

Solar Energy in Context

Source: http://asrc.albany.edu/people/faculty/perez/2015/IEA.pdf

Installed Solar Electricity Capacity

Source: https://www.gov.uk/government/statistics/solar-photovoltaics-deployment

ME922/927 Solar energy

Solar Contribution to Electricity - UK

Source: gridcarbon app. - http://www.gridcarbon.uk

ME922/927 Solar energy

<u>Solar farms</u>

Shotwick solar farm – 72MWe

- □ Solar farms are appearing worldwide e.g. Topaz farm in US with 550MW capacity.
- □ In the UK around 10GW of solar farms have been developed in recent years taking advantage of various renewable incentive schemes. Largest individual farm ~ 72MW (DC) in 2017.

The Sun

- \Box Core temperature 8×10^6 to 40×10^6 K.
- Effective black body temperature is 6000 K.
- Solar constant: extra terrestrial flux from the sun received on a unit area perpendicular to the direction of propagation – mean Sun/Earth distance value is 1353 W/m².
- Actual extra terrestial radiation varies with time of year as earth-sun distance varies.

Energy from the sun Incoming Reflected shortwave Longwave solar energy radiation to space radiation 175.10^{15} W 122.5 . 10¹⁵ W $52.5 \cdot 10^{15} \, W$ Atmospheric boundary Convection currents (wind and ocean waves) $368 \cdot 10^{12} \, W$ Tidal energy $3 \cdot 10^{12} \,\mathrm{W}$ Evaporation of water, heating of water & ice Geothermal 40.10^{15} W energy $32 \cdot 10^{12} \,\mathrm{W}$ Photosynthesis on land and sea 98.10^{12} W Earth's surface Direct conversion to heat Formation of fossil fuels 82.10¹⁵ W 13.10⁶ W

Solar spectrum

NASA/ASTM Standard Spectral Irradiance

	W	Wavelength (µm)									
	0 - 0.38	0.38 – 0.78 (visible range)	> 0.78								
Fraction in range	0.07	0.47	0.46								
Energy in range (W/m ²)	95	640	618								

Atmospheric interactions

- The greater the distance that the radiation passes through the atmosphere, the greater is the frequency dependent scattering.
 Spectra at ground level are often referred to particular 'air masses'.
- Air Mass 1 is the thickness of the atmosphere vertically above sea level.
- Air Mass 2 is double this thickness (equivalent to direct solar radiation at an altitude of 30 degrees).

Shortwave and Longwave radiation

Direct and diffuse radiation

- Solar radiation reaches a surface on Earth as
 - direct (from the Sun),
 - and diffuse radiation after scattering in the atmosphere and as radiation reflected from surrounding objects.
 - ground reflected solar.
- The total radiation reaching a surface (the solar resource) is the summation of the three components.

On very clear days around 90% of the total solar radiation is direct.

On heavily overcast days 100% of the solar radiation is diffuse.

Direct and diffuse radiation

- Direct radiation has a intensity and direction – resource can be calculated geometrically –
 - dependent on position on earth's surface, position of the sun/earth (timedependent) + surface geometry.
- Diffuse radiation has random direction – typically use geometric/empirical "sky models" to determine resource.

- Direct radiation can be focused diffuse radiation can't.
- Technologies such as nonconcentrating PV and solar thermal work in direct or diffuse.

<u>Solar resource – calculations</u>

- If we want to calculate the power output of a solar panel or other solar conversion technology – need to calculate the solar resource.
- Calculation usually relies on measured solar data.
- Then *transformed* to give solar radiation falling on surface of specific orientation of inclination – direct, diffuse and reflected treated differently.

- Dependent on:
- □ Latitude & Longitude
- □ Solar declination
- □ Solar "time"
- □ Solar altitude
- □ Solar azimuth
- Surface orientation
- □ Surface tilt
- □ Surroundings

Solar radiation measurement

Pyranometer measures the total solar irradiance on a planar surface.

Pyrheliometer measures direct beam solar radiation by tracking the sun's position throughout the day.

Solar radiation measurement

- Shaded pyranometer measures diffuse solar irradiance on a (usually horizontal) surface.
- The shade blocks direct radiation and some diffuse radiation (so need to adjust readings).
- Integrated pyranometer measures both total and diffuse radiation on a (usually horizontal) surface.
- Diffuse is calculated based on shading patterns from internal shades

