Energy Resources and Policy

Tutorial:
 Solar power

1. Inclined surface solar irradiance

Using the data tables provided and the information that follows, determine the total solar irradiation of the given surface.

Latitude: $55^{\circ} \mathrm{N}$
Ground reflectivity: 0.25
Date and time: 22 August @ 15:00
Surface azimuth: 180° from N
Sky condition: clear
Surface inclination $\left(\beta_{f}\right): 15^{\circ}$
Angle of incidence:

$$
\mathrm{i}_{\beta}=\cos ^{-1}\left(\sin \beta_{s} \cos \left(90-\beta_{f}\right)+\cos \beta_{s} \cos \omega \sin \left(90-\beta_{f}\right)\right)
$$

where β_{s} is the solar altitude, β_{f} the surface inclination, $\omega=\left|\alpha_{\mathrm{f}}-\alpha_{\mathrm{s}}\right|, \alpha_{\mathrm{s}}$ the solar azimuth, and α_{f} the surface azimuth.

Surface diffuse irradiance:

$$
\begin{aligned}
& I_{s \beta}=I_{f h}\left(\frac{1+\cos \left(90-\beta_{f}\right)}{2}\right) \times\left(1+\left[1-\left(\frac{\mathrm{I}_{\mathrm{fh}}^{2}}{\mathrm{I}_{\mathrm{gh}}^{2}}\right)\right] \sin ^{3}\left(\frac{\beta_{\mathrm{f}}}{2}\right)\right) \\
& \times\left(1+\left[1-\left(\frac{\mathrm{I}_{\mathrm{fh}}^{2}}{\mathrm{I}_{\mathrm{gh}}^{2}}\right)\right] \cos ^{2}\left(\mathrm{i}_{\beta}\right) \sin ^{3}\left(90-\beta_{\mathrm{s}}\right)\right)
\end{aligned}
$$

where $I_{s \beta}$ is the sky diffuse irradiance, $I_{f h}$ the diffuse horizontal irradiance and $I_{g h}$ the global horizontal irradiance (all in W/m²).
[571 W/m ${ }^{2}$]

2. PV panel power output

A photovoltaic panel is to be deployed on a building roof, which faces South-West (225° from N) and has an inclination angle of 45°. Calculate the panel power output using the data tables provided and under the following conditions:

Latitude: $55^{\circ} \mathrm{N}$;
Sky condition: clear
Ground reflectivity: 0.2
Date and time: 22 April @ 11:00
You may assume the following equations.

$$
\mathrm{i}_{\beta}=\cos ^{-1}\left(\sin \beta_{s} \cos \left(90-\beta_{f}\right)+\cos \beta_{s} \cos \omega \sin \left(90-\beta_{f}\right)\right)
$$

where the parameters are as in question 1 ; and

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{s} \beta}=\mathrm{I}_{\mathrm{fh}}\left(\frac{1+\cos \left(90-\beta_{\mathrm{f}}\right)}{2}\right) \times\left(1+\left[1-\left(\frac{\mathrm{I}_{\mathrm{fh}}^{2}}{\mathrm{I}_{\mathrm{gh}}^{2}}\right)\right] \sin ^{3}\left(\frac{\beta_{\mathrm{f}}}{2}\right)\right) \\
& \times\left(1+\left[1-\left(\frac{\mathrm{I}_{\mathrm{fh}}^{2}}{\mathrm{I}_{\mathrm{gh}}^{2}}\right)\right] \cos ^{2}\left(\mathrm{i}_{\beta}\right) \sin ^{3}\left(90-\beta_{\mathrm{s}}\right)\right)
\end{aligned}
$$

where $I_{s \beta}$ is the sky diffuse irradiance, $I_{f h}$ the diffuse horizontal irradiance and I_{gh} the global horizontal irradiance (all in $\mathrm{W} / \mathrm{m}^{2}$).

PV power output: $P=0.13 \mathrm{I}_{\mathrm{T}}$ where I_{T} is the total radiation incident on the panel.

