call eclose(R2,X2,TOL,CLOSEB) ! test second pair
call eclose(R3,X3,TOL,CLOSEC) ! test third pair
if (CLOSEA.and.CLOSEB.and.CLOSEC)then

CLOSE=.true. ! all are close
else

CLOSE=.false. ! at least one is different
endif
RETURN
END

Note that each of the parameters of the subroutine is typed and documented as is the logic. As this subroutine
would be useful in many ESP-r modules and is of the same type of utility as the subroutine eclose the logical
place for it is within lib/esru_lib.F next to the subroutine eclose. And we should also provide a synopsis at the

top of esru_lib.F

After editing the file esru_lib.F we can use a svn command svn status to see what files have changed and svn

diff to show changes svn has noticed:

svn status lib
M lib/esru_lib.F

svn diff lib/esru_lib.F
Index: lib/esru_lib.F

--- lib/esru_lib.F (revision 4490)

+++ lib/esru_lib.F (working copy)

@e -83,6 +83,7 @@

C DOT3(a,b,product) Return dot product of two vectors a & b.

C ZEROS: Clear a 4x4 array prior to doing vieweing transforms.
C ECLOSE: Checks tolerance between two real numbers.

+C ECLOSE3: Checks tolerance between two real vectors (3 numbers).

C ESIND: Function returning SIN of angle where angle is given in degrees.
C ECOSD: Function returning COS of angle where angle is given in degrees.
C ETAND: Function returning TAN of angle where angle is given in degrees.
@e -2279,6 +2280,27 @@

RETURN

END

+C **x*kkkhkkkkhkhkhhkhhhhxk ECLOSE3

+C ECLOSE3 allows two real vectors Rl & R2 & R3 to be checked for closeness

+C to a given tolerance TOL with X1 X2 & X3 and returns CLOSE = .TRUE. or .FALSE.
+ SUBROUTINE ECLOSE3(R1,R2,R3,X1,X2,X3,TOL,CLOSE)

+ LOGICAL CLOSE,CLOSEA,CLOSEB,CLOSEC

+ real R1,R2,R3 ! the vector to test

+ real X1,X2,X3 ! the vector to compare against

+ real TOL ! how close

+

+ call eclose(R1l,X1,TOL,CLOSEA) ! test first pair
+ call eclose(R2,X2,TOL,CLOSEB) ! test second pair
+ call eclose(R3,X3,TOL,CLOSEC) ! test third pair
+ if (CLOSEA.and.CLOSEB.and.CLOSEC)then

+ CLOSE=.true. ! all are close

+ else

+ CLOSE=.false. ! at least one is different

+ endif

+

+ RETURN

+ END

+

C **kkkkkkkkkkhhkkkk%* ESIND

FUNCTION ESIND (DEG)
C ESIND: Returns SIN of angle where angle is given in degrees.

The lines with a + at the start have been added. The same procedure can be carried out for changes in esru-

com/edatabase.F

svn status esrucom
? esrucom/edatabase.F-
M esrucom/edatabase.F

svn diff esrucom/edatabase.F
Index: esrucom/edatabase.F

-43-

--- esrucom/edatabase.F (revision 4439)
+++ esrucom/edatabase.F (working copy)
@e -891,12 +891,13 @@

& DRV, TITL, PNAM)

CHARACTER PNAM*72,TITL*72,outs*124
- logical closel,close2,close3
+ logical closel,close2,close3,closed

IER=0
closel=.false.
close2=.false.
close3=.false.
+ closed4=.false.

C The record in the material db is IEL + 1 UNLESS the
C reference is to material db 0 (air).
@@ -913,9 +914,14 @@

& DRV, PNAM

C If all values are still 0.0 then not an actual element.

+
+C test new code
+ call eclose3(DBCON,DBDEN,DBSHT,0.0,0.0,0.0,0.001,CLOSE4)
+ write(6,*) ’'closed4 test is ’,closed
CALL ECLOSE (DBCON,0.0,0.001,CLOSEL)
CALL ECLOSE (DBDEN,0.0,0.001,CLOSE2)
CALL ECLOSE (DBSHT,0.0,0.001,CLOSE3)
+ write(6,*) ’'separate eclose calls ’',closel,close2,close3
if (CLOSEl.and.CLOSE2.and.CLOSE3)then
write(outs,’(A,I3,A,2i4)’) ' Material db reference ’,IEL,
& ’ has no data, or all zero...’,IR,IFMAT

The status command indicates a ? prior to a file named edatabase.F-. Subversion does not know about that file
because the developer has not added it to the repository. This is for a good reason - the developer has made a
backup of the file edatabase.F prior to editing it. Pedantic? Not really.