<u>Solar Resource – Solar radiation quantities (all W/m²)</u>

$$\begin{split} I_{dn} &- \text{direct normal or "beam" (pyrheliometer)} \\ I_{dh} &- \text{direct horizontal } I_{dh} = I_{dn} \text{sin}\beta_{s} \\ I_{fh} &- \text{diffuse horizontal (pyranometer with shadow band)} \\ I_{gh} &- \text{global horizontal (pyranometer or solarimeter)} \\ r_{g} &- \text{ground reflectivity (albedo)} \end{split}$$

$$\begin{split} I_{d\beta} &- \text{direct radiation on a surface of inclination } \beta_f \\ I_{s\beta} &- \text{sky diffuse radiation incident on a surface of inclination } \beta_f \\ I_{r\beta} &- \text{ground reflected radiation incident on a surface of inclination } \beta_f \end{split}$$

unknown

known

$$I_{gh} = I_{dh} + I_{fh}$$
$$I_{gh} = I_{dn} \sin \beta_s + I_{fl}$$

Solar data for simulation: either: I_{gh} and I_{fh} or I_{dn} and I_{fh}

 $I_{dh} = I_{dn} \sin \beta_s$

Solar resource – position on earth

- □ latitude angle N or S above or below equator.
- longitude angle E or W from prime meridian (Greenwich).
- Longitude difference angle from location to local time zone reference meridian (west –ve).

Solar resource - solar declination

<u>Solar resource – solar time</u>

$$t_s - t_m = \pm L_{diff} / 15 + (e_t / 60) + d_s$$

where,

 $t_s = solar time$ $t_m = local time$ $L_{diff} = longitude difference$ $e_t = equation of time$ $d_s = daylight saving time$

<u>Solar resource – Solar geometry</u>

Declination $d = 23.45 \sin (280.1 + 0.9863 \text{ Y})$ where Y = year day number (January 1 =1, December 31 = 365)

Altitude $\beta_s = \sin^{-1} [\cos L \cos d \cos \theta_h + \sin L \sin d]$ where L is site latitude

```
\theta_{\rm h} is hour angle = 15 (12 - t<sub>s</sub>)
```

Azimuth

 $\alpha_{s} = \sin^{-1} [\cos d \sin \theta_{h} / \cos \beta_{s}]$

Incidence angle

 $i_{\beta} = \cos^{-1}[\sin \beta_s \cos (90\beta_f) + \cos \beta_s \cos \omega \sin (90\beta_f)]$ where ω = azimuth angle between sun and surface normal; β_f = surface inclination angle

<u>Solar resource – Surface-solar angles</u>

Short-wave radiation - calculation

Angle of incidence:

 $i_{\beta} = \cos^{-1} \left(\sin \beta_{s} \cos(90 - \beta_{f}) + \cos \beta_{s} \cos \omega \sin(90 - \beta_{f}) \right)$

Direct irradiance on surface of inclination β_f : $I_{d\beta} = I_{dh} \cos i_{\beta} / \sin \beta_s = I_{dn} \cos i_{\beta}$

Diffuse component: $I_{s\beta} = 0.5 [1 + \cos (90 - \beta_f)] I_{fh}$ assuming an isotropic diffuse sky Ground reflected: $I_{r\beta} = 0.5 [1 - \cos (90 - \beta_f)] (I_{dh} + I_{fh}) r_g$ where r_g is the ground reflectance

In practice the sky is not isotropic and so empirically-based models that correct for circumsolar and horizon brightening are employed:

sky component:

$$I_{s\beta} \underbrace{I_{fh}}_{2} + \frac{\cos(90 - \beta_{f})}{2} \times \left(1 + \left[1 - \underbrace{I_{fh}}_{2}\right] \sin^{-3}\left(\frac{\beta_{f}}{2}\right)\right) \times \left(1 + \left[1 - \underbrace{I_{gh}}_{2}\right] \sin^{-3}\left(\frac{\beta_{f}}{2}\right)\right) \times \left(1 + \left[1 - \underbrace{I_{gh}}_{2}\right] \cos^{-2}\left(i_{\beta}\right) \sin^{-3}\left(90 - \beta_{s}\right)\right)$$

$$\begin{split} i_{\beta} - & \text{angle between the} \\ & \text{incident beam and the} \\ & \text{surface normal vector} \\ \omega - & \text{surface-solar azimuth} \\ & (= |\alpha_s - \alpha_f|) \\ \alpha_f, \ \beta_f - \textit{surface} \text{ azimuth and} \\ & \text{inclination respectively} \\ \alpha_s, \ \beta_s - \textit{solar azimuth and} \end{split}$$

elevation respectively

Solar angle tables (altitude & azimuth)

