Geothermal Energy

Volcanic activity

- The most violent manifestation of geothermal energy.
- The most promising regions for geothermal exploitation are found close to the boundaries
 between the tectonic plates of the earth's crust.

Crustal Plate Boundaries

High Enthalpy Sites

- Geysers: indicate hot water and steam close to the surface.
- □ T~200°C
- Extraction of electrical energy from such a high enthalpy site is then relatively straightforward; the excess heat may be exploited as well.

High enthalpy sites

- □ Lardarello, Northern Italy established in 1904.
- Produce 500 MW of electrical power.

- □ Krafla geothermal power station Iceland.
- □ 2 x 30MW steam turbines

Hot, dry rock

Basic idea is to drill injection and recovery boreholes into impermeable rock, and then fracture it deep underground. Cold water is injected and hot water is recovered.

Low enthalpy sites for district heating

- □ ~80-150°C
- □ Used for district heat.
- Reykjavik, Iceland benefits from geothermal district heating schemes with a total capacity exceeding 660 MW.

 Possible to use organic Rankine cycle (ORC) to generate electricity at low temperature ~100°C

The 4MW Akça ORC geothermal plant in Turkey. Credit: Exergy.

UK Low enthalpy sites for district heating

 Southampton, England has a 2 MW district heating plant, and plans further expansion.

Geothermal heat flux mW/m² source: BGS

Temperatures at 1000m – source: BGS

<u>Halo Kilmarnock</u>

2km borehole as part of a district heating scheme.

Scotland to get its first deep geothermal heating system providing cheap renewable energy

Developers say the heat 'beneath our feet' will help reduce fuel poverty

Source: The Independent

Global geothermal potential and exploitation

Global geothermal electricity generation

World Geothermal Generation

https://www.worldenergy.org

<u>Heat Pumps</u>

- Heat pumps transfer heat from low-quality heat sources.
- Often referred to as a geothermal technology
- Sources can include ground (1-200m) or water (GSHP, WSHP).
- An alternative is the airsource heat pump (ASHP), which uses the atmosphere as the primary source.

Source: Heat King

<u>GSHP – Geothermal?</u>

- Average geothermal heat flux ~90 mW/m²
- Average solar flux ~240W/m²
- At GSHP depths
 (~100m) the main heat
 source is really solar
 energy not geothermal
 energy.

FIGURE 7: GEOTHERMAL DIRECT APPLICATIONS WORLDWIDE IN 2015, DISTRIBUTED BY PERCENTAGE OF TOTAL ENERGY USED (TJ/YEAR)

GROUND-SOURCE HEAT PUMP This example illustrates under-floor heating. This technology can also be used with radiators. Trenches are usually between 1-2m deep and boreholes between 15-100m, depending on energy needs. The longer the coil, the more energy it produces. GROUND-SOURCE HEAT PUMP \otimes GROUND-SOURCE HEAT PUMP WATER PIPES HEAT PUMP COMPRESSOR EXPANSION VALVE CONDENSER EVAPORATOR

Source: Energy Savings Trust

The **ground loop** absorbs heat from the ground. The heat is transferred to a refrigerant by the **evaporator**, changing it from a liquid to a gas. The **compressor** compresses the gas, causing the temperature to rise. The **condenser** then transfers the heat from the hot gas to the central heating system.

Heat Pumps

- With a low carbon electricity supply heat pumps are often viewed as a low-carbon means to provide space heating and hot water to buildings.
- However there are potential problems:
 - increased strain on the electricity network with significant take-up;
 - poor performance if incorrectly installed;
 - failure of GSHP installations (over time) if incorrectly sized;
 - poor performance of ASHP in low temperatures and humid climates (need to defrost evaporator coils).

Image: Mitsubishi