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Project History and Acknowledgements

Between 1979 and 1985, the UK Science and Engineering Research Council (SERC) sponsored work on
environmental prediction modelling which highlighted the need for greater flexibility in model structures.
In 1985, a number of European and North American research organisations considered the future of build-
ing energy modelling and its relationship to computer-aided building design. A degree of consensus
emerged on the limitations of contemporary models and the features which would be desirable in the next
generation.

The UK response was the notion of an advanced machine environment (Clarke et al 1988; Clarke 1988)
which would foster the collaborative dev elopment of the next generation of performance assessment pro-
grams. Such a system would form the nucleus, or kernel, of future model building activities, permitting the
rapid prototyping of any program architecture and facilitating a coherent approach to development, valida-
tion and maintenance. This system subsequently became known as the Energy Kernel System or EKS.

The EKS project is based on the 1987 report to the SERC (then) Building Subcommittee (Clarke 1987).
This envisaged a 2 phase project: a 3 year concept demonstration phase to be followed by a 2 year system
refinement/ delivery phase. The first phase was further partitioned into 5 research topics (Figure 1) four of
which were funded:

Topic Grant Holder

Method Production/ Encapsulation University of Strathclyde
Software Engineering Infrastructure Rutherford Appleton Laboratory
Automated Program Construction University of Newcastle
Class/ Program Validation University of Bath &

Rutherford Appleton Laboratory

The project was undertaken as a collaboration between four institutions: the Universities of Bath, Newcas-
tle and Strathclyde, and the Rutherford Appleton Laboratory - a grouping which operated most successful
in terms of its complementary talents and viewpoints. Because the methods production/ encapsulation and
software engineering aspects of the project were inextricable throughout the project, this final report has
been co-authored by the researchers at the University of Strathclyde and the Rutherford Appleton Labora-
tory who worked on these aspects. It should be read in conjunction with the other project reports previ-
ously submitted (Wright el al 1992 and Hammond et al 1992).

Throughout the project, a SERC-appointed steering group was active to oversee developments and review
progress. There was also a technical exchange with institutions in the UK and elsewhere and, in particular,
with the US Lawrence Berkeley Laboratory through Ed Sowell’s participation in the project as a SERC Vis-
iting Fellow. To our colleagues in the EKS team and all others involved in the project, we extend our
thanks for their technical inputs and encouragement.

Executive Summary

The project set out to explore the feasibility of developing an advanced program building environment
termed the Energy Kernel System (EKS). The objectives were to:

• Identify the computational methods underlying building energy/ environmental prediction models.

• Dev elop a procedure for establishing these methods in an organised form within a demonstration sys-
tem.

• Research the feasibility of adopting the object-orientated (OO) programming paradigm in the repre-
sentation of the methods and their underlying data structures.
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• Identify suitable theories and computation methods for inclusion within the EKS demonstrator.

Having become familiar with OO technology - in terms of an OO language (C++) and OO database
(ONTOS) - it proved possible to construct a demonstration taxonomy of classes from which models of dif-
ferent functionality can be built. The role of these classes is to represent the physical entities which com-
prise a building (rooms, walls, etc) and the abstract entities which dictate its thermodynamic state (heat
transfer theories, numerical methods, etc). These classes are organised into ‘used by’ and ‘derived from’
hierarchies and placed under the control of an instantiation mechanism. This means that programs possess-
ing different modelling capabilities can be constructed automatically by merely selecting the required class
variants - that is no user coding is required. And because each physical entity within a modelled building
has a matched object at run-time, an EKS-produced program can be matched to the physical system it is
being used to model. In particular the EKS class taxonomy has been progressed to a stage where it can
support the construction of demonstration programs which exhibit near state-of-the-art characteristics.
These classes have been placed under the control of an OO database to facilitate added security of use and
support object persistence. To demonstrate the methodology of the EKS Demonstrator a number of exam-
ple programs - of increasing complexity - have been constructed. These range from simple sun tracking,
through inclined surface solar irradiance to a dynamic building and plant program.

The principal achievement of the project is that a complex engineering domain has, for the first time, been
decomposed and re-expressed using the OO programming paradigm. This has lead to a better understand-
ing of the role of the new OO technologies (languages and databases) in the development of more powerful
design tools. In particular the EKS points to a future where:

• Design tool evolution is undertaken on a task sharing basis because different researchers can con-
tribute new classes or modify existing ones.

• The program construction and maintenance process is more efficient because of the high level of
code reuse.

• The validation process is enabled because individual classes can be tested in isolation, the meaningful
connection of objects can be guaranteed and data encapsulation prevents illegal data interference.

• Design tools will possess greater realism vis-a-vis the reality while being easier to maintain and
ev olve because of the encapsulation and hiding on the underlying complexity.

In the short term it is anticipated that the EKS will be explored by researchers who are concerned with
advancing the state-of-the-art in modelling buildings and the environmental control systems they contain.
Already several research organisations have expressed an interest in acquiring the EKS during its proving
phase. These include the UK Building Research Establishment, the University of Eindhoven, the Technical
University in Delft, the University of Wellington, the Korea Institute for Energy Research, the University of
Erlangen and Electricite de France. In the medium term it is possible that software vendors might use the
EKS to construct and maintain the theoretical ‘engine’ of future design support systems (the Committee
will recall that Intergraph were one of the original backers of the EKS project). In the longer term it is
entirely feasible that end users such as Architects, Engineers and Energy Managers could use the EKS to
achieve bespoke software solutions for particular problems (the Committee will recall that British Gas and
Ove Arup also endorsed the project).

Should a resource be found to continue the development of the EKS Demonstrator into a robust product,
then it should provide a program building platform which ensures that new techniques and theories in heat
transfer, validation and numerical methods will become more immediately available to the community of
potential users. Model developers - CAD vendors, research organisations and ultimately, perhaps, design
practice and legislative bodies - can then select and combine these methods to produce an application pro-
gram of particular architecture. Because the methods are established as independent, fully documented and
tested entities, the program validation and accreditation process, at component and whole-model levels, is
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greatly assisted.

Background and Objectives

Building designers have traditionally employed a wide range of methods to ensure that the performance
characteristics of a building will be acceptable. Simple calculations and rules of thumb are applied
throughout the design stage in an attempt to minimise heat loss, maximise the utilisation of solar energy,
prevent inefficient plant operation, ensure high comfort satisfaction, control problematic air movement and
so on.

In recent years researchers have stressed the futility of attempting to optimise, in such a piecemeal manner,
a system which is inherently dynamic in that many parameters change over time and at different rates;
inherently non-linear in that some parameters depend on the system state which, in turn, can only be
assessed if these parameters are known; and inherently systemic in that the different heat transfer mecha-
nisms interact in a complex manner. In an attempt to address this complexity and provide effective design
decision support, the subject of building simulation has received growing attention in recent years - particu-
larly the integrity of the underlying mathematical models and their validation. One issue that remained to
be tackled was the means by which simulation systems can efficiently be built and adapted in response to
new theoretical advances, changing user needs, deficiencies exposed through use and changes in the under-
lying IT.

The EKS project is an attempt to place on a rational basis the construction and accreditation# of advanced
design tools for the building industry. It does this by providing a program construction and maintenance
platform which dispenses with the need to work with source code. The expectation is that this platform
will dramatically improve researcher productivity and serve to enable task sharing evolution of future, sim-
ulation-based design tools. In the longer term practitioners themselves will be able to use the EKS to create
bespoke tools to handle particular design problems.It is stressed that the EKS is not a new energy pro-
gram but a program building environment.

Essentially the EKS is an enabling technology for the disparate range of activities now underway in the
field of advanced building modelling - the many theoretical developments; algorithmic and whole model
validation; product modelling; and design integration.

The objectives and premises of the EKS are:

Objective Premise

To separate out the calculation methods, data
structure and model architecture elements of
future design tool construction.

The developments in each of these areas will
be more easily integrated and future design
tools will be better structured.

To simplify the program building process. This will ensure that future design tools are
more robust and easier to maintain.

To establish validation within the model
construction process.

The validation component of design tool
accreditation will be better served.

# The issue of program construction techniques is the subject of several large scale projects in Europe
(MODSIM) and North America (SPANK), though these are more limited in scope than the EKS. The program
accreditation issue on the other hand can be recognised only implicitly in projects with other, more pressing
goals (for example, the development of simulation based standards within the European standards organisation
CEN).
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Objective Premise

To promote state-of-the-art developments
through ease of integration of new methods
as they emerge and to encourage the mixing
of simulation and other engineering applica-
tions software.

This will ensure that design tools evolve in
tandem with theoretical and interface
advances and not, as at present, with a con-
siderable lag.

To enable and encourage interdisciplinary
collaboration between model developers,
and between developers and end-users.

The quality of future design tools will
improve markedly if participatory develop-
ment is enabled.

And to remove the burden of machine porta-
bility and other hardware/ software prob-
lems from the model builder.

Application experts and practitioners will
become more productive if the machine
aspect is removed from the design tool con-
struction equation.

EKS Demonstrator Overview

The Energy Kernel System is an objected-oriented platform for simulation model creation, maintenance
and validation. Essentially it contains a set of class definitions corresponding to the building and thermody-
namic domains. These classes can be considered as the basic building blocks from which a wide range of
modelling programs may be built - from simplified performance assessors to state-of-the-art simulators.
Each class, either alone or in conjunction with a few support classes, handles one particular aspect of the
building performance prediction process. (See a later section for a description of the class types available
within the EKS Demonstrator.)

Classes are organised into a ‘taxonomy’ as shown in Figure 2. This taxonomy specifies how the classes
interrelate and defines the information flow between them. The ever present dilemma between extensibility
- that is the ability of any existing class to use or be used even by a newly created class - and security - that
is the guarantee that the given classes are compatible - is solved by using special "Metaclass"# classes. A
"Metaclass" defines the behaviour of its associated class, including which other classes are required for its
correct operation. Thus, by insisting that programs can only be built by using "Metaclass" classes, it is pos-
sible to have an extensible but secure system without paying the performance penalty of runtime type
checking.

Actual program building is carried out by the "Template" class. Given the chosen program architecture, as
defined by a particular "Context" class, the "Template" builds up a collection of "Metaclass" instances
which define the program structure. These "Metaclass" objects can then check that the specified program is
internally consistent. Furthermore, since the "Template" is in effect a specification for the program, there is
no need to generate a executable program at this stage. Instead, once the problem specific data is available,
the "Template" can use its "Metaclass" classes to create a customised program tailored to the problem being
addressed. This is all achieved internally in the "Template" class; the program builder or user need know
nothing about the "Metaclass" scheme.