What is actually seen in the diff is a version of edatabase.F which is being used for testing - it contains both the
new call and the previous logic and some write statements to indicate the values during testing. Of course one
could avoid the use of write statements via the use of a debugger, setting break points and using the debugger’s
ability to print out variables. The requirement for testing is in no way pedantic. Even experienced coders will
make typographic errors which are not detected by compilers.

Once interactive testing of the new facility has been undertaken users can either comment out debug statements
or remove them. And a subsequent svn diff shows:

svn diff edatabase.F
Index: edatabase.F

--- edatabase.F (revision 4439)
+++ edatabase.F (working copy)
@e -891,12 +891,13 @e
& DRV, TITL, PNAM)

CHARACTER PNAM*72,TITL*72,outs*124
- logical closel,close2,close3
+ logical closel,close2,close3,closed

IER=0
closel=.false.
close2=.false.
close3=.false.
+ closed4=.false.

C The record in the material db is IEL + 1 UNLESS the
C reference is to material db 0 (air).
@@ -913,10 +914,8 @@

& DRV, PNAM

C If all values are still 0.0 then not an actual element.
- CALL ECLOSE (DBCON,0.0,0.001,CLOSEL)

- CALL ECLOSE (DBDEN,0.0,0.001,CLOSE2)

- CALL ECLOSE (DBSHT,0.0,0.001,CLOSE3)

- if (CLOSEl.and.CLOSE2.and.CLOSE3)then

-44-

call eclose3(DBCON,DBDEN,DBSHT,0.0,0.0,0.0,0.001,CLOSE4)
if (CLOSE4)then
write(outs,’(A,I3,A,2i4)’) ' Material db reference ’,IEL,
'’ has no data, or all zero...’,IR,IFMAT
call usrmsg(outs,’ Please check your selection! ’,'W’)

The dash in the first column signals that lines have been removed. Is there anything else required? The way to
find out if there are additional coding tasks is to compile the prj module and run a syntax check on the code.

all fckx1l1l

- program unit: EPKMLC

- program unit: ERPCDB

CLOSE1l
(file: edatabase.F, line: 894)
**%[323 I] variable unreferenced
CLOSE2
(file: edatabase.F, line: 894)
**x[323 I] variable unreferenced
CLOSE3
(file: edatabase.F, line: 894)

**[323 I] variable unreferenced

- program unit: EMKAMLD

- program unit: EROPTDB

The all_fckX11 script (found in the source distribution bin folder) runs the syntax checking tool for the code
distribution. And in the section related to edatabase.F there are three unreferenced variables. The revised logic
does not use CLOSE1, CLOSE2 or CLOSE3 so we can limit future confusion by removing these prior to com-
miting the code. After saving the file svn indicates:

svn diff

edatabase.F

Index: edatabase.F

--- edatabase.F (revision 4439)
+++ edatabase.F (working copy)
@@ -891,12 +891,10 @@

&

DRV, TITL, PNAM)

CHARACTER PNAM*72,TITL*72,outs*124
- logical closel,close2,close3
+ logical close4

IER=0
- closel=.false.
- close2=.false.
- close3=.false.
+ closed4=.false.

C The record in the material db is IEL + 1 UNLESS the
C reference is to material db 0 (air).
@@ -913,10 +911,8 @@

&

DRV, PNAM

C If all values are still 0.0 then not an actual element.

CALL ECLOSE(DBCON,0.0,0.001,CLOSEL)
CALL ECLOSE (DBDEN,0.0,0.001,CLOSE2)
CALL ECLOSE(DBSHT,0.0,0.001,CLOSE3)
if (CLOSEl.and.CLOSE2.and.CLOSE3)then
call eclose3(DBCON,DBDEN,DBSHT,0.0,0.0,0.0,0.001,CLOSE4)
if (CLOSE4)then
write(outs,’(A,I3,A,2i4)’) ' Material db reference ’,IEL,
’ has no data, or all zero...’,IR,IFMAT
call usrmsg(outs,’ Please check your selection! ’,'W’)

The steps above confirm that coding adheres to the ESP-r coding guide. The nature of the change does not alter
predictions made by the simulator. The interactive test indicated that the logic was equivalent. Running the
tester.pl script would, in this case, be pedantic if the developer was planning on making additional changes prior
to asking the archivist to update the development_branch. If, however, this was the last change to be included in

-45-

an update to the development_branch the archivist would require the tester.pl script to be run.

Depending on the computer the standard fester.pl tests in the fester folder can take several hours to run. Those
who need a quicker test to use as coding progresses can also use the test scripts in the validation/bench-
mark/QA/model/cfg and validation/benchmark/QA/modell .1/cfg folders. This step is represented by ’3b’ in Fig-
ure 4. An example fragment of the report generated is shown below:

tester.pl Test Report

Testing commenced on 21/01/2009 18:56:47
After grand merge of dev into Jon_hand and re-merge of pending changes.

