
An overview of the EnTrak/ BuildAX eService delivery platform

Joe Clarke and Jon Hand
ESRU, University of Strathclyde

23 January 2015

Preamble

With grant funding from EPSRC (project EP/I000739/1), a collaboration between the Energy
Systems Research Unit (ESRU) at the University of Strathclyde (www.strath.ac.uk/esru) and the
Culture Lab at the University of Newcastle (www.ncl.ac.uk/culturelab/) established an eService
delivery platform comprising three principal components: pervasive sensors for building monitoring ;
a procedure to define the analytics to be applied to the captured data; and a mechanism for the
delivery of outcomes to relevant stakeholders. To assist with the commercialisation of the research
prototype, financial support from the Energy Technology Partnership (www.etp-scotland.ac.uk/)
facilitated equipment CE marking and support for trial deployments by two SMEs operating in the
‘internet of things’ area. This report describes the platform and the procedures to deploy specific
eServices.

System summary

Figure 1 depicts the eService platform comprising wireless devices corresponding to
environmental conditions, occupancy states and power usage linked wirelessly to a logger/router from
which the monitored data may be fetched at the frequency required to enact information services
tailored to the needs of particular recipients. The eService delivery component is a software
application termed EnTrak, while the monitoring component is hardware termed BuildAX. Also
shown in Figure 1 are the sensor specifications.

Figure 1: EnTrak/ BuildAX eService delivery platform.

For any particular eService, data is gathered from field sensors deployed as required. The BuildAX

family comprises the following components.

LRS – a logger/router to store locally and/or transmit monitored data to a remote location
 where it may be utilised by EnTrak. The device also acts as a Web server.
ENV – for the monitoring of indoor environmental conditions, including temperature,
 relative humidity, illuminance, movement and surface contact (e.g. door opening).
CO2 – for the monitoring of CO2 concentration.
GAS – for the monitoring of gas consumption.
PWR – for the monitoring of electricity consumption.
PSW – a remote controllable electrical switch.

Figure 2 shows the LRS (left) and an ENV sensor. The system is made available under an Open

Source/Common license agreement, with EnTrak available at no cost and BuildAX at low cost from a
single supplier at the present time (Appendix 1 gives supplier and cost details).

Figure 2: BuildAX LRS (left) and ENV sensor.

An example eService delivered by EnTrak when connected to 2 ENV sensors is shown in Figure 3.

Here, time series data relating to light level are scrutinised and an alert issued when a low level is
detected (e.g. due to a lamp failure).

Figure 3: An EnTrak light level eService definition (upper) and outcome (lower).

As depicted in Figure 4, the LRS receives data from paired sensors as well as data fetch requests

issued by EnTrak via enget at a time frequency associated with the eService. EnTrak may be located
on the same or different network with all communication enacted by enget via the wget protocol. This
fetch results in a data file being placed in a filestore located on the EnTrak (or at a remote cloud
location for collection by another EnTrak instance). This filestore (or cloud location) is polled by
EnTrak and the contents of the data files imported to the SQL database that underlies the eService
being enacted.

Figure 4: Communication paths associated with an eService.

Further information on the EnTrak and BuildAX components are available elsewhere:

http://www.esru.strath.ac.uk/Programs/EnTrak.htm and
http://openmovement.googlecode.com/svn/docs/buildax/site/index.html respectively.

EnTrak server configuration

The scripting facilities, command shell and applications found on Linux/OSX computers are used
to automate the above data transfers based on the wget protocol. These tools are also available on
Windows computers via a lightweight toolset named MinGW (Minimalist GNU for Windows -
http://www.mingw.org). This allows for the deployment of common scripts for data gathering tasks
across a variety of computer platforms and operating systems. Figure 5 summarises the installation
procedure for MinGW.

Define the install location and
other required options.

Include msys-base, mingw32-
base and mingw-developer-toolkit.
If an eService needs to compile
code select the gcc and g++
compilers. Additional windows
ports of applications and libraries
can be found at
<http://gnuwin32.sourceforge.net>.

Within the all packages section
select wget. After selection use the
file tab to 'apply changes'.

The standard install results in a
C:\MinGW folder with a msys\1.0
subfolder. On this computer a user
jon has created a testing folder (see
the MinGW command syntax
below) where eService scripts are
run.

The installer may place an icon
on your computer, if not, find it at
C:\MinGW\msys\1.0\msys.bat and
copy it to your desktop.

The msys.bat starts a command
window with an interpreter similar
to bash and sh on a Linux
computer. It looks like a DOS
window, but has a more powerful
syntax.

Figure 5: The MinGW installation procedure.

The command window of MinGW supports a subset of the standard commands found on a Linux

computer; essential commands include the following.
 ls (list), e.g. ls Scripts lists the contents of the folder Scripts.
 ls -l (long list), e.g. ls -l Scripts also includes the size of the files and modification date.
 cd (change directory), e.g. cd Scripts places you in the Scripts folder.
 cp (copy), e.g. cp report.txt report_backup.txt makes a copy of the file.
 rm (remove), e.g. rm report.txt deletes the file
 chmod (alter permissions), e.g. chmod a+x every_minute.sh makes a script executable.

MinGW command terminals do not respond to DOS commands but can be used instead of DOS

commands to manage files in standard Windows folders. When a command window is launched the
user is placed in folder C:\MinGW\msys\1.0\home\your_user_name. It is usual to populate this folder
with sub-folders such as Projects, Scripts etc. via commands issued within the command window:

cd (takes you to your HOME folder);

mkdir bin (for your own scripts);
mkdir Projects (for project data);
etc.