In its present form (see Figure 3) the core of the system is an Object Oriented Database (OODB). This
plays 3 separate roles. Firstly, it can hold entities such as climatic data and material properties encapsulated
as persistent objects*. Secondly, it can hold the problem description and results as objects, enabling the
interfaces to be separated from the body of the performance prediction engine. Thirdly, it holds the "Tem-
plate" and "Metaclass" objects used internally by the EKS environment. The chosen language for the EKS
demonstrator was C++, primarily because of its widespread acceptance and partly for efficiency reasons.
However, one serious drawback is the lack of an in-built mechanism for examining or manipulating classes

# Throughout this report names quoted thus "" signify classes.
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at runtime. This feature was provided by the OODB as part of its schema definition facilities.

Recognising that reliance on an OODB platform could restrict EKS exploitation, the system was configured
so that it is possible to run the system with or without the OODB. In the latter mode some of the program
composition checking features are disabled and the absence of the OODB necessitates a system rebuild
when a new class is added (although it is still significantly easier than the equivalent work using conven-
tional program development techniques).

The EKS OODB (ONTOS 1989) has knowledge of the interface specification of the various EKS classes,
which can be used to construct a wide range of program architectures. These classes are an encapsulation
of an entity’s representation (in the form of data) and behaviour (in the form of functions). As shown in
Figure 3, surrounding the OODB are a number of utility modules which are used to specify the architecture
of a particular program. Assuming that the user has a well formed modelling hypothesis, EKS operation
will entails the use of the following programs:

EKS_cb: a program which allows the definition of a program’s context (this is equivalent to the creation
of a main program in conventional programming). For example it may be that one program
might offer site and building modelling capabilities while another might offer a site, multiple
buildings and plant capabilities. Within the EKS two different "Context" classes would be
required although the latter could be derived from the former. The output from this module is a
"Context" class. (The EKS Demonstrator comes complete with several example "Context"
classes to demonstrate the program specification process - see ˜eks/demo.)

EKS_tb: Given a "Context", this module allows the user to specify the precise capabilities of a program
by selecting EKS class variants as required. As each class is selected the "Metaclass" mecha-
nism determines the dependent classes so that the process is automated. This allows program
building to be carried out incrementally and with no need for specialist knowledge in terms of
the underlying algorithms. The output from this stage is a program "Template" which defines
the classes and class connections from which the program will be constructed. A "Template"
can either be stored in the OODB for later recall or held as an ASCII file.

EKS_dd: This module takes a "Template" as input and outputs the corresponding OO product model. If
the data of this product model are unacceptable, in that they cannot be obtained from the
intended end user type, then the previous applications can be revisited and the program architec-
ture modified. At the end of this iterative process, the data requirements would typically be
made known to some third party problem definition package such as a separately tailored inter-
face application or a CAD system.

EKS_dm: This module allows the definition of a given problem in terms understandable to the EKS gener-
ated program and holds the information in the form of "X_def" objects. (The term "X_def"
stands for ‘something_definition’ where ‘something’ might be a room, a material, a plant com-
ponent, a site, etc. Typically a program will require several "X_defs" to define the site, building
geometry & construction, plant layout and so on.) These "X_defs" can then be stored within the
OODB.

EKS_mb: Program construction can be placed under the control of the OODB in which case the OODB-
installed "Template" is consulted and correct class use can be guaranteed. Alternatively, and for
use in cases where an OODB is unavailable, module EKS_mb can be used to build the required
model from the "Template" as held in an ASCII file. This procedure is equivalent to the conven-
tional link/ load operation.

* An object is a specific instance of a general class.
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EKS_rm: Finally, this module is used to associate the program with its data model as held in "X_def"
form. Again this operation can be placed under OODB control or invoked conventionally.

These EKS interface tools exist in two forms to handle the case where the OODB is present and the case
where it is not. In either case they will appear identical to the user, the only difference being that the pro-
gram "Template" and corresponding "X_defs" will either be stored within the OODB on within an ASCII
file on disk.

The intention is that the EKS will improve researcher efficiency by placing model development on a task
sharing basis. In addition, by allowing programs of different architecture to be built from a common set of
classes, program integrity should improve and the validation process should be better served. In the longer
term environments such as the EKS open up the prospect of radical changes to the design support process.
For example, consider a design support system which allowed the definition of a design hypotheses by the
graphical selection of component parts representing walls, windows, radiators, shading devices, sensors, a
sun type, a site type and so on. If these components were related to EKS classes then the designer is effec-
tively constructing, in real time, a model which is matched to the problem. Given the functionality of the
EKS classes it would a relatively simple matter to then arrange that the instanced object start to operate
immediately on selection. By bringing together hypothesis manipulation and performance appraisal a real-
time computer-supported design environment is enabled. This in turn would enable the application of sim-
ulation at the earlier stages of the design process where the potential benefits are greatest.

To summarise the project’s achievements:

• A system has been developed which demonstrates the construction of a range of models at different
levels of abstraction - from simplified performance assessors to state-of-the-art simulators.

• The project has proved the technical feasibility of applying the OO programming approach to a com-
plex engineering domain.

• The EKS demonstrator is designed to be extensible and portable, and can operate in either stand-
alone or OODB modes.

• The EKS concept makes state-of-the-art developments accessible to users without the need to handle
source code, providing the means to allow designers to participate in the design tool creation process.

• And the project has demonstrated the benefits to be gained from effective collaboration between the
IT and domain communities.

The form and content of the EKS and the underlying rationale is also described elsewhere (Clarke et al
1991; Clarke et al 1988b; Charlesworth et al 1991).

EKS User Types

In examining the EKS it is important to appreciate the different possible user types corresponding to three
separate levels at which users might interact with the system.

EKS Developer/ Extender

This user type will be concerned with developing/ extending the EKS class taxonomy and its associated
software tools. While the EKS provides an extensive set of classes, for the foreseeable future it will be nec-
essary to enhance the functionality of existing classes, provide alternative implementations of existing func-
tionality and extend the taxonomy by adding completely new classes. These tasks breaks down into two
levels: minor modifications/ extensions to existing classes (for example deriving from an existing class and
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replacing a function); and major development work such as adding a new principal class. While the former
could be carried out by someone with little C++ experience, the latter will require a sound grasp of the
organisational principles behind the EKS, a reasonable knowledge of C++ and an acquaintance with the
wider computational environment in terms of the ONTOS database and UnixTM.

Program Builder

Users within this category will, typically, use the "Context" and "Template" building programs to select the
required classes from the overall taxonomy as known to the OODB at any time. In-built within the taxon-
omy is the knowledge of class dependencies. For example, a "Room" ‘knows’ that it can use (among oth-
ers) an "Air_volume" to handle its contained air mass. On selecting a particular "Room", the model builder
is given the opportunity to select one of the possible variants of "Air_volume". The selected "Air_volume"
is then checked to ensure that it provides at least the functionality that the selected "Room" expects. After
all the required classes have been identified, the program specification is stored in the OODB. Users in this
category will not require to know anything about programming the EKS, other than to be able to use the
EKS tools, but should obviously have a sound grasp of both modelling and the domain.

End User

This user type uses the program constructed by the Program Builder to appraise the energy/ environmental
performance of a particular design. Typically, this is a three stage process. Firstly, the system to be mod-
elled has to be described in a manner acceptable to the EKS. It is anticipated that EKS-built programs will
be interfaced to a separately constructed application to handle user inputs. For this reason only a rudimen-
tary problem description interface facility is provided with the EKS itself - more sophisticated variants, for
example based on emerging Intelligent Front-End systems (Clarke and Mac Randal 1991), could be devel-
oped in future. Secondly, the program is invoked via the program initiation mechanism. This results in the
creation of the minimum necessary instances of the EKS classes. Control is then passed to the ‘simulate’
method of a top level "Context" object. This actually starts a simulation and interacts, directly or indirectly,
with the user to establish the simulation requirements. The run-time interface is dictated by the "Context"
class, so a Model Builder, by deriving a new "Context", can provide whatever interaction is considered
appropriate. This could even extend to dynamic object substitution where, using the OODB, one algorithm
could be substituted for another at run time in a manner which is transparent to the other program parts.
Finally, as a simulation proceeds, the results obtained can be directed to a "Results" object for storage in the
OODB or they can be transferred to disc files or displayed directly. Since they interact only with the run-
time interface of the "Context" class, these users will not be able to distinguish EKS built programs from
the current hand built versions.

EKS Classes

An EKS class is the encapsulation of an entity’s:

• Descriptionin the form of (usually private) data.

• Behaviourin the form of (usually public) functions.

For example a "Construction" might possess thickness and material as private data while offering functions
such as resistance & diffusivity, time & frequency domain response functions, thermal discretisation and
state variable manipulation as its behaviour. (The entire functionality of the EKS Demonstrator classes can
be found in the class header files as held in ˜eks/classes.)

Within the EKS classes break down into three basic types - base, principal and intrinsic:
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base classes define the interface of the EKS principal classes and therefore their basic capabilities.
These ‘generic’ classes cannot be used because their functions are virtual, being implemented
only in the derived principal classes. Essentially base classes exist to allow a future extension
of the EKS class hierarchy into other domains without the need to carry the thermodynamic
functionality of the existing EKS classes. They also exits so that the entity they represent can
be implemented in a variety of ways while guaranteeing that these different implementations
will operate with the other EKS classes.

principal classes are selected by a program builder to define the capabilities of some target program.
Each principal class is derived from a corresponding base class and offers a particular imple-
mentation of the virtual functions of its parent - that is they represent the physical or thermody-
namic states of the entities they represent. In some cases, and with domain theory type classes
in particular, sev eral alternative principal classes will exist to represent the alternative theoreti-
cal approaches.

intrinsic classes are the work horses of the EKS serving to transport data between the principal classes,
to control the class selection process at template specification time, to contain essential support
data such as climatic time series and to dimension all properties of state. Intrinsic classes,
because they are not selected by the program builder, are not shown in the EKS class taxon-
omy.

The separation of the underlying functions in this way gives maximum flexibility and code reuse when cre-
ating new programs. For example base classes provide a common point of entry for the principal classes
and permit the classes derived from them to be used in different contexts. Several principal classes may be
derived from a common base class while some of these derived classes may act, in turn, as the parent class
of other derived classes. For example steady state and dynamic conduction classes may share the same
base class, while finite difference and response function conduction classes may be derived from the
dynamic conduction class. Any class can be replaced by a derived class (even at run-time) without necessi-
tating any changes in the rest of the program. (In the conduction example, steady state or dynamic conduc-
tion classes can be interchanged without changing any other program class or, if conduction is of type
dynamic, either finite difference or response function approaches can be selected.) Since the replacement
class is derived from the replaced class, it has the same interface and so other classes can continue to
behave as though the change had not occurred. It is this facility that gives the EKS its flexibility: in terms
of model building (support of theoretical variants), in terms of run-time features such as dynamic model
substitution, in terms of support for program validation and in terms of program maintenance. Where dif-
ferent program architectures handle the same task in different ways, derived classes provide a means to
incorporate that functionality while ensuring minimal impact on the rest of the system.