Test parameters:
- Test suite path: /home/jon/Src/cvsdude/development branch/tester/test_suite/
- Abbreviated runs: disabled

Test System Information:

- Username: jon
- Host: osiris
- Platform: i686

- Operating system: Linux:2.6.24-23-generic

bps binaries:

- Path: (reference) osiris:/home/jon/esru_dev/esp-r/bin/bps
(test) osiris:/home/jon/esru_jwh tm/esp-r/bin/bps
- SVN source: (reference) development branch@r3801 (locally modified)
(test) Jon_Hand@r3794 (locally modified)
- Compilers: (reference) gcc-3.4/g++-3.4/977-3.4
(test) gcc-3.4/g++-3.4/9g77-3.4
- Graphics library: (reference) X11
(test) X11
- XML support: (reference) Supported
(test)
- Modification date: (reference) 2009-01-21 18:36:04.000000000 +0000
(test) 2009-01-21 17:57:14.000000000 +0000
- MD5 Checksum: (reference) 94a6931eb3497c4dcleeff74£fc33384d
(test) 762a08£684ba%9913d698bf£39423ab75

Compared output: .csv .data
Overall result: Pass.

Summary of test results:

(files differ)

.h3k .xml files

- ’-’ indicates test case passes
- ’'X’ indicates test case fails
- ’.’ indicates files were not produced, or were not compared

Folder

Model .xml .data .csv

.h3k overall

dt-CPU(%)

Annex42 fuel cell
alberta_infil model
alberta_infil model
alberta_infil model
alberta_infil model
alberta_infil model
alberta_infil model
alberta_infil model
alberta_infil model
alberta_infil model
alberta_infil model
alberta_infil model
basesimp

basesimp

basesimp

plt_zone heat _gain coupling

pv_example
therm man_test
type-999

SOFC_constant - - -
basic_AIM MAX - - -
basic_AIM MIN - - -
basic_AIM TIGHT - - -
basic_AIM reference - - -
detailed AIM MAX - - -
detailed AIM MAX verl - - -
detailed AIM MIN - - -
detailed AIM MIN verl - - -
detailed AIM TIGHT - - -
detailed AIM TIGHT verl - - -
detailed AIM reference - - -
basic_BSM_ MAX - - -
basic_BSM MAX_ MooreModel - - -
basic_BSM MIN - - -

plt_multizone_ zone gain_test - - -
pv_2000Glo - - -
h2-ctrl - - -
gc80 - - -

-3.3
0.23
0.92

-0.68

-8.4e-11
0.57

-1.7
0.14

-1.3

-0.28
0.28
0.42

-0.66

-0.22
2.5

0.37

0.53

1.4
-0.68

Parameter dt-CPU describes the percent change in simulation CPU
runtime between the reference and test versions of bps.
- When different versions of bps are exercised on the same
machine, dt-CPU is a measure of the relative efficieny of

the ESP-r source code.

- When the same version of bps is exercised on different
machines, dt-CPU is a measure of the comparative performance

-46-

of ESP-r on different hardware and operating systems.

No differences were found in XML output. Detailed report unnecessary.

If the report generated by the testing script indicates no differences with the development_branch then the new
contributions are ready for the next step. If there are differences reported then discussions must be held with the
Archivist to determine whether the differences are expected or have identified an error. A fragment from a report
with differences is shown below:

basesimp detailed BSM MIN X X X X X

1.9
basesimp detailed BSM reference - X X X X 2.5
TEST CASE detailed BSM MIN (basesimp)
- Folder: basesimp
- Model: detailed_BSM MIN.cfg
- MAX error (W) 1.8057 W (0.1756 %) - observed in: building:all_ zones:thermal ld:net:month 01 (min)
- MAX error (oC) 0.14092 oC (0.69135%) - observed in: building:zone_05:surf 06:temp:month 01 (max)
Elements exhibiting differences Units |Relative Absolute Reference Test
|Diff (%) Diff Value Value
building:all_ zones:supplied energy:heating:annual (min) W 0.45335 -1.8056 398.28 400.09
building:all zones:supplied energy:heating:month 01 (min) W 0.45335 -1.8056 398.28 400.09
building:all zones:supplied energy:net_ flux:annual (min) W 0.45335 -1.8056 398.28 400.09
building:all zones:supplied_energy:net_flux:month 01 (min) W 0.45335 -1.8056 398.28 400.09
building:all_ zones:thermal loads:heating:total:annual (min) W 0.1756 -1.8057 1028.3 1030.1
building:all zones:thermal loads:heating:total:month 01 (min) W 0.1756 -1.8057 1028.3 1030.1
building:all_ zones:thermal loads:net:annual (min) W 0.1756 -1.8057 1028.3 1030.1
building:all_ zones:thermal_loads:net:month 01 (min) W 0.1756 -1.8057 1028.3 1030.1
building:zone_05:surface 06:temperature:annual (max) oC 0.69135 -0.14092 20.383 20.524
building:zone_05:surface_06:temperature:month 01 (max) oC 0.69135 -0.14092 20.383 20.524

The tester.pl script logic and reporting facilities identify which performance data is beyond the tolerance of the
test as well as the location within the model. This is a substantial aide in the identification of offending code as
well as faults in test models.

