Energy Resources and Policy

Tutorial:
 Tidal power

Answers

Density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ unless otherwise stated

1. A turbine to generate power from marine currents is based upon a wind turbine rotor specification, for which the variation of power coefficient C_{P} with tip speed ratio X_{T} is shown in the figure below. It is desired to produce 10 kW from a stream velocity of $2 \mathrm{~m} / \mathrm{s}$, with the turbine running at a tip speed ratio of 5 . Specify the rotor diameter and its speed of rotation. [Hint: source the formula for tip speed ratio.]

The turbine is to operate at constant speed, and to shut down when its output falls below 2 kW . Use an iterative procedure to estimate the stream velocity at which this will occur. Assume a water density of $1060 \mathrm{~kg} / \mathrm{m}^{3}$ throughout.
[2.69 m; 71.0 rev/min; $1.31 \mathrm{~m} / \mathrm{s}$]

$\lambda=\frac{\Omega R}{V}=5$, so $\Omega R=5 V=10$
Also, if $\lambda=5, C_{p}=0.415$
Power, $P=C_{P}{ }^{1} / 2 \rho A V^{3}$
So $10 \times 10^{3}=0.415 \mathrm{x}^{1} / 2 \times 1060 A \times 8 ; A=\frac{10 \times 10^{3}}{1.7596 \times 10^{3}}=5.683 \mathrm{~m}^{2} ; D=\sqrt{\frac{4}{\pi} A}=\underline{2.69 \mathrm{~m}}$.
If $\Omega R=10, \Omega=\frac{10 \times 2}{2.69}=7.435 \mathrm{rad} / \mathrm{s}$
Rotational speed $=\frac{60}{2 \pi}=71.0 \mathrm{rev} / \mathrm{min}$.

Shutdown

$\Omega=7.435 \mathrm{rad} / \mathrm{s}$ and $\Omega R=10$ as before.

Guess a value for λ and calculate power.

λ	8	7.2	7.6	7.65	OR 10
$\mathrm{V}(\mathrm{m} / \mathrm{s})$	1.25	1.389	1.316	1.307	
C_{p}	0.264	0.340	0.303	0.299	$\begin{aligned} \text { Power } & =1 / 2 \rho A C_{p} \\ & 0010 \end{aligned}$ $=3.012$
$P(k W)$	1.553	2.744	2.057	2.012	

Near miss - accept $V=\underline{1.31 \mathrm{~m} / \mathbf{s}}$.
2. At a site for a tidal current turbine, the water velocity varies sinusoidally with a period of 12 h 25 min . The turbine has a rotor of 15 m diameter and a rated power output of 600 kW . It has a cut-in current speed of $0.5 \mathrm{~m} / \mathrm{s}$.

For a tidal steam with a maximum current velocity of $2.5 \mathrm{~m} / \mathrm{s}$, determine whether the turbine will reach its rated power output. Assume a power coefficient of 0.39 and a water density of $1025 \mathrm{~kg} / \mathrm{m}^{3}$.

Determine the energy captured by the turbine over a full tidal cycle, for the above conditions. Note that

$$
\int \sin ^{3} \omega t=\frac{1}{\omega}\left[\frac{1}{3} \cos ^{3} \omega t-\cos \omega t\right]
$$

During the tidal cycle, there are periods when the turbine produces zero output. These periods will be longest for neap tides. If the smallest neap tide at the site gives a maximum current velocity of $1.7 \mathrm{~m} / \mathrm{s}$, calculate the length of the corresponding zerooutput period.
[No; 2907 kWh ; 1h 10.8 min]
At $2.5 \mathrm{~m} / \mathrm{s}, P=C_{p} .1 / 2 \rho A V^{3}=0.39 x^{1 / 2} \times 1025 \times \frac{\pi}{4}(15)^{2}(2.5)^{3}=551.9 \times 10^{3} \mathrm{~W}$
Therefore will not reach its rated power output.
In general $V=2.5 \sin \omega t$
$\omega=\frac{2 \pi-2 \pi}{T} \frac{2 \pi}{745}=0.008434 \mathrm{rad} / \mathrm{min}$.
At cut-in, $0.5=2.5 \sin \omega t$, so $\omega t=\sin ^{-1}\left(\frac{0.5}{2.5}\right)=11.5^{\circ}=0.2014 \mathrm{rad}$.
Then $\mathbf{t}=\mathrm{T}_{1}=\underline{0.2014}=\mathbf{0 . 0 0 8 4 3 4} \mathbf{2 3 . 8 7}$ minutes.
Energy capture $=\int_{T_{1}}^{T / 4} C_{p} \cdot \frac{1}{2} \rho A V^{3} . d t=C_{p} \cdot \frac{1}{2} \rho \mathrm{~A} \int_{T_{1}}^{T / 4}[2.5 \sin \omega t]^{3} . d t$ for $\frac{1}{4}$ cycle.