Behavioural inheritance also reduces coding and improves reliability since new classes gain access to their
parent’s code and so need only add the code for the extra functionality they provide. Extensibility is also
assisted because new classes and variants of existing classes can be added without requiring any changes to
existing classes.

Appendix 1 lists the principal and intrinsic classes as contained within the EKS Demonstrator (note that
base classes are matched to principal classes and so are excluded).

Principal Classes

The essence of the OO paradigm is the view that a program can be composed of independent objects com-
municating via messages. It was therefore well appreciated from the project’s outset that the main chal-
lenge was the decomposition of building modelling into classes and subclasses and the definition of the
properties of these classes in terms of their data members, behaviour and inter-relationship. It was also
appreciated that in the OO research and application field there was still no commonly accepted definition of
the OO approach (Editor et al 1990). The project therefore struggled in its early stages to develop a rational
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basis for system decomposition and class identification.

It has been stated that "the most important concept in the object-oriented approach is data abstraction"
(ibid.). To achieve this (and the subsequent data encapsulation), one approach is to undertake a data analy-
sis of the target domains (here building physics and thermodynamic simulation). As the EKS was intended
to be a model building environment and not a building model, such an approach was considered to be
impracticable in terms of the resources available and the total number of possible modelling approaches.
Instead a functional decomposition approach was adopted (Clarke et al 1989) which adhered to the follow-
ing strategy.

Step 1 The domain (building energy modelling) was decomposed into its primitive functionality such as
sun position tracking, conduction, convection, radiation, equation solving, polygon operations
and the like. These are the functions, albeit at different levels of abstraction, found within all
contemporary modelling systems. The initial research task was therefore to undertake a compre-
hensive functional analysis of existing models for building, plant and control system simulation
(Tang 1989). The functions so identified are described elsewhere (Wright et al 1990 and Clarke
et al 1990).

Step 2 A minimum level data requirement for each function was identified. For example, a one dimen-
sional layer conduction function will require a set of thermophysical properties irrespective of the
underlying mathematical model and so its minimum data requirement (in EKS terms) is a "Mate-
rial" object (or strictly speaking a pointer to such an object) and a "Dimension" object. The
matrix inversion function requires the topology and coefficient values (or the means to determine
such values) irrespective of the inversion technique to be used. It is also worth noting that only
EKS relevant functionality was considered. For example when considering sun-related processes
the sun position is relevant while angular rotation is not.

Step 3 At this stage the functions were associated with a physical class which logically would know
about the context of the function. For example "Construction" logically knows about thermal
resistance, while "Room" logically knows about shortwav e response. More contentious perhaps,
"Construction" may know about overall, reference U-values (which have prescribed surface over-
all resistance values) while only "Building" may know about overall, actual U-values because to
construct this parameter requires knowledge of the properties and thermodynamic state of differ-
ent entities (air volumes, surfaces, constructions, exposures and so on). It follows that class func-
tions must relate only to the intrinsic data and properties of a class and not require the existence
of, or assume data or properties of, another class. This ensures that a class will encapsulate only
data which is pertinent to that class and that the data members of each class, as required to sup-
port its functions, can be guaranteed to be available at run-time to the object made from the class.

Step 4 Abstract classes are now identified by gathering together related functionality as implied by the
functions of the physical classes. For example, the convection function of class "Room" requires
surface area, hydraulic diameter and heat flow direction all of which are geometrical entities and
so are gathered together into an abstract class "Polygon". This ensures that classes will not pos-
sess functionality where that functionality could be made generally available by encapsulation
within another class.

Step 5 Where a class has one or more domain theory functions (for example convection, shortwav e
response and occupant behaviour in the case of a class "Room") these functions are implemented
as links to abstract classes containing the required functionality of the domain theory. The differ-
ent formulations of any giv en domain theory can then be handled by derived classes: this serves
to facilitate the handling of the multiplicity of domain theories, without incurring combinatorial
explosion in the parent class.
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The foregoing class identification approach ensures that class functions relate to the intrinsic data and prop-
erties of the class and do not require the existence of, or assume data/ or properties of, another class. For
example, the class "Room" would have no functions which would require any knowledge of another room.
Such a function would be located within a class which intrinsically had the right to know about both
"Room" instances - for example a "Building" class.

It is recognised that other grouping mechanisms could have been employed - for example grouping on the
basis of computational intensity - but, because the EKS classes should be semantically acceptable to the
modelling community, these were not considered relevant to the EKS. Nevertheless it is thought likely that
the foregoing process has given rise to the same classes as would have resulted from a conventional data
decomposition of real world entities#. The important aspect about this approach is that it immediately elim-
inates all aspects of the problem that are not related to the target domain. It also provides a mechanism to
deal with the physical/ abstract mix so dominant in thermodynamic modelling.

Appendix 1 lists the EKS principal classes, most of which relate to physical entities such as rooms, walls,
surfaces, etc. while others relate to the underlying computational support provided by the EKS.

Computational Support Classes

As a simulation model development platform, the EKS will eventually encounter a wide range of systems
represented by different mathematical categories, e.g. hyperbolic partial differential model for aerodynamic
systems, parabolic partial differential model for diffusion systems, elliptic partial differential model for
wave and vibration systems, ordinary differential models for lumped parameter systems and so on. This
calls for an efficient and generic computational support facility which provides the range of mathematical
tools and solvers required.

To achieve this, the EKS employs the following techniques:

• An internal mathematical representation format based on vector symbolism for the general system
representation.

• A common mathematical interface for communication between the EKS classes via special transport
classes.

• Dynamic data structures and sparse matrix techniques for system maintenance.

By these mechanisms access can be obtained to the EKS generalised solver classes which embrace a spec-
trum of analytical, numerical and statistical solution methods. The solver class mechanism has been
designed to accommodate most of the currently available equation solving methods. This is achieved by
using the C++ class inheritance mechanism in which a base solver class defines the solver interface by
means of virtual functions which are then implemented in a set of derived classes. In this way a given
solver can be selected at run time without affecting program structure. As an example, the following codes
shows the implementation of the solver class.

class Solver : public EKSObject {
protected:

Solver(Metaclass* meta, Solver_def* def);
Solver(Solver& c);
˜Solver();

# The CEC Combine project which is attempting the development of an integrated data model has used the
technique of data decomposition of existing design tools with a subsequent OO encapsulation (COMBINE
1992).
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virtual void time_discretise(Matrix& m, Vector& q, Vector& s, int
n, float dt);
public:
virtual Vector& execute(Equation_iterator eqn_iter) = 0;
};
class Gauss_column_pivot : public Solver {
public:

Gauss_column_pivot(Metaclass* meta, Solver_def* def);
˜Gauss_column_pivot();

virtual Vector& execute(Equation_iterator eqn_iter);
};

In the above, class "Solver" is the parent class to class "Gauss_column_pivot". The actual code implement-
ing the solution algorithm is in function execute() within class "Gauss_column_pivot". In class Solver, the
execute() function is virtual.

At the present time many of the available solver packages are based on algebraic methods for linear sys-
tems and iterative methods for non-linear (and linear) systems. The equation representations required for
these packages conform directly to the EKS internal representation as given by equations (1) and (2) later.
This means that these solvers can be encapsulated as solver classes within the EKS with only minor modifi-
cation. For those proprietary solvers which are embedded in some coded algorithm, they must firstly be
separated before they can be implanted within the EKS.

Within the EKS Demonstrator two generic types of solver are provided each with several implementations.
The first type includes conventional vector/ matrix operators and linear, nonlinear system solvers. These
are mathematical tools usually available in software libraries and the like. The EKS makes no effort to
improve the efficiency of such tools, only to provide the means by which the data they require can be
encapsulated and supplied. For this type of solver the EKS provides a number of well known methods such
as Runge-Kutta, Gear, etc. (see Appendix 1). The second type comprises a direct solver which is based on
an ‘implicit row-wise sparse array’ technique. This solver type receives, stores and processes only the non-
zero entries of the vectors and matrices which define the problem and so is able to provide high efficiency
by ensuring that minimal non-zero entries are created during the elimination process.

In addition to these solver types, a range of support tools are available to determine vector inner products,
vector norms, matrix products, matrix determinants, matrix inverses, pseudo-inverses, singular value
decompositions, matrix eigen-values, matrix eigen-vectors and so on. These features of the EKS allow
direct system study and could be used to compose customised solvers.

Finally some effort was expended on the two-way mapping between system graphs as employed in the
graph theory method and the state-space representation employed by the EKS. This means that for any
given system graph, the EKS is able to provide an identical set of equations which are then encapsulated in
the theory classes. This is the fundamental tool for system automation. For example, after a system has
been drawn on the screen via a graphic interface, the topology of the system network can then be depicted
by the characteristic matrices of the system graph. The identical set of system state space equations can
then be obtained via the methods of graph theory (Tang 1990). It should be noted however that while some
experimental classes were developed within the timescale of the project, the integration of the techniques of
graph theory within the EKS was outwith the project’s remit and resources.

Intrinsic Classes

In addition to the principal classes, the EKS also has a range of special classes termed intrinsic. These
include:
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• Data classes to encapsulation climatic data, material properties, program results and the like. In
some cases instances of these classes may be held within the OODB as persistent objects. These
objects, which are equivalent to the data-sets available for use with conventional energy programs,
are available to all EKS constructed programs.

• Dimension classes - temperature, pressure, mass flow rate, weight, etc. - used to ‘type’ all EKS object
returns and so ensure data security (Wright el al 1992).

• Computational support classes - vector, equation, matrix, vertex, variable - to encapsulation theory
and support data such as time, location and state variable.

• Infrastructure classes which assist in the program building process and facilitate object control at run-
time. Such classes include "Template" to hold the program definition, "Metaclass" to hold the class
relationships, "List" to enable the processing of lists of related entities (such as the "Construction"
objects in a "Room") and "Network" to hold topological information.

The "Template" Class

The "Template" class is a framework for defining a particular program which can then be stored in the
OODB or on disk for later recall when it can be associated with specific building description data. Such a
program is then run by the user much like a conventional program, interaction with the OODB being
largely hidden.

The "Template" has three main tasks:

• To ensure that only legal combinations of the EKS classes can be used together.

• To hold a permanent record of the program composition, and provide a focal point for model builder
and end user access to the program.

• And to provide the mechanism by which the end user applies the simulation program to their specific
problem.

As described above the EKS consists of a collection of classes, which can be used by the program builder
in various configurations to form specific programs. Since not all simulation programs require the full set
of available principal classes, and there can be several alternative implementations of these classes, a pro-
gram composition facility is required to ensure that only legal combinations of the supplied classes are
used. Furthermore, once a legal program has been defined by a program builder, it is necessary to capture
its configuration/ composition as a template for future use.

