4.1 Concrete Basements with Interior-Wall Insulation

BCIN_1
- interior surface of wall insulated over full-height
- any first-floor construction type
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCIN_2
- interior surface of wall insulated from top of wall to 0.2m from floor
- any first-floor construction type
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCIN_3
• interior surface of wall insulated from top of wall to 0.6m below-grade
• first-storey brick veneer placed directly on basement’s concrete walls
• 200mm concrete walls and 100mm concrete floor
• Use column 2 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCIN_4
• interior surface of wall insulated from top of wall to 0.6m below-grade
• first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
• 200mm concrete walls and 100mm concrete floor
• Use column 2 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
4.2 Concrete Basements with Exterior-Wall Insulation

BCEN_1
- exterior surface of wall insulated over full-height
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 1 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCEN_2
- exterior surface of wall insulated over full-height
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 1 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCEN_3
- exterior surface of wall insulated below-grade
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 4 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCEN_4
- exterior surface of wall insulated below-grade
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 4 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCEN_5

- exterior surface of wall insulated to 0.6m below-grade
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 1 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCEN_6

- exterior surface of wall insulated to 0.6m below-grade
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 1 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
4.3 Concrete Basements with No Insulation

BCNN_1
- no insulation
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 1 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCNN_2
- no insulation
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 1 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
4.4 Concrete Basements with Interior- and Exterior-Wall Insulation and No Slab Insulation

BCCN_1
- exterior surface of wall insulated below-grade
- interior surface of wall insulated from top of wall producing an overlap with the exterior insulation
- overlap between interior and exterior insulation is a variable
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- For corner-correction method (Beausoleil-Morrison et al 1995b):
 - Use Table 1, column 4 if overlap is less than 0.6m
 - Use Table 2, column 1 if overlap is greater than 0.6m and height of exterior insulation is greater than height of interior insulation
 - Use Table 1, column 3 if height of interior insulation is greater than height of exterior insulation

```
brickwork

overlap
```

BCCN_2
- exterior surface of wall insulated below-grade
- interior surface of wall insulated from top of wall producing an overlap with the exterior insulation
- overlap between interior and exterior insulation is a variable
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- For corner-correction method (Beausoleil-Morrison et al 1995b):
 - Use Table 1, column 4 if overlap is less than 0.6m
 - Use Table 2, column 1 if overlap is greater than 0.6m and height of exterior insulation is greater than height of interior insulation
 - Use Table 1, column 3 if height of interior insulation is greater than height of exterior insulation

BCCN_3
- exterior surface of wall insulated over full height
- interior surface of wall insulated over full height
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- Thermal break between walls and floor slab
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCCN_4
- exterior surface of wall insulated to 0.6 m below grade
- interior surface of wall insulated over full height
- any first story construction
- 200 mm concrete wall and 100 mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCCN_4](attachment:image)

BCCN_5
- exterior surface of wall insulated over full height
- interior surface of wall insulated from top of wall to 0.2 m from floor
- any first story construction
- 200 mm concrete wall and 100 mm concrete floor
- Use column 5 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCCN_5](attachment:image)
4.5 Concrete Basements with Interior- and Exterior-Wall Insulation and Above-Slab Insulation

BCCA_1
- exterior surface of wall insulated below grade
- interior surface of wall insulated from top of wall producing an overlap with the exterior insulation
- floor and wall insulation have same thermal resistance
- top of slab fully insulated
- first-storey brick veneer placed directly on basement’s concrete wall
- 200 mm concrete wall and 100 mm concrete slab
- Use column 8 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCCA_4
- exterior surface of wall insulated below grade
- interior surface of wall insulated from top of wall producing an overlap with the exterior insulation
- floor and wall insulation have same thermal resistance
- top of slab fully insulated
- first-storey is non-brick veneer or brick thermally broken from basement’s concrete walls
- 200 mm concrete wall and 100 mm concrete slab
- Use column 8 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCCA_7
- exterior surface of wall insulated to 0.6 m below grade
- interior surface of wall is fully insulated
- top surface of floor slab is fully insulated
- slab and wall insulation have same thermal resistance
- any first story construction
- 200 mm concrete wall and 100 mm concrete floor
- Use column 6 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCCA_8
• exterior surface of wall fully insulated
• interior surface of wall insulated to 0.2 m from top of slab
• top surface of floor slab is fully insulated
• slab and wall insulation have same thermal resistance
• any first storey construction
• 200 mm concrete wall and 100 mm concrete slab
• Use column 8 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