If changes in the source code introduce a new facility consider how this might be tested. Inclusion of new mod-
els in the tester/test_suite can ensure that future changes do not have an untended on the new facility.

Models for inclusion in test/test_suite need to be configured in specific ways: first, references to standard data-
bases should be in the form of /usr/esru/esp-r/databases or should point to model specific databases. Model con-
figuration files should include a simulation preset so that it can be run without user intervention. The name of
the preset must be fest. The tester process includes the creation of XML output files and this requires the inclu-
sion of a file named input.xml in the test model cfg folder. Look in other test_suite models for examples of this
xml file.

Once the tests are passed the developer would send an email to the Archivist with a summary of the changes to
be taken into the development branch and a list of the revisions to take and the name of the branch. This sum-
mary will form part of the eventual release notes and should be formatted and checked for spelling.

Ideally, code submissions should be related to one concept. For example changes which implement a new inter-
face to an ideal zone control should be made separately from code that extends a statistical report in the results
analysis module. A change in a data structure should be made to all associated code blocks in one commit if
possible so that the ESP-r distribution is consistent. If there are multiple issues in the commit then each should
be noted separately.

The documentation sent to the archivist is a summary of the contribution which will form part of the release note
which will be published when ESP-r versions change. Readers will be looking for the significance and applica-
bility of the changes. Avoid detail, as interested parties can look at the detailed documentation in your branch.
Be sure to include the following in your summary:

* the nature of the change
» whether it is new functionality for the user, repairs a bug, tidies code, or is a work in progress

¢ if new functionality is provided for the user, then indicate whether this affects the Simulator, Project Manager,
Results Analyzer, etc.

47-

* what users might notice
* what developers might notice

* if a new method has been implemented provide a citation to a thesis or a paper that describes its theoretical
basis

* if a bug has been repaired, then indicate which application this affects and the nature of the change

e if a bug fix alters simulation results describe what the changes are and what types of models would be
impacted

« if this change tidies code or alters a data structure but does not alter functionality indicate this
* if the submission is work in progress indicate whether it is safe for others to use

e IMPORTANT: Use proper grammar and spelling!

An example of such a please-take-this message is shown below:

Summary of changes:

- A sequence of commits which merge the functionality of the tdf
module into the project manager. This allows closer ties between
information about a model and sets of temporal data. The first
benefit is in support of the UK NCM activity data.

- After testing shifted source code in esrutdf to esrucom and/or
esruprj and updated Install script and Makefile.

Uses will notice fewer keystrokes are required to manage temporal
data and there is somewhat more space for the menu display although
there is a bit less space for graphic display.

- Added lighting requirements to UK NCM description.
- Added constructions needed for UK NCM models.

Testing summary:
- Tester.pl temporal data not used in tester.pl models. Testing of the
validation/QA/benchmark model indicates identical predictions.

- pre-commit and post-commit syntax checks on full source of all modules

- Compile Solaris F90 X11

- Compile Linux GCC 3.4 X11

- Compile 0SX GCC 3.3 X11

- Single step debug sessions reading existing temporal data and editing
within the project manager followed by interactive tests of editing
data and displaying it.

- Interactive tests of new UK NCM facilities and databases.

Revisions to take from prj_dev branch:
R2504:2515
R2519:2530
R2533:2535

The Archivist may merge these commits directly into the development branch (this is represented by ’3¢’ in Fig-
ure 4. When the commits have been merged into the development branch an email (based on the summary sent
to the Archivist) will be sent to the development community advising others to merge the newly updated devel-
opment branch into the sub-branches (the cycle begins again). Note that the developer who supplied the changes
should not merge those same changes back into their own branch.

8.7 Additional steps for complex developments

Where the number of changes are substantial, or there is a risk of a conflict the developer may be asked to per-
form additional steps to ease the work of the Archivists. An example of this was discussed in the section Get-
ting your changes into the development_branch.

This is represented by ’1c’ in Figure 4. If this test merge is successful the Archivist is notified with the standard
summary and instructions about what to take into the development branch. The Archivist will then merge these
changes into the development branch ("1d’ in Figure 4) and notify the development community.

