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After a short description of the physical phenomena involved, unified expressions are worked out describing net
airflow and net heat flow through large vertical openings between stratified zones. These formulae are based on
those of Cockroft for bidirectional flow, but are more general in the sense that they apply to situations of
unidirectional flow as well. The expressions are compatible with a pressure network description for multizone
modelling of airflow in buildings. The technique has been incorporated in the flows solver of the ESP-r building
and plant energy simulation environment.
The relative importance of the governing variables (pressure difference, temperature difference and vertical air
temperature gradients) is demonstrated by parametric analysis of energy performance in a typical building
context. It is concluded that vertical air temperature gradients have a major influence on the heat transferred
through large openings in buildings and should be included in building energy simulation models.

Symbols

ai temperature profile coefficient for zonei (K)
bi temperature gradient in zonei (K / m)
Cd discharge coefficient (−)
cp specific heat of air (J/ kgK)
g acceleration of gravity (m/ s2)
h aperture height (m)
M molecular mass of air (kg/ kgmole)
.mij air mass flow from zonei to zonej (kg/ s)
P pressure (Pa)
.qij air volume flow from zonei to zonej (m3/ s)
Pref reference pressure (Pa)
R universal gas constant (J/ kgmole K)
T temperature (K)
u horizontal air velocity (m/ s)
W aperture width (m)
z height coordinate (m)
zn height of neutral level (m)
z0 height of reference level (m)
zb height of bottom of aperture (m)
Φij heat flow from zonei to zonej (W)
ρ air density (kg/ m3)
ξ integration variable (m)
α ≡ (z0 − zb) / h (−)
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Ca ≡ ∆P(zb + h) (Pa)
Cb ≡ ∆P(zb) (Pa)
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INTRODUCTION

Airflows through doorways, windows and other
large openings are important paths via which air
(including moisture and pollutants) and thermal
energy are transferred from one zone of a building to
another. In case of large openings, the airflow at the
top usually differs from the flow at the bottom of the
opening. Under certain conditions this may even
result in bidirectional flow through the opening.
In recent times there has been an increased interest
in modelling airflow through large openings in
buildings (eg Allard et al. 1992). The current
publication seeks to be a basic contribution in this
area by presenting and demonstrating a general



approach for predicting airflow and heat flow
through large vertical openings between stratified
zones.

Net Heat Flow when Zero Volume Flow

For the mass and heat transfer through large vertical
openings, Balcomb et al. (1984) and others like
Boardman et al. (1989) used the so-calledisothermal
zoneBernoulli model.

According to Bernoulli, the maximum velocityu(z)
in a large vertical opening between two zones
resulting from a static pressure difference (thereby
excluding any frictional losses) is given by:

u(z) = √ 2∆P

ρ
= √ 2∆ρ

ρ
g(z − zn) =

= √ 2g

T
∆T(z − zn) (m/ s) [1]

wherezn indicates the height of the neutral level (ie
the level at which the pressure difference
∆P ≡ P1 − P2 = 0 Pa), ∆ρ ≡ ρ1 − ρ2, and∆T is
the temperature difference between zone 1 and zone
2 ie∆T ≡ T2 − T1.

In this expression, it is implicitly assumed that∆T is
independent of the height coordinatez, ie that
temperature gradients are equal and not too large.
When the top-to-bottom temperature difference over
the opening is small compared to the absolute
temperature, this approximation is highly accurate.

The heat flowΦ21 from the warmer zone (2) to the
colder zone (1) is carried by air flowing from 2 to 1
abovetheneutral level. The heat flowΦ12 from the
colder zone (1) to the warmer zone (2) takes place
below the neutral level. These contributions are
given by:

Φ21 = cpCdW

zb+h

zn

∫ ρ2(z)u(z)T2(z)dz (W) [2a]

Φ12 = cpCdW

zn

zb

∫ ρ1(z)u(z)T1(z)dz (W) [2b]

Balcomb’s expression for thenet heat flowthrough
the aperture is obtained by inserting the expression
for u(z) into the expressions forΦ21 and Φ12,
thereby assuming that the temperature profiles in
both zones are linear, ieTi (z) = ai + bi z, and
assuming that thenet volume flowis zero, ie that the
neutral level is located in the middle of the aperture.
The expression reads:

Φ12 + Φ21 =
Cd ρ cpW

3 √ g

T
h3/2∆T1/2 *

* 

∆T + 0. 3h(b1 + b2)


(W) [3]

and is good approximation when the thermal
gradients in both zones are equal, and not too large.
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Figure 1 Definition of various parameters

From equation [3] it is seen that by including the
temperature gradientsb1 and b2 the heat flow is

increased by the factor



1+

0. 3h(b1 + b2)

∆T




. In

practice b1 and b2 are not well known, but the
importance of this correction factor for small∆T
shows the need to include the effect of stratification
in building energy simulation environments like
ESP-r.

Mass Flow between Stratified Zones

In the following, an expression for the mass flow
through a large opening separating two zones of
different temperature and pressure is derived. The
general case is considered, ie there is a static
pressure difference at reference levelz0 between
zone 1 and 2, and different vertical temperature
profiles occur in the two zones. These temperature
profiles are assumed linear, though the temperature
gradients can be different. The situation is depicted
in Figure 1.

First we assume that conditions are such that the
neutral level, ie the level at which the pressure is
equal in zones 1 and 2, is located in the opening, so
thatbidirectionalair flow occurs.

The stack pressure differencebetween a point at
height z and a point at reference heightz0 is
calculated from:



∆P(z) − ∆P(z0) =
z

z0

∫ g 


ρ2(ξ ) − ρ1(ξ )

dξ (Pa)[4]

Although density variations due to pressure
variations are negligibly small, those resulting from
temperature differences should be taken into
account, especially when temperature gradients are
large. The air density in zonei is inversely
proportional to the temperature, namely:

ρ i =
Pref M

RTi
(kg/ m3)

where Pref is some reference pressure, eg the
atmospheric pressure,M is the molecular weight of
air, and R is the universal gas constant. To a very
good approximation one may write:

ρ i =
K

Ti
(kg/ m3)

with K constant. The expression for∆P(z) now
reads:

∆P(z) − ∆P(z0) =

=
z

z0

∫ gK




1

T2(ξ )
−

1

T1(ξ )





dξ (Pa) [5]

Assuming a linear temperature profile
Ti (z) = ai + bi z one obtains:

∆P(z) − ∆P(z0) =

= gK
z

z0

∫




1

a2 + b2ξ
−

1

a1 + b1ξ




dξ

= . . . . . . . . . . . . .

= gK




1

b2
ln

T2(z)

T2(z0)
−

1

b1
ln

T1(z)

T1(z0)





(Pa) [6]

If the temperature gradient in both zones is not too
large, we have to a very good approximation:

ln
Ti (z)

Ti (z0)
≈

Ti (z) − Ti (z0)

Ti (z0)
(−),

ie thefirst order approximationis highly accurate.

Inserting the linear temperature profile gives:

ln
Ti (z)

Ti (z0)
≈ bi

z − z0

Ti (z0)
(−)

so that in first order approximation:

∆P(z) − ∆P(z0) ≈

≈ gK 


1

T2(z0)
−

1

T1(z0)



(z − z0) (Pa) [7]

This means that∆P(z) changes linearly with the
height coordinatez when temperatures in both zones
differ at the reference heightz0. Note that the first
order approximation results in equation [7] which is
independent of the temperature gradients in both
zones, b1 and b2. Inserting the second order
approximation, ie

ln
Ti (z)

Ti (z0)
≈

Ti (z) − Ti (z0)

Ti (z0)
−

1

2


Ti (z) − Ti (z0)

Ti (z0)



2

(−)

in equation [6] gives:

∆P(z) − ∆P(z0) ≈

≈ gK 


1

T2(z0)
−

1

T1(z0)



(z − z0)

−
1

2
gK 


b2

T2
2(z0)

−
b1

T2
1(z0)




(z − z0)2 (Pa),

showing that the temperature gradients give only a
second order contribution to∆P(z).
Therelative errormade by assuming that

ln
Ti (z)

Ti (z0)
≈

Ti (z) − Ti (z0)

Ti (z0)
(−)

is of the order of(Ti (z) − Ti (z0)) / 2Ti (z0). Even
for a ceiling-to-floor temperature difference of 6K ,
this relative error will be≈ 1% at most. As in the
mass flow calculation the square root of∆P(z) is
integrated over the height of the opening, the
resulting error will even be smaller. In the
following, this error will therefore be neglected.