Table A2.23-Solar alttude and azımuth angles

	Sun	Jan. 21	Feb. 21	Mrr. 21	Apr. 22	May 22	June 21	Juty 23	Aug. 22	Sept. 22	Oct. 22	Nor. 22	Dec 21	
		Alt $\mathrm{Az}^{\text {a }}$	Alt Ax	Alt Az	At $\mathrm{Az}^{\text {d }}$	Alt At	Alt Az	Alt Ax	At $\mathrm{Az}^{\text {a }}$	Alt Az	Alt Az	At Ax	Alt Az	
40°	06	8125	$\begin{array}{r} 4108 \\ 15118 \end{array}$	$\begin{array}{rr} 0 & 90 \\ 11 & 100 \\ 22 & 110 \end{array}$	$\begin{array}{rr} 8 & 81 \\ 19 & 90 \\ 31 & 100 \end{array}$	$13 \quad 74$	$15 \quad 72$	$\begin{array}{ll}13 & 74\end{array}$	881	$0 \quad 90$	4108			06
	07					248	$26 \quad 80$	$24 \quad 83$	$19 \quad 90$	11100				07
	08					$36 \quad 92$	$37 \quad 89$	$36 \quad 92$	31100	22110	15118	$\begin{array}{rrr}8125 \\ 17 & 136\end{array}$	6127	08
	09	$\begin{array}{ll} 17 & 136 \\ 24 & 149 \\ 28 & 164 \end{array}$	$24 \quad 130$	33123	$42 \quad 112$	47 104	49100	47104	$42 \quad 112$	$33 \quad 123$	24130		$14 \quad 138$	0910
	10		$\begin{array}{ll} 32 & 145 \\ 37 & 161 \end{array}$	$42 \quad 138$	52128	58118	$60 \quad 114$	58118	52128	$42 \quad 138$	32145	24149	$21 \quad 151$	
	11			$48 \quad 157$	59150	67142	69138	67142	59150	$48 \quad 157$	37161	28164	25165	11
	12	$\begin{array}{ll} 28 & 164 \\ 30 & 180 \end{array}$	39180	50180	62180	70180	74180	$70 \quad 180$	62180	50180	39180	30180	27180	12
	13	$\begin{array}{ll} 28 & 196 \\ 24 & 211 \\ 17 & 224 \end{array}$	37199	48203	59210	67218	69222	67218	59210	48203	37199	28196		1314
	14		$\begin{array}{ll} 32 & 215 \\ 24 & 230 \end{array}$	$\begin{array}{ll} 42 & 222 \\ 33 & 237 \end{array}$	$\left\|\begin{array}{ll} 52 & 232 \\ 42 & 248 \end{array}\right\|$	$\left\|\begin{array}{ll} 58 & 242 \\ 47 & 256 \end{array}\right\|$	$\left\|\begin{array}{ll} 60 & 246 \\ 49 & 260 \end{array}\right\|$	58-242	52232	42222	32215	24211	$\begin{array}{ll} 25 & 195 \\ 21 & 209 \end{array}$	
	15							47256	42248	33237	24230	17224	14222	15
	16	8235	$\left\|\begin{array}{rr} 15 & 242 \\ 4252 \end{array}\right\|$	$\begin{array}{r} 22250 \\ 11260 \\ 0270 \end{array}$	$\left.\begin{array}{rr} 31 & 260 \\ 19 & 270 \\ 8 & 279 \end{array} \right\rvert\,$	$\begin{array}{ll} 36 & 268 \\ 24 & 277 \\ 13 & 286 \end{array}$	$\left.\begin{array}{lll} 37 & 271 \\ 26 & 280 \\ 15 & 288 \end{array} \right\rvert\,$	$\begin{array}{lll} 36 & 268 \\ 24 & 277 \\ 13 & 286 \end{array}$	$\begin{array}{r} 31260 \\ 19270 \\ 8279 \end{array}$	$\left.\begin{array}{rr} 22 & 250 \\ 11 & 260 \\ 0 & 270 \end{array} \right\rvert\,$	$\begin{array}{r} 15242 \\ 4252 \end{array}$	8235	6233	$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$