-48-

8.7.1 The Nuke & Pave approach

If the test merge results in conflicts then an alternative procedure is required which involves forcing the fred
branch to be exactly like the development_branch and then re-introducing each of the commits that have been
pending, running the tests and then doing a single commit which includes all changes and the resolution of any
commits. In the slang of subversion this is a ‘nuke and pave over’ option. It places an extreme burden on the
contributor and there are several points where difficulties may arise.

Before starting this process it is necessary that no other changes be made to the development_branch. This
involves freezing the development_branch for a brief period, performing the 'nuke and pave’ followed by merg-
ing pending commits within the users branch and resolving conflicts and committing all changes and resolves as
a single commit which the Archivist takes.

The steps shown below are extracts from an actual 'nuke and pave’ and you will need to alter the details to fit
your branch and the details of the commits that you are attempting to unify. The process begins with checking
out a fresh version of the developers branch into a new sandbox jwh_for_merge and then backing it up and per-
forming the grand merge (nuke and pave). If the grand merge fails remove the jwh_for_merge folder and extract
the tar file.

svn checkout https://espr.svn.cvsdude.com/esp-r/branches/Jon_Hand jwh_for merge

tar cf jwh_before_merge.tar jwh_for_merge

cd jwh_for merge

svn merge https://espr.svn.cvsdude.com/esp-r/branches/Jon_Hand
https://espr.svn.cvsdude.com/esp-r/branches/development branch ./

....time passes....

svn commit

Depending on network speed this kind of merge command can take several hours to complete and often there is
little or no feedback while svn is processing the command. If there are network faults the process may abort and
essentially what you need to do is remove the local sandbox and restore from the before-merge tar file and try
again. It is unlikely that there will be conflicts (if so they will need to be resolved and documented). At the end
of the process commit the merge with an explanitory note.

The next steps are to merge back in the separate commits that were pending. Hopefully you would have been
taking notes as the development work progressed and the log kept by subversion about your branch will provide
the details. Lets say you wanted a log for recent commits to a particular branch (from revision 4320 to revision
4340) - the command would be:

svn log -v -r 4320:4340 https://espr.svn.cvsdude.com/esp-r/branches/Jon_Hand > 4340a.txt

Double check the revision numbers prior to giving each of the merge-back commands. Again it can be helpful to
make a tar file of the sandbox at the start of the process. The following are an extract from notes taken as the
pending commits were merged back into the branch.

Re-establish earlier code:

svn merge -r 4126:4127 https://espr.svn.cvsdude.com/esp-r/branches/Jon_Hand
no conflicts

svn merge -r 4134:4135 https://espr.svn.cvsdude.com/esp-r/branches/Jon_Hand
no conflicts

svn merge -r 4135:4136 https://espr.svn.cvsdude.com/esp-r/branches/Jon_Hand
no conflicts

svn merge -r 4136:4137 https://espr.svn.cvsdude.com/esp-r/branches/Jon_Hand
no conflicts

svn merge -r 4151:4152 https://espr.svn.cvsdude.com/esp-r/branches/Jon_Hand

C src/esrue2r/radcmds.F - minor edit
svn resolved radcmds.F

C src/esruish/graph.F - minor edit
svn resolved graph.F - minor edit

C src/esrudfs/visvec.F

svn resolved visvec.F

Note that there were a number of ranges of commits that were required. After each merge it was noted whether
the merge was clean or the nature of the conflict. The command ’svn resolved’ are necessary after you have cor-
rected the conflict to inform svn of the changes. Such notes may seem pedantic, however, they become your
record of actions so that you do not later attempt to merge the same changes a second time.

-49-

To clarify whether merges have worked some developers do a visual comparison between the code and an un-
touched source code sandbox (hence the recommendation to checkout a fresh source code sandbox so that ear-
lier sandboxes are available for comparison).

Remember, good practice is for the development community to update their own branches as soon as practical
with changes in the development_branch. Failure to update can cause problems when it comes to preparing code
for submission to the Archivist. Good practice also includes making a backup copy of local sand boxes prior to
doing any major merges.

-50-

9 New release testing

The preparation for creating a new official distribution often requires a sequence of commits from several devel-
opers who are involved in carrying out the tests. For this task a temporary branch is often created for use by the
testing team (’4a’). Issues identified and corrected by the testers will be merged into the temporary branch
(’4b’). Once the Archivist is satisfied with the coding contributions, and the quality assurance tests are run on
the temporary branch the code is merged into the development branch (*4c’) and a new distribution is created
(’2a’) and announced.

The time delays inherent in the process can impact development teams who need to rapidly progress work. One
approach is to create a branch which several people have access to so that each member of the team can commit
and update from changes made within the team. Interactions with the Archivist and other members of the devel-
opment community follow the standard pattern.

Occasionally a change made in one developers branch is of immediate interest to another. While is possible to
merge such a change between branches, cross-branch merges should be clearly documented to ensure that only
the originator of the change commits it to the development branch.