$$
\begin{aligned}
& =0.39 \times 1 / 2 \times 1025 \times \frac{\pi}{4}(2.5)^{3} \int_{T_{1}}^{T / 4} \sin ^{3} \omega t . d t \\
& =551.9 \times 10^{3} \times \frac{1}{0.008434}\left[\frac{1}{3} \cos ^{3} \omega t-\cos \omega t\right]_{T_{1}}^{T / 4} \\
& =65.44 \times 10^{6}\left[\frac{1}{3} x 0-0-\frac{1}{3} x 0.9406+0.9798\right] \\
& =43.6 \times 10^{6} \mathrm{~W}-\text { min }=43.6 \times 10^{3} \mathrm{~kW}-\min =727 \mathrm{kWh}
\end{aligned}
$$

When $t=T / 4$,
$\frac{\omega T}{4}=\frac{\pi}{2}=90^{\circ}$

For a full cycle, capture $=4 \times 727=\underline{2907} \mathrm{kWh}$
Neap tide
Here, $V=1.7 \sin \omega t$ and for cut-in condition, $0.5=1.7 \sin \omega t$.
$\omega t=\sin ^{-1}\left(\frac{0.5}{1.7}\right)=17.1^{\circ}=0.2985 \mathrm{rad}$.
Then $t=\frac{0.2985}{0.008434}=\mathbf{3 5 . 4}$ minutes.

But total 'idle' time $=\mathbf{2 t}=\mathbf{7 0 . 8}$ minutes $=\underline{\mathbf{1 h} \mathbf{1 0 . 8} \mathbf{~ m i n}}$.
3. The energy produced per cycle in a tidal power plant, E is a function of the tidal range (2a), the tidal basin area, B, the water density, ρ, and the gravitational constant, g. A nondimensional energy parameter Φ_{E} may be produced, where

$$
\Phi_{E}=\frac{E}{(2 a)^{2} B g \rho} .
$$

For La Rance tidal barrage system, the mean tidal range is 8.0 m and the basin area is $22 \mathrm{~km}^{2}$. The annual energy produced from the plant is 544 GWh . Compute a value for Φ_{E}, and hence estimate the annual and time-averaged outputs from a system where the mean tidal range is 5.2 m and the basin surface area is $1.8 \mathrm{~km}^{2}$. Take the water density as $1025 \mathrm{~kg} / \mathrm{m}^{3}$.
[0.197; 18.77 GWh; 2.143MW]
$E=\frac{544 \times 10^{9}}{365} x \frac{12.5}{24}=776 \mathrm{MWh} /$ cycle
$\boldsymbol{\Phi}_{E}=\frac{776 \times 10^{6} \times 3600}{64 \times 22 \times 10^{6} \times g \times 1025}=\underline{\mathbf{0 . 1 9 7}}$
For proposed system:
$E=\Phi_{E}(2 a)^{2} B g \rho=0.197(5.2)^{2} .1 .8 \times 10^{6} \cdot \mathrm{~g} .1025=96.4 \times 10^{9} \mathrm{~J}$
= 26.78 MWh/cycle

Number of cycles per year $=365 \times 24 / 12.5=701$,

Time-averaged output $=\frac{18.77 \times 10^{9}}{365 \times 24}=2.143 \times 10^{6} \mathrm{~W}=\underline{2.143 \mathrm{MW}}$