If the opening through which the air flows extends
from zb to zb + h, the pressure difference between
the two zones at bottom levelzb will be equal to:

∆P(zb) = ∆P(z0) + [7a]

+ gK 


1

T2(z0)
−

1

T1(z0)



(zb − z0) (Pa)

and at the top of the opening:

∆P(zb + h) = ∆P(z0) + [7b]

gK 


1

T2(z0)
−

1

T1(z0)



(zb + h − z0) (Pa)

Now, if EITHER ∆P(zb) > 0 and ∆P(zb + h) < 0
OR ∆P(zb) < 0 and ∆P(zb + h) > 0 then the
neutral levelzn is located inside the opening and
bidirectional airflow occurs. If ∆P(zb) and
∆P(zb + h) have the same sign, or if one of them is



zero, onlyunidirectionalflow takes place.

According to Bernoulli’s Law, a pressure difference
∆P(z) results in a local air velocityu(z)
proportional to the square root of∆P(z). Therefore,
an infinitesimal volume flowd .q through an element
of heightdz in the opening can be written as:

d .q = W u(z) dz (m3/ s) [8]

If we consider the case whereT2 > T1 and where
the pressures at reference levelz0 in both zones are
such that the neutral level is located inside the
opening (so bidirectional airflow will occur), then
the mass flow from 2 to 1 is equal to:

.m21 =
zb+h

zn

∫ ρ2d .q =

= CdW√ 2ρ2

zb+h

zn

∫ ∆P(z)1/2dz (kg/ s) [8a]

and the mass flow from 1 to 2 is equal to:

.m12 =
zn

zb

∫ ρ1d .q =

= CdW√ 2ρ1

zn

zb

∫ ∆P(z)1/2dz (kg/ s) [8b]

whereCd is an empirical constant.

In these expressions, the error made by placing

√ 2ρ i in front of the integral sign is negligible
because density variations are very small over the
integration interval when compared to variations in
∆P(z). Inserting the linear expression for∆P(z)
into the integrals gives for

.m21 and
.m12 the

following expressions:

.m21 =
2

3
CdW√ 2ρ2

h

Ct
C3/2

a (kg/m3) [9a]

.m12 =
2

3
CdW√ 2ρ1

h

Ct
(−C3/2

b ) (kg/m3) [9b]

where:

Ct ≡ hgK 


1

T2(z0)
−

1

T1(z0)



= Ca − Cb (Pa)

Ca ≡ ∆P(zb + h) (Pa)

Cb ≡ ∆P(zb) (Pa)

Note that in the situation in figure 1, the pressure
difference at the top level of the opening,

Ca ≡ ∆P(zb + h) is negative, so that C3/2
a is an

imaginary number. To keep the value of
.m21 real,

the absolute value ofCa should be taken.

It is convenient, however, to write thenet mass flow
of air through the opening as a complex quantity, ie:

.mnet = .m21 + .m12 =
2√2

3
CdW

h

Ct
*

* 
√ ρ2C3/2

a − √ ρ1C3/2
b




(kg/ s) [10]

This expression was first derived by Cockroft
(1979). The net mass flow is acomplex number, of
which thereal part gives the flow from 1 to 2 and
the imaginarypart gives the flow from 2 to 1.

It must be emphasized that the Cockroft formula for
.mnet in the form given above only holds for the

special case depicted in Figure 1! There are two
reasons why it is necessary to modify the
expression:

1st If zone 1 on the left were thewarmer zone
instead of the cooler one,

.m12 would take place
abovethe neutral level, and

.m21 below it. The
integration interval for both contributions would
be interchanged, so that in Cockroft’s
expression, the term containingCa is now

.m12
and the term containingCb is now

.m21. The
formula now reads:

.mnet = .m12 + .m21 =
2√2

3
CdW

h

Ct
*

* 
√ ρ1C3/2

a − √ ρ2C3/2
b




(kg/ s) [10a]

However, thereal part still gives the flow from 1
to 2 and theimaginary part still gives the flow
from 2 to 1.

