
An Intelligent Approach to Building Energy Simulation
J A Clarke
ABACUS CAD Unit
University of Strathclyde

INTRODUCTION

In the field of building design, the development of computer aided design (CAD) systems has been
underway for twenty years or so. During this time the economic factor has ensured that the
draughting function has received much attention by system vendors and is now well established in
the marketplace. Design software, on the other hand, is less well developed. The complexity of
design, stemming from its multi-variate nature, makes it difficult to devise a computer-based
approach that would perform well and be generally accepted in practice. One aspect of the design
activity has received much attention however: the evaluation of building performance throughout
the design process. Here, powerful appraisal models have been built that can evaluate the range of
cost and performance issues of importance in design: from life-cycle cost estimates at the outline
proposal stage, to realistic visualisations prior to construction. At the present time there is a
growing demand for systems possessing both the appraisal and draughting functions and, in
response, vendors are busy appending appraisal programs to their proprietary draughting
packages. The resulting CAD system is then offered on an inexpensive microcomputer or,
increasingly, on a single user graphics workstation utilising 32 bit chip technology and
state-of-the-art bit-mapped displays.

The point has been reached where different vendors can now offer a seemingly integrated,
computer-based solution to designers. But this is not the end of the CAD evolutionary process, or
even a point at which the development pace can slow. Two current developments are alone
sufficient to fuel further accelerating change.

First, current CAD systems are function orientated (Bijl 1986) in that they perform prescribed
tasks in a number of areas which comprise the whole design. This type of system will have
deficiences: The software structure is often inflexible and unyielding because the program was

conceived in a now outdated machine environment. This means that the structure is
monolithic, imposing extreme management and updating difficulties. To date vendors have not found it possible to formulate a common approach to the
modelling problem. The lure of the marketplace has served only to stifle inter-vendor
collaboration. The result is that each system has customized I/O procedures and a unique
internal structure and, because appraisal models are different in each code, theoretical
issues are deeply buried with little guidance given on the range of applicability or
algorithm validity. The application knowledge is often inextricably bound to the source code. Contemporary
software engineering favours the separation of the domain specific knowledge from the
software. This is a fundamental prerequisite of intelligent systems which, if disregarded,
can become a serious barrier to software evolution.

 Many of the currently available systems are of unacceptably low integrity. The real world
processes - of cost, energy, comfort etc. - have been crudely approximated and causality
has not been addressed. An unsuspecting user is then left to struggle with the inadequacies
of a model that has unacceptably degraded the real world in an attempt to achieve an
elegant computational scheme. Finally there exists no consensus statement on the goals of CAD. As a consequence many
existing systems are not well tailored since each author organisation has been forced to
address every element of the problem: I/O protocols, database design/management, user
interface graphics, software structure, validation, documentation etc. It is clear that no
single organisation will possess the necessary expertise in all areas. Each system is then
promoted in a manner which implicitly undermines the development effort expended on its
contemporaries.

In the short term, vendors will attempt to hide these problems beneath a veneer of interfaces; with
an increasing number of retrofits being applied to each CAD system in support of the vendor's
marketing claims. The only real solution to these problems lies in the complete re-structuring of
CAD systems in a manner that allows state-of-the-art pursuit within a task sharing environment.
The current move to an object orientated approach to software development and maintenance is a
mechanism intended to enable this new architecture. Objects define the primitive operations of the
application and are combined, automatically, according to a template defining a particular
appraisal procedure. Templates defining one system can be readily modified to create a new
procedure offering an improvement on the old. Community-wide collaboration is enabled since
objects emerging from the research community can be made available to all. And state-of-the-art
developments can be fostered through ease of integration of new objects as they emerge. In other
words, such developments will allow current CAD systems to be recast in a form amenable to an
evolutionary, task-sharing approach.

Second, and potentially far reaching, is the current move to computer systems which incorporate a
degree of intelligence. Undoubtedly the 80's will see the demise of the solely functional software
approach. Future systems will possess a very different architecture (probably constructed in
object-oriented fashion) in which knowledge bases, inference engines, user models and the like
will be combined with simulation primitives to endow computer systems with human-like
characteristics.