To work with scripts a text editor is required (not a word processor), e.g. NotePad++

<http://notepad-plus-plus.org>. On Linux platforms use the vim editor within the MinGW terminal.
You will need to update the Windows system PATH environment variable to include

C:\MinGW\bin and C:\MinGW\msys\1.0\bin as shown in Figure 6. Once you have done this you
should log out of the MinGW terminal (type exit) and relaunch the msys.bat file.

Figure 6: Editing the PATH system environment variable.

The final step is to download EnTrak from www.esru.strath.ac.uk/Programs/EnTrak.htm and

comply with the given installation procedure.

BuildAX deployment
Depending on the requirements of the eService being established, a number of sensors and LRS

devices are selected and made ready by pairing a group of the former with one of the latter. A typical
deployment is as follows.

1. Select a location for the LRS adjacent to a power socket (the LRS requires a 5V, 1A power supply

delivered via a USB cable) or a computer with a USB connection. Unless the LRS is running
stand-alone (i.e. as a data logger with no routing capability) an Ethernet connection is also
required.

2. Use the LRS mac address to determine the equivalent IP address and then establish a temporary
network connection to the LRS by entering this IP address within a Web browser and providing
the required user name and password. Switch to the sensors tab and the RSI (radio strength) topic.

3. Pair a fast response sensor with the LRS and check that the data is being received as depicted in
Figure 7 (here there is a gap in readings between 11h45 and 11h52).

4. Typically, one person will check the sensor RSI graph as another person slowly walks around the
building while communicating via mobile. Communication is usually secure as long as the RSI is
reported to be better than -110db.

Figure 7: Data receipt and signal strength survey result.

5. Finally, launch the application used by EnTrak to fetch monitored data (in a MYSYS command

window or Linux shell) on the computer hosting EnTrak to confirm that the data fetch procedure is
operational.

enget --IP <as above> --mode test

A successful connection will result in the display of the retrieved data as depicted in Figure 8 (here
for the case of a deployment with 2 ENV sensors).

Enget connected to IP=130.159.47.84 in test mode - success

Sample data:
2015/03/25,14:53:08,42FE2C58,-62,1,93,20,2565,23.00,252,121,1388,1401,1
2015/03/25,14:53:11,42081734,-72,1,208,20,2688,27.47,211,712,0,49251,1
2015/03/25,14:53:14,422E7342,-88,1,83,20,2748,26.60,222,172,3275,52624,1
2015/03/25,14:53:15,420490F0,-94,1,223,20,2767,38.17,101,1002,39431,25968,1
2015/03/25,14:53:30,42D89A75,-62,1,107,20,2844,33.35,182,0,14003,36781,1
2015/03/25,14:53:35,42AA57D9,-66,1,36,20,2608,26.19,212,84,54345,43829,1
2015/03/25,14:54:06,42FE2C58,-67,1,94,20,2565,23.00,252,121,1388,1975,1
2015/03/25,14:54:10,42081734,-72,1,209,20,2688,27.47,210,714,0,51014,1
2015/03/25,14:54:12,422E7342,-86,1,84,20,2748,26.60,222,168,3275,53473,1

where the data columns are:

Date – of the packet (yyyy/mm/dd formatted ISO 8601)
Time – of the packet (hh:mm:ss)
Sensor name or address if no name assigned
Received Signal Strength Indication (dBm)
Received packet type:

0 – encryption packet type (not seen in CSV output)
1 – normal packet received at sensor transmit interval
2 – packet sent when PIR sensor triggered
3 – packet sent when magnetic switch triggered

Packet identifier (sensors send packets incrementally)
Sensor-configured transmission power (dBm)
ENV battery level (mV)
Relative Humidity (%)
Temperature (°C x 10)
Luminous flux (Lux)

Activation counts of the PIR sensor
PIR energy last captured
Magnetic switch triggers

Figure 8: Example of feedback from a test connection using enget.

EnTrak deployment

Typically the definition of a new eService follows a 3 stage procedure. First, a database is opened
and populated as required. Figure 9 shows an example for the case of a 2 sensor deployment.

Figure 9: defining the database underpinning the required eService.

Here, the sensors each have one static attribute and 5 dynamic attributes as shown, with the latter

based on online data capture (i.e. from a matched BuildAX deployment). In this way deployments of
arbitrary complexity may be defined, including data capture from different locations at different
frequency.

Second, the eService content is defined by scoping on the entity attributes as required and defining
the actions to be applied to the data returns when the eService is running (see Figure 3 upper). In this
way separate eServices may relate to the same database.

Last, the required eService is launched and the output directed to the display type required, for
example as shown in Figure 10 for the case of a real-time monitoring eService.

Figure 10: Sample output as delivered by an online monitoring eService.

Appendix 1
BuildAX Price List January 2015

BuildAX ENV £90.00
BuildAX LRS £200.00
BuildAX Bundle 1 1 Router, 5 sensors, USB Cables, Ethernet Cable and SD Card £500.00
BuildAX Bundle 2 1 Router, 25 sensors, USB Cables, Ethernet Cable and SD Card £1,875.00
BuildAX Bundle 3 2 Router, 50 sensors, USB Cables, Ethernet Cable and SD Card £2,500.00

All prices exclusive of VAT and delivery.

Orders to:

Axivity Ltd
4 Southands Road
York YO23 1NP

T: 01904 215 950
E: info@axivity.com
W: www.axivity.com

