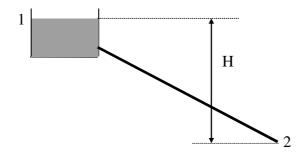
Energy Resources and Policy Handout: **Power from water**

For an application such as a hydro-electric scheme, the typical requirement is to evaluate the power delivered at the end of a pipeline as depicted in the following figure.



From the free surface in the reservoir to the pipe exit, the energy equation is

$$\frac{P_1}{\rho} + \frac{V_1^2}{2} + g z_1 = \frac{P_2}{\rho} + \frac{V_2^2}{2} + g z_2 + \frac{4fl}{d} \cdot \frac{V^2}{2}$$

and the power available in the flow at pipe exit is

$$\rho q \left[\frac{P_2}{\rho} + \frac{V_2^2}{2} \right] = \frac{\pi}{4} \rho d^2 \overline{V} \left[g H - \frac{4f J}{d} \cdot \frac{\overline{V^2}}{2} \right],$$

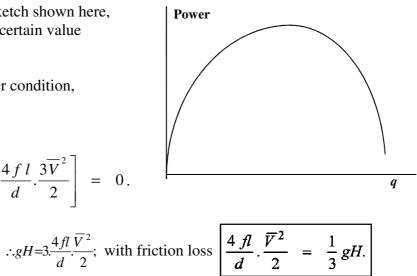
where $V_2 = \overline{V}$ = mean velocity in pipe. Clearly, power = 0 if \overline{V} = 0 and if \overline{V} is large $\frac{4fl}{d} \cdot \frac{\overline{V}^2}{2} \rightarrow gH \text{ and so power tends to } 0.$

A graph of power against volume flow rate would look like the sketch shown here, with a maximum at a certain value of q.

For a maximum power condition,

$$\frac{d}{dV}(power)=0, \text{ giving}$$

$$\frac{\pi}{4}\rho d^2 \left[gH - \frac{4fl}{d} \cdot \frac{3\overline{V}^2}{2}\right] = 0.$$

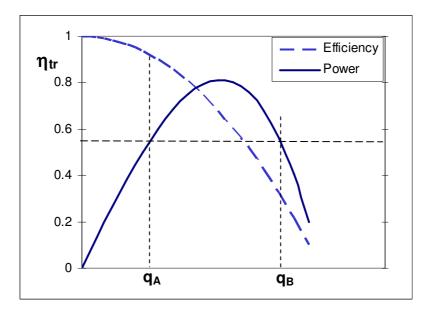


Thus the energy available at the end of the pipe = $\frac{2}{3}gH$ and the transmission efficiency, η_{tr} , for the pipeline is defined as

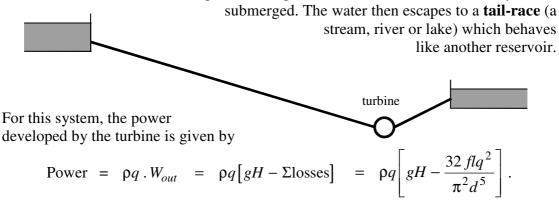
$$\frac{energy \ extracted}{total \ energy \ available} = \frac{\frac{2}{3}gH}{gH} = \frac{2}{3}$$

Note that in general, $\eta_{tr} = \frac{gH - losses}{gH} = 1 - \frac{losses}{gH}$.

So η_{tr} will be 1.0 for q = 0, falling to zero where losses = gH. An accurate plot of power and efficiency characteristics is shown in the graph below.



Practical hydro-electric plants have two possible configurations, depending on the type of turbine used. Systems with **reaction** turbines (Francis, Kaplan) are the more common - there is a substantial pressure drop across the turbine, which is fully



For a given system, there is a maximum power which can be made available to the turbines, its value depending on H, f, l and d.