This paper is concerned with the second issue. Developments in object-oriented software
construction are reported elsewhere (Goldberg et al 1983, Clarke 1986).

INTELLIGENT KNOWLEDGE BASED SYSTEMS

The spectrum of possibilities for the design of intelligent knowledge based systems (ikbs) is vast.
At the present time many first generation expert systems are emerging. To a large extent these
systems are restricted to problems which are themselves rules based; such as regulations advising,
process control and data interpretation. In the approach, a knowledge base is established to contain
domain specific facts, rules and relations. A control system then acts on this stored knowledge in
order to make logical deductions in response to a posed problem. The expert system will then
reproduce the expert view which may or may not be correct. For example, in the case of building

regulations or HVAC component selection the system's advice will be ‘correct’ in that the problem
domain is totally rules based: obey the rules and the answer emerges. But given another
application – say building comfort and energy performance assessment at the design stage –
problem solution requires more than just a set of prescriptions expressed as facts, rules and
relations. Now we need an important new element: the prediction of future reality at the design
stage in order to quantify the performance criteria identified in the knowledge base. In other words
even an expert will have need to refer to data – monitored or computed - which characterizes
building performance. Of course it is conceptually possible to establish the laws of
thermodynamics as a set of facts and relations so that the expert system can gain access to
numerical fact through a rules-based protocol. This is a very long term prospect however.

At the ABACUS CAD Unit two approaches to the design of a building energy ikbs are being
pursued: one, a short term and pragmatic approach, is currently operational, the other, a more
fundamental approach, is in the early development stage. The paper now continues with a
description of both approaches.

A PRAGMATIC APPROACH TO AN ENERGY IKBS

In essence this approach involves the use of the Unix Bourne shell (Bourne 1982) as a pseudo
expert system shell. Shell scripts are designed to coordinate the operation of a number of objects
(programs) against the rules and relations of a particular performance assessment methodology.
Shell script rules, although hardwired, can be replaced by the designer at script invocation. Within
the shell script ESP-r and Unix objects act to perform set operations as a function of the in-built
rules which relate to each performance appraisal. The computational path to be followed at any
stage in the script will depend on the performance data to emerge at run time and on the embodied
rules. Each shell scripts can be viewed as a design assistant: the performance assessment and
program operation knowledge is known to the assistant; the designer is free to focus attention on
design decision making. The scripts are developed to operate on a Unix workstation offering a
bit-mapped display controlled by a window manager (for example, a SUN2 or Whitechapel
MG-1).

A thorough appreciation of shell script programming can only be obtained from study of the syntax
involved. However, to demonstrate the possibilities and the technique, one ESP-r script is
reproduced here. Its purpose is to undertake a comfort analysis with the following mission: To determine an appropriate simulation boundary condition by selecting a climatic context

collection with a severity rating matched to the building's geographical location and
function. To initiate and control the simulation processing over a period of time determined as a
function of severity criteria. To seek out building zones which are uncomfortable according to user specified (or
default) comfort criteria. To recover and present statistics on comfort prevailing in uncomfortable areas. To determine the cause of the problem. To initiate a sensitivity study, focusing on the causal energy flow paths, and to so rank
order the options for design intervention. And to provide a comprehensive report on comfort performance, including problem causes

and potential cures.

With reference to Figure 1, which shows the program modules of the ESP system, this script is
constructed as six interrelating sub-scripts. The first runs the climate module clm to determine the
climate context then runs sim before spawning a number of new windows required later for results
reportage. The second recovers the state variables which quantify comfort and groups zones
according to whether or not they violate the function-related comfort criteria. Summary statistics
on the worst offenders are then output. The third script investigates the cause of any discomfort,
while the fourth commissions a sensitivity analysis. The last two scripts are special in that they
exist to compliment the Unix process awk: in essence they control the extraction of information –
such as the cause of discomfort or the location of the worst zone – from the data sets transferred to
awk from the ESP-r modules. Because of the complexity of the syntax, these two scripts are not
reproduced here. Also, since script 4 is effectively the iterative operation of the first three, it is only
cursorily explained. The actual scripts are as follows.