4.6 Concrete Basements with Interior- and Exterior-Wall Insulation and Sub-Slab Insulation

BCCB_4
• exterior surface of wall insulated over full height
• interior surface of wall insulated over full height
• sub-surface of floor slab fully insulated but no insulation under footing
• thermal break between walls and floor slab
• sub slab and wall insulation have same thermal resistance
• any first storey construction
• 200mm concrete walls and 100mm concrete floor
• Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCCB_8
- exterior surface of wall insulated over full height
- interior surface of wall insulated over full height
- bottom of slab insulated with a 0.6 m strip around the perimeter
- sub slab and wall insulation have same thermal resistance
- any first storey construction
- 200 mm concrete wall and 100 mm concrete slab
- Use column 7 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCCB_9
- exterior surface of wall insulated to 0.6m below grade
- interior surface of wall insulated over full height
- sub-surface of floor slab fully insulated but no insulation under footings
- sub slab and wall insulation have same thermal resistance
- any first storey construction
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCCB_10

- exterior surface of wall insulated to 0.6m below grade
- interior surface of wall insulated over full height
- sub-surface of floor slab insulated with a 0.6m strip around perimeter but no insulation under footings
- sub-slab and wall insulation have same thermal resistance
- any first floor construction
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
4.7 Wood Basements with No Insulation

BWNN_1
• no insulation
• any first-floor construction type
• 50mm wood walls and 100mm wood floor
• Use column 1 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

4.8 Wood Basements with Interior-Wall Insulation

BWIN_1
• interior surface of wall insulated over full-height
• any first-floor construction type
• 50mm wood walls and 100mm wood floor
• Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BWIN_2
- Interior surface of wall insulated from top of wall to 0.2m from floor
- Any first-floor construction type
- 50mm wood walls and 100mm wood floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BWIN_3
- Interior surface of wall insulated from top of wall to 0.6m below-grade
- Any first-floor construction type
- 50mm wood walls and 100mm wood floor
- Use column 2 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

4.9 Wood Basements with Exterior-Wall Insulation

BWEN_1
- exterior surface of wall insulated over full-height
- any first-floor construction type
- 50mm wood walls and 100mm wood floor
- Use column 1 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BWEN_2
- exterior surface of wall insulated below-grade
- any first-floor construction type
- 50mm wood walls and 100mm wood floor
- Use column 4 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BWEN_3

- exterior surface of wall insulated to 0.6m below-grade
- any first-floor construction type
- 50mm wood walls and 100mm wood floor
- Use column 1 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

4.10 Wood Basements with Interior-Wall and Above-Slab Insulation

BWIA_1

- interior surface of wall insulated over full height
- top of slab insulated with 0.6 m strip around perimeter
- floor and wall insulation have same thermal resistance
- any first storey construction
- 50mm wood walls and 100mm wood floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
4.11 Concrete Basements with Interior-Wall and Sub-Floor Insulation

BWIA_2
- interior surface of wall insulated over full height
- top of slab fully insulated
- floor and wall insulation have same thermal resistance
- any first storey construction
- 50mm wood walls and 100mm wood floor
- Use column 6 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCIB_1
- interior surface of wall insulated over full-height
- sub-surface of floor slab fully insulated but no insulation under footings
- sub-slab and wall insulation have same thermal resistance
- any first-floor construction type
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCIB_2
- interior surface of wall insulated over full-height
- sub-surface of floor slab insulated with a 0.6m strip around perimeter
- sub-slab and wall insulation have same thermal resistance
- any first-floor construction type
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCIB_3
- interior surface of wall insulated over full-height
- sub-surface of floor slab insulated with a 1.0m strip around perimeter
- sub-slab and wall insulation have same thermal resistance
- any first-floor construction type
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCIB_4
- interior surface of wall insulated over full-height
- sub-surface of floor slab fully insulated but no insulation under footings
- thermal break between walls and floor slab
- sub-slab, wall, and thermal break insulation all have same thermal resistance
- any first-floor construction type
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCIB_4 construction type](attachment:image.png)