	17													
	18													
45°	06	5125	$\begin{array}{rrr}3 & 108 \\ 12 & 120\end{array}$	$\left\|\begin{array}{rr} 0 & 90 \\ 10 & 101 \\ 21 & 112 \end{array}\right\|$	881		1673	1475	881	0 90				$\begin{aligned} & 06 \\ & 07 \\ & 08 \end{aligned}$
	07				$19 \quad 92$	$25 \quad 85$	27 83	$25 \quad 85$	$19 \quad 92$		3108			
	08				$\left\|\begin{array}{cc} 30 & 103 \\ 40 & 116 \end{array}\right\|$	$\begin{array}{ll}35 & 96\end{array}$	$\begin{array}{ll}37 & 93\end{array}$	$35 \quad 96$			$\begin{array}{lll}12 & 120 \\ 21 & 132\end{array}$	5125	2127	
	09	$\begin{array}{ll} 13 & 137 \\ 19 & 150 \\ 24 & 165 \end{array}$	$\begin{array}{lll}21 & 132 \\ 28 & 146\end{array}$	$30 \quad 125$		$46 \quad 108$	$48 \quad 105$	46108	$40 \quad 116$	$30 \quad 125$		13137	$10 \quad 139$	0810
	10			$\left\|\begin{array}{ll} 38 & 141 \\ 43 & 159 \end{array}\right\|$	$\left\|\begin{array}{ll} 48 & 133 \\ 55 & 154 \end{array}\right\|$	$55 \quad 125$	$\begin{array}{lll}58 & 121 \\ 65 & 146\end{array}$	$\begin{array}{lll}55 & 125 \\ 62 & 148\end{array}$	48	38141	$\begin{array}{lll}28 & 146 \\ 32 & 162\end{array}$	19150	$16 \quad 152$	
	11		$\begin{array}{lll}28 & 146 \\ 32 & 162\end{array}$			62148			$\left\|\begin{array}{ll} 55 & 154 \\ 57 & 180 \end{array}\right\|$	$43 \quad 159$		24165	20165	11
	12	25180	34180	45180	57180	65180	68180	65180		45180	34180	25180	22180	12
	13	$\begin{array}{r} 24195 \\ 19210 \\ 13223 \\ 5235 \end{array}$	$\begin{array}{ll} 32 & 198 \\ 28 & 14 \\ 21 & 228 \end{array}$	$\left\|\begin{array}{ll} 43 & 201 \\ 38 & 219 \\ 30 & 235 \end{array}\right\|$	$\begin{array}{ll} 55 & 206 \\ 48 & 227 \\ 40 & 244 \end{array}$	$\begin{array}{ll} 62 & 212 \\ 55 & 235 \\ 46 & 252 \end{array}$	$\left\|\begin{array}{ll} 65 & 214 \\ 58 & 239 \\ 48 & 255 \end{array}\right\|$	$\left.\begin{array}{lll} 62 & 212 \\ 55 & 235 \\ 46 & 252 \end{array} \right\rvert\,$	$\left\|\begin{array}{ll} 55 & 206 \\ 48 & 227 \\ 40 & 244 \end{array}\right\|$	43201	32198	24195	20195 16208 10221	$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \end{aligned}$
	14									38219	28214	19210		
	15									30235	21228	13223		
	16		$\left.\begin{array}{rr} 12 & 240 \\ 3 & 252 \end{array} \right\rvert\,$	$\left\|\begin{array}{rr} 21 & 248 \\ 10 & 259 \\ 0 & 270 \end{array}\right\|$	$\begin{array}{r} 30257 \\ 19268 \\ 8279 \end{array}$	$\begin{array}{ll} 35 & 264 \\ 25 & 275 \\ 14 & 285 \end{array}$	$\left\|\begin{array}{ll} 37 & 267 \\ 27 & 277 \\ 16 & 287 \end{array}\right\|$	$\begin{array}{ll} 35 & 264 \\ 25 & 275 \\ 14 & 285 \end{array}$	30257	21248	12240	5235	2233	