The template for a particular simulation program is implemented as an instance of a "Template" class.
Thus, the objective of a program builder who is developing a new simulation program is to produce a "Tem-
plate" instance. Clearly, during the creation of this instance, there is an opportunity to prevent the
attempted use of illegal or incomplete combinations of EKS classes. In order to do this, the "Template"
class requires information about the connectivity and dependencies of all the EKS classes. As this cannot
be built into the "Template" class without completely destroying the extensibility of the EKS, the "Meta-
class" mechanism (see below) has been provided to hold this and related information.

Of course, end users are not interested in merely having a specification for a simulation program, they will
want to simulate a specific problem. Rather than having pre-allocated objects into which the problem data
is read, as in conventional Fortran simulation programs for example, the "Template" instance can produce,
at run-time, a program tailored specifically for the particular problem being addressed. This is achieved by
giving the "Template" a ‘simulate’ function that obtains the data defining the user’s problem, instantiates
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the necessary EKS classes and transfers control to the top level "Context" instance. Furthermore, the "Tem-
plate", with its in-built knowledge of the composition of the program is an obvious place to hold those user
accessible functions for examining and interacting with the program.

Several examples of EKS "Templates" are given later and can be found in the sub-directories of ˜eks/demo.

The "Metaclass" Class

A "Metaclass" (there is one for each principal class) is responsible for the following tasks:

• To hold information about its related class, its capabilities and requirements.

• To assist the "Template" in ensuring the integrity of the resultant program.

• And to enable its class to interact with new variants of subordinate classes.

The power and flexibility of the mix and match approach to program building offered by the EKS carries
within itself two potential dangers. Firstly, there is the problem of ensuring that the objects selected by the
user are actually compatible, both in terms of software interoperability and in terms of conformance to the
same underlying mathematical/ physical model. Secondly, there is the difficulty of ensuring that the system
is adequately extensible, in that new classes and variants of classes can be added later without requiring any
changes to existing classes. This is particularly important from the validation perspective, as even appar-
ently simple modifications to a piece of code can invalidate any tests which have been performed on the
class.

Clearly, extensibility is not a problem when a new class or class variant wishes to use an existing class.
However, it is anticipated that in the EKS the normal pattern will be for users to modify the more funda-
mental classes, such as the domain theories, as and when the state-of-the-art progresses. This raises the
problem of ensuring that the existing classes further up the class taxonomy can correctly use classes which
do not yet exist.

There are two aspects to this compatibility requirement. Firstly, the class software viewpoint, equivalent to
ensuring there are no compilation errors in a conventional program. In OO programming, the use of
derived classes and late binding offers a mechanism by which this can be done. In a program, any class can
be replaced by a derived class without necessitating a change in the rest of the program. Since the new
class is derived from the old one, it has the same interface (or a superset) and thus the other classes continue
to access the derived class as if it had not been changed. However, where the programmer has provided an
alternative implementation for some of the base class’ functionality, the new version of the functionality is
used. Any extra functionality added to the original (base) class then becomes available to any other new
classes being added to the program. Thus, providing the existing classes can be made to talk to the new
classes, extensibility is ensured. Actually achieving this is not straightforward, principally because it means
that no class can itself create an instance of a class it wishes to use, but has to be given a pointer to an exist-
ing instance of the required class. Then, since it could equally, and transparently, be giv en a pointer to an
instance of a derived class, extensibility is ensured. All that is required, therefore, is for an external entity
to take responsibility for creating the instance and passing in the pointer.

The second compatibility aspect is from the domain viewpoint. To ensure that the new classes are compati-
ble with all the other classes in the program requires knowledge of what functionality is required/ provided
by both the new class and (potentially) all the other classes. Given this, the Template can ensure that only
valid combinations of classes can be put together into a program. Provided a new class has the appropriate
functionality, that is it is derived from a suitable class, it will be acceptable. So all that is necessary is to
know, for each class, what variants of other classes it requires. Clearly, building this knowledge into the
"Template" constructor# would result in a monolithic, non-extensible "Template", so the information has to
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be held elsewhere.

The way the EKS handles both these compatibility issues is to associate with each class a "Metaclass". The
class then holds just the code necessary to implement the functionality used to carry out the simulation. All
the higher level information/ functionality necessary to ensure program integrity and system extensibility is
placed in the "Metaclass". When the "Template" constructor is creating a new program, it checks with the
"Metaclass" classes (of those classes selected by the program builder) that together they form a "valid" pro-
gram - for example that all domain theories generate the same type of equations and that the solver can han-
dle this sort of equation. Also, at run-time, when an object wishes to use another class, for example the
"Layer" class will require a "Conduction" instance, the "Metaclass" of "Layer" (actually termed
"Meta_Layer") will create instances of the particular "Conduction" variant specified by the "Template", but
return them to the "Layer" class as if they were of the variety that "Layer" expected. This ensures that to
use a new "Conduction" class, the code of "Layer" does not require modification. Currently, the "Meta-
class" achieves this dynamic class manipulation by using the schema modification facilities provided by the
ONTOS database system.

To assist model builders to quickly create and test new classes, a default "Metaclass" will be automatically
provided if the user does not explicitly supply one. This default will not carry out any consistency check-
ing, since this is the responsibility of the person using the class. Clearly, if a class is to be given to anyone
else, the appropriate "Metaclass" should also be supplied.

The List Class

Since C++ does not support the definition of a vector class with the type of elements as argument, the "List"
class was required. This is a generic carrier class which uses the macro processor to mechanise the creation
of a class "Vector" at run time. When a list is created at run time, the C macro pre-processor concatenates
its argument and calls the macro with that name, the macro expansion mechanism is then activated to create
dynamically a new class which contains homogeneous types of class "Vector". Within the generic "List"
class, a ‘doubly-linked list’ (see later) technique is used to manipulate the vectors (Tang 1991). This
approach has the following advantages:

• Dynamic memory allocation so that only the actual vector size is required.

• Faster array accessing than with vector indexing (although reducible to normal vector indexing if
required).

The following table lists the functions which are provided to support the maintenance of lists:

Function Description

size() size of the list
append(type* a) append element "a" at the end of the list
append(type* a, type* b) append element "a" after element "b" in the

list
insert(type* a) insert element "a" at the head of the list
insert(type* a, type* b) insert element "a" before element "b"
remove(type* a) remove element "a" from the list
first() get first element from the list
last() get last element from the list
clear() delete the entire list
= operator, assign a list to another
+= operator, append a list to another
+ operator, concatenate two list

# A ‘constructor’ is the special class function which creates the object instance.
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A complementary class, "List_iterator", is provided to support sequential and random list scanning and to
allow list element retrieval via conventional subscript indexing.

The Network Class

Similar to the generic "List" class, the generic "Network" class uses the macro expansion mechanism of the
C pre-processor to allow the run time creation of a network of homogeneous arc and node types as defined
in its argument list. The "Network" class then uses the "List" class for the maintenance of this arc/ node
list. Again a class "Network_iterator" is provided to support arc/ node list manipulation within networks.

Within the EKS Demonstrator the "Network" class is used extensively:

• Within the "Building" class to represent "Room" contiguities.

• And within the "Plant" and "Fluid_flow" classes to represent system connection topologies.

The following table lists the functions provided to support the maintenance of networks:

Function Description

add_node(ntype* a_node) add a node into the network
add_arc(atype* an_arc, ntype* src_node,
ntype* dst_node)

add an arc between two nodes in the net-
work

no_nodes() total number of nodes in the network
no_arcs() total number of arcs in the network
connected(ntype* n1, ntype* n2) check whether nodes "n1" and "n2" are con-

nected
connected(atype* a, ntype* n) check whether arc "a" is connected to node

"n"
arc_source(atype* a, ntype* n) check whether node "n" is the source of arc

"a"
arc_target (atype* a, ntype* n) check whether node "n" is the target of arc

"a"
connection(ntype* n1, ntype* n2) get the arc between node "n1" and "n2"
connection(atype* a, ntype* n) get the other node connecting node "n" and

arc "a"
arc_source(atype* a) get the source node of arc "a"
arc_target (atype* a) get the target node of arc "a"
nodes() get the nodes in the network
arcs() get the arcs in the network
connections(ntype* n) get all the arcs connected to node "n"
neighbours (ntype* n) get all the nodes neighbouring node "n"
node_iterator() get the node iterator of the network
arc_iterator() get the arc iterator of the network
arc_iterator(ntype* n) get the arc iterator of node "n"

EKS Class Taxonomy

The EKS classes are organised into a class taxonomy which is designed to offer the functionality required
to build alternative program architectures while guaranteeing security of use. These classes represent the
properties and behaviour of the various entities found in buildings (rooms, constructions, surfaces, etc.), in
plant systems (components, connections, controllers, etc.) and in programs (numerical solvers, time control,
etc.). The EKS inheritance mechanism gives the EKS user access to alternative implementations of these
classes where appropriate and supports the addition of new implementations.

Once identified the EKS classes were organised into a three dimensional ‘used by’ hierarchy. Figure 2
shows one plane of this hierarchy which defines the relationship between the principal classes from which
programs are actually built - rooms, constructions, sites, surfaces, layers, plant components, solvers and so
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on.

Orthogonal to this plane is the EKS inheritance hierarchy used to represent the alternative domain theories.
For example Figure 4 shows alternative conduction theories as related to the principal class "Layer".

Finally the third plane of the taxonomy represents conventional OO inheritance to enable code sharing even
among classes of fundamentally different types. This inheritance mechanism reduces coding and improve
reliability. Inheritance means new, derived classes need only add code for the extra functionality they are
providing since they automatically use their parent’s code, presumably already ‘validated’ to some extent.
As an example, consider the classes derived from "Physical_entity".

Physical_entity (abstract class, not used directly)
Contents (general entity, not producing heat)

Heat_source (abstract class for internal gains)
Occupant (describing occupants)
Equipment (describing heat generating contents)

Lights (special kind of equipment item).

Clearly, "Heat_source" is a specialisation for thermal modelling, but other classes could be derived from
"Physical_entity" or "Contents" for other applications. The importance of inheritance relates to the extensi-
bility of the system. For example, a "Cavity_layer" could be seen as a specialisation of "Layer", having
many of the same instance variables (for example orientation and length), and functions (for example area
calculation), but with the new instance variables added (for example cavity resistance), and some functions
replaced/ enhanced (for example heat flux calculation).

In this way the principal classes are related, while the orthogonal classes can be considered to be separate
class hierarchy rooted on each principal class. The many intrinsic classes are thereby hidden from the EKS
user (but not the EKS Developer).

Some particular points to note:

• Classes with associated state variables - for example "Room" and "Construction" will have an
instance for each physical occurrence. Other classes, for example "Finish", present the possibility of
shared instances. This has strongly influenced the instantiation protocols: no class which contains
state variables may instantiate a class which does not.