Script 1

 # Variable ESPdir enables script to be
if test "X$ESPdir" = "X" # run from any directory.
then
 echo "Please set up 'ESPdir' shell variable (and 'export' it)"
 exit
fi

/usr/ucb/clear # Clear the window and
echo " ESP rules script 20 - comfort expert." # display header.

echo "SCRIPT COMMENCES" >$ESPdir/tmp/s20_trace

comfort_index="res" # Resultant temperature set as
criteria=28 # default comfort index. Other
 # options include "air" and
 # "set".
building=$ESPdir/tmp/system_cfg
climate=$ESPdir/tmp/climate
s20_lock=$ESPdir/tmp/s20_lock
s20_results=$ESPdir/tmp/s20_results
demo_mode="no"
start="17 7" # In demo mode we only need
finish="17 7" # a one day simulation and
timesteps=1 # a one hour time step.
information="no"
 # Process command line options.
if test $# -ne 0
then
 for i do

 case "$i" in
 -h) information="yes"; shift;;
 -help) information="yes"; shift;;
 -i) comfort_index=$2;shift;shift;;
 -o) criteria=$2;shift;shift;;
 -f) s20_results=$2; shift; shift;;
 -c) climate=$2; shift; shift;;
 -b) building=$2; shift; shift;;
 -p) start="$2 $3"; shift; shift;
 finish="$2 $3"; shift; shift; shift;;
 -t) timesteps=$2; shift; shift;;
 -d) demo_mode=$2; shift; shift;;
 --) shift;;
 -*) echo "Unknown option: $i. Type comfort -h"
 exit 2;;
 esac
 done
fi

if test $information = yes # Respond to help request.
then
echo
echo " Command line options: information (help) -h or -help"
echo " comfort index -i index"
echo " (res, air or set)
echo " comfort criteria -o criteria"
echo " results file -f filename"
echo " climate file -c filename"
echo " building -b filename"
echo " period -p sd sm fd fm"
echo " timesteps -t timestep"
echo " demo mode -d yes/no"
echo
echo " Default: comfort -d no -i res -o 28"

exit
fi
 # echo files used

echo " Files used : ${building}"
echo " ${climate}"
echo " from ${start} to ${finish}"
echo " Files created: ${s20_results}"
echo
echo " Comfort index: ${comfort_index} at ${criteria}"
echo

echo " wait"
echo

rm -f $ESPdir/tmp/s20_*
rm -f ${s20_results} # Might be user-defined file.

 # Determine climatic context
 # as a function of geographical
 # location and building type.
if ${demo_mode} = no
then
 clm >>$ESPdir/tmp/s20_trace 2>$ESPdir/tmp/climate <<~
 -6
 selection_request # Commands to 'drive' the
 ${building} # climate module of ESP.
 f
 ~
${start}='cat $ESPdir/tmp/s20_ps' # The analysis period is
${finish}='cat $ESPdir/tmp/s20_pf' # set from the results of
${timesteps}='cat $ESPdir/tmp/s20_pts' # the clm run.

fi
 # Simulate using parameters,
 # saving output for analysis.
echo "SIMULATION COMMENCES" >>$ESPdir/tmp/s20_trace

sim >>$ESPdir/tmp/s20_trace <<~ # The simulation module of ESP.
-6
${climate} #
1 #
${building} #
y #
1
3 # Commands to 'drive' sim.
${s20_results}
${start} #
${finish} #
${timesteps} #
s #
n #
y #
> #
- #
f #
~

echo " Simulation complete; analysis commencing,"
echo " output directed to separate windows."

 if test $comfort_index = res
 then
 comfort_index="d"
 graphpic="f"
 fi

 if test $comfort_index = air
 then
 comfort_index="c"
 graphpic="a"
 fi

 if test $comfort_index = set
 then
 comfort_index="e"
 graphpic="g"
 fi
 # Export required data
 # for use by other scripts.
export s20_results s20_lock criteria comfort_index

