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ABSTRACT

This paper describes a series of tests that were
performed to determine whether a neural-network
model could outperform a correlation-based model in
representing foundation heat losses.  The two models
were trained with data generated by BASECALC, a
finite-element-based program for modelling   
foundation heat losses.  The two models are    
described along with details of the tests used to
compare them.

The most important conclusion of this work is that
although both models accurately represent the
BASECALC data, the NN model outperforms the
correlation-based model in the majority of the tests.
This observation has greater implications in terms of
time rather than accuracy.  The use of neural
networks rather than correlations could significantly
reduce the development time of regression-based
algorithms for building energy programs.  Although
correlation techniques may be preferable for some
applications due to their closed-form nature, neural
network models should be given due consideration.

INTRODUCTION
A regression-based residential-foundation heat-loss
algorithm named BASESIMP (Beausoleil-Morrison    
and Mitalas 1997; Beausoleil-Morrison 1996b) has
been created for implementing into whole-building
programs.  BASESIMP represents both above- and
below-grade time-dependent foundation heat losses.

BASESIMP is a closed-form correlation model based   
on data generated with BASECALC, a finite-
element-based foundation heat-loss program
(Beausoleil-Morrison et al 1995, Beausoleil-
Morrison 1996a).  33 000 BASECALC parametric
simulations were performed to generate the
BASESIMP regression data.  Location of the
insulation, insulation resistance, structural material,
height, depth, width, length, soil conductivity, and
water-table depth were varied.

As is often necessary with regression methods, many
constructs were examined before finalizing the form of

the BASESIMP correlation equations.  This is a
disadvantage of closed-form correlation methods: a
great deal of time must be invested to establish the
form of the correlation equations.

Neural Networks (NNs) offer an alluring alternative,
despite their “black-box” nature.  NNs have great
flexibility as the user does not need to define the form
of the correlation between the inputs and outputs.  As
such, it may be substantially less time consuming to
apply NNs rather than correlation-based methods to
develop regression-based algorithms.  NNs also have
the potential to represent data sets more accurately
than correlation methods, even when the latter have
well-developed forms.

Krarti (1995) explored the use of NNs to represent
below-grade foundation heat losses.  He compared the
abilities of NNs and a correlation-based method to
predict the annual mean heat loss, the annual
amplitude of the heat loss, and the annual phase lag
for a number of slabs-on-grade.  He found the NNs
outperformed the regression model and concluded
that NNs offer an accurate method for predicting
foundation heat losses.

In this paper, the ability of NNs to represent
foundation heat losses is further tested.  Specifically,
the following question is posed: can an NN model
represent foundation heat losses as (or more)
accurately than the BASESIMP correlations?

The following sections succinctly review the
BASESIMP algorithm and the NN model.  A  
detailed description of the tests performed to compare
BASESIMP and the NN model is presented and  
finally the full results of the comparison are given and
conclusions drawn.

THE BASESIMP ALGORITHM

BASESIMP uses the principle of superpositioning to
express the foundation’s instantaneous heat loss by
three components:



Qbasement(t) = Qabove− grade(t)

+Qbelow − grade, average

+Qbelow − grade, harmonic(t )

( 1 )

Each of the three components of the heat loss is
related to its thermal boundary conditions and a
three-dimensional shape factor:

Qabove− grade(t) = Sag(Tbasement− Ta) ( 2 )

Qbelow − grade, average= Sbg, avg⋅ (Tbasement− Tg, avg)

( 3 )

Qbelow − grade, harmonic(t) = Sbg, var⋅ Tg , amp

⋅ sin(ωt + PHASE− π / 2 − Ps)

( 4 )

Sag is the three-dimensional shape factor for the   
above-grade component {W/K}; Sbg,avg is three-
dimensional shape factor for the mean below-grade
component {W/K}; Sbg,var is the three-dimensional
shape factor for the harmonic below-grade component
{W/K}; PHASE is the thermal-response factor
{radians}; Tbasement is the temperature of the space
contained by the foundation {K}; Tg,avg is the annual-
average ground-surface temperature {K}; Tg,amp is the
amplitude of the annual harmonic of the ground-
surface temperature {K}; Ta is the exterior dry-bulb
temperature {K}; and Ps is the phase lag of the
ground-surface temperature cosine wave {radians}.

