GSHP Input File Format for ESP-r/HOT3000 Julia Purdy

Modification to the Configuration File

In order to specify that there is a GSHP system being simulated, the configuration file (*.cfg*) must be modified to include tags for two new files – one to describe the ground loop (*.gshp*) and the other to describe the heat pump loop (*.hvac*).

In the .cfg gile under

* DATABASES

Add the following lines at the end of the list (after the *ctl and before the * **PROJ** LOG) to let the program know that there will be a GSHP calculation performed.

gshp ../hvac/.gshp
hvac ../hvac/.hvac

#	grou	nd loo	op inpu	ıt	file
#	heat	pump	input	fi	lle

Format of the .gshp Input File

The format of the **.gshp** file is dependent on the type of GSHP system being modelled. Four GSHP configurations are possible in ESP-r/H3K.

- Vertical single U-tube per bore hole
- Horizontal 4-pipe, 2x2 arrangement
- Horizontal 2-pipe, side-by-side arrangement
- Horizontal slinky arrangement

The input file contains both global variables and system specific variables. The following details all the required inputs for ground loop simulation (the listed variable names are used in the code).

Global Variables:

	# GSHP Input			
a	igshp type			# GSHP system type
	# Global Var	iables		
b	ID OD	Kpipe	L	<pre># pipe size and properties</pre>
С	Density	Ср	Flow # fluid properties	
d	Tmean Atemp	DAYo		<pre># Exterior conditions</pre>

System Specific Variables:

Vertical Single U-tube Borehole Systems

e Utube Nsoil Depth
f Ks Kw Ds Dw # repeated per soil layer
g SP Dtop Dbore Kgrout
h FixPara Nbore/Dbottom

Horizontal 4-pipe 2 x 2 arrangement

e Ks Kw Ds Dw f PD(1) PD(2) SD

Horizontal 2-Pipe Side-by-Side

е	Ks	Kw	Ds	Dw
f	SD	BD		

Horizontal Slinky

e Ks Kw Ds Dw
f BD Spiral NumP

Global Variables

The specific GSHP system to be modelled is defined in line **a**. The variable <code>igshp_type</code> relates to the GSHP system types as follows:

	igshp_type
vertical single U-tube:	1
horizontal 4 pipe 2x2 arrangement:	2
horizontal 2 pipe side-by-side arrangemen	t: 3
horizontal slinky:	4

The remainder of the global ground loop variables (lines **b**, **c**, and **d**) are specific to the pipe and fluid properties as well as the exterior conditions:

ID Pipe inside diam	ieter, cm
OD Pipe outside dia	meter, cm
Kpipe Pipe thermal cor	nductivity, W/m K
L Length of pipe, r	
Density Density of fluid,	kg/m ³
Cp Heat capacity of	fluid, J/kg K
Flow Heat exchanger	flow rate, L/s
Tmean Earth mean tem	perature, °C
Atemp Surface tempera	ature amplitude, °C
DAYO Time of minimur	n surface temperature

System Specific Variables

a. Vertical Single U-tube Borehole Systems

Utube	Number of U-bends per bore hole			
Nsoil	Number of layers of different soil			
Depth	Depth of bore hole			
Ks	Soil conductivity (per layer) in summer, W/mK			
Kw	Soil conductivity (per layer) in winter, W/mK			
Ds	Soil diffusivity (per layer) in summer, W/mK			
Dw	Soil Diffusivity (per layer) in winter, W/mK			
SP	Space between piping, cm			
Dtop	Distance below surface of top U-tube, m			
Dbore	Diameter of bore holes, cm			
Kgrout	Grout conductivity			
FixPara	Flag to determine whether following value is Nbore or Dbottom.			
If FixPara is 0, then				
Nbore Number of Boreholes				
If FixPara is another integer, then:				
Db	ottom Bottom depth			

Note, line **f** for the vertical system will have Ks, Kw, Ds, and Dw repeated, as many times as there are different layers of soil.

b. Horizontal 4 pipe 2 x 2 arrangement

Ks Soil condu	uctivity in summer, W/mK
---------------	--------------------------

- Kw Soil conductivity in winter, W/mK
- Ds Soil diffusivity in summer, W/mK
- Dw Soil Diffusivity in winter, W/mK

- PD(1) Depth of heat exchanger pipe 1, m
- PD(2) Depth of heat exchanger pipe 2, m
- SD Spacing between pipes, m

c. Horizontal 2 Pipe Side-by-Side

- Ks Soil conductivity in summer, W/mK
- Kw Soil conductivity in winter, W/mK
- Ds Soil diffusivity in summer, W/mK
- Dw Soil Diffusivity in winter, W/mK
- SD Spacing between pipes, m
- BD Depth below surface, m

d. Horizontal Slinky

- Ks Soil conductivity in summer, W/mK
- Kw Soil conductivity in winter, W/mK
- Ds Soil diffusivity in summer, W/mK
- Dw Soil Diffusivity in winter, W/mK
- BD Depth of heat exchanger pipe, m
- SpiralDiameter of slinky spirals, mNumPNumber of pipes per trench