 # Run script 2 in a new window.
 newwin -t "worst zone" -f title -x 0 -y 8 -w 653 -h 600 -ix 944 -iy 656 -iw 56 -ih 56 -u --
$ESPdir/scripts/script2

while test ! -f ${s20_lock} # Script 1 now sleeps until the
do # script 2 lock file appears.
sleep 5
done
 # It appears.
 # Check for discomfort;
if test -s ${s20_lock} # lock file identifies zone.
then
 # Lock file has worst zone(s)
 # in it. Determine cause.
 newwin -t "cause" -f title -x 3 -y 352 -w 550 -h 500 -ix 944 -iy 592 -iw 56 -ih 56 -u --
$ESPdir/scripts/script3

 # Now get frequency distribution.
WZ=`cat ${s20_lock}` # from the output module of ESP.
echo "COMFORT ANALYSIS; GET FREQUENCY DISTRIBUTION FROM out"
>>$ESPdir/tmp/s20_trace

out >>$ESPdir/tmp/s20_trace 2>$ESPdir/tmp/s20_graph <<.
-6
${s20_results}
y
4
y
${WZ}
c
&
${graphpic}
10
y
1
4
-
-
f
.
 # Draw frequency distribution plot.
tekem -t "frequency distribution" <$ESPdir/tmp/s20_graph

fi

Script 2

 # Use out to get comfort statistics.
echo "COMFORT ANALYSIS; GET ZONE COMFORT STATISTICS FROM out"
>>$ESPdir/tmp/s20_trace

out >>$ESPdir/tmp/s20_trace 2>$ESPdir/tmp/s20_pt <<.
-6
${s20_results}
y
b
${comfort_index}
n
-
f
.
 # Use awk to get overheating
 # zones, ranked in PZ. File s20_awk_pt
 # has awk driver commands.
PZ=`(echo OHT $criteria ; cat $ESPdir/tmp/s20_pt) | awk -f s20_awk_pt `

if test "X$PZ" = "X"

then
 echo "Congratulations!" # Whole building is
 echo "No overheating occurs." # comfortable.
 echo
 echo "Zone summary table follows"
 echo
 cat $ESPdir/tmp/s20_pt
 > ${s20_lock}
 echo
 read xa # Hang around until told to go away.
 exit 0 # Normal exit (0) to indicate no discomfort.
fi

 # Tell designer about problem zones.
echo "The following zones (rank ordered) overheat, $PZ."
echo
 # Locate worst occupied (or worst) zone.
WZ=
for i in $PZ
do
 echo "Now checking zone $i for occupants."
 if test "X$WZ" = "X"
 then
 WZ=$i # Worst Zone
 fi
 impb <<. # The ESP module impb is used to test
 $i # a zone for occupants.
 .
 if test $? -eq 1 # Impb error exits if zone occupied.
 then # $? is last exit status.
 echo "Occupied."
 echo "Worst discomfort occurs in occupied zone $i."

 OZF=1 # Worst zone is occupied
 WZ=$i
 break
 else
 echo "Not occupied."
 fi
done
if test "X$OZF" = "X"
then
 # No impb error exit.
 echo "Worst discomfort occurs in unoccupied zone $WZ."
fi
echo

echo "Zone summary table follows"
cat $ESPdir/tmp/s20_pt # Cat is the Unix 'type file' command.
echo $WZ >$s20_lock # Put WZ in lock file for access by script 3.
read xa # Then hang around until told to go away.