9.1 Audit Trail

The audit trail built into SVN become, in effect, a blog for the community as contributions are committed to the
repository. Each commit includes a message identifying what changed, what the impact on users and developers
is and how the change was tested. The commit message for the addition of subroutine eclose3 provided as part
of the commit is shown below:

- Introduce a library subroutine to test closeness
of to vectors (3 reals) returning a logical value.
Update logic in esrucom/edatabases.F to use this
new facility. Users will not notice this change.

Testing

- Compile Linux GCC 4.1 X11

- Interactive test followed by removal of debug statements
- Pre-commit syntax checks

- Should not alter any predictions

--This line, and those below, will be ignored--

M lib/esru_lib.F
M esrucom/edatabase.F

svn commit lib esrucom

Sending esrucom/edatabase.F
Sending lib/esru_lib.F
Transmitting file data ..
Committed revision 4533.

The revision number returned after the commit command is unique and should be referenced when the devel-
oper is requesting that the development_branch be updated.

Each of the branch owners are notified of changes as they occur. The message composed during the commit
forms one part of the notification. The notification also includes web links so that the differences in the code can
be viewed.

9.2 Documentation for users

Viewed from the outside, the provision of documentation for users of ESP-r is of variable quality. Before inter-
faces offered contextual help, user manuals were the primary point of reference. The advent of contextual help
provides an alternative to reference manuals but also competes for scarce resources in order to populate the hun-
dreds of dialogues and scores of menus within ESP-r. One task that many developers forget is to update the con-
textual help messages to reflect the current facilities offered by the interface.

The above examples of the use of subversion have been taken from those in the development community who
are already adept at doing-the-dance. For those who are joining the ESP-r community there is a need for addi-
tional guidance. The following discussion of svn commands may be helpful.

-51-

10 Subversion Guide

The following section covers many of the tasks that developers are expected to accomplish via the source code
control environment subversion (abbreviated svn).

Subversion maintains a record of changes to the source code and provides a means for dealing with concurrent
changes to source files. It also allows developers to contribute to the ESP-r code base. This section describes
how to use Subversion to checkout a working copy, to add and remove files, and to commit files back to the
ESP-r code base. It is also useful to read the other documents in the archive folder which complement this docu-
ment.

10.1 Revision history

This document is under versioning control, and suggestions and contributions are strongly encouraged. The
troff-formatted source file for the latest version is found in the folder src/archive/ESP-r_developers_doc_text.txt
To generate an A4 postscript document from this file via the groff suite of tools (available for many operating
systems) issue the following command:

cat ESP-r_developers_doc_text.txt | eqn | tbl | groff -mms -dpaper=a4 -P-pa4 ESP-r_developers_doc.ps

10.2 What is a Subversion Repository?

A Subversion repository is both a storage area for project source code and a tracking system for source code
changes. It keeps track of the history of changes to every file and directory contained within it. The ESP-r Cen-
tral Subversion repository ensures that all developers and users have the most up-to-date version of the ESP-r
source code. Subversion also allows for developers to commit their bug-fixes and/or enhancements to the reposi-
tory.

For a complete description please refer to Chapter 2 of Versioning control with Subversion, by Collins-Sussman,
Fitzpatrick and Pilato:

http://svnbook.red-bean.com/en/1.1/ch02 .html

10.3 Obtaining a Subversion Client
Command line clients for various operating systems can be downloaded from the subversion website:
http://subversion.tigris.org/project_packages.html

There are also a number of graphical user interfaces that can be used to access a Subversion repository. Due to
variations in their use, they are not documented here. Most of these tools also provide a command line mode,
and this documentation is still applicable.

10.4 Anonymous access for Non-Developers

If you do not plan to modify ESP-r source code, you may download a working copy using anonymous access.
This is convenient for students and professionals who simply wish to download and compile the latest version of
ESP-r or make minor modifications such as increasing the maximum geometric complexity by adjusting param-
eters in the source code header (also known as include) files.

The following command will download ESP-1’s source code from the ESP-r Central repository to the current
working directory of your local computer:

svn checkout https://espr.svn.cvsdude.com/esp-r/branches/development branch

With this working directory, you will be able to compile ESP-r on your own computer. Though you will also be
able to alter the source code, you, will be unable to make changes to the ESP-r Central repository.

If you’re contemplating modifying ESP-r, are strongly encouraged to obtain a developer’s account. The GNU
public license includes a provision that changes you make to ESP-r should be shared with the community and
such contributions are made via subversion commands described in this document and the other documents in
the archive’ folder.