BCIB_5
- interior surface of wall insulated over full-height
- sub-surface of floor slab insulated with a 0.6m strip around perimeter
- thermal break between walls and floor slab
- sub-slab, wall, and thermal break insulation all have same thermal resistance
- any first-floor construction type
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCIB_5 construction type](attachment:image.png)
BCIB_6
- interior surface of wall insulated over full-height
- sub-surface of floor slab insulated with a 1.0m strip around perimeter
- thermal break between walls and floor slab
- sub-slab, wall, and thermal break insulation all have same thermal resistance
- any first-floor construction type
- 200mm concrete walls and 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCIB_6](image)

BCIB_7
- interior surface of wall insulated to 0.6 m below grade
- bottom of slab fully insulated
- sub-slab, wall, and thermal break insulation all have same thermal resistance
- first-storey brick veneer placed directly on basement’s concrete walls
- Thermal break between walls and floor slab
- 200mm concrete walls and 100mm concrete floor
- Use column 7 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCIB_7](image)
BCIB_8
• interior surface of wall insulated to 0.6 m below grade
• bottom of slab fully insulated
• sub-slab, wall, and thermal break insulation all have same thermal resistance
• first-storey is non-brick veneer or bricks thermally broken from concrete walls
• thermal break between walls and floor slab
• 200mm concrete walls and 100mm concrete floor
• Use column 7 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCIB_8]

4.12 Concrete Basements with Interior-Wall and Above-Floor Insulation

BCIA_1
• interior surface of wall insulated over full-height
• top surface of floor slab fully insulated
• floor and wall insulation have same thermal resistance
• any first-floor construction type
• 200mm concrete walls and 100mm concrete floor
• Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCIA_1]
The document provides detailed information on the insulation requirements for various types of basements. Here is a summary of the key points:

BCIA_4

- **interior surface of wall insulated from top of wall to 0.2m from floor**
- **top surface of floor slab fully insulated**
- **floor and wall insulation have same thermal resistance**
- **any first-floor construction type**
- **200mm concrete walls and 100mm concrete floor**
- **Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)**

![Diagram of BCIA_4](image)

4.13 Concrete Basements with Exterior-Wall and Sub-Floor Insulation

BCEB_1

- **exterior surface of wall insulated over full-height**
- **sub-surface of floor slab fully insulated but no insulation under footings**
- **sub-slab and wall insulation have same thermal resistance**
- **first-storey brick veneer placed directly on basement’s concrete walls**
- **200mm concrete walls and 100mm concrete floor**
- **Use column 4 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)**

![Diagram of BCEB_1](image)
BCEB_2
- exterior surface of wall insulated over full-height
- sub-surface of floor slab insulated with a 0.6m strip around perimeter
- sub-slab and wall insulation have same thermal resistance
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 1 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCEB_3
- exterior surface of wall insulated over full-height
- sub-surface of floor slab insulated with a 1.0m strip around perimeter
- sub-slab and wall insulation have same thermal resistance
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 1 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCEB_4
- exterior surface of wall insulated over full height
- sub surface of floor slab fully insulated but no insulation under footings
- floor and wall insulation have same thermal resistance
- first-storey non-brick veneer or bricks thermally broken from concrete walls
- 200mm concrete walls and 100 mm concrete floor
- Use column 8 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCEB_4](image)

BCEB_5
- exterior surface of wall insulated over full height
- sub surface of floor slab insulated with 0.6 m strip around perimeter
- floor and wall insulation have same thermal resistance
- first-storey non-brick veneer or bricks thermally broken from concrete walls
- 200mm concrete walls and 100 mm concrete floor
- Use column 5 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCEB_5](image)
BCEB_6
- exterior surface of wall insulated over full height
- sub surface of floor slab insulated with 1. m strip around perimeter
- floor and wall insulation have same thermal resistance
- first-storey non-brick veneer or bricks thermally broken from concrete walls
- 200mm concrete walls and 100 mm concrete floor
- Use column 5 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCEB_8
- exterior surface of wall insulated to 0.6m below grade
- sub-surface of floor slab fully insulated but no insulation under footings
- thermal break between slab and wall
- sub-slab, wall, and thermal break insulation have same thermal resistance
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 4 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCEB_9
- exterior surface of wall insulated to 0.6 m below grade
- sub-surface of floor slab fully insulated but no insulation under footings
- thermal break between slab and wall
- sub-slab, wall, and thermal break insulation have same thermal resistance
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 4 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
4.14 Concrete Basement with Exterior-Wall and Above-Slab Insulation