Script 3

 # Get worst zone from lock file.
 WZ=`cat $s20_lock`
 # Create graph for worst zone.
echo "COMFORT ANALYSIS; GET GRAPH OF WORST ZONE FROM out"
>>$ESPdir/tmp/trace

out >>$ESPdir/tmp/s20_trace 2>$ESPdir/tmp/s20_wzt <<~
-6
${s20_results}
y
c
4
y
${WZ} # Worst zone variable is passed
a # to out.
f
g
b
!
-
f
~
 # Draw graph in new window.
tekem -t "worst zone profiles" <$ESPdir/tmp/s20_wzt

 # Get energy balance for worst zone.
echo "COMFORT ANALYSIS; GET ENERGY BALANCE FOR WORST ZONE FROM out
....." >>$ESPdir/tmp/s20_trace

out >>$ESPdir/tmp/s20_trace 2>$ESPdir/tmp/s20_eb <<~
-6
${s20_results}
y
b
p
${WZ}
2
-

f
~
cat $ESPdir/tmp/s20_eb # Display energy balance.

 # Get offending energy flowpaths
 # using awk.
OHC=`awk -f $ESPdir/scripts/s20_awk_eb $ESPdir/tmp/s20_eb`
echo
echo "The cause of the zone ${WZ} overheating is"
echo "$OHC."

for i in $OHC # Insert plot commands into variable GP
do # for later use to select graph.
 case $i in
 "Infilt") GP=$GP'l
';; # 's needed to put \n into GP.
 "Vent") GP=$GP'm
';;
 "WcondE") GP=$GP'n
';;
 "WcondI") GP=$GP'n
';;
 "DcondE") GP=$GP'o
';;
 "DcondI") GP=$GP'o
';;
 "Solair") GP=$GP'p
';;
 "CasConv") GP=$GP'q
';;
 "Surfconv") GP=$GP'r
';;
 "Plant") GP=$GP'k
';;
 esac
done
GP=$GP'!' # Add draw command.

 # Get graph of causal flowpaths
echo "COMFORT ANALYSIS; GET CAUSAL FLOWPATHS FOR WORST ZONE FROM out
....." >>$ESPdir/tmp/s20_trace

out >>$ESPdir/tmp/s20_trace 2>$ESPdir/tmp/s20_cause <<.
-6
${s20_results}
y

c
$GP
-
f
.
 # and display it.
tekem -t "causal flowpaths" <$ESPdir/tmp/s20_cause

export $OHC # Export cause and initiate
 # sensitivity analysis in new window.
 newwin -t "sensitivity" -f title -x 3 -y 300 -w 550 -h 500 -ix 944 -iy 500 -iw 56 -ih 56 -u --
$ESPdir/scripts/script4

Script 4

 # For each of the causal flowpaths identified in script 3, and
 # exported to this script in variable OHC, scripts 1 and 2 are
 # re-run against appropriate changes to the building description
 # selected to establish the sensitivity of the flowpath to design
 # intervention. The possible changes are passed to impc
 # in table form. This table contains the percentage changes that
 # may be applied to the relevant parameters which define the building
 # to ESP.

for i in $OHC
do
 case $i in
 "Infilt") parameter=1;;
 "Vent") parameter=2;;
 "WcondE") parameter=3;;
 "WcondI") parameter=4;;
 "DcondE") parameter=5;;
 "DcondI") parameter=6;;
 "Solair") parameter=7;;
 "CasConv") parameter=8;;
 "Surfconv") parameter=9;;
 "Plant") parameter=10;;
 esac

echo "COMFORT ANALYSIS; MODIFY BUILDING DESCRIPTION FOR $parameter"
>>$ESPdir/tmp/s20_trace

impc >>$ESPdir/tmp/s20_trace <<. # The ESP process impc is
-6 # used to modify the building
$ESPdir/tmp/sensitivity_table # description for the

$ESPdir/tmp/building # sensitivity analysis.
.

echo "COMFORT ANALYSIS; RE-SIMULATE FOR $parameter" >>$ESPdir/tmp/s20_trace

sim >>$ESPdir/tmp/s20_trace <<~ # And re-simulations are
-6 # initiated.
${climate}
1
${building}
y
1
3
${s20_results}
${start}
${finish}
${timesteps}
s
n
y
>
-
f
~

echo "COMFORT ANALYSIS; GET ENERGY BALANCE FOR PREVIOUSLY WORST
ZONE FROM out" >>$ESPdir/tmp/s20_trace
 # Finally new output is taken.
out >>$ESPdir/tmp/s20_trace 2>>$ESPdir/tmp/s20_sensitivity <<~
-6
${s20_results}
y
b
p
${WZ}
2
-
f
~
done
 # Now display results of sensitivity analysis.
cat $ESPdir/tmp/s20_sensitivity