North Sun		Jar	Jan. 21	Feb. 21		Mar. 21		Apr. 22		May 22		Ju	June 21		July 23		Aug. 22		Sept. 22		0ct. 22		Nov. 22		ec. 21	Sum	
tude	tude	Ait	Az	Alt	Az	Alt	Az	Att	AI	Alt	Az	Alt	Az	Alt	AI	Alt	Az	Ait	Az	Alt	Az	Alt	Az	Alt	Az	Time	
	06 07 08	8	125	4	108 118	0 11 22	90 100 110	8 19 31	81 90 100	13 24 36	74 83 92	15 26 37	72 80 89	13 24 36	74 83 92	8 19 31	81 90 100	0 11 22	90 100 110	4	108 118	8	125	6	127	06 07 08	
	09 10 11	17 24 28	136 149 164	24 32 37	130 145 161	33 42 48	123 138 157	42 52 59	112 128 150	47 58 67	104 118 142	49 60 69	100 114 138	47 58 67	104 118 142	42 52 59	112 128 150	33 42 48	123 138 157	24 32 37	130 145 161	17 24 28	136 149 164	14 21 25	138 151 165	09 10 11	
40°	12 13 14 15 16 17 18	30 28 24 17 8	180 196 211 224 235	39 37 32 24 15 4	180 199 215 230 242 252	50 48 42 33 22 11 0	180 203 222 237 250 260 270	62 59 52 42 31 19 8	180 210 232 248 260 270 279	70 67 58 47 36 24 13	180 218 242 256 268 277 286	74 69 60 49 37 26 15	180 222 246 260 271 280 288	70 67 58 47 36 24 13	180 218 242 256 268 277 286	62 59 52 42 31 19 8	180 210 232 248 260 270 279	50 48 42 33 22 11 0	180 203 222 237 250 260 270	39 37 32 24 15 4	180 199 215 230 242 252	30 28 24 17 8	180 196 211 224 235	27 25 21 14 6	180 195 209 222 233	12 13 14 15 16 17 18	
45°	06 07 08 09 10 11 12 13 14 15 16 17 18	5 13 19 24 25 24 19 13 5	125 137 150 165 180 195 210 223 235	3 12 21 28 32 34 32 28 21 12 3	108 120 132 146 162 180 198 214 228 240 252	0 10 21 30 38 43 45 43 38 30 21 10 0	90 101 112 125 141 159 180 201 219 235 248 259 270	8 19 30 40 48 55 57 55 48 40 30 19 8	81 92 103 116 133 154 180 206 227 244 257 268 279	14 25 35 46 55 62 65 62 55 46 35 25 14	75 85 96 108 125 148 180 212 235 252 264 275 285	16 27 37 48 58 65 68 65 58 48 37 27 16	73 83 93 105 121 146 180 214 239 255 267 277 287	14 25 35 46 55 62 65 62 55 46 35 25 14	75 85 96 108 125 148 180 212 235 252 264 275 285	8 19 30 40 48 55 57 55 48 40 30 19 8	81 92 103 116 133 154 180 206 227 244 257 268 279	0 10 21 30 38 43 45 43 38 30 21 10 0	90 101 112 125 141 159 180 201 219 235 248 259 270	3 12 21 28 32 34 32 28 21 12 3	108 120 132 146 162 180 198 214 228 240 252	5 13 19 24 25 24 19 13 5	125 137 150 165 180 195 210 223 235	2 10 16 20 22 20 16 10 2	127 139 152 165 180 195 208 221 233	06 07 08 09 10 11 12 13 14 15 16 17 18	

Solar tables (I_{dv}, I_{dh} & I_{fh})

		diffus	e (clo	udy a	nd cl	ear s	ky) so	lar ir	radia	nces	on ho	rizon	taí su	urface	es, I _{dt}	, (W,	/m²).		L	55	°N
	Orien-	Daily										Sun Tin	ne								
Date	tation	mean	03	04	05	06	97	08	99	10	11	12	13	14	15	16	17	18	19	20	21
June 21	N.EEESS N.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S	35 85 145 145 145 145 145 145 85		95 160 130 20 0 0	175 385 365 135 0 0 0	135 485 550 290 0 0 0	25 470 640 435 0 0 0	0 365 630 530 115 0 0	0 205 545 255 0 0	0 20 395 540 365 0 0	0 210 455 435 160 0	0 0 325 465 325 0 0	0 0 160 435 455 210 0	0 0 365 540 395 20	0 0 255 565 545 205	0 0 115 530 630 365	25 0 0 435 640 470	135 0 0 290 550 485	175 0 0 0 135 365 385	95 0 0 0 20 130	
Diff (Cld Diff (Clr	н v) }	290 115 50		10 20 15	80 55 45	195 95 60	335 140 75	465 180 80	585 225 90	675 260 95	735 285 100	755 295 100	735 285 100	675 260 95	585 225 90	465 180 80	335 140 75	195 95 60	80 55 45	10 20 15	
July 23 and May 22 Diff (Cld Diff (Clr)	N H SE S W H	25 75 135 150 130 150 135 75 265 110 50		2555500000 0 55	135 310 305 120 0 0 0 50 40 35	110 445 520 290 0 0 0 160 85 55	0 445 625 445 0 0 0 295 125 70	0 345 630 545 145 0 0 0 430 170 80	0 185 545 585 285 0 0 0 550 210 90	0 400 565 395 0 0 640 245 95	0 210 480 470 185 0 700 270 100	0 0 350 495 350 0 720 280 100	0 0 185 470 480 210 0 700 270 100	0 0 395 565 400 640 245 95	0 0 285 585 545 185 550 210 90	0 0 145 545 630 345 430 170 80	0 0 445 625 445 295 125 70	110 0 0 290 520 445 160 85 55	135 0 0 120 305 310 50 40 35	25 0 0 5 35 45 0 5 5	
August 22 and April 22	NEESSESSES NE	5 45 115 155 160 155 115 45 205			20 60 65 30 0 0 0 0	45 295 370 230 0 0 0 0 65	0 355 555 430 50 0 0 185	0 285 605 570 200 0 0 0 320	0 135 540 630 350 0 0 445	0 400 620 470 50 0 540	0 0 215 540 550 240 0 0 600	0 0 410 580 410 0 0 620	0 0 240 550 540 215 0 600	0 0 50 470 620 400 0 540	0 0 350 630 540 135 445	0 0 200 570 605 285 320	0 0 50 430 555 355 185	45 0 0 230 370 295 65	20 0 0 30 65 60 0		
Diff (Cld Diff (Clr)	y)	85 40			5	50 40	95 60	135	175 80	205 85	230 90	235 90	230 90	205 85	175 80	135	95 60	50 40	5		