A hydro-electric plant will normally run at less than maximum power, say at a level indicated by the dashed line on the graph. If this power is known, a cubic equation for q is produced, which in general will have two real solutions q_A and q_B , as illustrated in the graph. The transmission efficiencies are very different; the system will of course be run at the lower flow rate, q_A .

Sometimes an **impulse** turbine is used: a Pelton Wheel, Turgo or cross-flow design. Here, the energy of the water is converted entirely into kinetic energy using a variable nozzle or spear valve. The water is discharged to atmosphere with a velocity V_N , and the energy equation becomes

$$gH = \frac{V_N^2}{2} + \frac{4 fl}{d} \cdot \frac{\overline{V}^2}{2} .$$

So $V_N = \sqrt{2\left(gH - \frac{4 fl}{d} \cdot \frac{\overline{V}^2}{2}\right)}$, ignoring nozzle losses.

If these losses are represented by a velocity coefficient C_V , the true value of \bigvee_N is

$$C_V \sqrt{2\left(gH - \frac{4 fl}{d} \cdot \frac{\overline{V}^2}{2}\right)}$$

The power in the water jet is

$$\rho q \cdot \frac{V_N^2}{2} = \frac{\pi}{4} \rho d_N^2 V_N \cdot C_v^2 \left(gH - \frac{4 fl}{d} \cdot \frac{\overline{V}^2}{2} \right)$$
$$= \frac{\pi}{4} \rho d_N^2 C_v^2 \left(\frac{d}{d_N} \right)^2 \overline{V} \left(gH - \frac{4 fl}{d} \cdot \frac{\overline{V}^2}{2} \right)$$

For maximum power,

$$\frac{d}{d\overline{V}}(power) = 0 = \frac{\pi}{4}\rho d_N^2 C_v^2 \left(\frac{d}{d_N}\right)^2 \left(gH - \frac{4fl}{d} \cdot \frac{3\overline{V}^2}{2}\right),$$

so the friction loss = $\frac{1}{3}gH$ as before.

Note that η_{tr} is now $\frac{2}{3}C_v^2$. In general, $V_N^2 = 2C_v^2 \left(gH - \frac{4fl}{d} \cdot \frac{\overline{V}^2}{2}\right)$, and for maximum power conditions: $V_N^2 = 2C_v^2 \left(2 \cdot \frac{4fl}{d} \cdot \frac{\overline{V}^2}{2}\right) = C_v^2 \cdot \frac{8fl}{d} \cdot \overline{V}^2$.

Also of course,

$$V_N^2 = \left(\frac{d}{d_N}\right)^4 \overline{V}^2,$$

$$\therefore \quad \frac{d^4}{d_N^4} = \frac{8fl}{d} \cdot C_v^2 \quad giving \quad d_N^4 = \frac{d^5}{8flC_v^2}$$

or water jet diameter $d_N = \sqrt[4]{\frac{d^5}{8 f \, l \, C_v^2}}$ for maximum power.

Hydraulic turbines

Pelton wheel: - jet is split symmetrically by blades on the wheel; wheel can have up to 6 jets if mounted on vertical shaft.
Turgo: - jet passes through the wheel from left to right; it may have a larger diameter than the jet for a Pelton wheel of the same size.
Cross-flow (or Banchi or Ossberger): has a cylindrical runner, and water passes through the blade ring twice. Runner may have several segments on the same axis, to deliver high efficiency for a wide range of flow rates. Runner has simple geometry, may be fabricated from sheet metal.
Francis: fed by water from a spiral casing, fitted with a ring of guide vanes immediately upstream of the runner. These may be adjusted to vary the volume flow rate through the machine. Water exits through a gently expanding draft tube.
Propellor : an axial-flow machine, normally fitted with guide vanes as shown. If it has adjustable-pitch blades, it is known as a Kaplan turbine. It may also be installed with its shaft vertical.

Impulse – all energy converted to kinetic before impact with runner.

All reaction turbines will operate efficiently as pumps; impulse turbines will not!