BCEA_1
- exterior surface of wall insulated over full-height
- top-surface of floor slab fully insulated
- slab and wall insulation have same thermal resistance
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 4 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCEA_4
- exterior surface of wall insulated over full-height
- top-surface of floor slab fully insulated
- slab and wall insulation have same thermal resistance
- any first floor construction
- 200mm concrete walls and 100mm concrete floor
- Use column 4 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCEA_5
- exterior surface of wall insulated to 0.6 m below grade
- top surface of floor slab is fully insulated
- slab and wall insulation have same thermal resistance
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 8 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BCEA_6
- exterior surface of wall insulated to 0.6 m below grade
- top surface of floor slab is fully insulated
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 8 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
BCEA_7
- exterior surface of wall insulated below grade only
- top-surface of floor slab fully insulated
- slab and wall insulation have same thermal resistance
- first-storey brick veneer placed directly on basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 4 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCEA_7](image1)

BCEA_8
- exterior surface of wall insulated below grade only
- top-surface of floor slab fully insulated
- slab and wall insulation have same thermal resistance
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 200mm concrete walls and 100mm concrete floor
- Use column 4 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BCEA_8](image2)
4.15 Wood Wall and Concrete Slab Basements with Exterior-Wall and Below-Slab Insulation

BBEB_1
- exterior surface of wall insulated to 0.6 m below grade
- bottom of slab fully insulated but no insulation under footings
- first-storey brick veneer placed directly on basement’s concrete walls
- sub-slab and wall insulation have same thermal resistance
- 50 mm wood wall and 100 mm and concrete floor
- Use column 8 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BBEB_2
- exterior surface of wall insulated to 0.6 m below grade
- bottom of slab fully insulated but no insulation under footings
- first-storey brick veneer placed directly on basement’s concrete walls
- thermal break between slab and wall
- slab, wall, and thermal break insulation have same thermal resistance
- 50 mm wood wall and 100 mm and concrete floor
- Use column 8 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
4.16 Wood Wall and Concrete Slab Basements with Exterior-Wall and No-Slab Insulation

BBEN_1
- exterior surface of wall fully insulated
- first-storey is brick veneer placed directly on basement’s concrete walls
- 50 mm wood wall and 100 mm concrete floor
- Use column 5 of Table 1 for the corner-correction method (Beausoleil-Morrison et al. 1995b)

BBEN_2
- exterior surface of wall insulated to 0.6 m below grade
- first-storey is brick veneer placed directly on basement’s concrete walls
- 50 mm wood wall and 100 mm concrete slab
- Use column 4 of Table 1 for the corner-correction method (Beausoleil-Morrison et al. 1995b)
4.17 Wood Wall and Concrete Slab Basements with Interior-Wall and Above-Slab Insulation

BBIA_1
- interior surface of wall insulated over full-height
- top-surface of floor slab fully insulated
- slab and wall insulation have same thermal resistance
- any first storey construction
- 50mm wood walls and 100mm concrete floor
- Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BBIA_1](image)

BBIA_2
- interior surface of wall insulated over full height
- top of slab insulated with a 0.6 m strip around the perimeter
- slab and wall insulation have same thermal resistance
- any first storey construction
- 50 mm wood wall and 100 mm concrete slab
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BBIA_2](image)
4.18 Wood Wall and Concrete Slab Basements with Interior-Wall and Below-Slab Insulation

BBIB_1
- interior surface of wall insulated over full height
- sub-surface of floor slab insulated with a 0.6m strip around perimeter
- slab and wall insulation have same thermal resistance
- any first storey construction
- 50mm wood walls and 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BBIB_1]

BBIB_2
- interior surface of wall insulated over full-height
- sub-surface of floor slab fully insulated but no insulation below footings
- slab and wall insulation have same thermal resistance
- any first storey construction
- 50mm wood walls and 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of BBIB_2]
BBIB_3
- interior surface of wall insulated over full-height
- sub-surface of floor slab fully insulated but no insulation under footings
- thermal break between slab and wall
- slab, wall, and thermal break insulation have same thermal resistance
- any first floor construction
- 50 mm wood walls and 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BBIB_4
- interior surface of wall insulated from top of wall to 0.6m below grade
- sub-surface of floor slab fully insulated but no insulation under footings
- thermal break between slab and wall
- slab, wall, and thermal break insulation have same thermal resistance
- first-storey brick veneer placed directly on basement’s concrete walls
- 50mm wood walls and 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
4.19 Wood Wall and Concrete Floor Basements with Interior-Wall and No Slab Insulation