2ndIf the external pressures in both zones differ
considerably, the neutral level will shift to a
height below or above(ie outside) the opening,
so that the airflow becomesunidirectional. In
this situation, one of the flow terms results from
an integration over theentireopening, ie fromzb
to zb + h, while the other term is canceled. In
the situation of unidirectional flow, the pressure
differences at the bottom and top of the opening,
Cb and Ca, have thesame sign(unless one of

them vanishes), so thatC3/2
a − C3/2

b is either a
real or apure imaginarynumber.



By carefully comparing the expressions for
.mnet

which can be established for the different cases of
unidirectional and bidirectional flow, ie by "tuning"
the temperature difference and the pressure
difference between zone 1 (left) and zone 2 (right),
the following very convenient formula for

.mnet
which holds inall casescan be obtained:
.mnet = .m12 + .m21 (kg/ s) [11]
.m12 = √ ρ1 Re(Za − Zb) ≥ 0 (kg/ s) [11a]
.m21 = −√ ρ2 Im(Za − Zb) ≤ 0 (kg/ s) [11b]

where:

Za ≡
2√2

3

CdhW

Ct
C3/2

a (m2Pa1/2)

Zb ≡
2√2

3

CdhW

Ct
C3/2

b (m2Pa1/2)

As the direction1 → 2 is, by definition, thepositive
direction, the contribution

.m21 should be non-
positive, which explains the minus sign appearing in
it. The artificial complex quantitesZa and Zb are
introduced for convenience and have no physical
meaning. In the complex plane,Za − Zb is located
either on the positive real axis (when there is a
unidirectional flow 1 → 2), on the positive
imaginary axis (when there is a unidirectional flow
2 → 1), or in the first quadrant of the complex plane
(when the flow is bidirectional). When for a given
temperature difference between zone 1 and 2 the
external pressure difference∆P(z0) is continuously
increased from highly negative to highly positive,
Za − Zb describes a smooth continuous curve.

Heat Flow between Stratified Zones

Just as for the mass flow, a convenient expression
for the bidirectional heat flow through a large
opening between stratified zones can be derived,
giving Φ12 andΦ21 as real and imaginary parts of
complex quantities.

Whereas mass flows are calculated by evaluating
integrals of the type:

∫ ρ i (z)d .q (kg/s)

heat flows are calculated by evaluating integrals of
the type:

∫ cpTi (z)ρ i (z)d .q =

= cpCdW ∫ √ 2ρ i (z)Ti (z)√ ∆P(z)dz (W)

in an analogous way.

To be able to evaluate these integrals analytically for
linear temperature profiles
Ti (z) = Ti (z0) + bi (z − z0), the integrand

√ 2ρ i (z)Ti (z)√ ∆P(z) above, should be of the form

[ polynomial] . √ ∆P(z), which means that

√ 2ρ i (z)Ti (z) should be approximated by its "best
linear fit", which is (as can be checked easily):

√ 2ρ i (z0) . [Ti (z0) + 1/2bi (z − z0)] (√ kg/m3K)

Evaluation of the integrals is a rather laborious task,
which will not be documented here due to space
constraints (we will gladly provide the full
derivation to readers wishing to obtain this material).
However, when these integrals are worked out in the
same way as was done for the mass flows, we obtain
convenient expressions for the heat flowsΦ12 and
Φ21, namely:

Φnet = Φ12 + Φ21 (W) [12]

Φ12 = cp√ ρ1 * [12a]

* Re (T̃1a(z0)Za − T̃1b(z0)Zb) ≥ 0 (W)

Φ21 = − cp√ ρ2 * [12b]

* Im ( T̃2a(z0)Za − T̃2b(z0)Zb) ≤ 0 (W)

where:

T̃ia(z0) ≡ Ti (z0) −

− bi h




Ca

5Ct
+

α − 1

2





(K) for i = 1, 2

T̃ib(z0) ≡ Ti (z0) −

− bi h




Cb

5Ct
+

α
2





(K) for i = 1, 2

in which α is a dimensionless reference height
(α ≡ (z0 − zb)/h), and the densitiesρ1, respectively
ρ2, are evaluated at the reference levelz0.