• Because, for example, the "Building" class must handle inter-room processes then it needs to be the
instantiator of "Room" objects (or at least be informed of their existence). Equally, and more surpris-
ingly, the "Construction" class would not be instantiated by the "Room" class since the latter can
have noa priori knowledge of another room. The "Construction" class is therefore placed under the
control of the "Building" class which has full knowledge of overall topology.

• The significance of the EKS approach is that, at run-time, object control is ordered with the control
flow acting down the taxonomy hierarchy. A developer subsequently creating a different implemen-
tation of a class can therefore assume that its data will be available. This approach ensures that the
EKS cannot be used to build anarchic programs, with all their synchronisation problems, and should
be contrasted with the normal OO programming approach where it is the responsibility of the func-
tion to get its data. To do this the function would need to know about its context.

• Each principal class in the taxonomy is effectively a generic class, capable of being implemented in
different ways. For example, the "Conduction" class, whose function is to represent the conduction
process, can be implemented using a steady state, a response function or numerical approach as
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shown in Figure 4.

Clearly there is no single best way to structure the classes, and any structure for a real-world system will be
biased towards a particular view (such as energy modelling as here). However, an efficient structure should
be adaptable for other areas (by using the more general base classes), and be easy to use and extend.

Theory Representation

At the present time many alternative algorithms exist for application in a building modelling context. One
objective of the EKS is to ensure that future model users are not limited to only those out of date algorithms
imposed by a particular system. To achieve this, the EKS offers a spectrum of theory classes with each the-
ory covered by more that one algorithm. At program construction time, the EKS principal classes can then
be coupled to any theory class as dictated by the intended application and the required level of complexity.
In this way, the principal classes provide the interface to the theory variants. This is achieved by arranging
that the alternative mathematical models of any giv en theory (such as conduction, air flow, room shortwav e
response, etc) are derived from a single base class and so possess the same interface.

As an example of the process, consider the "Conduction" class for which Figure 4 shows the derived class
variants. The "Layer" class possesses a function which returns the theory for conductive heat transfer. The
actual code which represents this theory is not held in the "Layer" but instead is located in a class derived
from the "Conduction" base class. In effect the "Layer" object’s conduction function asks the "Conduction"
object to return the appropriate theory.

In order to achieve mathematical consistency and minimise numerical error propagation, most building sim-
ulation programs adopt a coherent model discipline throughout the system, e.g. finite difference, finite ele-
ment or response factor methods. Such an approach will give rise to a set of equations - algebraic, differen-
tial, linear or non-linear equations - which can be simultaneously solved by a variety of techniques. For
those systems which use different mathematical approaches to represent different components (rooms,
coils, etc.), each component is treated in isolation and linked to the other components by parameter passing.
The solution of such systems is effectively by iteration.

Within the EKS a technique was required to represent the many different possible mathematical theories
from which programs could be constructed. The requirement was that this be done in a manner which pre-
served the integrity of the original mathematical model in a mathematically consistency way.

One way to achieve this would be to provide representation schemes for all the different possible
approaches - a finite difference layer and a finite difference conduction; a steady state layer and a steady
state conduction and so on. Such an approach would require:

• Matched pairs for each theory type.

• And a switching device to allow pair selection at run-time.

Clearly this would be an inelegant solution in that the former requirement gives rise to the problems of
interface complexity and combinatorial explosion (Clarke et al 1990b) while the latter requirement results
in code redundancy and the need to propagate the switching code even to the most simple programs.

To inv estigate the system representation format which would best satisfy the needs of the generalised model
building environment, a study into the system representation tools of graph and matrix methods was carried
out (Tang 1990b). The outcome was the decision to base the EKS internal theory representation on a vec-
torised state-space equation method. In the event the method was implemented using sparse matrix tech-
nique incorporating a bi-directional linked-list management system as explained below and elsewhere
(Tang 1990). Using this technique it is possible to represent most of the equation-based theories in the
domain of building energy modelling in a consistent manner as vectorised state-equations.
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Equation Representation

Consider, as an example, a spatially discretised wall being represented in terms of its temperature function
θ by the following equation.











c1
dθ1

dt
= ho(θ o − θ1) + R1(θ2 − θ1) + σ ε1(θ so

4 − θ1
4)

c2
dθ2

dt
= R1(θ1 − θ2) + R2(θ3 − θ2) + q2

. . .  . . .  . . .

cn
dθ n

dt
= hI (θ I − θ n) + Rn−1(θ n−1 − θ n) + σ ε n(θ si

4 − θ n
4)

(1)

in which the heat transfer coefficients and thermal physical properties (ho, hI , Ri , ρ, Ki etc) may be repre-
sented by non-linear functions.

In the EKS, this equation-set is represented using vector symbolism:

C θ̇ (t) = A(θ , U) θ (t) + B(θ , U) U(t) (2)

in whichC = diag[Ci ]; (i = 1, 2, . . . ,n) and

A =
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in which a11 = − (ho + R1 + hro), a12 = − R1, a21 = − R1, ....,ann = − (hI + Rn−1 + hri );
hro = σ ε1(θ so

2 + θ1
2) (θ so + θ1), hri = σ ε n(θ si

2 + θ n
2) (θ si + θ n), θ (t) = [θ1(t),θ2(t), . . . ,θ n(t)]T ,

B = [bi , j ]; ( i = 1, 2, . . . ,n; j = 1, 2, 3, 4 ) andU(t) = [θ o,θ so, qo,θ I ,θ sI]
T .

Note that entries in the coefficient matricesA(theta,U) andB(theta,U) are generally nonlinear functions
and that returns from these functions are not restricted to real numbers. For example the following table
gives the possibilities in the case of the different equation systems.

Equation type Entries in matrix

Partial differential equation. Partial differential operators.

Spatially discretised nonlinear partial differ-
ential equation.

Pointers to functions.

Linear time variant differential equation. Time series.

Linear algebraic equation. Constants.

It can be shown that for any nonlinear system which is represented by its original simultaneous nonlinear
equations, there always exists an identical transformation in the form of equation (2). Furthermore, for any
system which is transformed into equation (2) from its original nonlinear representation, it can always be
identically transformed back to the original representation (Tang 1990). Therefore the representation of
equation (2) is an identical transformation. This type of representation has been implemented in the EKS
Demonstrator to handle the thermal representation of both building and plant components.
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OO Implementation

Theory in the form of equation (2) is encapsulated within the EKS via four special transport classes: "Equa-
tion_set", "Equation", "Coefficient" and "State_variable". These classes are serviced in turn by parame-
terised carrier classes which are based on the bi-directional linked list methodology. Figure 5 shows the
dependency structure of these transport classes.

The following codes show the data definitions of the "Equation_set", "Equation", "Coefficient" and
"State_variable" classes.

class Equation_set : private List(Equation) {
friend Equation_iterator;
protected:

List_iterator(Equation) eqn_iter;
public:

Equation_set();
Equation_set(Equation_set& e);
˜Equation_set();
Equation_set& operator=(Equation_set& e);
Equation_set& operator+=(Equation_set& e);
Equation_set& operator=(Equation_iterator e_itr);
Equation_set& operator+=(Equation_iterator e_itr);
int size();
Equation* first();
Equation* last();
void append(Equation* eqn);
void insert(Equation* eqn);
Equation* operator[](int i);
Equation_iterator iterator(EquationOrder order = AS_EQNS);
friend ostream& operator<<(ostream& s, Equation_set& es);

};

class Equation {
protected:

Equation_enum the_equation_enum;
State_variable* the_state_variable;
List(Coefficient) the_coefficients;
Energy the_gain;
ThermalResistance the_resistance;
SpecificHeatCapacity the_capacity;

public:
Equation(State_variable* a_state_variable, Equation_enum a_enum,
float self_coupling_coeff, Energy initial_gain,
ThermalResistance resist, SpecificHeatCapacity capac);
Equation(Equation& e);
˜Equation();
Equation& operator=(Equation& e);
State_variable* state_variable();
Equation_enum equation_enum();
Energy gain();
ThermalResistance resistance();
SpecificHeatCapacity capacity();
void append_coefficient(State_variable* a_state_variable,
float a_value,
State_variable_enum a_state);
void change_coefficient(State_variable* a_state_variable,
float a_value);
void remove_coefficient(State_variable* a_state_variable);
float coefficient_value(State_variable* a_state_variable);
void add_gain(Energy a_value);

friend ostream& operator<<(ostream& s, Equation& e);
List_iterator(Coefficient) coeff_iterator();
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};

class Coefficient {
protected:

friend Equation;
float the_value;
State_variable* the_state_variable;
State_variable_enum the_state_variable_enum;

public:
Coefficient(State_variable* a_state_variable, float a_value,
State_variable_enum a_state);
Coefficient(Coefficient& c);
˜Coefficient();
Coefficient& operator=(Coefficient& c);
float value();
State_variable* state_variable();
State_variable_enum state_variable_enum();

friend ostream& operator<<(ostream& s, Coefficient& c);
};

class State_variable {
private:

static int next_id;
protected:

int the_id;
float the_value;
EKSObject* the_owner;

public:
State_variable(EKSObject* an_owner, float a_value);
State_variable(State_variable& n);
˜State_variable();
State_variable& operator=(State_variable& n);
EKSObject* owner();
int id();
float state_variable();
void state_variable(float value);

friend ostream& operator<<(ostream& s, State_variable& sv);
};

To summarise the equation handling process:

• Mathematical theories are constrained to conform to a state-space matrix equation form to facilitate a
representation style which separates equation structure (topology) from coefficient values (actual val-
ues or function identifiers).

• State-space matrix equations are implementation as compressed matrices comprising "Coefficient",
"Equation" and "Equation_set" objects.

• "Coefficient" objects encapsulate real values if the problem is linear, function pointers if the problem
in non-linear, a node identifier, the state variable type and coefficient dimensionality.

• "Equation" objects encapsulate a "List" of coefficients, a node identifier and the equation dimension-
ality.

• "Equation_set" objects encapsulate a "List" "Equation" objects.

The run time arbitrary selection of alternative methods is achieved by applying the methodology of explicit
polymorphism which in C++ it is implemented using the constructs of derived class and virtual function
(Stroustrup 1987).
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The base class of a given type of domain encapsulates data common to all implementations and function
entries implemented as virtual functions: this means that a base class can never be directly used. The speci-
fication of the base class ensures that the derived classes have the same interface. The alternative mathe-
matical models of any giv en theory (such as conduction, air flow, room shortwav e response, etc.) are
derived from a single base class and so possess the same interface. The derived classes - that is the differ-
ent implementations - reimplement the virtual functions.

In doing so, the base class of the domain holds a virtual function table built into its private data, with the
entry of the function pointer resolved at run time. C++ guarantees that the virtual function entry of the base
class can be substituted by any implementation of the function in the classes derived from the base class.
Therefore, at program construction time, the EKS physical classes can be coupled to any theory class as
dictated by the intended application and the required level of complexity.