BBIN_1
- interior surface of wall insulated over full-height
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 50mm wood walls and 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

BBIN_2
- interior surface of wall insulated from top of wall to 0.6 m below grade
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 50 mm wood wall and 100 mm concrete floor
- Use column 2 of Table 1 and set RSI=0 for the corner-correction method (Beausoleil-Morrison et al 1995b)
4.20 Concrete Slabs-on-Grade with No Insulation on the Slab

SCN_1
- no insulation
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 and set RSI=0 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCN_2
- no insulation
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 and set RSI=0 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCN_3
- thermal break around edge of slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 and set RSI=0 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCN_4
• thermal break around edge of slab
• first-storey brick veneer placed directly on concrete slab
• 100mm concrete floor
• Use column 3 of Table 1 and set RSI=0 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCN_7
• thermal break around edge of slab
• vertical skirt extends 0.6m from bottom of slab
• first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
• 100mm concrete floor
• Use column 3 of Table 1 and set RSI=0 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCN_8
• thermal break around edge of slab
• vertical skirt extends 0.6m from bottom of slab
• first-storey brick veneer placed directly on concrete slab
• 100mm concrete floor
• Use column 3 of Table 1 and set RSI=0 for the corner-correction method
 (Beausoleil-Morrison et al 1995b)

4.21 Concrete Slabs-on-Grade with Sub-Slab Insulation

SCB_1
• bottom of slab insulated 0.6m around perimeter
• no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
• first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
• 100mm concrete floor
• Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_2
- bottom of slab insulated 0.6m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCB_3
- bottom of slab insulated 0.6m around perimeter
- insulation also placed under footing creating a 0.85m continuous section of insulation
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_4
• bottom of slab insulated 0.6m around perimeter
• insulation also placed under footing creating a 0.85m continuous section of insulation
• first-storey brick veneer placed directly on concrete slab
• 100mm concrete floor
• Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCB_5
• bottom of slab insulated 0.6m around perimeter
• no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
• thermal break around edge of slab
• first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
• 100mm concrete floor
• Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_6
- bottom of slab insulated 0.6m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- thermal break around edge of slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram SCB_6](image)

SCB_9
- bottom of slab insulated 0.6m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- thermal break around edge of slab
- vertical skirt extends 0.6m from bottom of slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram SCB_9](image)
SCB_10
- bottom of slab insulated 0.6m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- thermal break around edge of slab
- vertical skirt extends 0.6m from bottom of slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of SCB_10](image)

SCB_11
- bottom of slab insulated 0.6m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- 0.2m-deep horizontal skirt extends 0.6m from slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of SCB_11](image)
SCB_12
- bottom of slab insulated 0.6m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- 0.2m-deep horizontal skirt extends 0.6m from slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCB_13
- bottom of slab insulated 1.0m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_14
- bottom of slab insulated 1.0m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCB_17
- bottom of slab insulated 1.0m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- thermal break around edge of slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_18
- bottom of slab insulated 1.0m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- thermal break around edge of slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of SCB_18](image)

SCB_21
- bottom of slab insulated 1.0m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- thermal break around edge of slab
- vertical skirt extends 0.6m from bottom of slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of SCB_21](image)
SCB_22
- bottom of slab insulated 1.0m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- thermal break around edge of slab
- vertical skirt extends 0.6m from bottom of slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCB_23
- bottom of slab insulated 1.0m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- 0.2m-deep horizontal skirt extends 0.6m from slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_24
- bottom of slab insulated 1.0m around perimeter
- no insulation under footing or foundation wall (ie. insulation starts 0.25m from edge)
- 0.2m-deep horizontal skirt extends 0.6m from slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of SCB_24](image1)