The corner-correction method (Beausoleil-Morrison
et al 1995b) is used to determine the three-
dimensional shape factors using two-dimensional
calculations:

Sag = SUMUO⋅ 2(length+ width)  ( 5 )

Sbg, avg = SUMUR⋅ {2(length− width) + 4 ⋅ width⋅ Fcs}

( 6 )

Sbg, var = ATTEN⋅{2( length− width) + 4 ⋅ width ⋅ Fcv}

( 7 )

PHASE= PHASE  ( 8 )

Fcs and Fcv are the scalar corner-correction factors, a
function of foundation and site thermophysical
properties.   SUMUO, SUMUR, ATTEN are the results of
2D calculations.

Simple algebraic equations are used to determine
SUMUO, SUMUR, ATTEN, and PHASE as a function of a
foundation and site’s thermal and physical variables.
The equations for SUMUO, SUMUR, ATTEN, and
PHASE were determined by correlating data generated
by 33 000 finite-element-based BASECALC
simulations.  As is often necessary with regression
methods, many constructs were examined before
finalizing the form of the BASESIMP correlations.
Establishing the appropriate form of the correlation
equations is time consuming but critical.  If an
improper form is selected, the quality of the
correlations will suffer.  The equations finally
selected for BASESIMP are given below:

SUMUO=
a1 + b1(height− depth) + c1
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+ j1{ }

( 9 )

SUMUR=

{q2 + r 2(width)} ⋅{u2 + v2(soilk)} ⋅ {w2 + x2(depth)}

(wtable)s2+ t2( width)+ y2( depth)
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ATTEN= a3 + b3(soilk) + c3(depth){ }
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( 11 )

PHASE= a4 +
b4

(rsi)c 4

( 12 )



For a given set of foundation and site thermophysical
variables, the process of applying the BASESIMP
algorithm is summarized below:

• Calculate SUMUO, SUMUR, ATTEN, and PHASE      
using equations ( 9 ) through ( 12 ).

• Correct for three-dimensional effects around
corners using equations ( 5 ) through ( 8 ).

• Calculate the heat losses using equations ( 1 )
through ( 4 ).

A more detailed description of the BASESIMP   
algorithm is given in Beausoleil-Morrison and
Mitalas (1997).

THE NN MODEL

There are several variations of neural network models
applied to prediction problems.  The approach used    
in this paper uses a multilayer feedforward neural
network with the back-propagation learning
algorithm. This approach has been successfully
applied to predict short-term building loads (Anstett
and Kreider 1993).

Neural networks provide an alternative approach to
traditional modeling and statistical methods, and are
used for a wide variety of learning tasks. General
areas of application include classification, time-series
prediction, function approximation, optimization,
and control.  NNs have inherent advantages over
other traditional methods when the data are “fuzzy”,
have hidden patterns embedded, or exhibit non-
linearity.

The fundamental building block of an NN is the
neuron.  Each neuron has an output or activation,
which is function of its input. This activation    
function is a threshold function that is nonlinear and
easily differentiable.  The input to a single neuron is
the sum of the outputs for all other neurons
connected to it multiplied by the weights connecting
them.

Figure 1 Schematic of a Single-Hidden Layer NN
Model

Figure  1  shows a  schematic  diagram of  a   single-
hidden layer NN model.  Between the input and the
output layers, there are one or more hidden layers.
The nodes between the layers are interconnected with
weights Wij.  These weights are adjusted to
minimize the error function E defined by the sum of
squares of the predictions errors:

 E =
1

2
tk − Ok( )2

k=1

N

∑

where, tk is the actual or target value, and Ok is the
predicted output using an activation function f:

Ok = f WikOi
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I

∑
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The function f is typically a bounded monotone
function such as f(x)=tanh(x).  The weights Wij of
the neural network are adjusted to minimize the error
function E using the gradient descent method by

changing a weight from Wij to Wij − α
∂E

∂Wij
,  where  

the parameter α is called the learning rate. In
addition to this learning rate parameter, a momentum
term is also added to the weights to improve the
convergence of the neural-network algorithm.  This
method of weight adjustment is called the back-
propagation training procedure.  When the error
reaches a small value, it is customary to say that the
network has learned the mapping between the input
and output variables.  However, this learning process
is merely an error minimization routine.

 The learning process of the NN used in this paper is
summarized below:

• Present network with training examples
consisting of patterns of input and target outputs.
In this paper, the input data include the
foundation and site's thermal and physical
characteristics and the outputs are the
coefficients SUMUO, SUMUR, ATTEN, and PHASE.
Single        output NNs are used in this analysis.

• Determine how closely the network output
matches the target outputs (i.e, output-layer
error).

• Adjust the connection weights by an amount
which is proportional to the rate at which the
output error changes as those weights change
(error derivative).

• Continue the process of sending back the error
signals through the network until the confidence
level is achieved or a threshold number of
iterations is reached.



Krarti (1995) provides more details on the training
and testing methods used in this analysis.