Consider the example of layer conduction in which individual conduction equations - a steady state layer
will possess one, a one-dimensional finite difference formulation one per node in a normal direction, and so
on - are encapsulated within "Equation" objects referenced to a unique region. These "Equation" objects
contain "Coefficient" objects as private data. Finally, all the equations of a "Layer" are encapsulated within
an "Equation_set". "Construction" and "Room" objects then possess a "List" of "Equation_sets" to repre-
sent their energy balance equations. It follows then that the "Equation_set" class is a fundamental entity
which is passed up the class taxonomy from "Layer" to "Context" and hence to "Solver" where the equa-
tions can be then be transformed into the required format.

At present the EKS offers a range of alternative theories for each topic - conduction, convection, air flow,
shortwav e & longwav e response, casual gains, control behaviour and so on. Furthermore these theories
have been selected to represent the range of possible models from a low order approach - time invariant,
user specified air changes for example - through intermediate order formulations, to (near) state-of-the-art
methods. The purpose of this treatment is to demonstrate the capability of the EKS to accommodate a spec-
trum of modelling techniques and to support class interchangeability. The following table lists the domain
theories as implemented in the EKS Demonstrator.

Domain Level

Basic Intermediate Advanced

Convection Standard design data for
convective heat transfer
coefficients when repre-
sented as scheduled time
series.

Empirical correlations for
the convective heat trans-
fer coefficients.

Conduction U-value method for
steady-state systems.

Response function &
transfer function methods
for linear, time invariant
dynamic system.

Spatially discrete numeri-
cal method with state vari-
able dependent thermo-
physical properties to han-
dle non-linear dynamic
systems.

Longwav e radiation Standard design data for
the radiative heat transfer
coefficient when repre-
sented as scheduled time
series.

Linearised formula for the
black body radiative heat
transfer coefficient with
respect to area weighted
view factors.

4th power radiative
exchange formula for the
grey body radiative heat
transfer coefficient with
respect to view factors
based on spatial coordi-
nates.

Shortwav e distribution Shortwav e radiation dis-
tributed to room surfaces
and objects according to
predefined proportions.

Shortwav e radiation dis-
tributed to room surfaces
and objects based on view
factors.

Numerical representation
of the shortwav e radiation
distribution in a room
including multiple reflec-
tion and absorption by a
ray tracking algorithm.
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Domain Level

Basic Intermediate Advanced

Occupant gain Standard design data for
occupant heat gains when
represented as scheduled
time series.

Non-linear correlation
equation to determine heat
gains as a function of
influencing parameters.

Equipment gain Standard design data for
equipment heat gains
when represented as
scheduled time series.

Non-linear correlation
equation to determine heat
gains as a function of
influencing parameters.

Lighting gain Standard design data for
lighting heat gains when
represented as scheduled
time series.

Import luminance distribu-
tion data from lighting
simulation and convert to
thermal energy distribu-
tion.

Lighting luminance distri-
bution

Luminance distribution
due to point sources
weighted according to pre-
defined factors and repre-
sented by scheduled time
series.

Luminance distribution
from point sources calcu-
lated as function of normal
distance between surfaces
and light sources.

Numerical representation
of luminance distribution
from point sources consid-
ering surface multiple
reflection and absorption
by ray tracking algorithm.

Sky irradiance Isotropic sky irradiance
model.

Anisotropic sky irradiance
model.

In this way the EKS provides structured alternative theories in support of the alternative modelling
approaches while guaranteeing security of use.

Implementation of Theory Classes

To explain the implementation of the theory classes within the EKS consider the classes developed to repre-
sent the thermal energy diffusion within solids. The "Conduction" class provides three alternative treat-
ments for thermal conduction theory: steady-state, response function and finite difference. Consider the
"Conduction" base class:

class Conduction : public EKSObject {
protected:

Conduction(Metaclass* meta, Conduction_def* def);
Conduction(Conduction& c);
˜Conduction();

public:
virtual Equation_set generate_equations(State_vector* sv);

EKSObject* lyr;
Equation_iterator yr_iter) = 0;

virtual Equation_set combine_equations(Equation_iterator lyr1_iter);
State_variable* lyr1_surf_node;
Equation_iterator lyr2_iter;
State_variable* lyr2_surf_node;
EKSObject* data_supplier) = 0;

virtual void inject_energy(Equation_iterator lyr_iter);
State_variable* node_in_lyr;
Energy gain) = 0;

};

Three derived classes - "Conduction_steady_state", "Conduction_response" and "Conduction_finite_vol-
ume" are established to represent the different modelling approaches. When called by class "Layer", the
"Conduction" function ‘generate_equations()’ generates N state-space equation(s) for a homogeneous layer
where N is the number of layer subdivisions. The equations are return to "Layer" in the form of a pointer to
an object of type "Equation_set". The actual contents of the "Equation_set" object will depend on the
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derived class of "Conduction" being used and thereby on the implementation of the ‘generate_equations()’
function. For a "Conduction_steady_state" class, the returned "Equation_set" is simplyUAδ θ ; for a "Con-
duction_response" class the "Equation_set" is the convolution equation which incorporates the response
factor series; while for a "Conduction_finite_volume" the "Equation_set" will contain the nodal Fourier
Numbers coefficients of the energy balance state matrix equation.. In similar manner the function
‘inject_energy()’ is called by "Layer" to handle cases where there is heat generation. For a "Conduc-
tion_finite_volume" this might entail modification to the state-space equations while for a "Conduc-
tion_steady_state" the function is null.

The ‘combine_equations()’ function of "Conduction" is called by "Construction" to concatenate the repre-
sentation of different layers within a single construction. For a "Conduction_finite_volume" this will entail
a number of matrix equation operations, for a "Conduction_response" the combination of layer response
functions and for a "Conduction_steady_state" the combination of resistances in series.

The important point is that in each case the return from "Conduction" to "Layer" or "Construction" is an
"Equation_set" and so the problem of interface combinatorial explosion is overcome. (For those cases
where alternative derived classes do require different interfaces, it is recommended that a shallow inheri-
tance structure is used.)

EKS in Use

The EKS can be used with or without an OODB. In each case the template building program, EKStb, the
data definition program, EKSdd, and the program building and execution program, EKSrm, will appear
similar. The only difference if that in the former case the various operations as controlled and coordinated
by the OODB, whereas in the latter case the template is stored on disk and the program is built and
executed in a conventional manner.

To demonstrate the EKS use, the system comes complete with several example "Context" classes. These
define several possible programs progressing from trivial site analysis, through building models of interme-
diate complexity to state-of-the-art (in terms of theory) multi-zone building models with plant. What fol-
lows in this section is a brief description of these programs in terms of their specification and capabilities.
Where appropriate the EKS facility of theoretical substitution and incremental program building is demon-
strated.

Site Climate Program

With reference to Figure 2 (and ˜eks/classes) and starting from a simple "Context" class, "Context_1a" (see
˜eks/demo/site), defined as

#ifndef CONTEXT_1A_H
#define CONTEXT_1A_H

#include "context/Context.h"
#include "context/Context_1a_def.h"
class Site_basic;

extern Type* Context_1a_Type_pointer;

class Context_1a : public Context {
protected:

Site_basic* the_site; // Site_basic* or derived
public:

Context_1a(Metaclass* meta, Context_1a_def* def);
Context_1a(APL* theAPL);
˜Context_1a();
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void Destroy(Boolean aborted);
void putObject(Boolean deallocate);
void deleteObject(Boolean deallocate);
Type* getDirectType();

Site_basic* site();

virtual void simulate();
};

inline
Type* Context_1a::getDirectType()
{

return TYPE_OF(Context_1a);
};

inline
Site_basic* Context_1a::site()
{

// cast guaranteed by Metaclass
return (Site_basic*)the_site;

};

#endif

a simple program template may be constructed, via EKStb, defined by

Class Minimum Derived Class Class Selected

Context Context Context_1a
Site Site_basic Site_basic
Climate Climate_met Climate_met

In each case the class selection process is assisted by the EKS browser which shows the EKS principal
classes and gives information on each.

When the program defined by this template is run it is capable of producing the data as shown in Figure 6a.

By simply changing to another "Context", say "Context_1b (see ˜eks/demo/site):

#ifndef CONTEXT_1B_H
#define CONTEXT_1B_H

#include "context/Context_1a.h"
#include "context/Context_1b_def.h"
class Site_sun;

extern Type* Context_1b_Type_pointer;

class Context_1b : public Context_1a {
protected:
public:

Context_1b(Metaclass* meta, Context_1b_def* def);
Context_1b(APL* theAPL);

Type* getDirectType();

Site_sun* site();
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virtual void simulate();
};

inline
Type* Context_1b::getDirectType()
{

return TYPE_OF(Context_1b);
};

inline
Site_sun* Context_1b::site()
{

// cast guaranteed by Metaclass
return (Site_sun*)the_site;

};
#endif

the EKS "Metaclass" facility will automatically extend the class selection process so that a template along
the following lines might result.

Class Minimum Derived Class Class Selected

Context Context Context_1b
Site Site_sun Site_sun
Climate Climate_met Climate_met
Sun Sun_basic Sun_basic
Sky Sky_basic Sky_basic
Sky_irradiance Sky_irradiance Perez
Sky_temperature Sky_termperature B&M

Such a program is then capable of producing the same output as in the previous case plus the additional
outputs as shown in Figure 6b.

In this way alternative programs can be constructed which are conceptually similar (same "Context") or
significantly diverse (different "Context").

Wall Conduction Program

Once a robust model of the site has been achieved, the program developer may wish to develop a fabric
conduction model. Such a model is constructed in this section to demonstrate the incremental building and
theory substitution aspects of the EKS.

Assuming that the relevant "Context" classes exist - "Context_2a" and "Context_2b" in ˜eks/demo for
example - the following two templates might follow: the first represents a steady state approach and the sec-
ond a dynamic approach.

Class Types Minimum Derived Class Class Selected

For steady state program:

Context Context Context_2a
Site Site_basic Site_basic
Climate Climate_met Climate_met
Construction Construction_basic Construction_basic
Surface Surface_basic Surface_basic
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Class Types Minimum Derived Class Class Selected

Layer Layer_basic Layer_basic

For dynamic program:

Context Context Context_2b
Site Site_sun Site_sun
Climate Climate_met Climate_met
Sun Sun_basic Sun_basic
Sky Sky_basic Sky_basic
Sky_irradiance Sky_irradiance Perez
Sky_temperature Sky_temperature B&M
Construction Construction_es Construction_es
Surface Surface_es Surface_es
Layer Layer_es Layer_es
Conduction Conduction Conduction_fd
Solver Solver Gauss_column_pivot

The former program will produce outputs such as U-value and steady state heat loss while the latter pro-
gram is able to produce results as given in Figure 7.