SCB_25
- bottom of slab fully insulated except under footing/foundation wall (ie. insulation starts 0.25m from edge)
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of SCB_25](image2)
SCB_26
• bottom of slab fully insulated except under footing/foundation wall (ie. insulation starts 0.25m from edge)
• first-storey brick veneer placed directly on concrete slab
• 100mm concrete floor
• Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCB_29
• bottom of slab fully insulated except under footing/foundation wall (ie. insulation starts 0.25m from edge)
• thermal break around edge of slab
• first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
• 100mm concrete floor
• Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_30
- bottom of slab fully insulated except under footing/foundation wall (ie. insulation starts 0.25m from edge)
- thermal break around edge of slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of SCB_30](image)

SCB_31
- bottom of slab fully insulated
- insulation under footing/foundation wall
- thermal break around edge of slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of SCB_31](image)
SCB_32
- bottom of slab fully insulated
- insulation under footing/foundation wall
- thermal break around edge of slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCB_33
- bottom of slab fully insulated except under footing/foundation wall (ie. insulation starts 0.25m from edge)
- thermal break around edge of slab
- vertical skirt extends 0.6m from bottom of slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_34
- Bottom of slab fully insulated except under footing/foundation wall (ie. insulation starts 0.25m from edge)
- Thermal break around edge of slab
- Vertical skirt extends 0.6m from bottom of slab
- First-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCB_35
- Bottom of slab fully insulated except under footing/foundation wall (ie. insulation starts 0.25m from edge)
- 0.2m-deep horizontal skirt extends 0.6m from slab
- First-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_36
- bottom of slab fully insulated except under footing/foundation wall (ie. insulation starts 0.25m from edge)
- 0.2m-deep horizontal skirt extends 0.6m from slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCB_37
- bottom of slab insulated 0.35m around perimeter
- insulation under footing creating a 0.6m continuous section of insulation
- thermal break around edge of slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_38
- bottom of slab insulated 0.35m around perimeter
- insulation under footing creating a 0.6m continuous section of insulation
- thermal break around edge of slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCB_39
- bottom of slab insulated 0.75m around perimeter
- insulation under footing creating a 1.0m continuous section of insulation
- thermal break around edge of slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCB_40

- bottom of slab insulated 0.75m around perimeter
- insulation under footing creating a 1.0m continuous section of insulation
- thermal break around edge of slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 3 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of SCB_40](image)

4.22 Concrete Slabs-on-Grade with Above-Slab Insulation

SCA_1

- top of slab insulated 0.6 m strip around perimeter
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100 mm concrete slab
- Use column 6 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Diagram of SCA_1](image)
SCA_2
• top of slab insulated 0.6 m strip around perimeter
• first-storey brick veneer placed directly on concrete slab
• 100 mm concrete slab
• Use column 6 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCA_9
• top of slab insulated 1.0 m strip around perimeter
• first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
• 100 mm concrete slab
• Use column 6 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCA_10
• top of slab insulated 1.0 m strip around perimeter
• first-storey brick veneer placed directly on concrete slab
• 100 mm concrete slab
• Use column 6 of Table 1 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCA_17
- top of slab fully insulated
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Insulated Wall Diagram]

SCA_18
- top of slab fully insulated
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Brickwork Insulated Wall Diagram]

SCA_19
- top of slab fully insulated
- thermal break around edge of slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

![Insulated Wall Diagram]
SCA_20
- top of slab fully insulated
- thermal break around edge of slab
- first-storey brick veneer placed directly on concrete slab
- 100mm concrete floor
- Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCA_21
- top of slab fully insulated
- thermal break around edge of slab
- vertical skirt extends 0.6m from bottom of slab
- first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
- 100mm concrete floor
- Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCA_22
• top of slab fully insulated
• thermal break around edge of slab
• vertical skirt extends 0.6m from bottom of slab
• first-storey brick veneer placed directly on concrete slab
• 100mm concrete floor
• Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)

SCA_23
• top of slab fully insulated
• 0.2m-deep horizontal skirt extends 0.6m from slab
• first-storey is non-brick veneer or bricks thermally broken from basement’s concrete walls
• 100mm concrete floor
• Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)
SCA_24
• top of slab fully insulated
• 0.2m-deep horizontal skirt extends 0.6m from slab
• first-storey brick veneer placed directly on concrete slab
• 100mm concrete floor
• Use column 2 of Table 2 for the corner-correction method (Beausoleil-Morrison et al 1995b)