NEURAL NETWORKS VERSUS BASESIMP

A series of tests were designed to answer the question
posed at the start of this paper: can the NN model
represent foundation heat losses as (or more)
accurately than the BASESIMP correlations?

A single BASESIMP system was selected, namely
concrete basements with interior full-height   
insulation (Figure 2).  As discussed by Beausoleil-
Morrison and Mitalas (1997), 1080 BASECALC
parametric simulations were performed to generate
the regression data for this system.  The coefficients
of equations ( 9 ) through ( 12 ) (a1, q2, etc.) were
determined by fitting these 1080 data points.  Hence,
this set of BASECALC results is referred to as the
training data.

Figure 2 Basement with interior full-height     
insulation

In order to compare BASESIMP and the NN model
on equal footing, the NN model was trained with the
same training data set—it learned the mapping
between input and output variables.

Then, an additional 228 BASECALC simulations
were performed to establish a test data set.  Inputs for
height, depth, width, water-table depth, soil
conductivity, and insulation resistance were   
randomly-generated, producing combinations that
neither BASESIMP nor the NN model had   
experienced.  This is a blind test for the NN model:
the modeller has no knowledge of the BASECALC
outputs for the 228 test-data points.  It is also a blind
test for BASESIMP as the 228 test-data points
encompass input combinations that were not used to
develop the BASESIMP correlations.

Three tests (named A, B, and C) were then designed
to determine how accurately BASESIMP and the NN
model could represent the test data set.  In each of
the three tests, the 228 input combinations were    
provided to the models, each predicted the outputs,
and the outputs were compared to the BASECALC
results (the reference).

Six criteria were used to assess the quality of the fits
(shown here for BASESIMP and SUMUO):

• The mean of the absolute

errors:errabs
avg =

SUMUOBASESIMP,i
− SUMUOBASECALC,i

i=1

n

∑
n

• The maximum of the absolute errors:

errabs
max = max SUMUOBASESIMP,i − SUMUOBASECALC,i{ }

• The root-mean square of the absolute errors:

errabs
rms =

SUMUOBASESIMP,i
− SUMUOBASECALC,i

2

i=1

n

∑
n

• The mean of the relative

errors:errrel
avg =
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SUMUOBASECALC,i
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• The maximum of the relative errors:
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BASECALC,i
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• The root-mean square of the relative errors:

errabs
rms =

SUMUOBASESIMP,i
− SUMUOBASECALC,i

SUMUOBASECALC,i
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 
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2
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In Test A the ability to predict SUMUO, SUMUR,  
ATTEN, and PHASE was determined.  BASESIMP  
applies equations ( 9 ) through ( 12 ) to predict these
quantities while they are outputs of the NN model.

The ability to predict heat loss from 2D cross-
sections is assessed in Test B.  In this test the
BASESIMP- and NN-predicted SUMUO, SUMUR,
ATTEN, and PHASE (from Test A) are combined with
weather data for three climates (Montréal, Edmonton,
and Vancouver) to predict the instantaneous heat loss
at two points during the heating season: November  
10 and February 20.  Errors resulting from the
predictions of SUMUO, SUMUR, ATTEN, and PHASE  
could propagate when these factors are combined
with weather data.  Hence, this is more demanding
than Test A.

Since the heat loss from 2D cross-sections was being
compared, the corner-correction method is not
applied.  Rather the following relation is used to
estimate the 2D heat loss:



Q' basement( t) = SUMUO(Tbasement− Ta)

+SUMUR(Tbasement− Tg, avg)

+
ATTEN⋅ Tg, amp

⋅sin(ωt + PHASE−π / 2 − Ps)

 
 
 

 
 
 

The two methods’ accuracy in predicting heating-
season heating loads from whole basements   
(including 3D effects around corners) is assessed in
Test C.  The full BASESIMP algorithm is          
employed in this test:

• SUMUO, SUMUR, ATTEN, and PHASE are predicted
using equations ( 9 ) through ( 12 )

• adjustments are made for the three-dimensional
effects using the corner-correction method—
equations ( 5) through ( 8 ).

• the heat loss is expressed using equations ( 1 )
through ( 4 ).

• equation ( 1 ) is integrated from October 1 to     
April 30 to produce the heating-season heating
load.

This procedure is not used for the NN model; rather
the heating-season energy loss is the output of the
NN model, having been trained to the BASECALC-
predicted heating-season energy loss.

Weather data for three cities are used in this test:
Montréal, Edmonton, and Vancouver.

