

Bio-fuel types

□ Solid:

wood;

waste products from agriculture (crop residues) and forestry; energy crops grown specifically for energy yield; human and animal wastes - sewage and slurries; domestic and industrial solid wastes.

□ Liquid:

methanol (substitute for gasoline); vegetable oils (substitute for diesel).

Gaseous:

generally methane.

□ Combustion produces CO₂ but the amount released equals the amount absorbed during growth, so the carbon cycle is closed (IF burned biomass is re-grown).

Biomass developing world

- Most biomass use is in the developing world
- □ Often NOT a sustainable fuel
 - Use is > supply
 - Deforestation
 - Topsoil erosion

- □ 3 billion people worldwide cook on open fires or primitive stoves
- Cooking with biomass on open fires indoors results in very serious health problems
- Nearly 2 million people die prematurely from illness attributable to indoor air pollution from household solid fuel use. (source: WHO, 2011 factsheet 292)

UK renewable energy production in 2016

- □ Bioenergy dominates.
- \Box Wind >> hydro.
- Increasing amount of solar
- Practical resource not vast relative to demand.
- High capture levels require:
 - increased transmission network capacity;
 - active distribution network management;
 - energy storage and/or standby capacity.

<u>UK biomass</u>

- Biomass and waste combustion account for the vast majority (>70%) of renewables output in the UK.
- Process is similar to fossil fuel combustion plant – Rankine cycle or combined cycle.
- Biomass encompasses a wide range of fuel types from chipped timber to sewage gas to waste.
- Photos from Lockerbie Biomass power station

UK biomass

- □ June 2013: Forth Energy proposal for 120 MWe Biomass CHP plant costing £325m.
- Plants also proposed for Grangemouth, Rosyth.
- □ Biomass sourced from US.
- 70% of Drax power station output (2.8GW/4GW) from a variety of biomass fuels
- □ Mainly sourced from North America
- Proposal to convert remaining units to gas.

Waste-to-power plant

<u>UK biogas</u>

- Biogas from landfill accounts for 6% of UK renewables electricity output
- Equivalent to all hydro power output
- Double benefit as it burns methane (that would otherwise leak into the atmosphere) to produce CO₂
- □ Methane has 72 times the GWP₂₀ potential of CO₂
- □ Can be used in CHP schemes
- Example at Glasgow Summerston.

Landfill methane

Biomass heating

■ Boilers have high efficiency (~90%) and low emissions; output can be scheduled and matched to variable demand (microprocessor control of fuel and air supply).

□ Issues are expense (up to £15,000 for a 25 kW automatic feed unit), pellet quality & availability, and monthly cleaning & ash removal. Safety also an issue in operation and pellet storage.

□ Fuel prices are cheaper than electrical or oil heating in remoter areas of UK.

□ Systems eligible under the Enhanced Capital Allowance scheme (tax relief to businesses investing in energy saving equipment).

Wood pellets

- Sweden, Finland and Austria have mature wood pellet markets (80% of new Austrian houses equipped with a wood pellet boiler).
- \Box Efficiency of production ~80-85%.
- http://www.nef.org.uk/logpile/index.htm lists ~75 UK suppliers of wood pellets and ~50 suppliers of wood pellet boilers.
- Surveys show that adoption is a deliberate decision process starting with an evaluation of functional reliability and installation/running cost, mediated by attitudes and intentions.

Pellet market

Technology

Pelletising properties of different biomass types. Torrefied pellets - advantages and challenges. Miscanthus pellets – experiences/opportunities. Making pellets from cork residues and shrubs. Development of low-dust biomass boilers.

Business issues

How to set up a local wood pellet production. Financing and operating large pellet heating systems.

Price indices for wood pellets.

Wood pellet ESCOs.

Operational results of pellet production plant.

Policy

The importance of standards to increase quality/output.

Sustainability criteria for solid biomass production.

European policies for biomass.

European Pellet Standards.

nd shrubs. Dilers.	Fuel	Energy density by mass (GJ/tonne)	Bulk density (kg/m ³⁾	Energy density by volume (MJ/m ³⁾
oduction. heating	Wood chips (30% m.c.)	12.5	250	3,100
	Log wood (20% m.c.)	14.7	350-500	5,200-7,400
ion plant.	Wood (oven dry)	19	400-600	7,600-11,400
	Wood pellets	17-18	600-700	10,800-12,600
	Miscanthus (25% m.c.)	13	140-180	1,800-2,300
ase	House coal	27-31	850	25,500-25,400
	Anthracite	33	1,100	36,300
ass	Heating oil	42.5	845	36,000
	Natural gas (NTP)	38.1	0.9	35.2
ME922/927 Biof	LPG	46.3	510	23,600 12

Bio-diesel: present yields and future prospects

Oil Sou	Irce	Biomass (Mt/ha/yr)	Oil Content (% drymass)	Biodiesel (Mt/ha/yr)	Energy Content (boe/1000ha/day)		
Soy	a	1-2.5	20%	0.2-0.5	3-8		
Rap	eseed	3	40%	1.2	22		
Palr	noil	19	20%	3.7	63		
Jatr	opha	7.5-10	30-50%	2.2-5.3	40-100		
Mic	roalgae	140-255	35-65%	50-100	1,150-2,000		
mt = metric tons, ha = hectare, boe = barrel of oil equivalents							

See the renewable transport fuel obligation: https://www.gov.uk/renewable-transport-fuels-obligation.

ME922/927 Biofuels

Biomass for transport: biodiesel

- Much of the diesel sold in the UK already contains a percentage of biodiesel.
- Demonstration schemes already in place (e.g. biobus – diesel from recycled cooking oil – Ayrshire).
- □ Equates to ~3% of total UK fuel use in 2017.

CO₂ avoided

Source: CONCAWE/JRC/EUCAR

ME922/927 Biofuels

Bio-fuels for transport: emissions

Bio-diesel: energy efficiency

ME922/927 Biofuels

Bio-fuels for transport: land use efficacy

HOW BIOFUELS MEASURE UP

The case for biofuels isn't cut and dried. Their appetite for agricultural land and the modest savings on greenhouse gas emissions