Table A2.35 (m) Basic direct solar irradiances on vertical, IDV, and horizontal, IDH, surfaces and basic

Г

Major solar energy resources

Concentrating solar power plant

- World's first commercial concentrated solar power plant at Seville, Spain (opened March 2007).
- 624 x 120 m² moveable mirrors (heliostats) track and focus the sun's rays to a single solar receiver at the top of a 115 m tower.
- Receiver temperature of 250°C turns water into steam to drive a turbine/generator located in the tower.
- Pressurised water storage of ~50min generating capacity to overcome cloud transients
- Peak capacity of 11 MW sufficient to generate 23 million kWh of electricity per year powering 6,000 homes.

Concentrating solar power plant

Ivanpah solar power plant, Mojave Desert California – 392 MW, 173,500 heliostats

ME922/927 Solar energy

Solar thermal concentrator

 \Box Stores molten salt solution at 570°C.

- □ Heat exchanger generates steam for conventional turbo-generator to produce electricity.
- □ Storage permits generation to match consumer demand. Continuous operation, day and night (at reduced output level) is feasible.

ME922/927 Solar energy

PV cell efficiency

□ Limiting efficiency for single junction solar cell – 33.7%. Shockley-Quiesser limit.

Photovoltaic cell types

- Monocrystalline silicon grown from a seed crystal: efficient but expensive.
- Polycrystalline silicon made from grains of monocrystalline silicon: less efficient but cheaper.
- Amorphous silicon thin film: less efficient but relatively cheap.
- Next generation based on conductive organic polymers: ~8% efficient, very cheap, high optical absorption coefficient so a large amount of light can be absorbed by a small amount of material; low strength compared to inorganic photovoltaic cells.

PV cell efficiency

PV power output

A simple model:
$$P_{mp} = P_{STC} \frac{J_{tot}}{1000} (1 - \beta [\theta - 25]) \times p$$

Example 1

Calculate the power output from a PV panel at 60°C with 840 W/m² incident solar radiation if the same panel produces 150 W at STC (1000W/m² & 25°C). β is measured at 0.003 W/K

Example 1

For the same situation calculate the power output if the temperature was 30° C. β is again measured at 0.003 W/K

$$P_{mp} = P_{STC} \frac{J_{tot}}{1000} (1 - \beta [\theta - 25]) \times p$$
$$P = 150 \times \frac{840}{1000} [1 - 0.003 \times (60 - 25)]$$
$$= 112.8 W$$

$$P_{mp} = P_{STC} \frac{J_{tot}}{1000} (1 - \beta [\theta - 25]) \times p$$
$$P = 150 \times \frac{840}{1000} [1 - 0.003 \times (30 - 25)]$$
$$= 124.1 W$$

Ocean thermal energy conversion

- Extracts energy from the difference in temperature between the surface of the sea (up to 29C in the tropics) and deep water, typically 5°C.
- This powers a heat engine by which a temperature difference creates electricity.
- A 250 MW plant could produce 300 million litres of drinking water a day.
- □ Via electrolysis, it would also be possible to produce hydrogen fuel.
- Not a proven technology and initially very costly.

Ocean thermal energy conversion

Demonstration 120 kW plant on shore closed loop opened in Hawaii in 2015