-52-

10.5 ESP-r Development with Subversion.

If you wish to make changes to the ESP-r Central repository, you must become familiar with the concepts of
working on “branches”, merging your changes back into your branch in the repository and documenting your
work so that others in the community can take advantage of the changes that you contribute. These concepts are
not trivial, and it is very important that you become comfortable with them.

For a complete description of branches and merging, please refer to chapter 4 of Versioning control with Subver-
sion, by Collins-Sussman, Fitzpatrick and Pilato:

http://svnbook red-bean.com/en/1.1/ch04 .html

ESP-r development occurs on separate “‘sub-branches’ that are assigned to individual contributors or teams of
contributors. Contributors modify and commit their code on to these sub-branches, where they can be inspected
by others. After completing a rigorous testing process, the ESP-r archivist merges contributions from a sub-
branch on to the main development branch, where they can be accessed by all developers.

A complete description of the ESP-r Subversion branch structure is available in the document ““Structure of the
ESP-r source code archive” which also includes further suggestions for how development work is managed
within the ESP-r development community.

10.6 Obtaining a Developer’s Account and Sub-branch

In order to work on a sub-branch, you must first have an ESP-r developer’s account and a sub-branch name
assigned to you. To obtain an account and sub-branch, contact Alex Ferguson (aferguso@nrcan.gc.ca).

10.7 Checking out a Sub-branch

You must perform a repository ‘“‘checkout” to obtain a working copy of your sub-branch. A ““checkout” will
download the module into your current working directory, where you can compile, alter the source code, and
“commit” your changes back to your developer-specific sub-branch for others to view. To perform a checkout,
use the following command:

svn checkout https://espr.svn.cvsdude.com/esp-r/branches/<sub-branch name>

Provide your developer’s account name and password when prompted.

If you are working on a computer with Cygwin or the Native Windows development environment (MSYS and
MinGW) you can also use an extension to Windows Explorer called Tortoisesvn from <http://tortois-
esvn.tigris.org>. Tortiosesvn allows you to right click on folders in Windows Explorer to accomplish many svn
commands. For the compile cycle you will also need a command line svn enviroment - this is available under
Cygwin but you will have to acquire a command line Subversion client such as is available from CollabNet
<http://www.open.collab.net/downloads/subversion/>.

Note that changes that you make in your working directory are NOT recorded in your branch of the repository
until you issue a relevant subversion command.

10.8 Common Subversion Commands

There are many commands available in Subversion; the following are the most common commands you will
use. For a more extensive list, please refer to Chapter 3 of the book Versioning control with Subversion:

http://svnbook red-bean.com/en/1.1/ch03s05 .html

None of these commands will affect other developer-specific sub-branches, they only affect the sub-branch you
have been assigned to work with.

ADD and DELETE files

Use these commands to schedule adding/removing files or directories to/from the sub-branch you are working
on. Additions and deletions will only take effect in the repository once you perform a ““commit” command.

svn add <path_to file to_be added>
svn delete <path_to file to_be deleted>

Check the STATUS of your workspace.

-53-

This command will list all the files you have changed relative to the sub-branch you are working on, which is
handy to use before a ‘““commit” or an “update”.

svn status <directory_or_ filename>

If the status list is long you may wish to re-direct the output to a file named current_status.txt use the following
command:

svn status <directory_ or_ filename> >current_status.txt

If you see a file marked with a ’?’ in the status list this signals that it is not known within the repository. If you
want the file to be known then issue the following sequence of commands:

svn add <path_to file or_ folder_ to_be_ added>
svn commit <path_to_file or folder_to_be added>

If the file or files to be added are the only pending tasks then you could issue a more general command:

svn add <path_to file or_folder_ to_be_added>
svn commit

Remember that files within the working directory which are not part of the repository risk being lost. Some files
should not be included in the repository - for example, object files and executables created during the compile
process are not part of the repository. Typically only the ASCII version of databases are included in the reposi-
tory (binary versions are created during the Install process).

10.8.1 Update files/directories of your workspace.

While you’ll initially work on your own personal branch, you may also be involved in collaborative projects
requiring several developers to share the same branch. In these projects, you will need to periodically update
your working copy with changes other developers have committed to the project branch. The “update” com-
mand will update your local copy with any changes that other developers have committed to the project branch
since your last checkout/update. But be careful! It automatically merges code into your files, so inspect all
updated files and ensure your code still works correctly. Some developers create a local archive or backup copies
of files which are work-in-progress prior to issuing “‘update” commands.

svn update <directory or_file to _be updated>

A conflict may occur if changes in the repository affect the same files you’ve modified in your local copy. Con-
flicts are discussed in detail below.

COMMIT your changes to the repository.

This command will commit all file changes, as well as Adds and Removes, to the branch you are working on.
See the repository document for further advise on how to plan your commits. Only valid ESP-r developer
account holders can use this command to update their branch of the repository or joint branches which they may
be working on. Prior to doing a commit set an environment variable to tell svn the editor you prefer to use to
document your commit.