	17								19268	10259				
	18								8279					
	06			$0 \quad 90$	982	1676	$18 \quad 74$	1676	982	$0 \quad 90$				6
	07		1108	10102	$19 \quad 94$	$25 \quad 88$	2785	$25 \quad 88$	$19 \quad 94$	$10 \quad 102$	1108			07
	08	2126	10120	19114	28106	$35 \quad 99$	$\begin{array}{ll}37 & 97\end{array}$	$35 \quad 99$	28106	19114	10120	2126		08
	09	10138	18133	27128	37120	44113	$46 \quad 110$	$44 \quad 113$	37120	27128	18133	10138	6139	09
	10	15151	$24 \quad 148$	34143	45136	$52 \quad 130$	55128	52130	45136	34143	$24 \quad 148$	15151	12152	10
	11	19165	28163	38161	50157	$58 \quad 153$	61151	58153	50157	38161	28163	19165	15166	11
50°	12	20180	29180	40180	52180	$60 \quad 180$	64180	60180	52180	40180	29180	20180	17180	12
	13	19195	28197	$38 \quad 199$	50203	58207	61209	58207	50203	$38 \quad 199$	28197	19195	15194	13
	14	15209	24212	34217	45224	52230	55232	52230	45224	34217	24212	15209	12208	14
	15	10222	18227	27232	37240	44247	46250	44247	37240	27232	18227	10222	6221	15
	16	2234	10240	19246	28254	35261	37263	35261	28254	19246	10240	2234		16
	17		1252	10258	19266	25272	27275	25272	19266	10258	1252			17
	18			0270	9278	16284	18286	16284	9278	0270				18
	06			$0 \quad 90$	$10 \quad 83$	$17 \quad 78$	$19 \quad 76$	$17 \quad 78$	$10 \quad 83$					06
	07			8102	$18 \quad 95$	$25 \quad 90$	$28 \quad 88$	$25 \quad 90$	$18 \quad 95$	9103				07
	08		7121	17115	27108	34103	36100	34103	27108	18115	7121			08
	09	6138	14134	24129	34123	$42 \quad 117$	44115	42117	34123	24129	14134	6138	3140	09
	10	11151	20149	30145	$41 \quad 140$	$49 \quad 135$	51133	49135	41140	30145	20149	11151	8152	10
	11	14166	23164	34162	$45 \quad 159$	54156	56154	54156	45159	34162	23164	14166	10166	11
55°	12	15180	24180	35180	47180	55180	$58 \quad 180$	55180	47180	35180	24180	15180	12180	12
	13	14194	23196	34198	45201	54204	56206	54204	45201	34198	23196	14194	$10 \quad 194$	13
	14	11209	20211	30215	41220	49225	51227	49225	+1 220	30215	20211	11209	8208	14
	15	6222	14226	24231	34237	42243	44245	42243	$3+237$	24231	14226	6222	3220	,
	16		7239	17245	27252	34257	36260	34257			7239			16
	17			8258	18265	25270	28272	25270	18265	9257				17
	18			0270	10277	17282	19284	17282	10277	0270				18
$\begin{gathered} \text { Sourh } \\ \substack{\text { Sut } \\ \text { tude }} \\ \text { wde } \end{gathered}$	Sun	July 23	Aug. 22	Sept. 22	Oct. 21	vor. 22	Dec. 21	Jan. 21	Feb. 21	Mat. 21	Apr. 22	May 21	June 21	Sum