Higher Order Models

In a similar manner models of higher order can be constructed by simply establishing a related "Context"
class and then using it to commence the ("Metaclass" controlled) class selection process to define a tem-
plate. Within the EKS this process is demonstrated for a multi-zone building model (capable of simulating
a system such as shown in Figure 8a) and for a plant model (capable of simulating a system such as shown
in Figure 8b). In each case the process is demonstrated in ˜eks/demo in the form of Shell Scripts which
guide the user through the process from program specification to "X_def" creation and program execution.

Coping with the Technology

A difficult issue which had to be addressed throughout the project was the ability of the research team to
understand and apply state-of-the-art technology in the form of OO languages (C++) and OO databases
(ONTOS). This section is an attempt to briefly summarise our learning experience in an attempt to give
some direction to those who may wish to follow the same course.

As a superset of the C programming language, C++ has much in common with C. This means that individ-
uals who are proficient in C will find getting started with C++ easy. Howev er it is essential to recognise
that C++ is object oriented whereas C is not: there is little to be gained by implementing a procedural pro-
gram in C++. When using an OO language it is necessary to spend a greater proportion of time on the soft-
ware design stage. For example this phase of the EKS consumed approximately 70% of the projects
resources - ie to design the EKS as opposed to programming it. Even then it is probably true that the
resource required to design and implement the EKS classes was significantly underestimated. In particular
it is the view of the Strathclyde team that in the absence of OO paradigm guidelines, the EKS team overall
expended a disproportionate effort on the philosophical issues of class design. With hindsight it would
have been better to have continued the rapid prototyping approach adopted for the EKS Prototype in the
development of the Demonstrator.

If better OO application guidelines had existed, or if the team’s collective viewpoint had been more coher-
ent, it is likely that the EKS classes which remain unfinished or require modification (because infrastruc-
tural aspect changed between the Prototype and Demonstrator versions) would have been completed. This,
in turn, would have allowed the EKS to surpass the state-of-the-art instead of merely attaining it. The
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lesson then is that:

• Real applications of OO technologies will require substantial resources in order to adequately cover
the different facets of the problem.

• OO requires a substantial investment in system design as opposed to implementation.

• It is likely that much of this design resource will be expended on the philosophical aspect of OO class
construction in the absence of anecdotal knowledge on ‘best practice’.

Conclusions and Future Work

The EKS project has achieved a number of goals.

• A demonstration system has been developed which supports the construction of a range of models
from simplified calculators to state-of-the-art simulators.

• The project has proved the technical feasibility of applying the OO programming approach to a com-
plex engineering domain.

• The EKS provides the means to allow designer participation in the design tool creation process.

• And the project has demonstrated the benefits to be gained from effective collaboration between the
IT and domain communities.

There are three principal deliverables from the project:

Firstly, an OO class taxonomy has been progressed to a stage where it can support the construction of pro-
grams which exhibit near state-of-the-art characteristics (multi-zone, dynamic, heat and fluid flow). The
role of this class taxonomy is to represent the physical entities which comprise a building (rooms, walls,
etc.) and the abstract entities which dictate its thermodynamic state (heat transfer theories, numerical meth-
ods, etc.). These classes are organised into a ‘used by’ and ‘derived from’ hierarchy and placed under the
control of an instantiation mechanism. This means that programs possessing different modelling capabili-
ties can be constructed automatically by merely selecting the required class variants - that is no user coding
is required. And because each physical entity within the building has a matched object at run-time, an
EKS-produced program will always be matched to the system it is being used to model.

Secondly, these classes have been installed within the ONTOS OODB. The project has therefore lead to a
better understanding of the role of the new object oriented technologies (languages and databases) in the
development of more powerful design tools and design support environments.

Thirdly, a number of programs - of varying complexity - have been built using the EKS to demonstrate the
process. These range from simple sun tracking, through inclined surface solar irradiance to complete multi-
zone, heat and flow numerical models.

If the means can be found to build upon the achievements of the EKS then it is possible to envisage a future
in which:

• Design tool evolution is undertaken on a task sharing basis because different theoreticians can con-
tribute new classes or modify existing ones.

• The program construction process is more efficient because it can take place in a task sharing manner
due to the high level of code reuse.
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• The validation process is enabled because individual objects can be tested in isolation, the meaning-
ful connection of objects can be guaranteed and data encapsulation prevents illegal data interference.

• Design tools possess greater realism vis-a-vis the reality while, at the same time, being easier to
maintain and evolve.

In the short term it is anticipated that the EKS will be used by those members of the research community
who are concerned with advancing the state-of-the-art in modelling buildings and the engineering plant
they contain. Already several laboratories have expressed an interest in acquiring the EKS during the initial
proving phase. In the medium term it is likely that CAD system vendors and the like will use the EKS to
construct and maintain the theoretical ‘engine’ of future CAD systems. In the longer term it is entirely fea-
sible that end users such as Architects, Control & Environmental Engineers and Energy & Facility Man-
agers will use the EKS to achieve bespoke software solutions for particular problems.

In the longer term the EKS approach will fosters ease of manipulation of methods and ensure that new
methods in heat transfer, numerical processing, interface design and the like, as they emerge, will become
immediately available to the community of potential users. Model developers - CAD vendors, research
organisations and ultimately, perhaps, design practice and legislative bodies - can then select and combine
these methods to produce an application model of particular architecture, targeted for a given machine.
Because the methods are established as independent, fully documented and tested entities, the program vali-
dation and accreditation process, at component and whole-model levels, is greatly assisted.

In developing the EKS, an attempt has been made to anticipate related developments in the field. For
example, the emerging international STandard for the Exchange of Product data (STEP: Turner 1990, Giel-
ingh 1990) is likely to have a major impact on building simulation in the medium to long term. Within the
standard, real-world entities are described using the STEP language Express, which has many object-ori-
ented features. The principal medium of exchange of data in the construction industry is still text and draw-
ings, with some de facto industry standards for electronic drawings produced on CAD systems. At present,
progress is being hampered by the lack of an agreed standard for describing the geometry and topology of a
building, and the lack of standard ‘libraries’ of generic building components. When the STEP standard
becomes established for building data, it is envisaged that software (currently being developed) will be used
to translate C++ class definitions to and from Express entity definitions. It will then be possible to map a
STEP building description in Express into an OODB data structure of C++ objects, with the potential for
interface to other software packages such as CAD, lighting design and so on through the neutral format of
STEP. This will go some way to removing one of the major barriers to effective interaction between simu-
lation programs; namely the arbitrary and incompatible data structures currently in use. Clearly, an OO
programming approach based on real-world entities, as in the EKS, will facilitate development in this area.

The model building tools provided with the EKS are fully functional, but do not have a particularly sophis-
ticated interface. What is envisaged for the future would be a powerful user interface to the facilities pro-
vided. The main feature of this interface would be a browser type facility for examining and selecting the
classes making up the program, together with help and guidance on the capabilities and validity of the vari-
ous classes. There would also be facilities to display the resultant program graphically, and to modify the
program by replacing/adding classes.

While the EKS demonstrator has provided proof of concept, several further developments can be identified
in order to evolve the system to its full potential.

User Support

In the short term there is a need to subject the EKS demonstrator to field trials to ensure that the conceptual
basis is sound and that potential users understand the benefits the technology might bring. Clearly such
trial users groups would require help and support, particularly in the early stages. To be fully effective, this
support should comprise both software engineering and domain expertise. It must also be sufficiently long-
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term to give users the confidence to embark on real projects based on the EKS demonstrator.

EKS Enhancement

As a concept demonstrator, there are a number of issues that have not been fully addressed by the EKS pro-
ject to date, either due to the lack of resource/time (eg a user interface) or deliberately left to Phase II (eg
integration with STEP). There are also some further system issues (‘intelligent’ Metaclasses, use of paral-
lelism) that arise directly from the system design. Addressing these issues is crucial to the long term viabil-
ity of the EKS. This work could probably best be carried out as a series of collaborative mini-projects with
carefully defined objectives.

EKS Validation

The validation capabilities provided by the EKS demonstrator should be used to verify and validate the sys-
tem, classes and templates of the EKS itself. The extent of the EKS provision with respect to validation is
described elsewhere (Hammond et al 1992).

EKS Uptake

The EKS concepts clearly have applicability in other domains. Other disciplines could be encouraged to
explore the EKS with a view to extending its class taxonomy to other domains such as lighting and acous-
tics. One initial step in this direction could be to develop a robust and comprehensive class library from
accredited EKS classes, possibly with international co-operation (COMBINE, STEP).

EKS Spinoff

Finally, as a major new infrastructure platform, the EKS should give rise to significant further research,
such as exploring new simulation techniques, developing new types of simulation tool and exploring new
software engineering paradigms.
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Appendix One: EKS Demonstrator Class Types

The following table lists the principal and intrinsic classes of the EKS Demonstrator and gives for some
classes a brief description. Complete details on each class can be found in ˜eks/classes where the class
header files (?.h) define the encapsulated data and functions and the ?.C files contain the function imple-
mentation.

Class Description

Principal Classes

building:

"AirVolume" Represents an air filled space.
"AirVolume_def" Supply data for the "AirVolume" e.g. space coordinates and thermo-physical properties.
"AirVolume_es" Energy conservation of room air: returns list of coefficients of differenced air node equa-

tion.
"AirVolume_es_def" Supply data for the "AirVolume_es" e.g. pointers to convection theories.
Building Representation of a building.
Building_def Supply data for "Building" e.g. contiguity of room constructions.
"Building_es" Generates a complete set of equations for a building based on various thermal theories.
"Building_es_def" Supply data representing a "Building" e.g. space information.
"Construction_basic" Representation of a multi-layered construction.
"Construction_basic_def" Supply data for a "Construction_basic" e.g. number of layers.
"Construction_es" Energy conservation of multi-layered construction: concatenates the conduction equa-

tions generated by layers.
"Construction_es_def" Supply data for the "Construction_es".
"Convection_fd" Natural convection heat transfer coefficients evaluated as a function of surface to air tem-

perature differences.
"Convection_fd_def" Supply data for the "Convection_fd" e.g. pointers to air volume and surface pairs.
"HeatSource" Generates a heat source.
"HeatSource_def" Supply data for the "HeatSource" e.g. scheduled data and convection/ radiation split.
"Layer_basic" Representation of a constructional layer.
"Layer_basic_def" Supply data for the "Layer_basic" e.g. thickness, material.
"Layer_es" Energy conservation of a layer: creates the conduction equations for a homogeneous layer

based on various theories.
"Layer_es_def" Supply data for the "Layer_es" e.g. pointer to the conduction theory.
"Room" Representation of a room.
"Room_def" Supply data for "Room" e.g. list of surfaces and heat sources.
"Room_es" Energy conservation of a room: creates the equation set for a room including conduction,

convection, radiation and heat heat generation.
"Room_es_def" Supply data for "Room_es" e.g. pointers to the alternative conduction, convection and

radiation theories.
"Space" Representation of a geometrical space.
"Space_def" Supply data for the space e.g. pointer to an "Air_volume".
"Surface_basic" Representation of a surface.
"Surface_basic_def" Supply data for "Surface_basic" e.g. thermal resistance of surface layer.
"Surface_es" Generates the surface energy balance equation.
"Surface_es_def" Supply data for the "Surface_es" e.g. pointer to the related "Construction".
"Surface_es_sw" Complements the room equation set by "adding in" surface shortwav e gain to conserva-

tion equations.
"Surface_es_sw_def" Supply data for "Surface_es_sw" e.g. pointer of the radiation object.