TEST A RESULTS

The following two figures (Figure 3 and Figure 4)
illustrate how BASESIMP and the NN model       
perform in predicting SUMUR for the test data set.  If
agreement were perfect, all data points would lie on
the diagonal line whose slope is unity.  As can be   
seen, both models produce good agreement, although
there is slightly less scatter with the NN model.

Figure 3 BASESIMP SUMUR predictions

Figure 4 NN SUMUR predictions

The following tables present the six error criteria for
SUMUO, SUMUR, ATTEN, and PHASE, for both
BASESIMP and the NN model.  As can be seen,
BASESIMP slightly outperforms the NN model in
predicting SUMUO, whereas the NN model produces
lower error criteria for SUMUR, ATTEN, and PHASE.

SUMUO SUMUR

BASESIMP NN BASESIMP NN

errabs

avg 0.011
W/mK

0.011
W/mK

0.062
W/mK

0.042
W/mK

errabs

max 0.031
W/mK

0.040
W/mK

0.277
W/mK

0.199
W/mK

errabs

rms 0.013
W/mK

0.013
W/mK

0.077
W/mK

0.058
W/mK

errrel

avg 5.6% 6.3% 3.2% 2.1%

errrel

max 19.7% 25.5% 10.3% 8.9%

errrel

rms 6.8% 8.3% 3.8% 2.6%

ATTEN PHASE

BASESIMP NN BASESIMP NN

errabs

avg 0.020
W/mK

0.016
W/mK

0.062 rad 0.043 rad

errabs

max 0.070
W/mK

0.066
W/mK

0.170 rad 0.131 rad

errabs

rms 0.024
W/mK

0.020
W/mK

0.076 rad 0.054 rad

errrel

avg 3.5% 2.6% 2.3% 1.6%

errrel

max 15.8% 9.9% 6.6% 4.9%

errrel

rms 4.5% 3.2% 2.9% 2.0%



TEST B RESULTS

The next two figures (Figure 5 and Figure 6)     
illustrate how BASESIMP and the NN model have
performed in predicting the heat loss on November     
10 in Edmonton.  Once again, there is less scatter
associated with the NN model.

Figure 5 BASESIMP 2D heat-loss predictions for
November 10 in Edmonton

Figure 6 NN 2D heat-loss predictions for November 10
in Edmonton

The following three tables presents the six error   
criteria for the heat loss predictions on November 10
and February 20 for both BASESIMP and the NN
model.  There is a separate table for each city.

As can be seen, the NN model outperforms    
BASESIMP in Test B.  In all cases, the NN model
produces lower error criteria.

Montréal

November 10

Montréal

February 20

BASESIMP NN BASESIM
P

NN

errabs

avg 1.2 W/m 0.8 W/m 1.0 W/m 0.6
W/m

errabs

max 3.8 W/m 3.1 W/m 4.2 W/m 2.6
W/m

errabs

rms 1.5 W/m 1.0 W/m 1.2 W/m 0.7
W/m

errrel

avg 4.2 % 2.6 % 2.3 % 1.3 %

errrel

max 11.4 % 10.3 % 8.7 % 6.8 %

errrel

rms 5.1 % 3.2 % 2.9 % 1.7 %

Edmonton

November 10

Edmonton

February 20

BASESIMP NN BASESIMP NN

errabs

avg 1.3 W/m 0.8 W/m 1.0 W/m 0.6
W/m

errabs

max 4.0 W/m 3.2 W/m 4.3 W/m 2.7
W/m

errabs

rms 1.6 W/m 1.0 W/m 1.3 W/m 0.8
W/m

errrel

avg 3.8 % 2.2 % 2.4 % 1.3 %

errrel

max 10.0 % 9.5 % 8.6 % 6.8 %

errrel

rms 4.6 % 2.8 % 2.9 % 1.8 %

Vancouver

November 10

Vancouver

February 20

BASESIMP NN BASESIMP NN

errabs

avg 0.8 W/m 0.5 W/m 0.6 W/m 0.3
W/m

errabs

max 2.4 W/m 2.0 W/m 2.7 W/m 1.7
W/m

errabs

rms 1.0 W/m 0.6 W/m 0.8 W/m 0.5
W/m

errrel

avg 4.1 % 2.5 % 2.3 % 1.3 %

errrel

max 10.8 % 10.0 % 8.9 % 6.9 %

errrel

rms 4.9 % 3.0 % 2.8 % 1.7 %



TEST C RESULTS

The next two figures (Figure 7 and Figure 8)     
illustrate how BASESIMP and the NN model have
performed in predicting the heating-season heating
load in Montréal.  This time, BASESIMP produces
slightly better agreement than the NN model.