SVN_EDITOR=nedit
export SVN_EDITOR
svn commit <directory_or_filename>

A text editor will be opened after you issue the above command. Enter a detailed message that elaborates the
reasons for your coding change/addition, the intent of your code, and the testing that you have conducted. You
should indicate in detail what impact this change has upon ESP-r functionality, and in particular, the impact it
has upon calculation results. This message will be permanently recorded in ESP-r Central’s repository log and
will act as a reference for other developers and for yourself in the future. Use proper sentence structure and
grammar to effectively communicate this critical information to your colleagues.

Within 24 hours of committing your changes, you will receive an automatically-generated test report comparing
the new version you’ve submitted with the previous version on your sub-branch. This test report will tell you if
your new version compiles correctly in various configurations, and will also highlight any questionable syntax
and potentially erroneous code introduced by your commit. Note that this report is based on differences

-54-

between your current commit and the previous state of your branch. To review the full syntax report you will
have to run the syntax checking software yourself.

10.8.2 Conflicts

Conflicts arise when changes received from another developer, during an update or merge, overlap with local
changes that you have in your working copy. You must resolve these conflicts before committing your changes
to the repository. Subversion will flag files in conflict with a ““C” after an update or merge:

svn update

(OUTPUT)
U Install <-- U indicates the file Install updated
C esrubps/bps.F <-- C indicates conflicts exist in esrubps/bps.F

Updated to revision 3. <-- Notification of update to revision number

Subversion will not allow you to commit any files until the conflict is manually resolved. A full discussion on
resolving conflicts can be found in Chapter 3 of Versioning control with Subversion, by Collins-Sussman, Fitz-
patrick and Pilato:

http://svnbook .red-bean.com/en/1.1/ch03s05 html#svn-ch-3-sect-5 .4

10.8.3 Checking recent changes in development_branch log

If you have not been paying close attention to recent changes in the development_branch then you can use svn
commands to find out what is the most recent revision to the development_branch and recover the develop-
ment_branch log to see details of changes:

svn info https://espr.svn.cvsdude.com/esp-r/branches/development_ branch
(OUTPUT)
Path: development_branch

URL: https://espr.svn.cvsdude.com/esp-r/branches/development_branch
Repository Root: https://espr.svn.cvsdude.com/esp-r

Repository UUID: 7d53e970-dell-0410-8a54-3d01b9da36ct

Revision: 385

Node Kind: directory

Last Changed Author: ibeausol

Last Changed Rev: 355

Last Changed Date: 2006-07-28 08:03:06 -0400 (Fri, 28 Jul 2006)

Note the current revision number (385) and the development_branch was last revised at 355.
To find out what has changed in the development_branch ask subversion for the log:

svn log -v https://espr.svn.cvsdude.com/esp-r/branches/development branch >> dev_log 355.txt

This creates a file dev_log_355.txt which you can open in a text editor. Giving the file a name which includes
the revision number is a good way of keeping track of your work.

If you notice there were changes between revision 200 and 385 that have not been included in your branch then
you will want to issue a svn merge command. Probably best to backup your sandbox before you do merges. Or
you could checkout a fresh sandbox of your branch and do the merge into that. If horrible things happen you can
toss away the fresh sandbox and start again.

cd <your_ sandbox>

svn merge -r 200:385 https://espr.svn.cvsdude.com/esp-r/branches/development_branch
(OUTPUT)

U integer.c
U button.c
U Makefile

6. Check to see if there are any conflicts and check the changes that have been merged.

10.8.4 Resolving conflicts

In the case that there are conflicts between the local changes and those on the development branch subversion
will create a left and right version of the source file. To see the differences use a visual comparison tool with the

-55-

left and right versions. The source file itself will have embeded markings <<<<<<< or >>>>>>> indicating
where the conflict is located. Manually edit the source file (not the left or right version files) and if you are
happy with the result issue a "svn resolved" command with the source file name. If you want to take the devel-
opment branch version execute an "svn revert".

-56-

REFERENCES

For more information on Subversion Merging, read Chapter 4: Branching and Merging of Versioning control
with Subversion, by Collins-Sussman, Fitzpatrick and Pilato:

http://svnbook red-bean.com/en/I .1/svn-book.html#svn-ch-4

Hand, J., 2011. The ESP-r Cookbook. University of Strathclyde, Glasgow, Scotland.
http://www.esru.strath.ac.uk.

Hand, J., 2009. Documentation of Open-source Simulation - Addressing Multiple Points of Interest. IBPSA BS
09 Conference proceedings, Glasgow, Scotland 2009.

Svn repository is at https://espr.svn.cvsdude.com/esp-r/branches/development_branch