When invoked, this script, after a computational effort which depends on the complexity of the
building and the length of the required simulation, will produce the screen image of Figure 2. Only
the more salient features of the scripts are discussed here since much effort would be required to

fully explain the subtleties of script syntax. The interested reader should consult the appropriate
Unix manual entry (man sh) in order to fully grasp the data redirections used throughout (the `>',
`>>', `<', `<<' and `|' symbols).

The environment variable ESPdir is used everywhere. This is set (in .profile or .login) to define the
location of the main shell script directory. This allows ESP-r files to exist in, and the shell scripts to
run from, any directory. Any variables used must then be exported so that other scripts can use
them. The ‘echo’ process is used throughout to inform the user of progress or to write to a trace file
(s20_trace) to provide a complete record of the performance assessment.

The script is executed by typing the command comfort, perhaps followed by one or more of the
command line options -h, -i, -o, -f, -c, -b, -p, -t or -d to modify the script's action. At the start of
Script 1, variables are assigned their default values. The command line is then scanned to
determine if the user wishes to invoke one or more of the options. For example, the command
comfort -i set -o 25 executes the script with standard effective temperature defined as the comfort
index and the cut-off temperature for overheating set at 25 C. Obviously there are many
permutations. Clm is now run to determine a climatic collection of an appropriate severity (in
terms of the building type). Sim is then run to determine the building's behaviour against this
weather boundary condition. Selection of the -c option allows the designer to force the use of a
specified weather collection.

At a certain point in its operation, Script 1 hangs until a special file is created by Script 2 to indicate
that the latter has finished. Script 2 will have filled this file with data that identifies those zones
which are uncomfortable in terms of the selected criteria. If the file is empty, all zones are within
the comfort zone. Otherwise Script 3 is run to continue the appraisal. The newwin process opens a
new window/icon according to the specified arguments. The tekem process is a graph display
device which is used to display any ESP-r graphics in a window of any size, positioned anywhere
on the bit-mapped display.

In Script 2 the back quotes (`) cause whatever is between them to be run, with the output replacing
the quoted string. To generate the input for awk, the two commands echo and cat are placed in
brackets. This tells the shell to execute them sequentially, but to treat them as one command as far
as the rest of the line is concerned. First the echo output is piped to awk, then the cat output is sent
down the same pipe. This means that the variable PZ will contain the results of the awk process: an
ordered list of the problem zones in this case. The variable WZ is then set to the worst zone – that
is the first one in the PZ list. This zone is then tested for occupants. Impb is the ESP-r process that
does this. It returns 0 if a zone is unoccupied; it does no output. The worst zone is then written to
the lock file in order to restart Script 1 and feed Script 3.

Script 3 again uses the awk process to determine the cause of any thermal discomfort. OHC
contains the rank ordered causal list – for example, Infilt Solair Surfconv for infiltration, window
solar absorption convected inward to the air, and internal surface convection respectively.

Script 4 is then run. For each causal flowpath, impc will modify the building description as a
function of a relational table linking flowpaths to possible design changes. Sim and out are then
rerun to establish the effect of each design change before the final performance data is output.

Finally a script is run in a new window to produce a perspective view of the building under
analysis for zone identification purposes.

The following scripts are available to drive ABACUS programs.

Heating plant sizing.
Cooling plant sizing.
Climatic severity assessment.
Plant control strategy appraisal.
Condensation expert.
Summer overheating analysis expert.
Building zone dimensions take-off.
Comfort expert.
Annual energy requirements and causal breakdown.
Solar utilisation expert.
Air flow expert.
Perspective view generation.
Walk around movie.
Cost-in-use
Regulations compliance

A number of new scripts are now under development to aid in the building description process.
Here the intention is to match scripts to different building types and levels of knowledge. For
example, one script might accept a simple description of a passive solar building and generate the
full data set as required by ESP-r. Another script might accept a detailed description of an air
handling unit, adding its own typical office description to allow an meaningful plant appraisal.