Class Description

Principal cont’d

"Context": Establishes a problem context by instantiating one or more of the following classes: Site,
Building, Plant, Control and Solver.

"Context_1a" Problem context for simple site model generation.
"Context_1a_def" Supply data for "Context_1a" e.g. pointer to the simple site object.
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Class Description

"Context_1b" Problem context for detailed site model which incorporates solar radiation.
"Context_1b_def" Supply data for "Context_1b" e.g. pointer to the detailed site object.
"Context_2a" Problem context for simple multi-layer construction model generation.
"Context_2a_def" Supply data for "Context_2a" e.g. pointer to the detailed site object.
"Context_2b" Problem context for detailed multi-layer construction model which incorporates site,

dynamic conduction and solver.
"Context_2b_def" Supply data for "Context_2b" e.g. pointers to objects of site, construction, conduction and

solver.
"Context_3a" Problem context for simple building model generation.
"Context_3a_def" Supply data for "Context_3a" e.g. pointers to objects of site and building.
"Context_3b" Problem context for detailed building simulation model which incorporates site, theories

for conduction, convection and radiation, shortwav e distribution. solver, etc.
"Context_3b_def" Supply data for "Context_3b" e.g. pointers to objects of site, building, theory objects and

solver.
"Context_pb" Problem context for the creation of algorithmic type (TRNSYS) plant model.
"Context_pb_def" Supply data for "Context_pb" e.g. pointers to the plant components.
"Context_pc" Problem context for the creation of state-space type (ESP-r) plant model.
"Context_pc_def" Supply data for "Context_pb" e.g. pointer to the plant components.

"Control": There are no control classes in the EKS Demonstrator at this time.

Class Description

Principal cont’d

"Plant": Classes to handle plant components and connections. There are two types of classes:
those for sequential type modelling (eg TRNSYS like) and those which support simulta-
neous type models (eg ESP-r like).

"Component" Generic class for system components.
"Component_def" Supply data for "Component" e.g. its name.
"Connection" Generic class for system connections.
"Connection_def" Supply data for "Connection" e.g. a name and the names of source and target compo-

nents.
"Context_pa" Problem context for the creation of the system topology.
"Context_pa_def" Supply data for "Context_pa" e.g. pointer to the topological system.
"System" Generic class for system description.
"System_def" Supply data for "System" e.g. list of components, list of connections and target compo-

nents.

sequential types:

"ABoiler" Generates an algorithmic type steady-state boiler model.
"ABoiler_def" Supply data for "ABoiler" e.g. thermo-physical properties of water.
"ACard_reader" Generates source data required by the system model.
"ACard_reader_def" Supply names of the data specified.
"AComponent" Generic class for algorithmic type system component.
"AComponent_def" Supply data for "AComponent" e.g component name.
"AConnection" Creates a multi-variable connection between two components.
"AConnection_def" Supply data for "AConnection" e.g. the number of variables and the connection pairs.
"APrinter" Generates an algorithmic type output device.
"APrinter_def" Supply data for "APrinter_def" e.g printer type.
"APump" Generates an algorithmic type, steady-state pump model.
"APump_def" Supply data for "APump" e.g. nominal water mass flow rate.
"ARadiator" Generates an algorithmic type, steady-state radiator model.
"ARadiator_def" Supply data for "ARadiator" e.g. UA value and properties of working fluid.
"ARoom" Generates an algorithmic type, steady-state room model.
"ARoom_def" Supply data for "ARoom" e.g. UA value of the walls.
"ASystem" Creates an algorithmic type system.
"ASystem_def" Supply data for "ASystem" e.g. name of the system, lists of components and connections.
"Ideal_pipe" Generates an algorithmic type, steady-state pipe model.
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Class Description

"Ideal_pipe_def" Supply data for "Ideal_pipe" e.g. diameter.
"Type_5" Generates an algorithmic type heat exchanger model based on TRNSYS Type No. 5.
"Type_5_def" Supply data for "Type_5" e.g. mode of operation, UA value and hot and cold side water

specific heat.

simultaneous types:

"Ac_building" Generates a state-space, 2-node building model.
"Ac_building_def" Supply data for "Ac_building" e.g. dimensions, thermo-physical properties, heat transfer

coefficients, heat generation, etc.
"Ac_coil" Generates a state-space, 3-node cooling coil model.
"Ac_coil_def" Supply data for "Ac_coil" e.g. dimensions, thermo-physical properties of working fluid,

etc.
"Ac_duct" Generates a state-space, 1-node air duct model.
"Ac_duct_def" Supply data for "Ac_duct" e.g. dimensions, thermo-physical properties of air, etc.
"Ac_fan" Generates a state-space, 1-node fan model.
"Ac_fan_def" Supply data for "Ac_fan" e.g. overall efficiency, power, mass, etc.
"Ac_mixbox" Generates a state-space, 1-node air mixing box model.
"Ac_mixbox_def" Supply data for "Ac_mixbox" e.g. overall mass, specific heat, etc.
"Boundary" Generates boundary condition for "Esystem".
"Boundary_def" Supply data for "Boundary" e.g. type of each boundary.
"EComponent" Generic class for state-space type components.
"EComponent_def" Supply data for "EComponent_def" e.g. component name.
"EConnection" Creates a multi-variable connection between two components.
"EConnection_def" Supply data for "EConnection" e.g. the the connection pairs for the state-variables of

source and target components.
"ESystem" Creates a state-space type plant system.
"ESystem_def" Supply data for "ESystem" e.g. name of the system, lists of components and connections.

Class Description

Principal cont’d

"Site":

"Berdahl_and_Martin" Calculation of sky temperature by the Berdahl_and_Martin model.
"Berdahl_and_Martin_def" Supply data for for the "Berdahl_and_Martin" e.g. degree of cloud cover.
"Climate_met" Create a climate data set.
"Climate_met_def" Supply name of climate data set.
"Perez" Establish the sky irradiance by the Perez model.
"Perez_def" Supply data for "Perez" e.g degree of anisotropy.
"Site_basic" Creates a basic site to represent climatic data.
"Site_basic_def" Supply data for for the "Site_basic" e.g site name and location.
"Site_sun" Creates a site to represent climatic data and solar irradiance.
"Site_sun_def" Supply data for for the "Site_sun" e.g site name and location.
"Sky_basic" Creates a basic sky to represent sky irradiance and temperature.
"Sky_basic_def" Supply data for for the "Sky_basic" e.g. sky type.
"Sun_basic" Calculates sun position using the Michalsky method.
"Sun_basic_def" Supply data for for the "Sun_basic" e.g. time zone.

"Solver":

"Gauss_column_pivot" Solve the simultaneous equations using the Gauss column pivot method.
"Gauss_seidle" Solve the simultaneous equations using the Gauss-Seidle iterative method.
"Lu_factorise" Solve the simultaneous equation set using the LU factorisation method.

theory:

"Conduction_fd" Finite difference model of unsteady heat conduction using central differencing of spatial
coordinates.
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Class Description

"Convection_fd_1" Supplement system equation set by creating convective couplings using simplified con-
vective heat transfer coefficient.

"Radiation_fd_1" Room internal longwav e radiative heat exchange between surfaces.
"Shortwav e_beam" Generates the shortwav e irradiation os a surface.
"Shortwav e_beam_def" Supply data for the "Shortwav e_beam".
"Shortwav e_smear" Generates the shortwav e irradiance distribution within a space.
"Shortwav e_smear_def" Supply data for the Shortwav e_beam e.g. irradiances from outside and from adjacent

rooms and pointers to surfaces.

Class Description

intrinsic classes

data:

kew67 Original climatic data for Kew 1967.
"X_def" Pointer to data object containing information defining X.

dimensions:

"Dimension" Base class for dimension types which provide operation and type security for the follow-
ing 21 types.

"Angle"
"Area"
"Density"
"Diffusivity"
"Energy"
"Length"
"LuminousIntensity"
"Mass"
"NonDimensional"
"Power"
"Proportion"
"Quantities"
"Quantity"
"SpecificHeatCapacity"
"Speed"
"Temperature"
"ThermalConductivity"
"ThermalResistance"
"Time"
"Viscosity"
"Volume"

infrastructure:

"EKSObject" Base class for all EKS classes.
"Error_handling" Basic error handling.
"Metaclass" Class selection control facility.
"Metaproto" Used to make new "Metaclass" classes.
"Template" High level description of program composition.

transport:

"ClimateRecord" Encapsulates climatic data.
"ClimateRegime" Encapsulates climatic data and solar irradiances on south, north, west, east and horizontal

surfaces.
"ClimateSet" Creates a set of climate data records.
"Coefficient" Encapsulates type, value and corresponding state-variable of a coefficient.
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Class Description

"Equation" Encapsulates a list of coefficients and a self-coupling state-variable.
"Equation_set" Encapsulates a list of "Equation".
"FilledVolume" A volume filled with a specified "Substance".
"Finish" Finish type of a surface e.g. emissivity, reflectivity, roughness and colour.
"Irradiance" Encapsulates components of the solar irradiance with reference to the orientation.
"Location" Location of a site expressed in terms of latitude and longitude difference from the refer-

ence meridian.
"Matrix" A two dimension matrix.
"Orientation" Defines the orientation of a surface in terms of azimuth, elevation and tilt angle.
"PlaneEquation" Equation of a plane.
"Polygon" Coordinates of a polygon.
"Profile" A set of time series data to represent a profile.
"State_variable" Equation element containing type and value of a state variable.
"State_vector" A list of state variables.
"Substance" Encapsulates thermo-physical properties of a "Material".
"Sun_position" Encapsulates sun position in terms of azimuth, elevation and declination.
"Time_of_day" Represents time in year, month, day, hour, minute and second format.
"Vector" One dimensional vector and operations.
"Vertex" X, Y, Z coordinates of a vertex in 3D space.

Developed but
not fully integrated
in the EKS Demonstrator:

flow: Classes to represent flow networks.

"Flow_arc"
"Flow_arc_def"
"Flow_network"
"Flow_network_def"
"Flow_node"
"Flow_node_def"
"Type010_flow"
"Type010_flow_def"
"Type015_flow"

graph_theory: Classes to handle graph theoretic techniques.

"Graph"
"Graph_arc"
"Graph_node"