APPLICATION

Equations [11] and [12] have been incorporated into
the large vertical openingscomponent of the flows
solver (Hensen 1991) of the ESP-r building and
plant energy simulation environment (Aasem et al.
1993). This particular solver is based on a nodal
network mass balance approach, and can be used -
amongst others - for multizone modelling of airflow
in buildings.
In the following some calculation results are given,
which demonstrate the relative importance of the
flow governing variables by means of parametric
analysis.
For this we started from a base-case involving two



building zones connected by a door opening with
width W = 1.0 m, heigthh = 2.0 m, and reference
heightα = 0.5 . The discharge coefficientCd was
assumed to be 0.50 . Various combinations of
pressure difference, temperature difference, and
vertical air temperature gradients were considered.
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Figure 2 Mass flow rate
.m (kg/ s) vs pressure

difference P1 − P2 (Pa) for
|T1(z0) − T2(z0)| = 10 K

Figure 2. shows the mass flow results as a function
of the pressure difference between zone 1 and zone
2, for an absolute temperature difference of 10K .
From equation [11] follows that the temperature
gradients do not influence the mass flows. Flow
.m12 will be above the neutral level when zone 1 is

the warmer zone, otherwise it will be below neutral
level. From the results it is clear that there is only a
small band in∆P for which bidirectional flow
occurs. It should be noted however that the
corresponding airflows are quite large; eg for
∆P = 0. 25Pa .m12 is ≈ 0. 75kg/ s or

≈ 2250m3/ h. This implies that there will also be a
large heat flow associated with that. If we would
make graphs for the heat flowsΦ (and assuming that
there are no vertical temperature gradients), then the
shapes would be quite similar to the ones in Figure
2. Obviously the y-axis values will be different and
would range from -600kW to 600kW for the range
of pressure and temperature differences in Figure 2.

Figure 3. shows the net mass flow results for various
absolute temperature differences. At very low or
zero temperature difference there will only be uni-
directional flow and the airflow will be similar to the
flow through a large orifice. Figure 3. indicates that
an increase in temperature difference "smooths" the
transition from flow in the direction of1 → 2 to the
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Figure 3 Net mass flow rate
.mnet (kg/ s) vs

pressure differenceP1 − P2 (Pa) as a
function of absolute temperature difference
|T1(z0) − T2(z0)| (K)

direction of2 → 1 when∆P changes from positive
to negative.
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Figure 4 Net heat flowΦnet (W) vs vertical
temperature gradientb2 (K / m) for zone 2 as
a function of gradientb1 (K / m) for zone 1;
∆P(z0) = 0 (Pa)

As indicated above, the mass flows are not
influenced by the vertical temperature gradients.
This is clearly not the case for the heat flows as can
be seen in Figure 4. This figure shows the net heat
flow (ie Φnet = Φ12 + Φ21) between zone 1 and
zone 2, assuming that the reference temperature in



zone 1 is 30°C and is 20°C in zone 2. For this case
there is no pressure difference at reference height; ie
∆P(z0) = 0 Pa. From Figure 4 follows that net
heat flow for this case would be≈ 1600W when the
temperature gradients would not be taken into
account (ieb1 = b2 = 0 K / m). If there would only
be a gradient in one of the zones (egb1 = 0 and
b2 ≠ 0) then (for this particular case) the change in
net heat flow is about 100W for each unit change in
vertical temperature gradient. If both gradients are
non-zero then the changes can even be bigger as can
be seen in Figure 4. For instance for a common case
where there are vertical temperature gradients of≈ 1
K / m in each zone, then the net heat flow would be
≈ 1800W instead of 1600W, which is a difference
of 12%.

CONCLUSION

A general solution is presented for predicting (net)
airflow and (net) heat flow through large vertical
openings between stratified building zones. The
solution proved to be compatible with a nodal
network description of leakages for multizone
modelling of airflow in buildings. By parametric
analyses, the relative importance of the flow
governing variables is demonstrated. From the
results it is clear that - apart from the other
governing variables like pressure and temperature
difference - vertical air temperature gradients have a
major influence on the heat exchange by inter-zonal
airflows.
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