A MORE SOPHISTICATED APPROACH

Although the shell script technique offers an intelligent interface to energy simulation, it suffers
from three fundamental limitations. Firstly, it is constrained to the performance appraisal aspect of
the problem; it does not, for example, address the problematic issues surrounding data preparation
in the face of uncertainty. Secondly, each script is considered as an independent design assistant.
This implies that the user must be able to coordinate script selection and to act as the overall
integrator. And thirdly scripts do not allow `Why do you ask' type responses. They have no real
understanding of the system they address; they are merely clever prescriptions.

It would obviously be attractive to design an ikbs which could act as an expert consultant,
recognising the user's plan, commissioning simulations and reporting back on overall
performance. This is the goal of the next version of the ESP-r system. What is envisaged is the
system architecture shown in Figure 3. A central communications center exists to manage information traffic. Each module of the

system can examine this center for relevant information, posting results where appropriate. The knowledge base, implemented in Prolog, holds both application knowledge
(concerning energy in buildings) and modelling knowledge defining simulation strategies). The dialogue handler is the user communication mechanism. This controls the consultation
session, allowing a user to volunteer information, to redirect the systems line of inquiry, or

to make 'Why do you want to know' type responses to the systems prompts. The ikbs will possess more than one user model. For each user type - architect, engineer,
energy modeller, student etc. - at least two categories, naive and proficient, are envisaged. The plan recognition module exists to interpret the user's objectives and to generate a list of
performance assessments which will meet these. The simulation planner provides the complementary function: namely the generation of a
list of simulation requests which match the required performance assessments. The model builder assembles the data structure required by the ESP-r program modules.
These data can come directly from a user, if available, or from the knowledge base in the
form of dynamic defaults which may depend on the user dialogue. And, lastly, there is ESP-r itself. This is a multi-process system which, against some design
hypothesis, can undertake a dynamic energy simulation. Simulations can be tailored to
allow a range of performance assessments: including comfort checks, control system
appraisal, condensation prediction, passive solar analysis and whole building energy
reports.

The development of such a system is obviously a major undertaking, and one which is made
difficult by the fact that many of the foregoing elements are not yet well advanced. A research
project has been formulated (Clarke et al 1986) which should create a prototype within two years.

CONCLUSIONS

In addition to its native interactive graphics mode, the ESP-r system can now be operated as a
pseudo expert system. A number of Unix Shell Scripts have been developed to control ESP-r's
program modules against rules which relate to particular performance assessment methodologies.
Each Script is then equivalent to a design assistant, endowed with knowledge of ESP-r and the
application domain.

The shortcoming of this approach is that the internal representation of knowledge is primitive and
inflexible. For example, it is not possible for the designer to interact with a script once invoked. To
remedy this, a more ambitious ikbs system is needed. Such a system is now under development.

ACKNOWLEDGEMENTS

I am indebted to Damian MacRandal, a project leader at the Intelligent Knowledge Based Systems
Group at Rutherford Appleton Laboratory, for his help in structuring the Unix Shell Script
approach detailed in this paper and for helping me to better appreciate future possibilities in the
area of artificial intelligence.

REFERENCES

Bijl A 1986, AI in architectural CAD Proc. Int. Conference on CAD and Robotics in Architecture
and Construction, Marseille.

Bourne S R, 1982, The UNIX System, Addison-Wesley.

Clarke J A, 1986, The Energy Kernel System, Proc. Int. Symp. On Systems Simulation, University
of Liege.

Goldberg A and Robson D 1983, Smalltalk-80 The Language and its Implementation,
Addison-Wesley, Reading, Massachusetts.

Clarke J A, MacRandal D and Maver T W, 1986, The Application of Intelligent Knowledge Based
Systems in Building Design, Grant Application to the UK Science and Engineering Research
Council.