* Use months indicated at top for North Latitudes and use months at bottom for South Latitudes. Azimuth angles in the southern hemisphere are obtained by subtracting the tabulated azimuth angles from 180° when they are less than or equal to 180° or from 540° when they are greater than 180°

Table A2.35 (m) Basic direct solar irradiances on vertıcal, I_{DV}, and horizontal, I_{DH}, surfaces and basic diffuse (cloudy and clear sky) solar irradiances on horizontal surfaces, $I_{\mathrm{dH}}\left(\mathrm{W} / \mathrm{m}^{2}\right)$.

Date	Orienution	Dxily mean	Sun Time																	
			03 or	05	06	97	08	99	10	11	12	13	14	15	16	17	18	19	20	21
June 21	v	35	95	175	135	25	0	0	0	0	0	0	0	0	0	25	135	175	95	
	VE	85	160	385	485	470	365	205	20	0	0	0	0	0	0	0	0	0	0	
	E	145	130	365	550	640	630	545	395	210	0	0	0	0	0	0	0	0	0	
	SE	145	20	135	290	435	530	$\stackrel{5}{6}$	540	455	325	160	0	0	0	0	0	0	0	
	S	115	0	0	0	0	115	- 55	365	435	465	435	365	255	115	0	0	0		
	SW	145	0	0	0	0	0	0	0	160	325	455	540	565	530	435	290	135	20	
	w	145	0	0	0	0	0	0	0	0	0	210	395	545	630	640	550	365	130	
	NW	85	0	0	0	0	0	0	0	0	0	0	20	205	365	470	485	385	160	
	H	290	10	80	195	335	465	585	675	735	755	735	675	585	465	335	195	80	10	
Diff (Cldy) Diff(Clr)		$\begin{array}{r} 115 \\ 50 \end{array}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 95 \\ & 60 \end{aligned}$	$\begin{array}{r} 140 \\ 75 \end{array}$	$\begin{array}{r} 180 \\ 80 \end{array}$	$\begin{array}{r} 225 \\ 90 \end{array}$	$\begin{array}{r} 260 \\ 95 \end{array}$	$\begin{aligned} & 285 \\ & 100 \end{aligned}$	255	$\begin{aligned} & 285 \\ & 100 \end{aligned}$	$\begin{array}{r} 260 \\ 95 \end{array}$	225 90	$\begin{array}{r} 180 \\ 80 \end{array}$	$\begin{array}{r} 140 \\ 75 \end{array}$	$\begin{aligned} & 95 \\ & 60 \end{aligned}$	55	20 15	
July 23 and May 22	,	25	25	135	110	0	0	0	0	0	0	0	0	0	0	0	110	135	25	
	VE	75	45	310	445	445	345	185	0	0	0	0	0	0	0	0	0	0	0	
	E	135	35	305	520	625	630	545	400	210	0	0	0	0	0	0	0	0	0	
	SE	150	5	120	290	445	545	585	565	480	350	185	0	0	0	0	0	0	0	
	S	130 150	0	0	0	0	145	285	395	470	495	470	395	285	145	0	0	0	0	
	SW	150	0	0	0	0	0	0	0	185	350	480	565	585	545	445	290	120	5	
	W	135 75	0	0	0	0	0	0	0	0	0	210	400	545	630	625	520	305	35	
	NW	75	0	0	0	0	0	0	0	0	0	0	0	185	345	445	445	310	45	
Diff (Cldy) Diff(Clr)		265	0	50	160	295	430	¢50	640	700	720	700	640	550	430	295	160	50	0	
		$\begin{array}{r} 110 \\ 50 \end{array}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 85 \\ & 55 \end{aligned}$	$\begin{array}{r} 125 \\ 70 \end{array}$	$\begin{array}{r} 170 \\ 80 \end{array}$	$\begin{array}{r} 210 \\ 90 \end{array}$	$\begin{array}{r} 245 \\ 95 \end{array}$	$\begin{aligned} & 270 \\ & 100 \end{aligned}$	280	$\begin{aligned} & 270 \\ & 100 \end{aligned}$	$\begin{array}{r} 245 \\ 95 \end{array}$	210	170	$\begin{array}{r} 125 \\ 70 \end{array}$	85	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	5	
August 22 and April 22	N	5		20	45	0	0	0	0	0	0	0	0	0	0	0	45	20		
	NE	45		60	295	355	285	135	0	0	0	0	0	0	0	0	0	0		
	E	115		65	370	555	605	540	400	215	0	0	0	0	0	0	0	0		
	SE	155		30	230	430	570	630	620	540	410	240	50	0	0	0	0	0		
	S	160		0	0	50	200	350	470	550	580	550	470	350	200	50	0	0		
	SW	155		0	0	0	0	0	50	240	410	540	620	630	570	430	230	30		
	W	115		0	0	0	0	0	0	0	0	215	400	540	605	555	370	65		
	NW	45		0	0	0	0	0	0	0	0	0	0	135	285	355	295	60		
Diff (Cldy) Diff (Clr)		205		0	65	185	320	445	540	600	620	600	540	445	320	185	65	0		