Figure 7 BASESIMP predictions of heating-season
heating load for Montréal

Figure 8 NN predictions of heating-season heating
load for Montréal

The following two tables presents the six error    
criteria for the heating-season heating load for both
BASESIMP and the NN model.

In this test there is no clear winner.  For all three
locations, the two methods have similar average and
root-mean square error numbers: in some cases
BASESIMP is better while in others the NN model
is better.  However, BASESIMP consistently
produces lower maximum errors, indicating that the
NN model has greater errors for a few points

To place these numbers in context, space heat from a
mid-efficiency gas furnace costs in the order of
7$Can/GJ in Canada (4.50 ECU).  Therefore, the
average error for both models is in the order of
4.50$Can/year (2.90 ECU).  The greatest errors are
less than 16$Can (10.30 ECU) for BASESIMP and less
than 25$Can (16.10 ECU) for the NN model.

Montréal Edmonton

BASESIMP NN BASESIMP NN

errabs

avg 0.6 GJ 0.6 GJ 0.6 GJ 0.6 GJ

errabs

max 2.1 GJ 3.5 GJ 2.2 GJ 3.4 GJ

errabs

rms 0.8 GJ 0.8 GJ 0.8 GJ 0.8 GJ

errrel

avg 2.8 % 2.9% 2.8 % 2.4 %

errrel

max 8.2 % 14.0 % 8.4 % 11.8
%

errrel

rms 3.5% 3.9 % 3.4 % 3.2 %

Vancouver

BASESIMP NN

errabs

avg 0.4 GJ 0.3 GJ

errabs

max 1.3 GJ 1.8 GJ

errabs

rms 0.5 GJ 0.4 GJ

errrel

avg 2.8 % 2.3%

errrel

max 8.2 % 12.8 %

errrel

rms 3.4% 3.2 %

DISCUSSION AND CONCLUSIONS
Two regression-based approaches for representing
foundation heat losses have been presented.  The first
is a closed-form correlation model (BASESIMP)  
while the second is a multilayer feedforward neural
network model with the back-propagation learning
algorithm (the NN model).

Both models were trained to represent heat losses  
from basements with interior full-height insulation.
The training data was a set of results derived from
1080 BASECALC simulations.  An additional 228
BASECALC simulations were performed to generate  
a test data set and a series of tests executed to
compare the two models’ accuracy in representing the
test data.

In all tests, both BASESIMP and the NN model
accurately represented the test data.  However, with a
few exceptions, the NN model outperformed
BASESIMP.  This indicates that either approach can
be used to accurately represent foundation heat
losses; however, the NN model can lead to greater
accuracy.

These results have significant implications for the
development of regression-based models for
representing foundation heat losses—and for the
entire field of building energy analysis.  Compared to
traditional correlation-based techniques, NN models



offer the potential for improved accuracy.
Additionally—and much more significantly—their     
use can substantially reduce model development    
time.  Many constructs were examined before the
functional form of the BASESIMP correlations was
established: this was a time consuming task.  In
contrast, because the modeller did not have to specify
functional forms, a small fraction of the this time was
required to develop the NN model.

Correlation-based techniques may be preferable for
some applications due to their closed-form—as
opposed to “black-box”—nature.  Notwithstanding,    
NN approaches should be given due consideration
when developing regression-based algorithms.
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NOMENCLATURE
Qbasement(t) = total heat loss from foundation (W)

Qabove-grade(t) = heat loss from foundation to ambient air
(W)

Qbelow-grade,average(t) = mean-annual heat loss from
foundation to soil (W)

Qbelow-grade,harmonic(t) = annual harmonic of heat loss from
foundation to soil (W)

Sag = 3D shape factor for above-grade heat loss (W/K)

Sbg,avg = 3D shape factor for mean-annual below-grade
heat loss (W/K)

Sbg,var = 3D shape factor for annual harmonic below-
grade heat loss (W/K)

PHASE = thermal-response factor (radians)

Tbasement = temperature of the space contained by the
foundation (K)

Tg,avg = annual-average ground-surface temperature (K)

Tg,amp = amplitude of the annual harmonic of the
ground-surface temperature (K)

Ta = exterior dry-bulb temperature (K)

Ps = phase lag of the ground-surface temperature
cosine wave (radians)

t = time (weeks)

ϖ = 2¹ rad/year

length =  length of foundation (m)

width = width of foundation (m)

height = height of foundation wall (m)

depth = depth of foundation wall (m)

soilk = thermal conductivity of soil (W/mK)

rsi = thermal resistance of insulation (m2K/W)

wtable = depth of water table below grade (m)

a1, q2, etc = correlation coefficients