		$\begin{aligned} & 85 \\ & 40 \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 95 \\ & 60 \end{aligned}$	$\begin{array}{r} 135 \\ 70 \end{array}$	$\begin{array}{r} 175 \\ 80 \end{array}$	$\begin{array}{r} 205 \\ 85 \end{array}$	$\begin{array}{r} 230 \\ 90 \end{array}$	$\begin{array}{r} 235 \\ 90 \end{array}$	$\begin{array}{r} 230 \\ 90 \end{array}$	$\begin{array}{r} 205 \\ 85 \end{array}$	$\begin{array}{r} 175 \\ 80 \end{array}$	$\begin{array}{r} 135 \\ 70 \end{array}$	$\begin{aligned} & 95 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		
September 22 and March 21	N	0			0	0	180	0	0	0	0	0	0	0	0	0	0			
	NE	20			0	180	180	60	0	0	0	0	0	0	0	0	0			
	E	80			0	330	480	480	370	200	0	0	0	0	0	0	0			
	SE	145			0	285	500	615	635	575	455	290	110	0	0	0	0			
	S	180			0	70	225	390	530	615	645	615	530	390	225	70	0			
	Sw	145			0	0	0	0	110	290	455	575	635	615	500	285	0			
	W	80			0	0	0	0	0	0	0	200	370	480	480	330	0			
	NW	20			0	0	0	0	0	0	0	0	0	60	180	180	0			
	H	125			0	50	160	275	370	430	450	430	370	275	160	50	0			
Diff(Cldy) Diff(Clr)		$\begin{aligned} & 55 \\ & 30 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & 85 \\ & 55 \end{aligned}$	$\begin{array}{r} 120 \\ 70 \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	$\begin{array}{r} 170 \\ 80 \end{array}$	$\begin{array}{r} 175 \\ 80 \end{array}$	$\begin{array}{r} 170 \\ 80 \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	$\begin{array}{r} 120 \\ 70 \end{array}$	$\begin{aligned} & 85 \\ & 55 \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
October 22 and February 21	N	0					0	0	0											
	NE	5					70	5	0	0	0	0	0	0	0					
	E	45					255	345	300	170	0	0	0	0	0					
	SE	115					290	480	555	535	440	295	135	0	0					
	S	155					155	335	490	585	620	585	490	335	155					
	SW	115					0	0	135	295	440	535	555	480	290					
	$\underset{\sim}{\text { W }}$	45					0	0	0	0	0	170	300	345	255					
	NW	5					0	0	0	0	0	0	0	5	70					
	H	65					40	120	200	260	280	260	200	120	40					
Diff(Cldy) Diff (Clr)		$\begin{aligned} & 30 \\ & 20 \end{aligned}$					$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	$\begin{array}{r} 100 \\ 60 \end{array}$	$\begin{array}{r} 115 \\ 65 \end{array}$	$\begin{array}{r} 120 \\ 70 \end{array}$	$\begin{array}{r} 115 \\ 65 \end{array}$	$\begin{array}{r} 100 \\ 60 \end{array}$	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$					
November 22 and January 21	N	0						0	0	0	0									
	NE	0						0	0	0	0	0	0	0						
	E	20						160	190	120	0	0	0	0						
	SE	75						245	385	410	355	240	115	15						
		105 75						180	350	460	500	460	350	180						
	SW	75						15	115	240	355	410	385	245						
	W	20						0	0	0	0	120	190	160						
	NW	0						0	0	0	0	0	0	0						
		25						25	75	120	135	120	75	25						
Diff(Cldy) Diff (Clr)		$\begin{aligned} & 15 \\ & 10 \end{aligned}$						$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & 75 \\ & 50 \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$						
December 21		0						0	0	0	0	0	0	0						
	VE	0						0	0	0	0	0	0	0						
	E	15						80	140	95	0	0	0	0						
	SE	55						120	290	340	300	205	90	10						
	S	80 55						90	270	385	420	385	270	90						
	SW	55						10	90	205	300	340	290	120						
	W	15						0	0	0	0	95	140	80						
	NW	0						0	0	0	0	0	0	0						
		15						5	40	75	85	75	40	5						
Diff (Cldy) Diff (Clr)		$\begin{aligned} & 10 \\ & 10 \end{aligned}$						$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$						
THE TABULATED VALUES HAVETHE FOLLOWING BASIS			For southern latitudes, this table may be used by reading northern values for southern aspects and vice-versa, substituting dates as follows:																	
Direct radiation factor, $k_{D}=1.0$ Diffuse radiation factor, $k_{d}=1.0$ Height correction factor. $k_{a}=1.0$			NORTH		June		May July		April August			March September		February October August April		January November July May			December	
			SOUTH	December		X'ovember January			October February		September March					Jun				

